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In this paper (as in previous ones) we identify and investigate polynomials p
(ν)
n (x) featuring at

least one additional parameter ν besides their argument x and the integer n identifying their
degree. They are orthogonal (provided the parameters they generally feature fit into appropriate
ranges) inasmuch as they are defined via standard three-term linear recursion relations; and they
are interesting inasmuch as they obey a second linear recursion relation involving shifts of the
parameter ν and of their degree n, and as a consequence, for special values of the parameter ν, also
remarkable factorizations, often having a Diophantine connotation. The main focus of this paper is
to relate our previous machinery to the standard approach to discrete integrability, and to identify
classes of polynomials featuring these remarkable properties.

Keywords: Discrete integrability; recursion relations; orthogonal polynomials; Diophantine factori-
zations; Askey polynomial classification.

1. Introduction

This paper is the fifth of a series [1–4] identifying and investigating classes of polynomials
defined by a simple (linear) three-term recursion relation (see (1) below) that guarantees
their orthogonality (provided the parameters they feature fit into appropriate ranges) [5].
These polynomials are remarkable inasmuch as they satisfy a second, also simple and linear,
recursion relation involving shifts in a parameters ν featured by them (see (4) below); more-
over, for special choices of this parameter, these polynomials may exhibit explicit factoriza-
tions, generally having a Diophantine connotation. In the previous paper [4] of this series,
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after reviewing these properties, we found that most of the named polynomials belonging
to the Askey scheme [6] (in some cases, up to minor modifications) could be fitted — for
appropriate assignments of their parameters — into this machinery and thereby shown to
possess these properties (although generally the factorization formulae we obtained were
applicable for parameters falling outside the ranges for which the standard orthogonality
property holds). In this paper we continue to focus on classes of orthogonal polynomials to
which our machinery [4] is applicable. These monic polynomials are again defined by the
standard three-term recursion relation

p
(ν)
n+1(x) = (x+ a(ν)

n )p(ν)
n (x) + b(ν)

n p
(ν)
n−1(x) (1a)

with the “initial” assignments

p
(ν)
−1(x) = 0, p

(ν)
0 (x) = 1, (1b)

clearly entailing

p
(ν)
1 (x) = x+ a

(ν)
0 , p

(ν)
2 (x) = (x+ a

(ν)
1 )(x+ a

(ν)
0 ) + b

(ν)
1 (1c)

and so on.

Notation: Here and hereafter the index n (as well as analogous indices such as m, �: see
below) is generally an arbitrary nonnegative integer — unless otherwise explicitly indicated:
note that this implies that (1a) is not required to hold for n = −1, when clearly it would
contradict (1b), and that (1b) entails that, in all formulae, the polynomials p(ν)

� (x) should
be set to zero whenever � is negative. Of course a(ν)

n , b
(ν)
n are given functions of the index

n and of the parameter ν. The polynomials p(ν)
n (x), as well as the parameters a(ν)

n , b
(ν)
n ,

might also depend on other parameters besides ν (indeed they often do, see below); but
the parameter ν plays a crucial role, and the classes of orthogonal polynomials featuring
remarkable factorizations are associated with special values of this parameter (generally
simply related to the order n of these polynomials). Some of the formulae written below
might require a special interpretation for n = 0, and note that hereafter the value b(ν)

0 of
the coefficient b(ν)

n at n = 0 should play no role (see (1a) and (1b)).
In the following we will also employ, whenever convenient, the quantities A(ν)

n and B(ν)
n

related to a(ν)
n and b(ν)

n by the simple relations

a(ν)
n = A

(ν)
n+1 −A(ν)

n , b(ν)
n = − B

(ν)
n

B
(ν)
n−1

, (2a)

entailing of course

A(ν)
n = A

(ν)
0 +

n−1∑
m=0

a(ν)
m , B(ν)

n = B
(ν)
0

n∏
m=1

[(−1)mb(ν)
m ]. (2b)

Here and hereafter we use the standard convention according to which sums are set to zero,
and products are set to unity, when their lower limits exceed their upper limits; this is
consistent with the validity of these formulae for n = 0.
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Let us now recall tersely our previous findings [4]. Assume that there exist quantities
A

(ν)
n and ω(ν) satisfying the nonlinear recursion relation

(A(ν)
n −A(ν−1)

n )(A(ν)
n+1 −A(ν−1)

n + ω(ν))

= (A(ν−1)
n −A(ν−2)

n )(A(ν−1)
n −A

(ν−2)
n−1 + ω(ν−1)) (3a)

with the “initial” condition

A
(ν)
0 = 0 (3b)

(note that this initial condition guarantees the validity of (3a) for n = 0, and thereby
eliminates the need to assign A(ν)

−1). Then (see [4, Proposition 2.1]), provided the coefficients

a
(ν)
n are defined in terms of these quantities by the first of the relations (2a) and the

coefficients b(ν)
n are defined as follows,

b(ν)
n = (A(ν)

n −A(ν−1)
n )(A(ν)

n −A
(ν−1)
n−1 + ω(ν)), n = 1, 2, . . . , (3c)

the polynomials p(ν)
n (x) identified by the corresponding recursion relation (1) satisfy the

following additional three-term recursion relation (involving a shift both in the order n of
the polynomials and in the parameter ν):

p(ν)
n (x) = p(ν−1)

n (x) + g(ν)
n p

(ν−1)
n−1 (x), (4a)

with

g(ν)
n = A(ν)

n −A(ν−1)
n , n = 1, 2, . . . . (4b)

As a consequence there hold for some of these polynomials (characterized by special assign-
ments of the parameter ν, generally simply related to the degree n of the polynomial)
remarkable Diophantine factorizations (see [4] and below). Note that, via (3b), the formu-
lae (3c) respectively (4b) — if assumed valid also for n = 0 — entail the vanishing of b(ν)

0

respectively g(ν)
0 , namely the “initial” conditions

b
(ν)
0 = 0, g

(ν)
0 = 0. (5)

Let us moreover recall that conditions — equivalent to (3) and (4b) but characterizing
directly the coefficients a(ν)

n , b(ν)
n and g(ν)

n , hence being also sufficient for the validity of the
second recursion relation (4a) — read as follows (see Appendix B of [2], as well as [4]):

a
(ν)
n − a

(ν−1)
n = g

(ν)
n+1 − g

(ν)
n , (6a)

b
(ν−1)
n−1 g

(ν)
n = b

(ν)
n g

(ν)
n−1, (6b)

with

g(ν)
n = − b

(ν)
n − b

(ν−1)
n

a
(ν)
n − a

(ν−1)
n−1

, (6c)

and the “initial” conditions (5). It is indeed plain that (6a) is implied by the first (2a) and
(4b), that (6b) corresponds to (3a) via (3c) and (4b), and the diligent reader will also verify
that (6c) corresponds as well to (3a) via the first relation (2a) with (3c) and (4b).
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Let us mention in passing that we investigated — by trial and error techniques, but
somewhat more systematically than we had previously done [4] — solutions of the non-
linear system (3); we found several results, but all of them eventually yielded polynomials
belonging to the Askey scheme [6] (possibly up to rescaling and shifts of their arguments);
we have therefore decided not to report these findings.

In this paper we firstly investigate, in Sec. 2, the connection of the machinery developed
in previous papers (see in particular [4]) with standard approaches to discrete integrability.
In this manner we show how some of our previous findings can be fitted in that context,
and how they can be extended: in particular we find a new nontrivial class of nonlinear
integrable equations satisfied by the single function A(ν)

n of the two discrete variables n and
ν (see below (39) and (46)). Then, in Sec. 3, we report new factorization formulae applicable
to polynomials satisfying two recursion relations, such as those yielded by the treatment of
the preceding Sec. 2. We then focus, in Sec. 4, on the identification — via trial-and-error
searches — of classes of orthogonal polynomials to which the extension of our approach
(see Sec. 2), including in some cases the Diophantine factorizations it yields (see Sec. 3), is
applicable. We thereby again end up with polynomials belonging to the Askey scheme [6];
and occasionally we thereby obtain for these polynomials results — recursion relations and
Diophantine factorizations — that are not reported in standard compilations (although
presumably they could also be obtained by other approaches, such as the connection of
these polynomials with the hypergeometric function). Some developments are confined to
appendices to avoid interruptions in the flow of the presentation.

Although this paper reports findings obviously belonging to a continued research line
[1–4], its presentation is self-contained, while also minimizing repetitions. So we tersely
reviewed — see above — only those previous findings that are necessary and sufficient for
the comprehension of the results obtained in this paper, which can therefore be understood
without having read the preceding papers of this series [1–4] (although this oversight is not
recommended).

Finally — also to take account of remarks by Referees — let us underline that the main
results reported in this paper — as indeed made clear by its title and abstract — are the
connection of our approach to discrete integrability (which has yielded the identification
of new integrable discrete nonlinear evolution equations, see below (39) and (46)) and the
identification of classes of “named” polynomials satisfying remarkable properties, such as
Diophantine factorizations. A tool to obtain these results are a second type of recursion
relations, playing — together with the more standard, three term ones satisfied by orthogo-
nal polynomials — an analogous role to a Lax pair underlying the property of integrability.
It is certainly the case that the additional recursion relations we utilize could be obtained,
as pointed out by Referees, by different techniques than those we employ to get them, for
instance via the Geronimus [7] and Christoffel transforms [8]; and let us re-emphasize the
obvious fact that all the Diophantine factorizations we identified could be — after they have
been discovered — also demonstrated by different techniques, such as the connection with
hypergeometric functions of the classes of polynomials we consider. It is common knowledge
that mathematical results — especially in the field of special functions — can be arrived at
by different routes; but the identification of new routes is generally considered a worthwhile
achievement; and the first identification of a finding deserves special recognition, even if it
can be later shown that the same result can be arrived at by alternative approaches.



June 16, 2011 9:28 WSPC/1402-9251 259-JNMP S1402925111001416

Polynomials Defined by Three-Term Recursion Relations 209

2. The Connection of our Approach with Standard “Discrete
Integrability” Treatments

As tersely surveyed above, our approach (see for instance [4]) focused on the identification —
and on the remarkable properties, including in particular Diophantine factorizations — of
classes of (orthogonal) polynomials p(ν)

n (x) satisfying both the linear three-term recursion
relation (1a) — involving (only) shifts in the index n characterizing the degree of the polyno-
mial p(ν)

n (x) — and the linear recursion relation (4a) — involving also shifts in the parameter
ν. The requirement that these two linear recursion relations be compatible entails that the
coefficients a(ν)

n , b(ν)
n respectively g(ν)

n featured by them satisfy certain conditions, which can
be reduced [4] to the nonlinear relations (3) satisfied by the quantities A(ν)

n and ω(ν) (in
terms of which the quantities a(ν)

n , b(ν)
n respectively g(ν)

n are easily retrieved via the first (2a),
via (3c) respectively via (4b)). This entails that these nonlinear relations, (3), can be catego-
rized as discrete integrable equations, inasmuch as the two linear recursion relations (1a) and
(4a) play the role of a Lax pair associated to them. Hence they rather naturally fit within
that major development in the investigation of integrable discrete systems that occurred
over the last few decades: see [9] and many subsequent papers and some books, for instance
[10–13] and references quoted there. It seems therefore appropriate that we also review our
treatment in such a context; the special feature we shall of course have to keep in mind is
the requirement that the functions p(ν)

n (x) be monic polynomials of degree n, as entailed by
(1). We are of course aware of various previous treatments in the “discrete integrability”
context in which polynomials also play a key role, see for instance [14–17] and references
quoted in these papers; but none of them appears to coincide with our treatment, see below.

We start by reinterpreting our basic recursion, (1a), as a discrete spectral problem (with
x playing the role of eigenvalue and p that of eigenfunction, see below),

L̂p = xp, (7a)

via the convenient introduction of the following self-evident notation:

p ≡ p
(ν)
n (x), a ≡ a

(ν)
n , b ≡ b

(ν)
n , (7b)

L̂ = Ê+ − aÎ − bÊ−, (7c)

where the operators Ê±, here and hereafter, are the “raising” and “lowering” operators
acting on the index n, while Î is the identity operator:

Ê±f (ν)
n = f

(ν)
n±1, Îf (ν)

n = f (ν)
n , (7d)

and more generally

Êkf
(ν)
n = f

(ν)
n+k, (7e)

with k an arbitrary integer, positive or negative (and of course Ê0 = Î). Here f ≡ f
(ν)
n

indicates a generic quantity depending on the index n and on the parameter ν (and possibly
on the variable x and on additional parameters). Likewise we introduce the “raising” and
“lowering” operators Ê(±) acting on the parameter ν:

Ê(±)f (ν)
n = f (ν±1)

n . (8)
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Here and hereafter, for notational transparency, we equip with a superimposed hat
the mathematical symbols denoting operators acting via shifts on the index n or on the
parameter ν (note that they do not act on the polynomial variable x, playing the role of
“eigenvalue” in the discrete spectral problem (7)).

We then associate, to the eigenvalue problem (7), a second linear (recursion) relation
reading

Ê(+)p = Ĥp, (9)

with the operator Ĥ acting on the index n, and depending on the indices n and possibly
on the parameter ν, in a manner still to be determined. The introduction of this relation
is suggested by (4a), to which (with ν replaced by ν + 1) it clearly reduces for the special
assignment

Ĥ = Î + g(ν+1)
n Ê−. (10)

The fact that the coefficient of the identity operator Î in the right-hand side of this formula
is unity is of course required by the property of the polynomials p(ν)

n (x) to be monic, see (1).
Before proceeding let us also introduce the following convenient short-hand notation:

f (±) ≡ f (ν±1)
n , f± ≡ f

(ν)
n±1, (11a)

applicable to any quantity depending on the index n and on the parameter ν. The following
obvious operator identities are then useful (see below):

Ê±f = f±Ê±, Ê(±)f = f (±)Ê(±),

Ê+Ê− = Ê−Ê+ = Ê(+)Ê(−) = Ê(−)Ê(+) = Î .
(11b)

We now report several propositions, the proofs of which are relegated to Appendix A
in order to avoid interrupting the flow of our presentation. Let us emphasize that our
treatment here is quite standard, see for instance [11] (with the discrete time t replaced by
our parameter ν) and, for the case of continuous time, [18].

Proposition 2.1. The eigenvalue equation (7) and the recursion relation (9) are compatible
if and only if

L̂(+)Ĥ − ĤL̂ = 0 (12a)

where of course (consistently with the notation (11a) and the identities (11b))

L̂(+) = Ê+ − a(+)Î − b(+)Ê−. (12b)

Note that every Ĥ reading as follows,

Ĥ =
M∑

r=0

h[r]Êk−r, k ∈ Z, M ∈ N (13a)

with

h[r] ≡ h[r](ν)
n (13b)
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and k an arbitrarily assigned integer (negative or positive), satisfies (12), provided the coef-
ficients h[r](ν)

n satisfy the following equations:

h
[m+1](ν)
n+1 − h[m+1](ν)

n − a(ν+1)
n h[m](ν)

n + a
(ν)
n+k−mh

[m](ν)
n

− b(ν+1)
n h

[m−1](ν)
n−1 + b

(ν)
n+k−(m−1)h

[m−1](ν)
n = 0, m = −1, 0, 1, . . . ,M + 1, (14a)

where M is an arbitrary positive integer, and we assume h[r] to vanish beyond the boundaries
(in the parameter m), i.e.

h[r] = 0 if r < 0 or r > M. (14b)

This system of algebraic nonlinear equations, (14), clearly features M + 3 equations in
the M + 3 unknowns a, b, h[r] with r = 0, 1, . . . ,M (of course with a, b, h[r] being functions
of n and ν as explicitly indicated above and below), and it is “bi-triangular” in the follow-
ing sense: when displayed in more explicit form (starting from the two boundaries), these
equations of motion read as follows:

h
[0](ν)
n+1 − h[0](ν)

n = 0, (15a)

h
[1](ν)
n+1 − h[1](ν)

n − a(ν+1)
n h[0](ν)

n + a
(ν)
n+kh

[0](ν)
n = 0, (15b)

h
[2](ν)
n+1 − h[2](ν)

n − a(ν+1)
n h[1](ν)

n + a
(ν)
n+k−1h

[1](ν)
n − b(ν+1)

n h
[0](ν)
n−1 + b

(ν)
n+kh

[0](ν)
n = 0, (15c)

h
[M ](ν)
n+1 − h[M ](ν)

n − a(ν+1)
n h[M−1](ν)

n + a
(ν)
k−(M−1)h

[M−1](ν)
n

− b(ν+1)
n h

[M−2](ν)
n−1 + b

(ν)
n+k−(M−2)h

[M−2](ν)
n = 0, (15d)

−a(ν+1)
n h[M ](ν)

n + a
(ν)
k−Mh

[M ](ν)
n − b(ν+1)

n h
[M−1](ν)
n−1 + b

(ν)
n+k−(M−1)h

[M−1](ν)
n = 0, (15e)

− b(ν+1)
n h

[M ]
n−1 + b

(ν)
n+k−Mh

[M ]
n = 0. (15f)

Hence to solve this system one can start from (15a) yielding h[0] as an arbitrary function
h̄[0](ν) of ν (independent of n):

h[0] = h̄[0](ν). (16a)

Next (15b) determines (easily) h[1] in terms of a

h[1] ≡ h[1](ν)
n = h̄[1](ν) + h̄[0](ν)

n−1∑
�=0

[a(ν+1)
� − a

(ν)
�+k], (16b)

with h̄[1](ν) another arbitrary function of ν only (independent of n). Next (15c) determines
(easily) h[2] in terms of a and b:

h[2] ≡ h[2](ν)
n = h̄[2](ν)

n +
n−1∑
�=0

[a(ν+1)
� h

[1](ν)
� − a

(ν)
�+k−1h

[1](ν)
�

+ b
(ν+1)
� h[0](ν) − b

(ν)
�+kh

[0](ν)], (16c)
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with h̄[2](ν) another arbitrary function of ν only (independent of n). And so on up to (15d)
that determines (easily) h[M ] in terms of a and b. Finally the system of two, highly nonlinear,
algebraic equations (15e), (15f) determine — at least in principle — the two functions a
and b.

One could also proceed in reverse order, starting from (15f) to obtain (albeit not so
easily) the function h[M ] in terms of b, then using (15e) to obtain h[M−1] in terms of a and
b, and so on.

Remark 2.1. Since we are focussing on polynomial eigenfunctions of (7a), and we moreover
require these polynomials to be monic, the only acceptable versions of the operator Ĥ in
(9) are the following subclass of (13):

Ĥ = Î +
M∑

r=1

h[r]Ê−r, M ∈ N. (17)

Such operators could in principle be obtained, for every value of M , following the proce-
dure we just described; but we also describe now a more global — and, in the integrability
context, perhaps more standard — procedure (see, for instance, [11, 18]), based on several
propositions which lead to the introduction of a recursion operator allowing to express in
more compact form the entire hierarchy of relevant nonlinear equations.

Proposition 2.2. Suppose that there exist an operator Ĥ such that

L̂(+)Ĥ − ĤL̂ = WÎ + wÊ−, (18)

where W ≡ W
(ν)
n and w ≡ w

(ν)
n are now assumed to be known (and to be independent of

x; they shall of course depend on a
(ν)
n and b(ν)

n , or equivalently on A
(ν)
n and B(ν)

n ). Then we
can construct another operator, say Ĥ ′, such that

L̂(+)Ĥ ′ − Ĥ ′L̂ = W ′Î + w′Ê−, (19)

where Ĥ ′ is given by the formula

Ĥ ′ = ĤL̂+Q′Î + q′Ê− (20a)

with Q′ and q′ determined by the relations

Q′ −Q′
+ = W, (20b)

b−q′ − b(+)q′− = b−w, (20c)

while W ′ and w′ are given by the formulae

W ′ = −aW + w + q′+ − q′ + (a− a(+))Q′, (21a)

w′ = −bW − a−w + (a− − a(+))q′ + bQ′ − b(+)Q′−, (21b)

where of course Q′ and q′ are determined in terms of W,w and b by (20b) and (20c).

These formulae are instrumental to set up a kind of bootstrap mechanism suitable to
generate by iteration a sequence of solutions of the key compatibility relation (12a). To this
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end it is convenient to summarize the essence of this Proposition 2.2 by introducing the
spinor (W

w ) and the recurrence operators �̂ and R̂ so that

Ĥ ′ = �̂Ĥ (22a)

is a short-hand version of (20a), of course with Q′ and q′ determined in terms of W , w and
b by (20b) and (20c), while (

W ′

w′

)
= R̂

(
W

w

)
(22b)

is a short-hand version of (21), again with Q′ and q′ determined in terms of W , w and b by
(20b) and (20c).

Proposition 2.3. There hold the two formulae

L̂(+)Î − ÎL̂ = L̂(+) − L̂ = (a− a(+))Î + (b− b(+))Ê−, (23)

L̂(+)B
(+)

B−
Ê− − B(+)

B−
Ê−L̂ =

(
B

(+)
+

B
− B(+)

B−

)
Î +

B(+)

B−
(a− − a(+))Ê−. (24)

This proposition provides two solutions, Ĥ ′ = Î respectively Ĥ ′ = (B(+)/B−)Ê−, of
(19), with W ′ = a − a(+), w′ = b − b(+) respectively W ′ = B

(+)
+ /B − B(+)/B−, w′ =

(B(+)/B−)(a− − a(+)). The following propositions are instrumental to manufacture — via
the sequential application of the recursion operators (22) — additional solutions of (19),
hence — by imposing the vanishing of the right-hand sides of these formulae — additional
solutions of (12). But before proceeding let us remark that another kind of solution of (12) is
clearly provided by the assignment Ĥ = Ê(+), and by the additional formulae obtained from
this assignment by iteration; however this assignment is not suitable to yield new findings,
hence we ignore it hereafter.

Proposition 2.4. If one makes the assignment (see the notation (22a) and (22b))

Ĥ =


 J∑

j=0

[c[j](ν)�̂j]


 Î +

(
K∑

k=0

[c̃[k](ν)�̂k]

)
B(+)

B−
Ê−, (25)

then there holds the relation

L̂(+)Ĥ − ĤL̂ = WÎ + wÊ−, (26a)

with (
W

w

)
=


 J∑

j=0

[c[j](ν)�̂j ]



(
a− a(+)

b− b(+)

)

+

(
K∑

k=0

[c̃[k](ν)�̂k]

)(
B

(+)
+ /B −B(+)/B−

(a− − a(+))(B(+)/B−)

)
. (26b)

Here the parameters c[j](ν) and c̃[k](ν) are independent of n (and x), but otherwise arbitrary
(restrictions on them shall be introduced below).
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Proposition 2.5. For any nonnegative integer K the second operator appearing in the
right-hand side of (25) has the following structure:(

K∑
k=0

[c̃[k](ν)�̂k]

)
B(+)

B−
Ê− =

K∑
k=0

[ρ[k](Ê−)k+1] ≡ ρÊ− +
K∑

k=1

[ρ[k](Ê−)k+1], (27)

where the quantities ρ[k] depend now on K, n and ν (in addition of course to k : ρ[k] ≡
ρ
[K,k](ν)
n ), and (in the second line) ρ is clearly a short-hand notation for ρ[0] ≡ ρ

[K,0](ν)
n .

Note in particular that the raising operator Ê+ does not appear in the right-hand side
of this formula: indeed the operator (27) always lowers the index n (unless it yields an
identically vanishing result). In the following we shall not be interested in the specific form
of the coefficients ρ[k], but only in the property demonstrated by the structure of the right-
hand side of (27).

Proposition 2.6. For any nonnegative integer J the first operator appearing in the right-
hand side of (25) has the following structure:

 J∑
j=0

[c[j](ν)�̂j ]


 Î = (Ê+)J +

J−1∑
j=0

[σ[j](Ê+)j ] +
J∑

j=1

[τ [j](Ê−)j ], (28)

where the quantities σ[j] and τ [j] depend on J, n and ν (in addition of course to j).

Proposition 2.7. Within the class (25), only the subclass

Ĥ = Î +

(
K∑

k=0

[c̃[k](ν)�̂k]

)
B(+)

B−
Ê− (29)

(corresponding to J = 0, c[0](ν) = 0) is consistent, via the second recursion relation (9), with
the property of the polynomials p(ν)

n (x) to be monic, implied by the first recursion relation
(1) defining them.

Proposition 2.8. If the quantities A ≡ A
(ν)
n , B ≡ B

(ν)
n satisfy the spinor system(

a− a(+)

b− b(+)

)
+

(
K∑

k=0

[c̃[k](ν)�̂k]

)(
B

(+)
+ /B −B(+)/B−

(a− − a(+))(B(+)/B−)

)
= 0, (30)

then there holds the second recursion (9) with Ĥ given by (29), hence reading as follows:

p(ν+1)
n (x) =

[
Î +

(
K∑

k=0

[c̃[k](ν)�̂k]

)
B(+)

B−
Ê−

]
p(ν)

n (x). (31)

Let us re-emphasize that, for notational convenience, we employed throughout a mixed
notation, using the quantities a ≡ a

(ν)
n , b ≡ b

(ν)
n as well as A ≡ A

(ν)
n , B ≡ B

(ν)
n : let us recall in

this connection that the relation among the quantities A(ν)
n , B

(ν)
n and the quantities a(ν)

n , b
(ν)
n

is specified by (2) (and see also (3c)), while the monic polynomials p(ν)
n (x) are defined by the

latter quantities via the basic three-term recursion relation (1). In the following subsections
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we investigate the classes of these polynomials which are defined by the three-term recursion
(1) with coefficients satisfying the relation (30), so that the corresponding polynomials also
satisfy the second recursion relation (31). We shall of course limit our consideration to the
simpler cases, corresponding to the simpler assignments of the arbitrary coefficients h(ν)

k in
(30) and (31).

2.1. K = 0, c̃[0](ν) = 0

This is a quite trivial case. Indeed with this assignment (30) yields a = a(+) and b = b(+),
entailing a(ν)

n = an and b
(ν)
n = bn (both independent of ν). Hence the class of polynomials

defined by (1) is independent of ν, p(ν)
n (x) = pn(x) and the second recursion, as yielded by

(31), becomes trivial, p(ν+1)
n (x) = p

(ν)
n (x) = pn(x).

2.2. K = 0, c̃[0](ν) = c̃(ν)

With this assignment the second recursion (31) reads

p(ν+1)
n (x) = p(ν)

n (x) + c̃(ν)B
(ν+1)
n

B
(ν)
n−1

p
(ν)
n−1(x), (32)

hence it coincides with (4a) (with ν replaced by ν + 1) if one sets

g(ν+1)
n = c̃(ν)B

(ν+1)
n

B
(ν)
n−1

. (33)

This entails

g
(ν)
n

g
(ν)
n−1

=
B

(ν)
n

B
(ν−1)
n−1

B
(ν−1)
n−2

B
(ν)
n−1

=
B

(ν)
n

B
(ν)
n−1

B
(ν−1)
n−2

B
(ν−1)
n−1

=
b
(ν)
n

b
(ν−1)
n−1

, (34)

where the last step is justified by the second (2a). Clearly this relation coincides with (6b).
Moreover, with this assignment the spinor formula (30) yields the two relations

a(ν+1)
n − a(ν)

n = c̃(ν)

(
B

(ν+1)
n+1

B
(ν)
n

− B
(ν+1)
n

B
(ν)
n−1

)
, (35a)

b(ν)
n − b(ν+1)

n = c̃(ν)(a(ν+1)
n − a

(ν)
n−1)

B
(ν+1)
n

B
(ν)
n−1

. (35b)

The first of these, via (33), becomes

a(ν+1)
n − a(ν)

n = g
(ν+1)
n+1 − g(ν+1)

n , (36a)

which coincides with (6a) (with ν replaced by ν+1); and the second, again via (33), becomes

b(ν)
n − b(ν+1)

n = g(ν+1)
n (a(ν+1)

n − a
(ν)
n−1), (36b)

which coincides with (6c) (again, with ν replaced by ν+ 1). It is thus seen that this assign-
ment reproduces the results of [4], as reported above (see Sec. 1, in particular (4a) and (6)).
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2.3. K = 1, c̃[0](ν) = 0, c̃[1](ν) �= 0

As shown in Appendix B, with this assignment the second recursion (31) reads

p(ν+1)
n (x) = p(ν)

n (x) + c̃[1](ν)

[
B

(ν+1)
n

B
(ν)
n−1

(A(ν)
n−1 −A

(ν+1)
n+1 )p(ν)

n−1(x) +
B

(ν+1)
n

B
(ν)
n−2

p
(ν)
n−2(x)

]
, (37)

and the conditions to be satisfied by the coefficients defining the polynomials p(ν)
n (x) via

the basic recursion relation (1) read

A+ −A−A
(+)
+ +A(+) = c̃[1](ν)

[
B

(+)
+

B
(A(+)

++ −A) − B(+)

B−
(A(+)

+ −A−)

]
, (38a)

B(+)

B
(+)
−

− B

B−
= c̃[1](ν)

[
B(+)

B−
(A−A− +A(+) −A

(+)
+ )(A(+)

+ −A−)

+
B(+)

B−−
− B

(+)
+

B−

]
. (38b)

As shown in Appendix B, this system of two (nonlinear discrete) equations, (38), for the
two dependent variables A(ν)

n and B(ν)
n , can be reformulated as the following single equation

for the quantity A(ν)
n :

(A(+)
+ −A−)[(A(+)

+ −A)(A(+)
+ −A+ φ(ν)) + ψ(ν)] · (A(++)

++ +A
(++)
+ −A

(+)
+ −A(+) + φ(ν+1))

· (A(++)
+++ +A

(++)
++ −A

(+)
++ −A

(+)
+ + φ(ν+1)) · (A(+)

+ −A+ + φ(ν))

= (A(++)
+++ −A

(+)
+ )[(A(++)

++ −A
(+)
+ )(A(++)

++ −A
(+)
+ + φ(ν+1)) + ψ(ν+1)]

· (A(+)
+ +A(+) −A−A− + φ(ν))(A(+)

++ +A
(+)
+ −A+ −A+ φ(ν))

· (A(++)
+ −A

(+)
+ + φ(ν+1)). (39)

Here φ(ν) and ψ(ν) are independent of n (and of course of x), but can depend arbitrarily
on ν.

Let us now point out that the second recursion relation (37) holds trivially for n = 0
since p(ν)

m vanishes identically for negative m, while for n = 1, via (1b), (1c) and (2b), it
entails the following formula determining c̃[1](ν) in terms of “initial” values of the dependent
variables A and B (recall (2a)):

c̃[1](ν) =
B

(ν)
0 (a(ν+1)

0 − a
(ν)
0 )

b
(ν+1)
1 B

(ν+1)
0 (a(ν+1)

1 +A
(ν+1)
1 −A

(ν)
0 )

. (40)

Finally let us note that, via (1a) and (2), the second recursion relation (37) can now be
reformulated as follows:

p(ν+1)
n (x) =

(
1 − B

(ν+1)
n

B
(ν)
n−1

h(ν)

)
p(ν)

n (x) + c̃[1](ν)B
(ν+1)
n

B
(ν)
n−1

(x+A(ν)
n −A

(ν+1)
n+1 )p(ν)

n−1(x), (41a)
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hence, via the formula (135a) of Appendix B, it can also be rewritten in the following form
(from which the parameter c̃[1](ν) disappeared):

p(ν+1)
n (x) =

(
1 +

A
(ν+1)
n −A

(ν)
n + φ(ν)

A
(ν+1)
n+1 −A

(ν)
n−1

)
p(ν)

n (x) +
A

(ν+1)
n −A

(ν)
n + φ(ν)

A
(ν+1)
n+1 −A

(ν)
n−1

× (A(ν+1)
n+1 −A(ν)

n − x)p(ν)
n−1(x)

≡ p(ν)
n (x) +

A
(ν+1)
n −A

(ν)
n + φ(ν)

A
(ν+1)
n+1 −A

(ν)
n−1

[p(ν)
n (x) − xp

(ν)
n−1(x)

+ (A(ν+1)
n+1 −A(ν)

n )p(ν)
n−1(x)]. (41b)

Via (1a), that of course entails

p(ν−1)
n (x) − xp

(ν−1)
n−1 (x) = a

(ν−1)
n−1 p

(ν−1)
n−1 (x) + b

(ν−1)
n−1 p

(ν−1)
n−2 (x), (42)

as well as (2a) and the formula (140a) of Appendix B, another avatar of this formula, (41b),
reads as follows:

p(ν)
n (x) = p(ν−1)

n (x) +G(ν)
n p

(ν−1)
n−1 (x) + G̃(ν)

n p
(ν−1)
n−2 (x), (43a)

G(ν)
n = (A(ν)

n −A(ν−1)
n + φ(ν−1)), (43b)

G̃(ν)
n =

(φ(ν−1) +A
(ν)
n −A

(ν−1)
n )(φ(ν−1) +A

(ν)
n−1 −A

(ν−1)
n−1 )

(A(ν−1)
n−1 +A

(ν−1)
n−2 −A

(ν)
n−1 −A

(ν)
n − φ(ν−1))

·

· [(A(ν−1)
n−1 −A

(ν)
n )(A(ν−1)

n−1 −A
(ν)
n − φ(ν−1)) + ψ(ν−1)]

(A(ν−1)
n−1 −A

(ν)
n+1 +A

(ν−1)
n −A

(ν)
n − φ(ν−1))

. (43c)

2.4. K = 1, c̃[0](ν) �= 0, c̃[1](ν) �= 0

The findings reported in this subsection encompass those of the previous two Subsec. 2.2
respectively 2.3 (and of course reduce to them if one sets c̃[1](ν) = 0 respectively c̃[0](ν) = 0).
The computations to arrive at these findings are somewhat more cumbersome yet quite
analogous to those detailed in the preceding Sec. 2.3 and especially in the related Appendix
B, hence we do not report them and limit our presentation to displaying the results.

The second recursion (31) now takes again (after replacing ν with ν−1) the form (43a),

p(ν)
n (x) = p(ν−1)

n (x) +G(ν)
n p

(ν−1)
n−1 (x) + G̃(ν)

n p
(ν−1)
n−2 (x), (44a)

but now with the following definition of the two quantities G(ν)
n and G̃(ν)

n :

G(ν)
n = [c̃[0](ν−1) + c̃[1](ν−1)(A(ν−1)

n−1 −A
(ν)
n+1)]

B
(ν)
n

B
(ν−1)
n−1

, (44b)

G̃(ν)
n = c̃[1](ν−1) B

(ν)
n

B
(ν−1)
n−2

; (44c)
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while the conditions to be satisfied by the coefficients defining the polynomials p(ν)
n (x) via

the basic recursion relation (1) now read

A+ −A−A
(+)
+ +A(+) = c̃[0](ν)

[
B

(+)
+

B
− B(+)

B−

]

+ c̃[1](ν)

[
B

(+)
+

B
(A(+)

++ −A) − B(+)

B−
(A(+)

+ −A−)

]
, (45a)

B(+)

B
(+)
−

− B

B−
= c̃[0](ν)

[
B(+)

B−
(A−A− +A(+) −A

(+)
+ )

]

+ c̃[1](ν)

[
B(+)

B−
(A−A− +A(+) −A

(+)
+ )(A(+)

+ −A−)

+
B(+)

B−−
− B

(+)
+

B−

]
. (45b)

This system of two (nonlinear discrete) equations, (38), for the two dependent vari-
ables A(ν)

n and B(ν)
n , can be reformulated as the following (notationally compactified) single

equation for the quantity A(ν)
n :

C̃(ν+1)
n C̃

(ν+1)
n+1 Č(ν)

n Ĉ(ν)
n Ã(ν)

n = C̃
(ν)
n−1C̃

(ν)
n Č

(ν+1)
n+2 Ĉ

(ν+1)
n+1 Ã(ν+1)

n , (46a)

where

C̃
(ν)
n ≡ c̃[0](ν) + c̃[1](ν)(A(ν)

n −A
(ν+1)
n+2 − Ã

(ν)
n+1), (46b)

Č
(ν)
n ≡ c̃[0](ν) + c̃[1](ν)(A(ν)

n−1 −A
(ν+1)
n+1 ), (46c)

Ĉ
(ν)
n ≡ (A(ν+1)

n+1 −A
(ν)
n )[c̃[0](ν) − c̃[1](ν)Ǎ

(ν)
n ] + ϕ̄(ν), (46d)

Ã
(ν)
n ≡ A

(ν+1)
n −A

(ν)
n + F̄ (ν), Ǎ

(ν)
n ≡ A

(ν+1)
n+1 −A

(ν)
n + F̄ (ν). (46e)

Here F̄ (ν) and ϕ̄(ν) are two arbitrary functions of ν only (i.e. independent of the index n).
On the other hand via (1) and (2) the initial conditions entail

F̄ (ν) = A
(ν)
0 −A

(ν+1)
0 . (47)

Let us also report the expression of the coefficient b(ν)
n (see (1)) in terms of these quantities:

b(ν)
n = (c̃[0]ν + c̃[1]νA(ν)

n − c̃[1]νA
(ν+1)
n+2 )(−A(ν+1)

n +A(ν)
n − F̄ (ν))

· [−c̃[0]νA(ν+1)
n+1 + c̃[0]νA(ν)

n + c̃[1]νF̄ (ν)A
(ν+1)
n+1 − c̃[1]νF̄ (ν)A(ν)

n + c̃[1]ν(A(ν)
n )2

− 2c̃[1]νA(ν)
n A

(ν+1)
n+1 + c̃[1]ν(A(ν+1)

n+1 )2 − ϕ̄(ν)]

· [(c̃[0]ν + c̃[1]νA
(ν)
n−1 − c̃[1]νA

(ν+1)
n+1 − c̃[1]νA(ν+1)

n + c̃[1]νA(ν)
n − c̃[1]νF̄ (ν))

· (c̃[0]ν + c̃[1]νA(ν)
n − c̃[1]νA

(ν+1)
n+2 − c̃[1]νA

(ν+1)
n+1 + c̃[1]νA

(ν)
n+1 − c̃[1]νF̄ (ν))]−1. (48)
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The corresponding expression of the coefficients a(ν)
n is given by (2a), hence it is sufficiently

simple not to require explicit display for the present case. But we do display the second
recurrence:

p(ν+1)
n =

(c̃[0]ν + c̃[1]νA
(ν)
n−1 − c̃[1]νA

(ν+1)
n+1 − c̃[1]νA

(ν+1)
n + c̃[1]νA

(ν)
n − c̃[1]νF̄ (ν))

c̃[1]νA
(ν)
n−1 − c̃[1]νA

(ν+1)
n+1 + c̃[0]ν

p(ν)
n

− (−A(ν+1)
n +A

(ν)
n − F̄ (ν))(−c̃[1]νA(ν+1)

n+1 + c̃[0]ν + c̃[1]νx+ c̃[1]νA
(ν)
n )

c̃[1]νA
(ν)
n−1 − c̃[1]νA

(ν+1)
n+1 + c̃[0]ν

p
(ν)
n−1. (49)

3. Factorizations

The simultaneous validity for a class of polynomials p(ν)
n (x) of two recursion relations involv-

ing shifts in the degree n of the polynomials and in their parameter ν allows to identify
subclasses of these polynomials — characterized by appropriate restrictions on the coeffi-
cients defining them (see (1)) — for which there hold remarkably neat factorizations. Such
results were indeed the first motivation of our investigation and are reported in previous
papers of this series, see for instance [4] were results implied by the simultaneous validity
of (1) and (4) with (6) are reported. We now report the analogous, new findings implied
by the simultaneous validity of (1) and the second recursion obtained in Sec. 2.3, see (43);
the proofs of these results are relegated to Appendix C. Note that the same version of the
second recursion relation, see (43) respectively (44a), has been obtained in Secs. 2.3 respec-
tively 2.4, although of course the corresponding nonlinear conditions on the quantities A(ν)

n

are different in the two cases, see (39) respectively (46).

Proposition 3.1. If for some value of the parameter µ and for all positive integer values
of n there holds the condition

b
(n−1+µ)
n−1 + G̃(n+µ)

n = 0, (50)

with G̃(ν)
n defined by (43c), then for the corresponding polynomials there holds the complete

factorization

p(n+µ)
n (x) =

n∏
m=1

(x− x(1,n+µ)
m ), (51a)

with

x(1,ν)
m = −(a(ν−1)

m−1 +G(ν)
m ) (51b)

where of course G(ν)
m is defined by (43b).

Proposition 3.2. If for some value of the parameter µ and for all positive integer values
of n there hold the conditions

b
(2n−2+µ)
n−1 + G̃

(2n−1+µ)
n + G̃

(2n+µ)
n +G

(2n+µ)
n G

(2n−1+µ)
n−1 = 0, (52a)



June 16, 2011 9:28 WSPC/1402-9251 259-JNMP S1402925111001416

220 M. Bruschi, F. Calogero & R. Droghei

G
(2n+µ)
n G̃

(2n−1+µ)
n−1 + G̃

(2n+µ)
n G

(2n−1+µ)
n−2 = 0, (52b)

G̃
(2n+µ)
n G̃

(2n−1+µ)
n−2 = 0, (52c)

with G(ν)
n respectively G̃(ν)

n defined — as the case may be — by (43b) respectively (43c) or
by (44b) respectively (44c), then for the corresponding polynomials there holds the complete
factorization

p(2n+µ)
n (x) =

n∏
m=1

(x− x(2,2m+µ)
m ), (53a)

with

x(2,ν)
m = −(a(ν−2)

m−1 +G(ν−1)
m +G(ν)

m ), (53b)

where of course G(ν)
m is defined by (43b) or (44b), as the case may be.

Proposition 3.3. If for some value of the parameter µ and for all positive integer values
of n there hold the conditions

b
(n+µ)
n−1 + G̃

(n+µ)
n−1 + a

(n+µ)
n−1 G

(n+µ)
n−1 − a

(n+µ−1)
n−2 G

(n+µ)
n−1 = 0, (54a)

b
(n+µ)
n−1 G

(n+µ)
n−2 − b

(n+µ−1)
n−2 G

(n+µ)
n−1 + a

(n+µ)
n−1 G̃

(n+µ)
n−1 − a

(n+µ−1)
n−3 G̃

(n+µ)
n−1 = 0, (54b)

b
(n+µ)
n−1 G̃

(n+µ)
n−2 − b

(n+µ−1)
n−2 G̃

(n+µ)
n−1 = 0, (54c)

with G(ν)
n respectively G̃(ν)

n defined — as the case may be — by (43b) respectively (43c) or
by (44b) respectively (44c), then for the corresponding polynomials there holds the complete
factorization

p(3n+µ)
n (x) =

n∏
m=1

(x− x(3,m+µ)
m ), (55a)

with

x(3,ν)
m = −(a(ν)

m−1 +G
(ν)
m−1), (55b)

where of course G(ν)
m is defined by (43b) or (44b), as the case may be.

4. Classes of Orthogonal Polynomials Identified by Solutions of the
Nonlinear Relations (46)

In this section various solutions are reported of the nonlinear relations (46) satisfied by
the quantities A(ν)

n . These solutions are obtained by a trial and error procedure: ansatzen
(involving several free parameters), which specify the dependence of these quantities on n

and on ν, are required to satisfy (46). Whenever a solution A
(ν)
n of (46) is obtained in this

manner, its implications — based on the findings described above — for the corresponding
polynomials p(ν)

n (x) are reported, as well as the identification of these polynomials with
named polynomials whenever this is possible.
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In the following the new parameters introduced — for which various notations are
used — are understood to be arbitrary numbers (unless otherwise explicitly stated), and
their relations to the parameters introduced above are detailed whenever appropriate.

4.1. Polynomial case

In this subsection attention is restricted to quantities A(ν)
n depending polynomially on n

and ν. For practical reasons only polynomials of degree less or equal to 3 are treated.

4.1.1. Quadratic case

The relevant solution reads

A(ν)
n = 2nν − nρ− n2 + u0 + u1ν, (56a)

with

c̃[0]ν =
c0(h0 + h1ν)

h0
, c̃[1]ν = h0 + h1ν; (56b)

F̄ (ν) = −u1, ϕ̄(ν) = −1
4

(h0u1 + c0)2(h0 + h1ν)
h0

2
. (56c)

The corresponding coefficients a(ν)
n and b(ν)

n are

a
(ν)
n = −2n+ 2ν − ρ− 1, (57a)

b(ν)
n = −1

2
(−4h0ν + c0 + 2h0ρ+ 2h0n− h0u1)n

h0
. (57b)

The corresponding polynomials p(ν)
n (x) satisfy the second recurrence relation

(τ (ν) + 2h0n)p(ν+1)
n (x) = τ (ν)p(ν)

n (x) + n(τ (ν) + h0u1 + c0 + 2h0x)p
(ν)
n−1(x), (58a)

where

τ (ν) = −(2h0 − 2h0ρ+ 4h0ν + h0u1 − c0). (58b)

Via (44a)–(44c), this recursion can be reformulated as follows:

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2 (59a)

with

G(ν)
n ≡ Gn = 2n, G̃(ν)

n ≡ G̃(ν)
n = n(n− 1). (59b)

Note that the parameter h1 plays no role in this last formulae, (57)–(59), as well as the
simple form of the coefficients of this recursion relation, which turn out to be independent
of ν. And it is easily seen that these polynomials coincide, up to a translation, with the
(generalized) Laguerre polynomials:

p(ν)
n (x) = (−1)nn!L(α)

n (y), (60a)
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with

y = x+
(c0 − h0u1)

2h0
, α =

c0 − h0u1 − 4h0ν + 2h0ρ

2h0
. (60b)

And (58a) becomes the well-known relation

(n+ α− 1)L(α−2)
n (y) = (α− 1)L(α)

n (y) − (y + α− 1)L(α)
n−1(y). (61)

4.1.2. Cubic case

A solution, cubic in n and ν, of the relations (46) is

A(ν)
n = −2

3
n3 +

(
−ρ+ 2ν +

3
2
− τ

)
n2 +

[
2(τ − 1 + ρ)ν − 5

6
+ τ + ρ− τρ

]
n

+ σ̃ν − 2ν2 − 8
3
ν3 + ω, (62a)

with

c̃[0](ν) = ch, c̃[1](ν) = h, (62b)

F̄ (ν) = −σ̃ + 12ν +
14
3

+ 8ν2, (62c)

ϕ̄(ν) = −(−3c+ 5 + 24ν + 24ν2 − 3σ̃)(−3c + 23 + 48ν + 24ν2 − 3σ̃)
36

. (62d)

The corresponding coefficients a(ν)
n and b(ν)

n are:

a(ν)
n = −2n2 + (1 − 2τ + 4ν − 2ρ)n+ 2(τ + ρ)ν − τρ, (63a)

b(ν)
n = −n(n+ τ + ρ− 1)

6
· [6n2 + (−24ν + 6(τ + ρ− 2))n

+ 24ν2 − 12(τ + ρ− 2)ν + 6τρ− 6τ − 6ρ− 3σ + 5], (63b)

where

σ = σ̃ − c, (63c)

and the corresponding polynomials p(ν)
n (x) satisfy the following second recursion relation:

[6n(n − 4 + ρ+ τ − 4ν) + η(ν)]p(ν+1)
n

= −[(24ν + 18)n − η(ν)]p(ν)
n − n(n+ τ + ρ− 1)[(24ν + 18)n − η(ν)

+ 3σ − 6x− 24ν − 5 − 24ν2]p(ν)
n−1 (64a)

where

η(ν) = 24ν2 − 12(−4 + ρ+ τ)ν + 6τρ− 12τ − 12ρ + 23 − 3σ. (64b)

Via (44a)–(44c), this recursion can be reformulated as follows:

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2, (65a)
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with

G
(ν)
n = 2n(n+ τ + ρ− 1), (65b)

G̃
(ν)
n = n(n− 1)(n − 2 + τ + ρ)(n + τ + ρ− 1). (65c)

And it is easily seen that the normalized Continuous Dual Hahn polynomi-
als Pn(y;α, β, γ), as defined by formula 1.3.5 of [6], coincide with the polynomials
p
(ν)
n (x; ρ, σ, τ, c) defined by the standard recurrence (1) with a

(ν)
n and b

(ν)
n defined by (63)

and the assignments:

y = x− 1 + 3σ
6

, (66a)

α =
3τ + 3ρ−√

3
√

(3τ2 − 6τρ+ 3ρ2 + 6σ + 2)
6

, (66b)

β =
3τ + 3ρ+

√
3
√

(3τ2 − 6τρ+ 3ρ2 + 6σ + 2)
6

, (66c)

γ = −2ν. (66d)

Hence the Continuous Dual Hahn polynomials Pn(y;α, β, γ) satisfy a second recurrence
relation, see (64).

Let us also recall that these polynomials Pn(y;α, β, γ) are invariant under permutations
of the 3 parameters α, β, γ.

Factorizations. When

ν = n+ µ, (67a)

with

µ =
1
2

(
τ + ρ− 1

2

)
, (67b)

the condition (50) is satisfied provided

σ = −τ − ρ+ 2τρ+
1
6
. (67c)

Then for the corresponding polynomials p(n+µ)
n (x), there holds the complete factorization

(51), with the zeros xn depending quadratically on n, namely

xn = −4n2 + (−4τ − 4ρ+ 6)n + 5/2τ − τ2 − 2 + 5/2ρ − ρ2 − τρ. (68)

This entails, via (66) with (67c), the following complete Diophantine factorization for the
normalized Continuous Dual Hahn polynomials:

Pn

(
x− 1

4
+

1
2
ρ+

1
2
τ − ρτ ;

1
2
, ρ+ τ − 1

2
,−2n− τ − ρ+

1
2

)
=

n∏
m=1

[x− xm], (69)

with the zeros xm defined of course by (68).
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4.2. Rational case

In this subsection attention is restricted to quantities A(ν)
n depending rationally (and, for

practical reasons, rather simply) on n and ν.

4.2.1. Two cases with linear numerator and denominator

We begin with two cases featuring a rational solution of the relations (46) with both numer-
ator and denominator linear in n and ν. The first reads as follows:

A(ν)
n = − nδ

2n− 2ν + δ
, (70a)

with

c̃[0]ν = 0, c̃[1]ν = h, (70b)

F̄ (ν) = 0, ϕ̄(ν) = G. (70c)

The corresponding coefficients a(ν)
n and b(ν)

n are

a(ν)
n =

δ(2ν − δ)
(2n − 2ν + δ)(2n + 2 − 2ν + δ)

, (71a)

b(ν)
n = −(n− 2ν + δ)n(−hδ2 + 4Gn2 − 8Gnν + 4Gnδ + 4Gν2 − 4Gνδ +Gδ2)

h(2n − 2ν + δ)2(2n − 2ν + δ + 1)(2n − 2ν + δ − 1)
. (71b)

The corresponding polynomials p(ν)
n (x) satisfy the following second recursion relation:

(n− 2ν + δ − 1)(2n − 2ν + δ)p(ν+1)
n

= (2n− 2ν + δ)(2n − 2ν + δ − 1)p(ν)
n − n[x(2n− 2ν + δ) + δ]p(ν)

n−1, (72)

or equivalently, via (44a)–(44c),

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2, (73a)

with

G(ν)
n = − 2nδ

(2n − 2ν + δ)(2n + 2 − 2ν + δ)
, (73b)

G̃(ν)
n =

n(n− 1)[hδ2 −G(2n − 2ν + δ)]
h(2n − 2ν + δ)2(2n− 2ν + δ − 1)(2n − 2ν + δ + 1)

. (73c)

And it is easily seen that these polynomials coincide, up to a rescaling of the argument,
with the standard Jacobi polynomials P (α,β)

n (z):

p(ν)
n (x) =

2nn!
(n+ α+ β + 1)

P (α,β)
n (y), (74a)
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where

y =

√
Gh

G
x, (74b)

α =
Gδ − 2Gν − δ

√
Gh

2G
, (74c)

β =
Gδ − 2Gν + δ

√
Gh

2G
. (74d)

Factorizations. When

ν = n+ µ (75a)

with

µ =
(G±√

hG)δ
2G

, (75b)

the condition (50) is satisfied. Then for the corresponding polynomials p(n+µ)
n (x), there

holds the complete factorization (51), which however merely entails the well known fact
that the Jacobi polynomial P (−n,β)

n (x) is proportional to (x− 1)n.
A second rational solution of the relations (46) with both numerator and denominator

linear in n and ν reads as follows:

A(ν)
n = n

2ν(k + 1) − δ

2n− 2ν + δ
+ u0 + u1ν, (76a)

with

c̃[0]ν = 2h(k + 1) + c, c̃[1]ν =
2h(k + 1) + c

2(k + 1) + u1
, (76b)

F̄ (ν) = −u1, ϕ̄(ν) = −(k + 1 + u1)2(2hk + 2h+ c)
2k + u1 + 2

. (76c)

The corresponding coefficients a(ν)
n and b(ν)

n are

a(ν)
n = − (2kν + 2ν − δ)(2ν − δ)

(2n + 2 − 2ν + δ)(2n − 2ν + δ)
, (77)

b(ν)
n = −(δ + n− 2ν)(2nk + 2n− 4kν + kδ − 4ν + 2δ)n(kδ + 2nk + 2n)

(2n − 2ν + δ)2(−2ν + 2n+ δ − 1)(−2ν + δ + 2n+ 1)
. (78)

The corresponding polynomials p(ν)
n (x) satisfy the following second recursion relation:

p(ν+1)
n = − (4ν + 4kν − 2δ + 2k + 2 − kδ)(−2ν + 2n + δ − 1)

(n− 1 − 2ν + δ)(2nk + 2n + kδ − 2k − 2 + 2δ − 4kν − 4ν)
p(ν)

n

+
n(kδ + 2nk + 2n)

(2nk + 2n+ kδ − 2k − 2 + 2δ − 4kν − 4ν)

· [x(2n − 2ν + δ) + 2k(n− 3ν + δ − 1) + 2n − 6ν + 3δ − 2]
(n− 1 − 2ν + δ)(2n − 2ν + δ)

p
(ν)
n−1, (79)
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or equivalently, via (44a)–(44c),

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2 (80a)

with

G(ν)
n =

2n(2n + 2kn + kδ)
(2n − 2ν + 2 + δ)(2n − 2ν + δ)

(80b)

G̃(ν)
n =

n(n− 1)(2n + 2kn + kδ)(2n − 2 + 2k(n − 1) + kδ)
(2n − 2ν + δ)2(2n− 2ν + δ − 1)(2n − 2ν + δ + 1)

. (80c)

Note that the parameters h, u0, u1 do not appear in these formulae.
Again, it is easily seen that these polynomials coincide, up to a rescaling of the argument,

with the Jacobi polynomials P (α,β)
n (z):

p(ν)
n (x) =

2nn!
(n+ α+ β + 1)n

P (α,β)
n (y), (81a)

y = − 1
(k + 1)

x, (81b)

α = δ − 2ν − kδ

2(k + 1)
, β =

kδ

2(k + 1)
. (81c)

4.2.2. A case with quadratic numerator and linear denominator

A rational solution of Eq. (46), with quadratic numerator and linear denominator in n and
ν, reads as follows:

A(ν)
n =

q2n
2 + [(−q2 + q1w)ν + q3]n− q1ν

2w + (−q0w + q1)ν + q0
1 + w(n − ν)

(82a)

with

c̃[0]ν =
h(2q2 + q1w)

w
, c̃[1]ν = h, (82b)

F̄ (ν) = −q1, ϕ̄(ν) = − h

w2

[
(q1w + q2)2 − q4

2

(q0w2 − wq3 + q2)2

]
. (82c)

The corresponding expressions of the coefficients a(ν)
n and b(ν)

n , see (1), read as follows:

a(ν)
n =

Num a

(−1 − wn+ wν)(−1 − wn− w + wν)
, (83a)

Numa = q2n
2w + (−2q2wν + q2(w + 2))n

+ ν2q2w + (−q2 − wq3 − q2w + q0w
2)ν + q2 + q3 − q0w; (83b)

b(ν)
n = −Num b

Den b
, (84a)
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Num b = (wq4ν − q4 + w4q20 + 2w2q2q0 + q22 − 2w3q0q3 − 2wq2q3 + w2q23 − wq4n)

· (−wq4ν + q4 + w4q20 + 2w2q2q0 + q22 − 2w3q0q3 − 2wq2q3 + w2q23 + wq4n)

·n(−wn+ 2wν − 2), (84b)

Den b = w(−1 − wn+ wν)2(−2wn + 2wν + w − 2)(q0w2 − wq3 + q2)2

· (−2wn + 2wν − w − 2). (84c)

The corresponding polynomials p(ν)
n (x) satisfy the following second recursion relation:

p(ν+1)
n =

(−2wn + 2wν + w − 2)p(ν)
n

−wn+ 2wν − 2 + w

+
(xw2ν − q0w

2 − xw2n+ q2wν + wq3 − nq2w − xw − 2q2)np
(ν)
n−1

(−wn+ 2wν − 2 + w)(−1 − wn+ wν)
, (85)

or equivalently, via (44a)–(44c),

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2 (86a)

with

G(ν)
n = − n(q0w2 − wq3 + q2)

(−1 − wn+ w + w(ν − 1))(−1 − wn +w(ν − 1))
, (86b)

G̃(ν)
n =

Num G̃

Den G̃
, (86c)

Num G̃ = n(n− 1)[wq4(ν − 1) − q4 + w4q20 + 2w2q2q0 + q22

− 2w3q0q3 − 2wq2q3 + w2q23 − wq4(n− 1)]

· [−wq4(ν − 1) + q4 + w4q20 + 2w2q2q0 + q22

−2w3q0q3 − 2wq2q3 + w2q23 + wq4(n− 1)][−w(n − 1) + 2w(ν − 1) − 2], (86d)

Den G̃ = (q0w2 − wq3 + q2)2[−wn+ 2w(ν − 1) − 2 + w]

· [−1 − w(n− 1) + w(ν − 1)]2[−2w(n − 1) + 2w(ν − 1) + w − 2]

· [−2w(n − 1) + 2w(ν − 1) − w − 2]. (86e)

This class of polynomials features 6 arbitrary parameters — namely q0, q2, q3, q4, w, ν —
but it can nevertheless be reduced, via an appropriate translation and rescaling of the
argument of the polynomials, to the class of Jacobi polynomials P (α,β)

n (y):

p
(ν)
n (x) = P

(α,β)
n (z), (87a)

α =
1
w

− ν +
(w2q0 + q2 − wq3)

wq4
, (87b)

β =
1
w

− ν − (w2q0 + q2 − wq3)
wq4

, (87c)

z = −(wx+ q2)(w2q0 + q2 − wq3)
q4

. (87d)

We are grateful to a referee for pointing out this fact.
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Factorizations. When

ν = n+ µ (88a)

with

µ =
q22h+ q4 + hw4q20 + 2w2q2q0h− 2hw3q0q3 − 2wq2q3h+ hw2q23

wq4
, (88b)

then

p(n+µ)
n (x) =

(
x+

w2q2q0h− wq2q3h+ q22h+ q4
w(q0w2 − wq3 + q2)h

)n

. (88c)

This finding reproduces, via the identification (87), the following well-known property of
Jacobi polynomials:

P (−n,β)
n (x) = (x− 1)n. (89)

4.2.3. Two cases with quartic numerator and linear denominator

A first rational solution of Eq. (46), with quartic numerator and linear denominator in n

and ν, reads as follows:

A(ν)
n = − Num

6(2n− 2ν − 2 + σ)h
, (90a)

Num = −2hn4 + 4h(2ν − σ + 2)n3 + h[6(2σ − 3)ν + 9σ − 6ρ− 10]n2

+ {−32hν3 − 24hν2 + 6[h + 2c+ 2h(ρ − σ)]ν − h(5σ − 6ρ+ 6τ − 12q0 − 4)}n
+ 32hν4 − 8h(2σ − 7)ν3 + 4(7h − 3hσ − 3c)ν2

+ 2[(σ − 2)(3c − h) − 6q0h]ν + 6q0h(σ − 2), (90b)

where

σ = b+ c+ d, ρ = bc+ bd+ cd, τ = bcd, γ = b2 + c2 + d2, (90c)

c̃[0]ν = C, c̃[1]ν = h, (90d)

F̄ (ν) =
5h− C + 12hν + 8hν2

h
, (90e)

ϕ̄(ν) = −(−C + 4h+ 8hν + 4hν2)(−C + h+ 4hν + 4hν2)
h

. (90f)

These polynomials coincide with the Wilson polynomials Wn(x; a, b, c, d) (see [6]) with
a = −2ν:

p(ν)
n (x) =

(−1)n

(n+ a+ e− 1)
Wn(x;−2ν, b, c, d). (91)
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Hence one finds, for the Wilson polynomials Wn(x; a, b, c, d), the following recurrence
relation:

Wn(x; a− 2, b, c, d) =
Num 1
Den 1

Wn(x; a, b, c, d) +
Num 2
Den 2

Wn−1(x; a, b, c, d), (92a)

Num 1 = (−2n+ 3 − a− σ)[(−2a+ 3)n2 − (2a− 3)(a + σ − 3)n

− (a+ b− 2)(a + c− 2)(a + d− 2)], (92b)

Den 1 = (n− 2 + a+ b)(n− 2 + a+ d)(n − 2 + a+ c)(n − 1 + a+ σ), (92c)

Num 2 = (n− 1 + b+ c)(n− 1 + b+ d)(n − 1 + c+ d)n

· [−x(2n − 2 + a+ σ) + (−2a+ 3)n2 + (−2aσ + 3σ + 13a − 11 − 4a2)n

+ ρ(2 − a) + 10a2 − 2a3 + 5(2 − σ) − τ + 6aσ − 2a2σ − 17a], (92d)

Den 2 = (n− 2 + a+ b)(n− 2 + a+ c)(n − 2 + a+ d)

· (2n − 2 + a+ σ)(n− 2 + a+ σ), (92e)

with σ, ρ and τ defined as above, see (90c). Analogous recurrence relations involving the
other parameters can of course be obtained from the symmetry of the Wilson polynomials in
their 4 parameters a, b, c, d. We have not found such relations in the standard compilations.

A second rational solution of the equation (46), with quartic numerator and linear
denominator in n and ν, reads as follows:

A(ν)
n =

Num
6h(2n − 2ν + σ + η + δ − 2)

, (93a)

Num = −2hn4 + (8hν − 4h(δ − 2 + η + σ))n3

+ [−6hν2 + 6h(2η − 3 + 2δ + σ)ν − h(10 + 6δη − 9δ + 6ησ + 6δσ − 9η − 9σ)]n2

+ [−8ν3h+ 6h(−1 − δ + 2σ − η)ν2

+ (−12hδ + 12c+ 6hησ + 6h+ 12hδη + 6hσ − 12hσ2 + 6hδσ − 12hη)ν

−h(6ηδσ + 5σ − 6δσ − 6δη + 5δ − 4 − 12q0 + 5η − 6ησ)]n

+ 8ν4h− 4h(δ + 4σ + η − 5)ν3

+ (6hησ + 16h − 30hσ − 6hη − 12c+ 18hσ2 + 6hδσ − 6hδ)ν2

+ (−12c− 6hησ2 − 6hσ3 − 2hη − 6hδσ2 + 6cσ − 12q0h

+ 6hδσ − 2hδ + 6cη + 4h− 14hσ + 18hσ2 + 6hησ + 6cδ)ν

+ 6q0h(δ − 2 + η + σ) (93b)

with

c̃[0]ν = c, c̃[1]ν = h, (93c)

F̄ (ν) = −−2h− hσ2 + c+ 2hσ − 4hν + 2hνσ − 2hν2

h
, (93d)
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ϕ̄(ν) = −Numϕ
16h

(93e)

Numϕ = (4c− 6h− 10hν − 4hν2 + 5hσ + 4hνσ − 2hσ2)

· (4c− 2h− 6hν − 4hν2 + 3hσ + 4hνσ − 2hσ2). (93f)

The corresponding coefficients a(ν)
n and b(ν)

n are

a(ν)
n = − Numa

(2n− 2ν + σ + η + δ)(2n − 2ν + σ + η + δ − 2)
, (94a)

Num a = 2n4 + (−8ν − 4 + 4σ + 4η + 4δ)n3 + (10ν2 + (−10σ − 12δ + 10 − 12η)ν

− 5η − 5σ + 2δ2 − 5δ + 2η2 + 6δη + 2 + 6ησ + 2σ2 + 6δσ)n2

× [−4ν3 + (10η + 6σ − 6 + 10δ)ν2 + (8η + 8δ − 4δ2 − 10δσ − 2σ2

− 4η2 + 6σ − 12δη − 10ησ − 2)ν + (2ησ + 2δσ − σ − δ − η + 2δη)

× (σ − 1 + δ + η)]n + (−2η − 2δ)ν3 + (6δη + 3ησ − 2δ − 2η + δ2 + 3δσ + η2)ν2

+ (2ησ + 2δσ − η2σ − 2η2δ − 2δ2η − ησ2 + 4δη − δσ2 − δ2σ − 6ηδσ)ν

+σδη(δ − 2 + η + σ), (94b)

b(ν)
n = −Num b

Den b
, (95a)

Num b = (n+ η + δ − 1)n(n− 1 − 2ν + σ)(δ − 2 + σ + n+ η − 2ν)

· [4n2 + (4σ − 6 + 4η − 8ν + 4δ)n + 4ν2 + (−4δ − 4η + 6 − 4σ)ν

+ 2δσ − 3δ + 4δη + 2σ2 − 3η + 2 − 3σ + 2ησ]

· [4n2 + (4σ − 10 + 4η − 8ν + 4δ)n + 4ν2 + (−4δ − 4η + 10 − 4σ)ν

+ 2δσ − 5δ + 4δη + 2σ2 − 5η + 6 − 5σ + 2ησ], (95b)

Den b = 16(2n − 2ν + σ + η + δ − 2)2(δ − 2ν + σ − 3 + 2n + η)

· (δ − 1 + σ − 2ν + η + 2n). (95c)

The corresponding polynomials p(ν)
n (x) satisfy the following second recursion relation:

p(ν+1)
n = −Num1

Den 1
p(ν)

n +
Num2
Den 2

p
(ν)
n−1, (96a)

Num1 = (2ν + 2 − σ)(2n + δ − 2ν + σ − 3 + η), (96b)

Den 1 = (−2 + n− 2ν + σ)(δ + η − 3 − 2ν + n+ σ), (96c)

Num2 = (n+ η + δ − 1)n{(−2 − 2ν + σ)n2 + [6ν2 + (12 − 2η − 2δ − 6σ)ν − 2η

− 6σ + 2x+ ησ + 2σ2 + 6 + δσ − 2δ]n − 4ν3 + (6σ + 3δ − 12 + 3η)ν2

+ (−3δσ − 12 − 4σ2 − 2x+ 12σ + 6η + 6δ − 3ησ − 2δη)ν
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− 4 + 6σ + 3δ + xη + 3η + ηδσ + σ3 − 2x− 2δη

+ ησ2 + δσ2 − 3ησ − 3δσ + xδ + xσ − 4σ2}, (96d)

Den 2 = (δ + η − 3 − 2ν + n+ σ)(−2 + n− 2ν + σ)(2n − 2ν + σ + η + δ − 2); (96e)

or equivalently, via (44a)–(44c),

p(ν+1)
n = p(ν)

n +G(ν)
n p

(ν)
n−1 + G̃(ν)

n p
(ν)
n−2, (97a)

with

G(ν)
n =

NumG

(2n− 2ν + σ + η + δ − 2)(2n − 2ν + σ + η + δ)
, (97b)

NumG = n(n+ η + δ − 1) · [−2 − 6n+ 2n2 + 6ν − 4(ν − 1)n + 2(ν − 1)2

− 3η + 2ηn − 2η(ν − 1) − 3σ + 2σn− 2σ(ν − 1)

+ ησ + σ2 − 3δ + 2δn − 2δ(ν − 1) + 2ηδ + δσ], (97c)

G̃(ν)
n =

Num G̃

Den G̃
, (97d)

Num G̃ = n(n+ η + δ − 1)(n − 1)(n − 2 + η + δ) · [2δσ − 5δ + 4δ(n − 1) + 4ηδ − 4δ(ν − 1)

+ 6 − 10n + 4(n− 1)2 − 5η + 4η(n − 1) − 5σ + 4σ(n − 1) + 2ησ + 2σ2

+ 10ν − 8(ν − 1)(n − 1) − 4η(ν − 1) − 4σ(ν − 1) + 4(ν − 1)2]

· [2δσ − 3δ + 4δ(n − 1) + 4ηδ − 4δ(ν − 1) + 2 − 6n+ 4(n − 1)2

− 3η + 4η(n − 1) − 3σ + 4σ(n − 1) + 2ησ + 2σ2 + 6ν

− 8(ν − 1)(n − 1) − 4η(ν − 1) − 4σ(ν − 1) + 4(ν − 1)2], (97e)

Den G̃ = 16(2n − 2ν + σ + η + δ − 2)2(−2ν + σ + η − 3 + δ + 2n)

· (2n+ σ + δ + η − 2ν − 1). (97f)

Note that also the polynomials corresponding to these assignments coincide with the
Wilson polynomials W (x; a, b, c, d) with a = −2ν, b = σ, c = η, d = δ. However the solutions
of the nonlinear equation (46) for these two cases are different.

Factorizations. There are several cases in which neat factorizations hold.

Case 1.

ν = n+ µ, (98a)

with

µ =
1
2
δ +

1
2
η − 5

4
+

1
2
σ +

1
4
τ, (98b)

where

τ =
√

4δ2 − 8ηδ + 4η2 + 1 − 4σ2. (98c)
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It can then be verified that there holds the condition (50), hence for the corresponding
polynomials p(n+µ)

n (x) there holds the complete factorization (51a), i.e.

p(n+µ)
n (x) =

n∏
m=1

(x− xm), (99a)

with

xm =
1

4(1 − τ)
{−4(1 − τ)m2 − 2[2δ + 2η − 4 + τ)](1 − τ)m− 6(1 − τ) − 4ησ2

− 4η2δ − 4δσ2 − 10δ2 + 5η(1 − τ) + 5δ(1 − τ) + 16ηδ + 2η2τ + 2δ2τ

+ 4η3 − 10η2 + 4δ3 − 4ηδ2 + 8σ2}, (99b)

and of course µ given by (98b).

Case 2.

ν = n+ µ, (100a)

with

µ =
1
2
δ +

1
2
η − 5

4
+

1
2
σ − 1

4
τ, (100b)

and τ defined as above, see (98c). It can then be verified that there holds again the con-
dition (50), hence for the corresponding polynomials p(n+µ)

n (x) there holds the complete
factorization (51a), i.e. again (99a) but now with

xm =
1

4(1 − τ)
{−4(1 − τ)m2 − 2[2δ + 2η − 4 − τ ](1 − τ)m

− 2 − 4η3 + 3δ − 16ηδ + 3η + 2τ − 8σ2 + 6η2 + 6δ2

+ 4δσ2 + 4ησ2 − 3ητ + 4η2δ + 4ηδ2 + 2η2τ + 2δ2τ − 4δ3 − 3δτ}, (100c)

and of course µ given by (100b).
Two additional complete factorizations of type (99a) obtain for

ν = n+ µ (101a)

with

µ = δ − 1 (101b)

or

µ = δ − 3
2
; (101c)

in both cases with the same zeros

xm = −(m+ δ − 1)2. (102)

And two more factorizations obtain from these two by exchanging the roles of the two
parameters η and δ, since the polynomials in question are invariant under this exchange.
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Remark. In the special cases

σ = ±1
2

(103a)

these polynomials reduce to the Wilson polynomials W (x; a, b, c, d). The identification of
the coefficients is given by the following simple rules:

a = α , b = β , c = η , d = δ (103b)

and

α = −ν, β = −ν + σ = α+ σ. (103c)

Note however that these relations entail

b = a+ σ, (103d)

hence only a subclass of the Wilson polynomials is obtained.

5. Special Solutions of the Nonlinear Equation (46)

In this section we report for completeness some special (indeed, rather trivial) solutions of
the nonlinear equation (46).

The first such solution reads as follows:

A(ν)
n = W (n) +Q(ν), (105a)

with W (n) and Q(ν) arbitrary functions of their arguments,

F̄ (ν) = Q(ν) −Q(ν + 1) (105b)

and c̃[0]ν , c̃[1]ν , ϕ̄(ν) also arbitrary. The corresponding coefficient a(ν)
n is independent of ν,

a(ν)
n = W (n+ 1) −W (n), (106a)

and the corresponding coefficient b(ν)
n vanishes:

b(ν)
n = 0. (106b)

Another simple solution of the nonlinear equation (46) reads

A(ν)
n = f(n− 2ν), (107a)

with f(z) an arbitrary function of its argument,

F̄ (ν) = f(−2ν) − f(−2 − 2ν) (107b)

and c̃[0]ν = 0, c̃[1]ν , ϕ̄(ν) also arbitrary. The corresponding coefficient a(ν)
n reads

a = f(n− 2ν + 1) − f(n− 2ν), (108)

and again the corresponding coefficient b(ν)
n vanishes, see (106b).

A third simple solution of the nonlinear equation (46) reads

A(ν)
n = f(n− ν) = f(z), (109a)
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again with f(z) an arbitrary function of its argument,

ϕ̄(ν) = 0, (109b)

F̄ (ν) = f(−ν) − f(−ν − 1), (109c)

and c̃[0]ν , c̃[1]ν also arbitrary. The corresponding coefficient a(ν)
n reads

a(ν)
n = f(n− ν + 1) − f(n− ν), (110)

while once more b(ν)
n vanishes, see (106b).

Note that in all these cases the vanishing of the coefficient b(ν)
n entails that the basic

three-term recurrence relation (1) becomes a two-term recursion and the polynomials yielded
by it therefore factorize as follows:

p(ν)
n (x) =

n∏
k=1

(x+ a
(ν)
k−1). (111)

6. Outlook

We plan to pursue this line of research in various directions, including the possibility to
take as point of departure three-term recursion relations (satisfied by polynomials) more
general than (1) and the investigation of differential equations satisfied by the new class
of polynomials we have identified. It will also be of interest to apply to the new integrable
discrete equations introduced above — such as (46) — the techniques introduced by van der
Kamp and Quispel [19,20] and already applied by them to some of our previous findings.

Appendix A

Proof of Proposition 2.1. Clearly (8), (7) and (9) entail

Ê(+)L̂p = L̂(+)Ê(+)p = L̂(+)Ĥp. (112)

Now note that, via (7a), (9) and again (7a), and using the fact that the number x “com-
mutes” with the operators Ê(+) and Ĥ, one gets

Ê(+)L̂p = Ê(+)xp = xÊ(+)p = xĤp = Ĥxp = ĤL̂p; (113a)

hence, via (112),

(L̂(+)Ĥ − ĤL̂)p = 0. (113b)

Clearly this last formula is implied by (12a), and since it must hold for the polynomials p(ν)
n

with n an arbitrary nonnegative integer, it implies (12a).

Proof of Proposition 2.2. Via (20a) we get

L̂(+)Ĥ ′ − Ĥ ′L̂ = (L̂(+)Ĥ − ĤL̂)L̂+ L̂+(Q′Î + q′Ê−) − (Q′Î + q′Ê−)L̂, (114a)

hence, via (18),

L̂(+)Ĥ ′ − Ĥ ′L̂ = (WÎ + wÊ−)L̂+ L̂+(Q′Î + q′Ê−) − (Q′Î + q′Ê−)L̂, (114b)
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hence, via (12b) and (7c),

L̂(+)Ĥ ′ − Ĥ ′L̂ = (Ê+ − a(+)Î − b(+)Ê−)(Q′Î + q′Ê−)

+ [(W −Q′)Î + (w − q′)Ê−](Ê+ − aÎ − bÊ−), (114c)

hence, using (11b),

L̂(+)Ĥ ′ − Ĥ ′L̂ = (Q′
+ −Q′ +W )Ê+ − [b(+)q′− + (w − q′)b−]Ê−Ê−

− [a(+)Q′ − q′+ −w + q′ + (W −Q′)a]Î

+ [−a(+)q′ − b(+)Q′
− − (W −Q′)b− (w − q′)a−]E−. (114d)

Comparing this expression with (19) we immediately get:

Q′
+ −Q′ +W = 0, (115a)

which coincides with (20b) and determines Q′ in terms of W ;

b(+)q′− + (w − q′)b− = 0, (115b)

which coincides with (20c) and determines q′ in terms of w and b;

W ′ = −a(+)Q′ + q′+ +w − q′ − (W −Q′)a, (116a)

which coincides with (21a) and determines W ′ in terms of W and w as well as Q′ and q′,
themselves given by (20b) and (20c) in terms of W and w; and finally

w′ = −a(+)q′ − b(+)Q′
− − (W −Q′)b− (w − q′)a−, (116b)

which coincides with (21b) and determines w′ in terms of W and w as well as Q′ and q′,
themselves given by (20b) and (20c) in terms of W and w.

Proof of Proposition 2.3. The first formula, (23), is an immediate consequence of the
definitions of L̂ and L̂(+), see (7c) and (12b). The second formula, (24), is as well easily
verified by using these definitions and the definition of B, see (2).

Proof of Proposition 2.4. It is an immediate consequence of Propositions 2.2 and 2.3:
note that the independence of the coefficients c[j](ν) and c̃[k](ν) from n is of course required
in order that these coefficients “commute” with the operators L̂ and L̂(+) which only act
on the index n, see their definitions (7c) and (12b).

Proof of Proposition 2.5. The proof is by induction. Clearly (27) holds for K = 0 when
ρ ≡ ρ[0] = c̃[0](ν)B(+)/B−. To show that, if it holds at K, it also holds at K + 1, we must
show that, if

Ĥ = ρÊ− +
K∑

k=1

[ρ[k](Ê−)k+1], (117)

then Ĥ ′ = �̂Ĥ has an analogous structure. The first step to arrive at Ĥ ′ is the formula (19),
which via this ansatz (117) yields (after some standard steps using (7c), (12b) and (11b))

W = ρ+ − ρ. (118)
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Hence via (20b) we get

Q′ −Q′
+ = ρ+ − ρ (119a)

yielding

Q′ = −ρ, (119b)

where, without loss of generality, we omitted to add an n-independent arbitrary quantity
(since this is taken care of by lower terms in the iteration; we shall do so other times in the
following, without repeating every time this justification). Hence via (20a)

Ĥ ′ =

(
ρÊ− +

∑
k=1

[ρ[k](Ê−)k+1]

)
(Ê+ − aÎ − bÊ−) − ρÎ + q′Ê−, (120)

and it is easily seen that the right-hand side of this expression contains no terms propor-
tional to Ê+ nor, thanks to a neat cancellation, a term proportional to Î , but only terms
proportional to (Ê−)p with p a positive integer ; thereby confirming that H ′ has the same
structure as H, see (117).

Proof of Proposition 2.6. Since this proof is analogous to the preceding one, we merely
outline it. Let

Ĥ ′ = �̂Î , (121)

then from (20b), (23) and (20b)

Q′
+ −Q′ = a(+) − a = −[(A+ −A

(+)
+ ) − (A−A(+))] (122a)

hence (again, up to an n-independent quantity we set to zero)

Q′ = −(A−A(+)) (122b)

hence, via (20a),

Ĥ ′ = Ê+ − (A+ −A(+))Î + (q′ − b)Ê−. (123)

The result then easily follows by further iterations.

Proof of Proposition 2.7. This proposition is an immediate consequence of the previous
two Propositions 2.5 and 2.6, and of the monic character of the polynomials p(ν)

n (x) implied
by the three-term recursion relation (1) defining them.

Proof of Proposition 2.8. This proposition is an immediate consequence of the previous
propositions, see in particular Propositions 2.1, 2.4 and 2.7.

Appendix B

In this appendix we justify findings reported in Sec. 2.3.
Firstly the derivation of (37). The assignment under consideration implies, via (31),

p(ν+1)
n (x) = p(ν)

n (x) + c̃[1](ν)�̂B
(+)

B−
Ê−p(ν)

n (x). (124)
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Let us therefore evaluate the operator �̂(B(+)/B−)Ê− appearing in the right-hand side of
this formula. To this end we write (see (22a))

H ′ = �̂B
(+)

B−
Ê− = �̂Ĥ (125a)

with

Ĥ =
B(+)

B−
Ê−. (125b)

Hence (see (18))

L̂(+)B
(+)

B−
Ê− − B(+)

B−
Ê−L̂ = WÎ + wÊ−, (126)

and (see (20))

Ĥ ′ =
B(+)

B−
Ê−L̂+Q′Î + q′Ê− (127a)

with

Q′ −Q′
+ = W, (127b)

b−q′ − b(+)q′− = b−w, (127c)

where W and w are now defined by (126), hence they read (see (24))

W =
B

(+)
+

B
− B(+)

B−
, (128a)

w =
B(+)

B−
(a− − a(+)). (128b)

Hence, as clearly implied by (127b) with (128a),

Q′ = −B
(+)

B−
, (129)

while (127c) with (128b) yield

b−q′ − b(+)q′− = b−
B(+)

B−
(a− − a(+)), (130a)

hence (via (2a))

B−
B(+)

q′ − B−−
B

(+)
−

q′− = A−A
(+)
+ − (A− −A(+)), (130b)

clearly entailing

B−
B(+)

q′ = A−A
(+)
+ , (130c)
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hence

q′ =
B(+)

B−
(A−A

(+)
+ ). (130d)

It is thus seen (from (127a), (129), (130d) and (7c)) that

Ĥ ′ =
B(+)

B−
Ê−(Ê+ − aÎ − bÊ−) − B(+)

B−
Î +

B(+)

B−
(A−A

(+)
+ )Ê− (131a)

hence (via (11b) and the second (2a))

Ĥ ′ =
B(+)

B−
(A− −A

(+)
+ )Ê− +

B(+)

B−−
Ê−Ê−. (131b)

The insertion of this expression in place of the operator Ĥ in the right-hand side of (9)
yields the second recursion relation (37), which is thereby proven.

Next, let us obtain the conditions required for the validity of the results we just
got. They are provided by (30), which, with the assignment under consideration here,
reads (

a− a(+)

b− b(+)

)
+ c̃[1](ν)R̂

(
B

(+)
+ /B −B(+)/B−

(a− − a(+))B(+)/B−

)
= 0, (132a)

hence (see (22b) with (21) and (20b), (20c))

a− a(+) + c̃[1](ν)[−aW + w + q′+ − q′ + (a− a(+))Q′] = 0, (132b)

b− b(+) + c̃[1](ν)[−bW − a−w + (a− − a(+))q′ + bQ′ − b(+)Q′−] = 0, (132c)

where W and w are given by (128) and Q′ and q′ are given by (129) and (130d). Hence
these two equations read

a− a(+) + c̃[1](ν)

[
B

(+)
+

B
(A−A

(+)
++) − B(+)

B−
(A− −A

(+)
+ )

]
= 0, (133a)

b− b(+) + c̃[1](ν)

[
B(+)

B−
(a− − a(+))(A− −A

(+)
+ ) +

B
(+)
+

B−
− B(+)

B−−

]
= 0, (133b)

and via (2a) they coincide with the two equations (38), which are thereby proven.
Finally let us derive (39) from (38). Firstly we note that (38) can be rewritten as follows,

A+ −A
(+)
+ + c̃[1](ν)B

(+)
+

B
(A−A

(+)
++) = A−A(+) + c̃[1](ν)B

(+)

B−
(A− −A

(+)
+ ), (134a)

hence it clearly entails

A+ −A
(+)
+ + c̃[1](ν)B

(+)
+

B
(A−A

(+)
++) = φ(ν), (134b)
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yielding

c̃[1](ν)B
(+)
+

B
=
φ(ν) −A+ +A

(+)
+

A−A
(+)
++

, (135a)

hence as well (by replacing n with n− 1 respectively n− 2)

c̃[1](ν)B
(+)

B−
=
φ(ν) −A+A(+)

A− −A
(+)
+

, (135b)

c̃[1](ν)B
(+)
−

B−−
=
φ(ν) −A− +A

(+)
−

A−− −A(+)
. (135c)

By cross multiplying the last two equations we get

(φ(ν) −A− +A
(+)
− )

(A−− −A(+))
B(+)

B−
=

(φ(ν) −A+A(+))

(A− −A
(+)
+ )

B
(+)
−

B−−
(136a)

hence

B(+)

B
(+)
−

=
(A−− −A(+))

(A− −A
(+)
+ )

(φ(ν) −A+A(+))

(φ(ν) −A− +A
(+)
− )

B−
B−−

. (136b)

As for (38b), it can be rewritten as follows:

c̃[1](ν)B
(+)

B−
(A−A− +A(+) −A

(+)
+ )(A− −A

(+)
+ )

=
B

B−

(
1 − c̃(ν)B

(+)
+

B

)
− B(+)

B
(+)
−

(
1 − c̃(ν)B

(+)
−

B−−

)
, (137a)

hence (see (135))

(φ(ν) −A+A(+))(A−A− +A(+) −A
(+)
+ ) =

B

B−
A−A

(+)
++ +A+ −A

(+)
+ − φ(ν)

A−A
(+)
++

− B(+)

B
(+)
−

A−− −A(+) +A− −A
(+)
− − φ(ν)

A−− −A(+)
,

(137b)

hence (see (136b))

A+A(+) −A− −A
(+)
+ =

B

B−
A−A

(+)
++ +A+ −A

(+)
+ − φ(ν)

(A−A
(+)
++)(φ(ν) −A+A(+))

− B−
B−−

A−− −A(+) +A− −A
(+)
− − φ(ν)

(A− −A
(+)
+ )(φ(ν) −A− +A

(+)
− )

. (137c)
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We now introduce the quantity C ≡ C
(ν)
n by setting

(
B

B−

)
A−A

(+)
++ +A+ −A

(+)
+ − φ(ν)

A−A
(+)
++

=
φ(ν) −A+A(+)

A+A− −A(+) −A
(+)
+ − φ(ν)

C, (138a)

entailing of course (by replacing n with n− 1)

(
B−
B−−

)
A− −A

(+)
+ +A−A(+) − φ(ν)

A− −A
(+)
+

=
φ(ν) −A− +A

(+)
−

A− +A−− −A
(+)
− −A(+) − φ(ν)

C−. (138b)

And by inserting the last two expressions in the preceding one we get

(A−A
(+)
+ )[A−A

(+)
+ − φ(ν)] − (A− −A(+))[A− −A(+) − φ(ν)] = C − C−, (139a)

yielding

C = (A−A
(+)
+ )[(A−A

(+)
+ ) − φ(ν)] + ψ(ν). (139b)

Hence, from (138a),

B

B−
=

(A−A
(+)
++)(φ(ν) −A+A(+))[(A−A

(+)
+ )(A−A

(+)
+ − φ(ν)) + ψ(ν)]

(A+A− −A(+) −A
(+)
+ − φ(ν))(A−A

(+)
++ +A+ −A

(+)
+ − φ(ν))

, (140a)

implying (by replacing ν with ν + 1 and n with n+ 1)

B
(+)
+

B(+)
=

(A(+)
+ −A

(++)
+++)(φ(ν+1) −A

(+)
+ +A

(++)
+ )

(A(+)
+ +A(+) −A

(++)
+ −A

(++)
++ − φ(ν+1))

· [(A(+)
+ −A

(++)
++ )(A(+)

+ −A
(++)
++ − φ(ν+1)) + ψ(ν+1)]

(A(+)
+ −A

(++)
+++ +A

(+)
++ −A

(++)
++ − φ(ν+1))

. (140b)

Finally we use the identity

B
(+)
+

B
=

(
B

(+)
+

B(+)

)(
B(+)

B−

)(
B

B−

)−1

(141)

to get (from the last two formulae and (135b))

c̃[1](ν)B
(+)
+

B
=

(A(+)
+ −A

(++)
+++)(φ(ν+1) −A

(+)
+ +A

(++)
+ )

(A−A
(+)
++)(A− −A

(+)
+ )

· (A(+)
+ −A

(++)
++ )(A(+)

+ −A
(++)
++ − φ(ν+1)) + ψ(ν+1)

(A−A
(+)
+ )(A−A

(+)
+ − φ(ν)) + ψ(ν)



June 16, 2011 9:28 WSPC/1402-9251 259-JNMP S1402925111001416

Polynomials Defined by Three-Term Recursion Relations 241

· A+A− −A(+) −A
(+)
+ − φ(ν)

A
(+)
+ +A(+) −A

(++)
+ −A

(++)
++ − φ(ν+1)

· A−A
(+)
++ +A+ −A

(+)
+ − φ(ν)

A
(+)
+ −A

(++)
+++ +A

(+)
++ −A

(++)
++ − φ(ν+1)

. (142)

Via (135a) this yields (39), which is thereby proven.

Appendix C

In this Appendix C we prove the first two propositions reported in Sec. 3, and we indicate
how the third one can be analogously proven.

Proof of Proposition 3.1. This proof is quite easy. By using (1a) (with n replaced by
n− 1 and ν replaced by ν− 1) to replace the first term in the right-hand side of the second
recursion (43a) we get

p(ν)
n (x) = (x+ a

(ν−1)
n−1 +G(ν)

n )p(ν−1)
n−1 (x) + (b(ν−1)

n−1 + G̃(ν)
n )p(ν−1)

n−2 (x), (143a)

hence the condition (50) entails (for ν = n+ µ)

p(n+µ)
n (x) = (x+ a

(n−1+µ)
n−1 +G(n+µ)

n )p(n−1+µ)
n−1 (x), (143b)

and clearly these entails the factorization formula (51), which is thereby proven.

Proof of Proposition 3.2. This proof is analogous to the previous one, albeit a bit longer.
We must first iterate the second recursion (43a) (or, equivalently, (44a), as the case may
be), by using this same relation to decrease by one unit the parameter ν in the right-hand
side of this formula, obtaining thereby:

p(ν)
n (x) = p(ν−2)

n (x) + (G(ν−1)
n +G(ν)

n )p(ν−2)
n−1 (x) + (G̃(ν−1)

n + G̃(ν)
n +G(ν)

n G
(ν−1)
n−1 )p(ν−2)

n−2 (x)

+ (G(ν)
n G̃

(ν−1)
n−1 + G̃(ν)

n G
(ν−1)
n−2 )p(ν−2)

n−3 (x) + G̃(ν)
n G̃

(ν−1)
n−2 p

(ν−2)
n−4 (x). (144a)

Next, we replace the first term in the right-hand side by using the basic recursion relation
(1a) (with ν replaced by ν − 2 and n by n− 1), getting thereby

p(ν)
n (x) = (x+ a

(ν−2)
n−1 +G(ν−1)

n +G(ν)
n )p(ν−2)

n−1 (x) + (b(ν−2)
n−1 + G̃(ν−1)

n + G̃(ν)
n

+G(ν)
n G

(ν−1)
n−1 )p(ν−2)

n−2 (x) + (G(ν)
n G̃

(ν−1)
n−1 + G̃(ν)

n G
(ν−1)
n−2 )p(ν−2)

n−3 (x)

+ G̃(ν)
n G̃

(ν−1)
n−2 p

(ν−2)
n−4 (x). (144b)

Hence, by setting ν = 2n+ µ, this formula reads

p(2n+µ)
n (x) = (x+ a

(2n−2+µ)
n−1 +G(2n−1+µ)

n +G(2n+µ)
n )p(2n−2+µ)

n−1 (x)

+ (b(2n−2+µ)
n−1 + G̃(2n−1+µ)

n + G̃(2n+µ)
n +G(2n+µ)

n G
(2n−1+µ)
n−1 )p(2n−2+µ)

n−2 (x)

+ (G(2n+µ)
n G̃

(2n−1+µ)
n−1 + G̃(2n+µ)

n G
(2n−1+µ)
n−2 )p(2n−2+µ)

n−3 (x)

+ G̃(2n+µ)
n G̃

(2n−1+µ)
n−2 p

(2n−2+µ)
n−4 (x), (144c)
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yielding, when the 3 relations (52) hold,

p(2n+µ)
n (x) = (x+ a

(2n−2+µ)
n−1 +G(2n−1+µ)

n +G(2n+µ)
n )p(2n−2+µ)

n−1 (x), (144d)

from which the factorization (55) immediately follows.

The proof of Proposition 3.3 is analogous to the proof of Proposition 3.2, except that
one must first iterate once the recursion (1a) rather than (43a) (or, equivalently, (44a)).
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