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1. Introduction

1.1. Preview

We begin with a summary of research directions opened by Berezin’s monograph “Method
of second quantization” [6]: one is a super second quantization, and another is an extension
of quantum mechanical Schrödinger picture to quantum field theory.

Extending kree’s second quantization [17] and Hida’s white noise calculus (see,
e.g., [26]) we develop the second quantization in super Bargmann–Fock Gelfand triples to
account for the quantum states knocked out by a violent Schrödinger operator (see below
the quote from Dirac).

The “violence” of a Schrödinger operator means that the domain of the operator is not
dense in the Fock space. Actually, it is continuous operator from a nuclear Frechet space
of test functionals of classical fields to the anti-dual space of functional of distributions.
(Apparitions of Gelfand triples are seen in [4, Subsecs. II.2.5 and II.3.4].)
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The related c� difficulty in relativistic quantum field theory was discovered by [19] in
1931: boundedness of velocities by the light velocity c implies boundedness of momenta,
so that, by the uncertainty principle, exact values of a quantized field do not exist.
However the difficulty is resolved in Gelfand triples via canonical commutation relations
between creation operators of test functionals and annihilation operators of distribution
functionals.

Following [11], Schrödinger super equations in a Gelfand triple is solved via mathemat-
ically rigorous anti-normal Feynman super integral.

1.2. Berezin’s legacy

In 1956, I. M. Gelfand initiated F. Berezin into Quantum Field theory. Berezin was greatly
influenced by K. Friedrichs’ dictum:

According to Niels Bohr, any attempt at a sharp definition of physical con-
cepts must even violate their real physical meaning. Therefore, the mathe-
matician’s desire for a deductive presentation of physical theory cannot be
established in principle. On the other hand, it seems justified to strive for
a precise definition of the intrinsic mathematical meaning of mathematical
notions employed in [. . .] quantum theory [14].

Berezin’s goal was

to construct a noncontradictory quantum field theory. Without exaggera-
tion, it can be said that he regarded almost all of his work (on the N -
particle problem, quantization, superanalysis) as stepping stones to this
difficult problem [22].

In this respect Berezin’s monograph [4] became the next landmark after [14]. It devel-
ops the Fock method of generating functionals of bosonic states into a correspondence
between quantum operators and their normal functional symbols in the framework of
(anti-)holomorphic Fock spaces of bosonic states and, for the first time, of fermionic states.
The normal representation of bounded operators in Fock spaces came as a surprise and, cer-
tainly, asked for further generalizations. That was done in bosonic Gelfand triples of quan-
tum field theory [17] and of white noise calculus (see [26]). For fermions, this is done in this
paper.

The follow up Berezin’s papers on quantization with finite number of freedom degrees
have been stepping stones toward quantum field theory. In particular, analytical pos-
sibilities of anti-normal (aka Berezin, Hisumi, Sudarshan, diagonal) symbols have been
explored in [5].

Parallelism between bosonic and fermionic Fock spaces was already discussed in [12].
In the bosonic case the functional method of the second quantization was proposed in
the sequel [13]. The “striking similarity” of analysis of bosonic and fermionic generat-
ing functionals [4, Introduction] inspired Berezin’s fermionic extension of the functional
method. (By penetrating remark in [24, Sec. I.5], for this it was necessary to understand
well both bosonic and fermionic cases. Otherwise they are not so similar. . . .) Eventually,
this led to super analysis (cp. [6]) and to new beginnings in theory of infinite linear groups
(cp. [24]).
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By [4, Introduction],

[. . .] functionals may be imagined, roughly speaking, as functions of
infinitely many variables. In usual quantum mechanics, the number of
variables of functions representing the state space is the number of freedom
degrees.

Thus there arises an interpretation of the second quantization problems
as quantum mechanics problems with infinitely many degrees of freedom and
a natural desire to approximate these problems via problems with finite, but
large, number of degrees of freedom.

In the last section of this paper we use such interpretation to derive a rigorous anti-
normal Feynman integral for the matrix elements Schrödinger operators in super Gelfand
triples.

1.3. Quantum mechanics vs quantum field theory

Quantum Mechanics was invented by W. Heisenberg in 1925. The famous monographs [25]
and [29] summarized corresponding new mathematics. The main goal was to comprehend
canonical commutation relations and ensuing non-commutativity of quantum variables of
Heisenberg’s and E. Schrödinger’s Quantum Mechanics.

Von Neumann defined and named Hilbert spaces to honor Hilbert theory of quadratic
forms. He replaced the latter by (unbounded) self-adjoint operators corresponding to quan-
tum observables. Weyl quantization converts classical observables into operators. A gener-
alized quantization rule was proposed by [30] and the corresponding formal calculus was
developed by [1].

The fundamental quantum uncertainty principle has the mathematical underpinning
of canonical commutation relations. Weyl conjectured and von Neumann proved the uni-
tary equivalence of irreducible unitary representations of bosonic canonical commuta-
tion relations with a finite number of degrees of freedom. The corresponding theorem
for fermionic canonical commutation relations was established in 1927 by P. Jordan and
E. Wigner.

In contrast to quantum Mechanics, mathematics of quantum Field Theory has been
developing much slower, mainly because of the infinite number of degrees of freedom. There
was vivid correspondence between W. Heisenberg, P. Jordan and W. Pauli about possibili-
ties of Volterra functional calculus.

There is no uniqueness theorem for unitary representations of the canonical commutation
relations (cp. the monograph [14]) (it is presumed that this non-uniqueness was discovered
by von Neumann in late 1930’s). However, under an additional requirement of existence of
the fiducial quantum vacuum state, they are unitarily equivalent.

Friedrichs’ monograph [14] was an attempt to do for Quantum Field Theory what von
Neumann had done for Quantum Mechanics. Unfortunately, it lacked von Neumann’s ele-
gance. F. Berezin’s use of holomorphic Fock–Bargmann representations in his monograph [4]
clarifies the subject considerably.

In 1927, [9] introduced the method of second quantization in Quantum Electrodynamics
as a system of harmonic oscillators.
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In 1931, [18] proposed an alternative configuration space quantization method diago-
nalizing the field multiplication operators. (Monograph [4] starts with such configuration
space, no attribution already needed.)

The foundational paper [12] on Fock representation of the bosonic and fermionic canon-
ical commutation relations with the infinite number of degrees of freedom begins as follows
(in translation)

The fact that the second quantization method is equivalent to the method
of usual wave functions on a configuration space is known in principle. In
this paper this is traced in detail.

In the presence of a unique vacuum vector the representations of canonical commutation
relations are unique up to unitary equivalence.

The sequel [13] introduced the method of generating functionals for bosons. Both Fock’s
papers are formal calculations.

In the beginning, W. Heisenberg, P. Jordan and W. Pauli had idea to use the canonical
commutation relations to extend Heisenberg and Schrödinger pictures of quantum mechan-
ics to quantum field theory. There was a vivid discussion of “Volterra mathematics” in their
correspondence.

However, according to P. Dirac [10], Section “Relationship of the Heisenberg and
Schrödinger Pictures”,

The interactions that are physically important in quantum field theory
are so violent that they will knock any Schrödinger state vector out of Hilbert
space in the shortest possible time interval.

[. . .] It is better to abandon all attempts at using the Schrödinger picture
with these Hamiltonians.

[. . .] I don’t want to assert that the Schrödinger picture will not come
back. In fact, there are so many beautiful things about it that I have the
feeling in the back of my mind that it ought to come back. I am really loath
to have to give it up.

In this paper, the Schrödinger picture has been resurrected in the framework of Gelfand
triples, cp. [15].

2. Bosonic Gelfand Triples

2.1. Holomorphic states

In this section, H denotes an (infinite dimensional) bosonic complex separable Hilbert
∗-space with conjugation (cp. [4]).

Sandwich H into a Gelfand nuclear ∗-triple (cp. [15])

H∞ ⊂ H ⊂ H−∞, (2.1)

where H∞ is a nuclear countably Hilbert ∗-space, H−∞ is its topological ∗-dual with respect
to the Hermitian product on H. The imbeddings are continuous with dense ranges and real,
i.e., commute with the conjugation.
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By Minlos’ theorem, space H−∞ carries the probability Gauss–Radon measure
dz∗dz e−z∗z. This symbolic expression is meaningful as a cylindrical measure on H−∞ which
extends to the Gauss–Radon measure. We use the same notation for both measures because
it allows integration by parts and Fubini theorem which hold for integrals of cylindrical
functions followed by limit transition to the wider class of integrable functions.

Fernique’s theorem (see [7, Chapter 2]) implies that there exists a positive constant
c such that if a functional Ψ(z∗) on H−∞ is continuous and Ψ ≺ e−cz∗z, then Ψ(z∗) is
integrable on H.

The Bargmann space (see, e.g., [4, Chapter I]) is the (complete) complex Hilbert space
of Gâteaux entire functionals Ψ = Ψ(z∗) on H−∞ with conjugation

Ψ∗ = Ψ∗(z) ≡ Ψ(z∗) (2.2)

and integrable Hermitian sesqui-linear inner product

Ψ∗Φ ≡
∫

dz∗dz e−z∗zΨ∗(z)Φ(z∗). (2.3)

The integral is denoted also as the Gaussian contraction Ψ∗(z)Φ(z∗).
The exponential functionals

ez(z∗) ≡ ez∗z, z ∈ H∞, (2.4)

belong to B0 since ez∗ez = ez∗z < ∞. Indeed

ez∗eξ =
∫

dz∗dz e−z∗zez∗z+z∗ξ = ez∗ξ

∫
dz∗dz e−(z∗−z∗)(z−ξ) = ez∗ξ. (2.5)

They form a continual orthogonal basis of exponential functionals in B0 (see, e.g., [4,
Chapter I]): If Ψ = Ψ(z∗) ∈ B0, then the Borel transform

Ψ(z∗) = e−z∗z

∫
dζdζ∗e−ζ∗ζΨ̃(ζ)ez∗ζ , Ψ̃(ζ) ≡ Ψ∗eζ , (2.6)

is a unitary operator in B0.
The orthogonal basis is overcomplete since

ez =
∫

dζdζ∗e−ζ∗ζez∗ζ . (2.7)

The Bargmann–Hida space B∞ is the vector space of of Gâteaux entire test functionals
Ψ(z∗) on H−∞ of the (topological) second order and minimal type, i.e., for any s ≥ 0 and
ε > 0, there exists a constant C > 0 such that

|Ψ(z∗)| ≤ Ceε‖z∗‖2
−s , z∗ ∈ H−s. (2.8)

B∞ is a nuclear space of type (F),a dense in B0 (see, e.g., [26, Subsec. 3.6]).

a(F) is for locally convex Frechet spaces and (DF) is for their topological dual. The spaces under consideration
are nuclear countably Hilbert spaces and their topological dual and the main thing here is of course the
Grothendieck–Schwartz kernel theorem, see, e.g., [27].
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Actually, the topology of B∞ is defined by the norms

‖Ψ‖s,ε ≡ sup
z∗

|Ψ(z∗)|e−ε‖z∗‖2
−s . (2.9)

Again, by [26, Subsec. 3.6], Borel transform is a topological automorphism of B∞.
Bargmann–Hida space B−∞ of generalized functionals Ψ∗(z) on H∞ is the strong anti-

dual space of B∞ (and therefore, of type (DF)). The Borel transform Ψ̃∗(z) of B−∞ is
defined as the anti-dual of the Borel transform of B∞ of B−∞ (and therefore, a topological
automorphism).

By, e.g., [26, Subsec. 3.6], the generalized functionals are characterized as entire func-
tionals of the (bornological) second order on H∞, i.e., there exist positive constants C,K

and s ≥ 0 such that

|Ψ(z)| ≤ CeK‖z‖2
s , z ∈ Hs. (2.10)

We get the Bargmann–Hida Gelfand triple of holomorphic states

B∞ ⊂ B0 ⊂ B−∞. (2.11)

The vector spaces B∞ and B−∞ are locally convex commutative topological algebras with
the point-wise multiplication. Moreover, we have Taylor series expansions

Ψ(z∗ + w∗) =
∞∑

n=0

∂n
z∗Ψ(z∗)

n!
w∗n for Ψ ∈ B∞, (2.12)

Ψ(z + w) =
∞∑

n=0

∂n
z Ψ(z)
n!

wn for Ψ ∈ B−∞. (2.13)

By conjugating z to z∗, we convert H∞ ⊂ H0 ⊂ H−∞ into the conjugate Gelfand triple
H∗∞ ⊂ H∗0 ⊂ H∗−∞. Their direct product

H∞ × H∗∞ ⊂ H0 × H∗0 ⊂ H−∞ ×H∗−∞ (2.14)

carries the complex conjugation (z,w∗)∗ ≡ (w, z∗).
The Bargmann–Hida Gelfand triple associated with (2.14) is

(B ⊗ B∗)∞ ⊂ (B ⊗ B∗)0 ⊂ (B ⊗ B∗)−∞. (2.15)

Entire functionals Θ(z,w∗) ∈ (B⊗B∗)−∞ are uniquely defined by their restrictions Θ(z, z∗)
to the real diagonal. If Θ(z, z∗) = Θ(z, z∗), then Θ(z, z∗) is a classical observable on the
phase space H∞.

By Bargmann–Segal transform (see, e.g., [26, S-transform]), Cook–Fock Gelfand ∗-triple
F is unitarily equivalent to Bargmann–Hida Gelfand ∗-triple B.

2.2. Second quantization of classical bosonic observables

For z ∈ H∞, z∗ ∈ CH−∞
0 , define four continuous operators of multiplication and directional

complex differentiation (operators of creation and annihilation):

ẑ : B∞ → B∞, ẑΨ(ζ∗) ≡ zΨ(ζ∗) = (ζ∗z)Ψ(ζ∗); (2.16)

ẑ† : B−∞ → B−∞, ẑ†Ψ(ζ) ≡ ∂zΨ(ζ); (2.17)
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ẑ∗ : B−∞ → B−∞, ẑ∗Ψ(ζ) ≡ z∗Ψ(ζ) = (z∗ζ)Ψ(ζ); (2.18)

ẑ∗† : B∞ → B∞, ẑ∗†Ψ(ζ∗) ≡ ∂z∗Ψ(ζ∗). (2.19)

The continuity of multiplications is straightforward; the continuity of directional differ-
entiations follows from Cauchy integral formula for the derivative of a holomorphic function.

These operators generate strongly continuous Abelian operator groups in B∞ and B−∞:

eẑ : B∞ → B∞, eẑΨ(ζ∗) = eζ∗zΨ(ζ∗); (2.20)

eẑ† : B−∞ → B−∞, eẑ†Ψ(ζ) = Ψ(ζ + z); (2.21)

e
cz∗ : B−∞ → B−∞, e

cz∗Ψ(ζ) = ez∗ζΨ(ζ); (2.22)

e
cz∗† : B∞ → B∞, e

cz∗†Ψ(ζ∗) = Ψ(ζ∗ + z∗). (2.23)

The only nontrivial commutation relations for the groups

[ecz∗† , eẑ] = ez∗z, [eẑ† , e
cz∗ ] = ezz∗ (2.24)

imply the only nontrivial commutation relations of their generators

[ẑ∗†, ẑ] = z∗z, [ẑ†, ẑ∗] = zz∗. (2.25)

The normal quantization Θ(ẑ, ẑ∗
†
) of Θ(z, z∗) ∈ (B⊗B∗)−∞ is defined as the continuous

linear operator

Θ(ẑ, ẑ∗†) : B∞ → B−∞ (2.26)

via the sesqui-linear quadratic form (in Einstein–DeWitt contraction notation, i.e., in
the integral contraction over conjugated continual variables the integration symbols are
skipped)

Ψ∗(z)Θ(ẑ, ẑ∗†)Ψ(z∗) ≡ Θ̃(ζ∗, ζ)eẑe
cz∗†Ψ̃∗(ζ)Ψ̃(ζ∗). (2.27)

The sesqui-holomorphic Θ̃(ζ∗, η) is the normal symbol of the operator Θ(ẑ, ẑ∗) uniquely
defined by its restriction Θ̃(ζ∗, ζ) to the real diagonal.

Similarly, the kernel K(z, y∗) of the operator Θ(ẑ, ẑ∗) is uniquely defined by its diagonal
restriction

K(z, z∗) ≡ eζ∗(z)Θ(ẑ, ẑ∗†)eζ(z∗) (2.28)

(2.27)
= Θ̃(ζ∗, ζ)eẑe

cz∗†ez(ζ∗)ez∗(ζ)
(2.16),(2.19))

= Θ(z, z∗)ezz∗ ∈ (B ⊗ B∗)−∞. (2.29)

Thus the correspondence between quantum observables Θ(ẑ, ẑ∗) and classical observables
Θ(z, z∗) is one-to-one:

K(z, z∗) = Θ(z, z∗)ezz∗ . (2.30)

Since ezz∗ is the integral kernel of the orthogonal projection of (B ⊗ B∗)−∞ onto B∗∞, the
classical variable Θ(z∗, z) is the Berezin (aka anti-normal, diagonal, or Sudarshan) symbol
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of the operator Θ(ẑ, ẑ∗
†
), i.e., the compression of the multiplication with Θ(z∗, z) to B∗∞:

Θ(ẑ, ẑ∗†)Ψ(z∗) = ez∗zΘ(z∗, z)Ψ∗(z). (2.31)

The symbol is called anti-normal because

Ψ∗(z)ezz∗Θ(z∗, z)Ψ(z∗)
(2.24)
= Ψ̃∗(ζ∗)Θ̃(ζ∗, ζ)ecz∗†eẑΨ̃(ζ). (2.32)

Compare with the (opposite) normal operator ordering in (2.27).
For Θ ∈ (B ⊗ B∗)∞, we have, by Taylor expansion and integration by parts,

Θ(z, z∗) = e−z∗zΘ̃(ζ∗, ζ)eζ∗zez∗ζ

=
∫

dζ∗dζΘ̃(ζ∗, ζ)e−(z∗−ζ∗)(z−ζ)

=
∫

dζ∗dζe−ζ∗ζΘ̃(z∗ − ζ∗, z − ζ)

=
∑
k,m

(−1)k+m

km

∫
dζ∗dζe−ζ∗ζ∂k

ζ∗∂
m
ζ Θ̃(z∗, z)(ζ∗kζm)

=
∑

k

1
k
∂k

ζ∗∂
m
ζ Θ̃(z∗, z)

∫
dζ∗dζe−ζ∗ζ(ζ∗kζm)

= e(∂ζ∗∂ζ)/2Θ̃(z∗, z),

since ζ̂∗
†
= ∂ζ . (Note: The contraction ∂ζ∗∂ζ is an infinite dimensional complex Laplacian.)

Since (B ⊗B∗)∞ is dense in (B ⊗B∗)−∞, we get a relationship between the normal and
anti-normal symbols for all Θ ∈ (B ⊗ B∗)−∞ as

Θ(z∗, z) = e(∂ζ∗∂ζ)/2Θ̃(z∗, z) and Θ̃(z∗, z) = e−(∂ζ∗∂ζ)/2Θ(z, z∗). (2.33)

E.g., the constant functional 1 is both the normal and anti-normal symbol of the identity
operator; the normal symbol of the number operator is the functional z∗z, and its anti-
normal symbol is z∗z − 1

2 .

3. Gelfand Super Triples

3.1. Bosonization of Gelfand super triples

Consider an infinite dimensional (separable) complex super Hilbert ∗-space H, i.e., a Z/2-
graded space

H = H0 ⊕H1, dim(H1) = ∞ (3.1)

of elements z = z0 ⊕ z1 with bosonic even parts z0 and the fermionic odd parts z1. We
denote the parity of a homogeneous element z by p(z). Furthermore, H is endowed with an
anti-linear even involution ∗ : z 
→ z∗, i.e.,

(cz)∗ = c̄z∗, c ∈ C, z∗∗ = z. (3.2)
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The super Hermitian product z∗w on H is a super sesqui-linear form on H such that for
homogeneous z,w ∈ H

z∗w = (−1)p(z)p(w)w∗z, z∗0z0 ≥ 0, −iz∗1z1 ≥ 0. (3.3)

In particular, the super Hermitian quadratic form z∗1z1 is purely imaginary with Im(z∗1z1) ≥
0. Moreover, H0 and H1 are orthogonal superspaces.

Infinite dimensional separable Hilbert ∗-spaces haze real orthonormal bases. Therefore,
they are ∗-unitarily isomorphic, i.e., the equivalence unitary operator commutes with com-
plex conjugations (cp. [4, Introduction]).

The infinite dimensional separable super Hilbert ∗-space H1 is super unitary equivalent
to the Hilbert ∗-space L2(R) of complex-valued functions on the real line with the usual
complex conjugation.

Then the anti-symmetric Hilbert tensor power ⊗n
1H1 is ∗-unitarily equivalent to the

Hilbert ∗-subspace of anti-symmetric functions f(x1, . . . , xn) in L2(Rn).
Both symmetric and anti-symmetric functions on Rn are uniquely defined by restriction

to the open subset of Rn

Řn ≡ {x̌ = (x1, x2, . . . , xn) | x1 < x2 < · · · < xn}. (3.4)

The super symmetrization Sn
0 of f(x̌) on Řn produces a unique supersymmetric function

Sn
0 (f)(x1, . . . , xn) almost everywhere on Rn. Furthermore, Sn

0 generates a ∗-unitary oper-
ator from ⊗n

1H1 onto ⊗n
0H1 (cp., [21, pp. 59–60]). This implies ∗-bosonization unitary

isomorphisms

�m,n : ⊗m
0 H0 ⊕⊗n

1H1 → ⊗m
0 H0 ⊕⊗n

0H1. (3.5)

The direct sum � = ⊕m,n�m,n is the ∗-unitary bosonization of the super Fock space
F(H) = H0 ⊗ H1. It converts F(H) into the bosonic Fock space F(H∞) over the bosonic
Hilbert ∗-space H1 = H0 ⊕ �0,1H1. The odd mapping � is linear and super unitary:
�† = �−1.

Let H1 be sandwiched into the bosonic Bargmann–Hida Gelfand ∗-triple

H∞
1 ⊂ H1 ⊂ H−∞

1 . (3.6)

Then H is sandwiched into the Gelfand super ∗-triple
H∞ ⊂ H ⊂ H−∞, (3.7)

where H∞ ≡ �−1(H∞
1 ) is a countably super Hilbert ∗-space, and H−∞ is its topological

∗-dual.
As a consequence, the corresponding holomorphic Bargmann–Hida Gelfand bosonic

triple over H1

B∞
1 ⊂ B0

1 ⊂ B−∞
1 , (3.8)

is transformed into the holomorphic Bargmann–Hida Gelfand super ∗-triple over H
B∞ ⊂ B0 ⊂ B−∞. (3.9)
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3.2. Second quantization of classical super observables

Following the chain rule, we define the odd and directional complex derivatives

∂z1 = ∂�z1�
†, ∂z∗1 = ∂z∗1 �†. (3.10)

These analytic odd directional derivatives coincide with the left and right algebraic fermionic
derivatives from [4].

Together with the even directional derivatives ∂z0 and ∂z∗0 they define the directional
super derivatives ∂z ≡ ∂z0 + ∂z1 and ∂z∗ ≡ ∂z∗0 + ∂z∗1 . The super annihilation operators

ẑ† : B−∞ → B−∞ if z∗ ∈ H∞, ẑ∗† : B∞ → B∞ if z ∈ H−∞. (3.11)

The corresponding super creation operators are the super adjoint multiplication operators
ẑ and ẑ∗. The canonical super commutation relations: If z∗ ∈ H∞, w ∈ H−∞, then

[ẑ∗, ŵ] = 0 = [ẑ∗†, ŵ†], [ẑ∗†, ŷ] = z∗w. (3.12)

As in the bosonic case, the classical super observables are analytic functionals Θ ∈
(B ⊗ B∗)−∞.

The corresponding classical bosonic observable is the composition Θ� ≡ Θ ◦ �†. The
normal bosonic quantum operator Θ�(ẑ, ẑ∗†) has a unique super counterpart Θ(ẑ, ẑ∗†).
Thus, any continuous linear operator in a Gelfand super triple has a unique normal bosonic
symbol Θ̃�(z∗, z) and the associated anti-normal symbol Θ�(z, z∗).

In particular, ∂�
z , ∂�

z∗ are the bosonic counterparts of the super directional derivatives,

and ẑ�, ẑ∗�
of the super multiplication operators. Then e

cz∗†� corresponds to e
cz∗† , and eẑ�

to eẑ. Thus

Θ(ẑ, ẑ∗
†
)� = �†Θ(ẑ, ẑ∗

†
)�, (3.13)

so that the matrix elements of the corresponding operators coincide: If Ψ ∈ B, then

Ψ∗Θ(ẑ, ẑ∗†)Ψ = Ψ�∗Θ�(ẑ, ẑ∗†)Ψ�. (3.14)

4. Anti-Normal Super Feynman Integral

Here we derive the anti-normal version of Feynman integral for the transformation matrix
elements of Schrödinger super operators. In view of (3.14), we consider the bosonic case
only.

Let {pn} be a flag of finite dimensional orthogonal projectors in H∞ (i.e., an increasing
sequence of projectors which are orthogonal in H and strongly converging to the unit
operator in H∞. They naturally define the flag of finite dimensional orthogonal projectors in
the Gelfand triple H, and therefore the corresponding flag of infinite dimensional orthogonal
projectors p̂n in the Gelfand triple B.

Let Ĥ ≡ Θ(ẑ, ẑ∗†). Assume that

Θ(z, z∗) ≥ 0. (4.1)
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The contractions Ĥn ≡ p̂nΘ(ẑ, ẑ∗
†
)p̂n are operators in the Bargmann–Hida triples Bn ≡

p̂nB over the finite-dimensional Hermitian spaces Hn ≡ pnH.
Moreover, Θ(pnz, pnz∗) is the anti-normal symbol of Ĥn. (By (2.27), this is straightfor-

ward for normal symbols, and then, by (2.33), for anti-normal as well.)
Note, we have identified the finite-dimensional spaces Hn with the Gelfand triples Hn ⊂

Hn ⊂ Hn. The Minlos Gauss measure is the standard Gauss measure on Hn, so that Bn

are (unbounded) operators on the Hilbert spaces B0
n (see [5]) with the dense domains B∞

n .
By (4.1), Ĥn are positive definite symmetric operators on the Hilbert spaces B0

n with the
dense domains B∞

n . They have Friedrichs self-adjoint extensions which are denoted again
as Ĥn.

Now the transition amplitudes in H∞
n are

〈pnzt|p̂nz0〉 = epnz0 ∗e−it bHnepnz0, (4.2)

As in [16, pp. 69–70], consider the strongly differentiable family of operators Ân,τ , 0 ≤ τ ≤ t,

in B

[Ân,τΨ](z∗0) =
∫

dz∗dz e−z∗zez∗0ze−iΘn(z∗,z)τΨ(z∗). (4.3)

Since |e−iΘn(z∗,z)t| = 1, the operator norms are ‖Ân,τ‖ ≤ 1 in Ĥn.
Besides, the strong t-derivative (d/dt)Ân,τ (0) = Ĥn on the exponential states. Then, by

the Chernoff’s product theorem (see [8]), the evolution operator is

e−iĤn = lim
N→∞

[Ân,t/N ]N . (4.4)

Its kernel is the kernel contraction of the kernels of the factors
∫ N∏

j=1

dz∗j dzj exp
N∑

j=0

[(zj+1 − zj)∗zj − itΘn(z∗j , zj)/N ], (4.5)

where zN+1 = zt, z0 = z0).
Thus, the amplitude epnz∗t e−it bHnepnz0 is the N -iterated Gaussian integral over H which,

by the Fubini’s theorem, is equal to the N -multiple Gaussian integral over HN .
In the notation τj = jt/N, zτj = zj , j = 0, 1, 2, . . . , N , and ∆τj = τj+1 − τj, the multiple

integral is

∫ N∏
j=1

dz∗τj
dzτj exp i

N∑
j=0

∆tj[−i(∆zτj/∆τj)∗zτj 〉 − Θn(z∗τj
, zτj )]. (4.6)

Its limit as N → ∞ is a rigorous mathematical definition of the heuristic anti-normal
Feynman integral ∫ zt

z0

∏
0<τ<t

dz∗τdzτ exp
∫ t

0
dτ [(∂τ z∗τ )zτ − iΘn(z∗τ , zτ )] (4.7)

over classical histories zτ between z0 and zt in Hn.
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Since the quantum amplitude is

〈z∗t |z0〉 = lim
n→∞〈pnz∗t |pnz0〉, (4.8)

it is equal to the iterated limit of (4.5) as N → ∞ is followed by the limit as n → ∞. This
iterated limit is a rigorous mathematical definition of the heuristic anti-normal Feynman
integral for the amplitude 〈zt|z0〉∫ zt

z0

∏
0<τ<t

dz∗τdzτ exp
∫ t

0
dτ [(∂τz∗τ )zτ − iΘ(z∗τ , zτ )] (4.9)

over all classical histories zτ between z0 and zt in H∞.
The non-negativity condition of the anti-normal symbol may be replaced just by its bound-

edness from below.
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