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Cartan described some of the finite dimensional simple Lie algebras and three of the four series of
simple infinite dimensional vectorial Lie algebras with polynomial coefficients as prolongs, which
now bear his name. The rest of the simple Lie algebras of these two types (finite dimensional and
vectorial) are, if the depth of their grading is greater than 1, results of generalized Cartan—Tanaka—
Shchepochkina (CTS) prolongs.

Here we are looking for new examples of simple finite dimensional modular Lie (super)algebras

in characteristic 2 obtained as Cartan prolongs. We consider pairs (an (ortho-)orthogonal Lie
(super)algebra or its derived algebra, its irreducible module) and compute the Cartan prolongs
of such pairs. The derived algebras of these prolongs are simple Lie (super)algebras.

We point out several amazing phenomena in characteristic 2: a supersymmetry of representa-

tions of certain Lie algebras, latent or hidden over complex numbers, becomes manifest; the adjoint
representation of some simple Lie superalgebras is not irreducible.

Keywords: Modular Lie algebra; modular Lie superalgebra.

Mathematics Subject Classification: 17B50

1. Introduction

For general background, see [18,3,9,10,8]. Hereafter the ground field K is assumed to be
algebraically closed of characteristic 2 unless otherwise stated.
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1.1. Notation

Apart from standard notation used in [7], we denote by K(S) the vector space over K
spanned by the set S (or just KS for one element sets). For any Lie (super)algebra g C
gl(V), we call V the identity representation of g. For the definition of the orthogonal Lie
algebra 0p(n) preserving the bilinear form B, see Sec. 1.

1.2. Motivation

The classification of simple finite dimensional modular Lie algebras over algebraically closed
fields of characteristic p > 3 is completed [13,18,2]. The answer can be (more succinctly
than in [13]) summarized as follows:

“If p > 3, all simple finite dimensional Lie algebras can be represented as the
CTS prolongs — the results of generalized Cartan—Tanaka—Shchepochkina pro-
longations — of the pairs (g_, go) obtained by taking the non-positive parts in
the simplest Z-gradings (of the least depth 1 or 2) of the Lie algebras g(A) with
Cartan matrix A and deforms of these prolongs (g—, go)«n or of their derived
algebras, factorized modulo center, if any”.

Over C, this method brings also all four series of infinite dimensional simple
vectorial Lie algebras (i.e., Lie algebras of polynomial vector fields).

(1.1)

Formulated like this we see that “all is obtained from Lie algebras of the form g(A)”.

It is time to pass to characteristics 3 and 2 and to superization of the classification
problem. The displayed statement (1.1) does not survive superization, even over C: in
addition to g(A) new ingredients are needed. Briefly, these ingredients are partial CTS
prolongs and several new types of Lie superalgebras for the role of gg:

Over C, in addition to Lie superalgebras of the form g(A), we have to con-

sider complete and partial CTS prolongs of the non-positive parts in simplest
Z-gradings of the queer superalgebras, and CTS prolongs of the exceptional

pairs, where go is a simple finite dimensional Lie superalgebra of vector fields (1.2)
(or its central extension).

In addition to these examples, there are partial CTS prolongs.

Some of these simple Lie (super)algebras can be deformed.

The way of obtaining simple Lie (super)algebras (1.1) does not hold for p = 3 or 2, even
for Lie algebras.

For a conjectural list of simple finite dimensional modular Lie superalgebras over alge-

braically closed fields of characteristic p > 5, see [9]. Briefly:

The list is the union of the modular versions of the lists of finite dimensional
simple Lie superalgebras and infinite dimensional simple Lie superalgebras of 1.3)
polynomial vector fields (both over C), and deforms of these examples when
exist.

In [3], simple finite dimensional modular Lie superalgebras of the form g(A) are classified.
In [4], for p < 5, the CTS prolongs of the pairs (g_, go), where g_ = ;0 g;, in selected
“simplest” Z-grading of these g(A) = @g; are listed for the Lie (super)algebras g(A) of
small rank.



Prolongs of (Ortho-)orthogonal Lie (Super)algebras 255

For p = 2, there are two types of (ortho-)orthogonal Lie (super)algebras (or, perhaps,
of their derived, or central extensions thereof) with and without Cartan matrix. A difficult
open problem is description of the minimal possible set of the inputs (g_, go). At the moment
we do not even have a conjectural explicit list and proceed, case-by-case, along a rather
implicit list suggested in [9].

1.3. Setting

We continue the quest for simple finite dimensional modular Lie (super)algebras over K
along the strategy outlined in [9] together with a review of the examples known. Here we
investigate and describe Cartan prolongs for the cases where gg is one of several types of
(ortho-)orthogonal (or periplectic) Lie (super)algebras and g_; is an identity go-module;
and several more types of cases for gg of rank 1.

Kochetkov and Leites [6] were the first to offer a new approach to the description of
characteristic 2 analogs of the simple modular Lie algebras, but their conjectural list was
obviously incomplete, see Lin’s analogs of Hamiltonian Lie algebras [11] (as well as Jurman’s
and other examples, see Ref. [9]). For an elucidation and correction of [6,11,12], see [8]
based on [7], where it was shown that there are two non-isomorphic series of orthogonal Lie
algebras and their simple derived were described. As expected, the Hamiltonian series are
Cartan prolongs of the orthogonal Lie algebras, although characteristic 2 brings in various
subtleties.

1.4. Main results

(1) We sharpen a description of Hamiltonian Lie (super)algebras given in [8], in which only
the cases where either N = N, := (1,...,1) or N without any restrictions are considered,
but it is not investigated what are the actual possible values of the components of N. In
other words, if we impose no restrictions on N, will it follow that N, = co for all
17

Answer: For Lie algebras, the prolongs (V, og)(Qn + 1))y depend on N = (1,...,

1,n,1,...,1), whereas the prolongs (V, ogl)(Zn + 1)),y depend on N = (n,...,n) (still
one parameter but embedded differently).

On the other hand, the prolongs (V, og)(Qn))*ﬂ depend on N = (1,...,1), whereas the
prolongs (V, ogl)(2n))*7ﬂ depend on N = (n,...,n).

(2) We also consider Cartan prolongs with the same g as in [8] but different go-modules
g—1. In doing so we have observed, somewhat unexpectedly, that the adjoint represen-
tation of a simple Lie superalgebra might, if p = 2, be reducible. To see that the
claim is not self-contradicting, recall that the action ad is performed by bracketing which
is defined by squaring but is not equivalent to it if p = 2, and there is no way to tell the Lie
superalgebra that now it is acting not on “a” module, but on itself, and hence the squares
of odd elements of the module make sense.

(3) Rittenberg and Scheunert had observed long ago “a remarkable likeness” between
the representations of the Lie superalgebras osp(1|2n) and the Lie algebras o(2n + 1) (this
likeness can be interpreted as a hidden supersymmetry of the set of representations of
0(2n+1), or of 0(2n+1) itself). This likeness finds its explanation over fields of characteristic
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2: the enveloping algebra U(osp(1|2n)) coincides with U(o(2n 4 1)) under an appropriate
definition of the arguments of U(-) and forgetting the superstructure.

2. Background

2.1. Non-degenerate symmetric bilinear forms and Lie (super)algebras
that preserve them

Let
og(n) ={F € EndV | B(Fz,y) + B(z, Fy) = 0}

be the orthogonal Lie algebra over K preserving the non-degenerate symmetric bilinear form
on V with the Gram matrix B.

Although in the theory of simple finite groups it was known long ago that there are two
non-isomorphic orthogonal groups for n even (preserving non-equivalent quadratic forms),
nowhere in the works devoted to the classification of simple Lie algebras in characteristic
2 was it stated before [7] that, for n even, there are two non-isomorphic orthogonal Lie
algebras (preserving non-equivalent supersymmetric bilinear forms). If p = 2, there is no
one-to-one correspondence between quadratic and polar bilinear forms, so the results on
quadratic and bilinear forms are not equivalent.

In [7], it is proved that whereas, for n odd, all non-degenerate symmetric forms are
equivalent, for n = 2k, there the two equivalence classes: the one, with at least one nonzero
element on the main diagonal is equivalent to the bilinear form whose Gram matrix is
I, = 1,, the other one with all diagonal elements vanishing contains the following equivalent
Gram matrices

Sor = antidiag,,(1,...,1) ~ Iy := antidiagsy(1x, 1) = <1(1: 10k> .
The orthogonal Lie algebras o7(n) and og(n) ~ or(n) preserving the forms with matrices
I, = 1, and Sy, respectively, are not isomorphic. (Clearly, the algebras o7(n)
and o0g(n) consist of matrices symmetric with respect to their main (respectively, side)
diagonal.)

It was known already to Albert [1] that, for n even, there are non-equivalent non-
degenerate symmetric bilinear forms. However, since non-equivalent bilinear forms can
be preserved by isomorphic Lie algebras, the fact (established in [7]) that the Lie
algebras preserving non-equivalent non-degenerate symmet-
ric forms are isomorphic is non-trivial.

The derived algebras of o7(n) and 0g(n) =~ orz(n) — they are simple for n > 4 — are
not isomorphic either.

2.2. Analogs of functions and vector fields for p > 0: Divided powers

Let us consider the supercommutative superalgebra C[z] of polynomials in a indeterminates
x = (x1,...,2,), for convenience ordered in a “standard format”, i.e., so that the first m
indeterminates are even and the rest n ones are odd (m+n = a). Among the integer bases of
C[z] (i.e., the bases, in which the structure constants are integers), there are two canonical
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ones — the usual, monomial, one and the basis of divided powers, which is constructed in
the following way.

For any multi-index r = (ry,...,ry), where 7q,...,7,, are non-negative integers, and
Tm+1,--.,7n are 0 or 1, we set
r; a
T T
ug D= % and W@ = | |u( 2
7«.[ 7
7* .
=1

These u(") form an integer basis of C[z]. Clearly, their multiplication relations are

w®@ &) = H min(1,2 — r; — s;) - (—1)m<i2<:j§arj5i ) <£+§)u(£+§)>

T
1=m+1

where (f—:§> = ﬁ (“:sz) (2.1)

L e

In what follows, for clarity, we will write exponents of divided powers in parentheses, as
above, especially if the usual exponents might be encountered as well.

Now, for an arbitrary field K of characteristic p > 0, we may consider the supercommu-
tative superalgebra K[u] spanned by elements «®) with multiplication relations (2.1). For
any m-tuple N = (N, ..., N,,,), where N; are either positive integers or infinity, denote (we
assume that p™ = c0)

(2.2)

<pMNi  fori<
O(m; N) := Klu; N] := Spang (u ‘m{ p orz_m>'

=Q0orl fori>m

As is clear from (2.1), K[u; N] is a subalgebra of K[u]. The algebra K[u] and its subalgebras
K[u; N] are called the algebras of divided powers; they can be considered as analogs of the
polynomial algebra.

For any shearing parameter N, let N, = (1,...,1) be its simplest value. Only one of
these numerous algebras of divided powers O(n; N) is indeed generated by the indetermi-

nates declared: If N = N_. Otherwise, in addition to the u;, we have to add ul(-p *) for
all i < m and all k; such that 1 < k; < N; to the list of generators. Since any deriva-
tion D of a given algebra is determined by the values of D on the generators, we see that
der(O[m; N]) has more than m functional parameters (coefficients of the analogs of partial
derivatives) if N; # 1 for at least one i. Define distinguished® partial derivatives by the
formula

8¢(u§-k)) = 5iju§.k_l) for any k < p™i
The simple vectorial Lie algebras over C have only one parameter: the number of inde-
terminates. If Char K = p > 0, the vectorial Lie algebras acquire one more parameter: N.

For Lie superalgebras, N only concerns the even indeterminates.

2These derivatives are sometimes called special which is unfortunate in view of the fact that the Lie
(super)algebra of divergence-free vector field is called special, and hence all its elements are special.
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The Lie (super)algebra of all derivations det(O[m; N]) turns out to be not so interesting
as its Lie subsuperalgebra of distinguished derivations: Let

vect(m; N|n) a.k.a W(m; N|n) a.k.a

N. .
< pti f <m, 2.3
P ort<m 1<k<n> (2.3)

Oety;sr K[u; N| = Spang u" oy, | 7 )
=0or1 fori>m;

be the general vectorial Lie algebra of distinguished derivations. The next notions are analogs
of the polynomial algebra of the dual space.

2.2.1. A generalization of the Cartan prolong: The Cartan—Tanaka—Shchepochkina
(CTS) prolong

Let g— = ©_g4<i<—19; be a nilpotent Z-graded Lie algebra and gg C dergg a Lie subalgebra
of the Lie algebra of Z-grading-preserving derivations. Let DS* be the operation of rising
to the kth divided symmetric power and DS := @, DS*; we set

i:DS* g ) ®g. — DS*g_ ) @g" ®g_;

) ) (2.4)
j:DS"(g-)"®go— DS"(g-)" ®g- @g_
be the natural maps. For k > 0, define the kth prolong of the pair (g_, go) to be:
ge.n = (J(DS(9-)" ®go) Ni(DS(9-)" @ 9-))pn > (2.5)

where the subscript & in the right-hand side singles out the component of degree k. Together
with O(n; N) all prolongs acquire one more — shearing — parameter: N. Superization is
immediate.

Set (g—, 90)+N = Pi>_d @i N; then, as is easy to verify, (g_, go)« is a Lie (super)algebra.
Provided gop acts on g_; without kernel, (g_,go)«n is a subalgebra of vect(m;N|n) for
m|n = sdimg_ and some N.

Example 2.1. In [§], a sequel to [7], it is shown that there are two (respectively, four in
the super case) non-isomorphic Hamiltonian-type Lie (super)algebras and their subalgebras
corresponding to the prolongs of the derived (ortho-)orthogonal Lie (super)algebras are also
described.

Here we consider Z-graded vectorial Lie algebras (g—_1, go)«n obtained as Cartan pro-
longs of the pair (g_1,g0), where gg is either op(n) or the derived algebra og(n)) or a
central extension of either of them and g_; is any irreducible gg-module for small values of
n; we establish the actual number of parameters the shearing vector N depends on.

In examples known so far, if N, can be > 1, then it can take any value. Accordingly,
the coordinate of the shearing vector N is said to be critical if it can take values other than
1. If the only possible value of N is (1,...,1) we say that N has no critical coordinates.
Obviously, none of the coordinates of N concerning the odd indeterminates can be critical;
in what follows the notion only concerns the even indeterminates.
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Set
br(n; N) := (id, 07(n))s.n; bs(n; N) = (id, 05(n))+ N

b1(n) = (i, e(o}” (1)))s: () = (id, c(o” (n)))..
As was shown in [8] for the tilde-ed series, IV has no critical coordinates.

Remark 2.2. The Lie algebras (2.6) are direct analogs of the Hamiltonian Lie superalge-
bras h(0|n). This is even more true for super analogs of the Lie algebras (2.6).

Kochetkov and Leites [6] considered Hamiltonian and contact Lie algebras as reductions
of Z-forms of the Hamiltonian Lie superalgebras h(2n|m) and €(2n 4 1|/m) but they did not
study the possible number of parameters the vector /N depends on and did not observe that
there are several types of the ) series: as many as there are types of orthogonal Lie algebras,
see (2.6).

Lin [11] described simple Lie algebras similar to one of our Hamiltonian series (2.6)
and, in [12], to our contact series: as the derived algebras of h;(n; N) and £(2n + 1; N),
respectively. Lin [12] did not investigate the possible number of parameters the vector
N depends on and attributed certain removable, hence immaterial (see [7]), continuous
parameters to the contact Lie algebras. Lin did not notice non-isomorphic types (2.6) and
considered only one of them.

2.3. Irreducible modules over o(3), 0(3)) and co(3)™

Since for n odd, all non-degenerate symmetric bilinear forms B are equivalent, we skip
indicating the form B and use the split forms of op(n) and its relatives.

The irreducible o(3)Y-modules are described (with a typo) in [5]. Although the proof
in [5] literally follows the proof due to Rudakov and Shafarevich in [14] for the cases where
p > 2, the answer is somewhat different:

There are two types of nontrivial irreducible modules g_; over gg = 0(3)(1) naturally
extendable to the trivial central extension co(3))- and even to o(3)-actions: one, T, of
dimension 3 with a highest and lowest weight vectors (the identity representation) and a
3-parameter family Q(a,b,c), where a # 0,1 and b,c € K, of dimension 4 given by the
matrices:

0 0 0 b a 0 0 0
_ 1 0 00 0 14a O 0

Vo= 01 0 0]’ H = 0 0 a 0 ’
0 01 0 0 0 0 a+1
0 a+bc 0 0

Ut — 0 0 14 bc 0
0 0 0 a+ 1+ bc
c 0 0 0

The extension of this representation to the trivial central extension is by introducing scalar
matrices. The extension to 0(3) is by letting

E=(VH? and F= (V)%
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There are no 2-dimensional irreducible o(3)(Y-modules (hence, no 2-dimensional irre-
ducible co(3)(M- and o(3)-modules). Moreover, unlike the irreducible highest weight o(3)-
modules for p # 2 for which we have

L = (L),

the modules T and Q cannot be obtained in this way since the 2-dimensional module L'
does not exist.
Moreover, as algebras (the superstructure of U (00%)(1|2)) forgotten),

U(o(3)) = U(ool)(1]2)), (2.7)

where 00%)(1|2) is a characteristic 2 version of osp(1]2), i.e., the Lie superalgebra spanned

by
X", V., H V' Xt

where V* are now odd, the other basis elements being even, and whose defining relations
are (here we simultaneously take either + or —)

[H, V) =+V*, (VI VT =H, (VH)?=X*%
Due to the isomorphism (2.7) the description of irreducible 00%-}(1\2)—modules is the same
as that of 0(3)(1) if we forget about parities. In particular,

although the Lie superalgebra 00%—}(1|2) is simple of superdimension 3|2 its
adjoint representation is reducible with the irreducible submodule of superdimen-  (2.8)
sion 1/2.

Indeed, recall that an even linear map r : g — gl(V) is said to be a representation of the
Lie superalgebra g in the module V' if

r([z,y]) = [r(x),r(y)] for any z,y € g;

2.9
r(z?) = (r(z))? for any x € g7. (29)

Therefore ad,2(z) = [22, z], whereas no bracketing produces all elements 2.

3. Theorems: Description of Cartan Prolongs of Orthogonal Lie Algebras

Throughout, when we work on vect(k, N), we let N = (N1, Na, ..., Ni). Let s; = 2Vi~! and
Smin = MiNj<;<j S;.

In any expression involving a variable, say y, when we write J we mean “delete y from
the expression”.

Let

g= (g—lagﬂ)*,ﬂ =g 1DPg0Pg1 D D---Dogm

be the Cartan prolong of the pair (g_1,go). In other words, m (= m(N)) is the height of
the prolong.
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3.1. Cartan prolong of go = 0(3) and its relatives with g_1 = Q(a,b, c)

Theorem 3.1. Let g_; = Q(a,b,¢) = Span(dy,...,d,) and let 0(3)V) be realized by vector
fields as follows:

VT = cugd1 + (a + be)uyda + (14 be)usds + (a + be + 1)usdy
V™ = u281 + U382 + U483 + bU184
H = a(u181 + U383) + (a + 1)(u282 + U484).

For the same g_1, this action is extended to c(0(3)(1)) by setting z = u101 + u20s + ugds +
U464.
Extend the action of ¢(0(3)1)) to an action of o(3) by setting

E = c(a+ 1+ bc)ugdy + c(a + bc)usdz + (a + be)(1 + be)ui 05

+ (1 +bc)(a+ 1+ be)ugly,
F = u301 + ug0s + bui 03 + buody.

(1) ¢=0, and go = 0(3)™) or go = c(0(3)M):
(la) Fora =0b =0, then g = (g-1,80)«N %5 § = g—1 D go D g1, where g1 = Kw is one
dimensional, and where

= w301 + upu3z0s + usugds + uzusdy.

Further, w ¢ g,
Note that the representation Q(0,0,0) is not simple.
(1b) If a or b is not zero, then g; = 0.
(2) ¢#0, and go = 0(3)M) or go = c(0(3)M):
(2a) For a =b =0, then g = (g-1,00)«N 5 § = g—1 D go ® g1, where g1 = Kw is one
dimensional and

w = (u% + Cui)@l + usuz0y + ugus03 + ususOy.

Further, w ¢ g,
Note that the representation Q(0,0,c) is not irreducible.
(2b) If a or b is not zero, then g1 = 0.
(3) Let go = 0(3).
(3a) Ifa =0, then for (g_1,0(3))«N = Pr>—1 8k, every g, where k > 1, is 4-dimensional
for generic k. Let Syin = min{sa, s4}. Let syin # 1. Then g = 0 for k > Smin-
The Lie algebra g is not simple. Its derived algebra gtV = D_1<k<spin—1 g,(cl) is
generated, as a Lie algebra, by the set

(81,09, 05, Dy, B5min! @imin =1 @imin=l1

it is simple of dimension 4(Smin + 1) — 1. The critical coordinates of N in this case
are the 2nd and the 4th: (1,n,1,n). When Syin = 1, then g1 = 0.

(3b) If a =1, then for (g—1,0(3))« N = Br>—_10k, every @i, where k > 1, is 4-dimensional
for generic k. Syin = min{si,ss}. Let symin # 1. Then g = 0 for k > spyin. The Lie
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algebra g is not simple. Its derived algebra gV = B _1<k<smin—1 g,(cl) is generated, as a
Lie algebra, by the set

{81, 0y, 05,0y, ®5min ™! @imin =1 GEmin=11

I

it is simple of dimension 4(Smin + 1) — 1. The critical coordinates of N in this case
are the 1st and the 3rd: (n,1,n,1). When syin = 1, then g1 = 0.

(3c) If a # 0,a # 1, then for (g—1,0(3))s N = Pr>—10k, we have g, = 0 for k > 1 and
any N.

Proof. (1a) We prove this for gg = ¢(0(3)™")), and the proof for gg = 0(3)(") is similar.
When a =b=c =0, we get
vt = U903 +u30y, V= ug0) + uzdy + ugsd3, H = ug0y + 140y,
z = U101 + ug0s + u303 + u40y.
For ® =Y. ¢'0; € g1, where
(pi = Z tisurus + Z iru?ﬂ
r#s r
using the fact that [®,0,] € go, we see that
tys =ty =t} =t} =1}y =ty =t = 0.
In addition,
tho =tug, tho=tig =10, ty =t th=1ty
This gives us w € gj.
Continuing further, we see that gy = 0. As [H,w] = 0, we get w ¢ g(!).
(1b) This case branches into several subcases; namely,
(a#0,a+1+#0,b+#0),
(a#oaa_‘_l #Oab:0)>
(a=1,0#0), (a=1,b=0),
(a=0,b+#0).
Every case has been studied to claim the result.
(2a) We prove this for go = ¢(0(3)™), and the proof for gg = 0(3)™) is similar.
When a =b =0, we get
vVt = cugOr + ugdy +ugdy, V7~ = ugd1 +ug0ly + ugd3, H = usds + ug0y,
z = U101 + ug0s + uzd3 + u40y.

For ® = Y. ¢'0; € g1, where ' = D orts te upus + Y, th u?, using the fact that [®,0,] €
g0, we see that
1 3 2 4 1 2 2 3 4 4
trl = tr37 tr2 = tr47 trS = trl = tr4 = trl = trl = tr? =0.
1
In addition, %4 =13, = tly, and tl, = t2; = t3,. This gives us w € g;.

Continuing further, we see that go = 0. As [H,w] =0, we get w ¢ g,
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(2b) This case branches into several subcases; namely,

(a+bc=0,a=1),
(a+bc=0,a#0,a#1),
(a+bc#0,1+bc=0,a=0),
(a+bc#0,14+bc=0,a#0,a#1),
(a+bc#0,14+bc#0,a+bc+1=0),
(a+bc#0,14+bc#0,a+bc+1%#0,a=0),
(a+bc#0,14+bc#0,a+bc+1#0,a=1),
(a+bc#0,14+bc#0,a+bc+1#0,a#0,a#1,b=0),
(a+bc#0,14+bc#0,a+bc+1#0,a#0,a#1,b#0).
Every case has been checked to claim the result. We prove here the last subcase for gy =
c(0(3)M).

For @ = . '0; € g1, where ' = Dot ti upus+ >, th, u?, using the fact that [®@,0,] €
go, we see that for 1 < r < 4, we have
oy
¢ (a+bc) 14+bc (a+bc+1)

1 43 42 _ 44
trl - tr37 tr? - tr47
1 2 3 t41 1 2 3 4
r
tr2:tr3:tr4: b’ tTSZtr4:tT1:tr2:0'

This implies that !, = 0 for all indices. Hence, g; = 0.

(3) This case branches into several subcases. We first describe the prolongation in the
most general case; that is, when bc(1 4 be) # 0.

For ® =Y, ¢'0; € go, where ¢' = > tiu,, we have
tha _th oty thy

t}"l:ti’?’; 72 =ty ¢ be 1+4bc 1—|—bc;

4
thy =23 =3, = %1§ by =13 clyy = thg+ (1 4+ be)ty.

These relations impose relations on elements of successive gi, where k > 1. We see that
each gj, where k£ > 1, is 4-dimensional with a basis given by the following vector fields:

i i+l
C k+1-2i 2 C k—1-2i 1+2i
oF = E — ) WA 0 + by g —_ U U
L : L+bc) 2 4 , , 1+ be 2 4
1€2,0<2i<k+1 1€2,0<2i<k—1

i i
Z ¢ k—2i 2 Z c k—2i 1+2i
+’LL3 (1 i bc) ’LL2 'Lu4l 82 + (1 I bc> u2 7’u4+ 4 83

i€2,0<2i<k i€2,0<2i<k

i i
¢ k—2i_ 2i c k—1—2i 142
+ [ buy g <1 n bc) uy “'uy’ +us g <1 n bc> Us ug T Oy

1€2,0<2i<k 1€2,0<2i<k—1
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i+1 i+l
k ¢ k—2i 142i ¢ k—2i
Py = g <—1 T bc) Uy lu4+ o1+ | bug E (1 n bc) Us 1u4z

i€2,0<2i<k i€2,0<2i<k

C s k— 2 k 24
+ us Z <1+bc> ub 1—2¢ 1+z a + > +1— zu4z 83

I€2,0<2i<k—1

. i+1 ‘
+ |buy E — ug_l_mu?m + us
. - 1+ be
i€2,0<2i<k—1

1E€Z, 0<21<k+1 <

k—2i 21'
> Uy Os;

i
E_ ¢ k+1-2i, 2i

”w=1 > <1+bc) | OaF <1+bc
| i€2,0<2i<k+1 i€z, 0<2z<k

1EZL, O<21< <

k 21 1+21 .
Uy 847

i+1 i
k_ c k—2i 142i C k+1-2i 2
¢4 - Z <1 _|_ bC) U2 u4 62 + Z <1 + bC> u2 U4 64.

i€2,0<2i<k I€2,0<2i<k+1

Let L%j denote the greatest integer less than or equal to % By multiplying the above

vector fields by (1 + bc)Lk2ilJ we get the basic elements for every g, where k > 1, in the
particular cases (¢ =0,b#0), (c=0,b=0), (c#0,b=0), and (¢ # 0,1 + bc = 0).

(4) This case branches into several subcases. We first describe the prolongation in the
most general case; that is, when be(1 + be) # 0.

For ® =Y. ¢'0; € go, where ¢' =Y tlu,, we have

1 2 3 4
tr4 _ trl _ tr2 _ tr3

¢ 1+4+bc 1—|—bc_ﬁ;

1 _ 3. :
t'rl - tr37 tr2 - t'r47

th
ty =thy =10y = 3 b2y =try; (L4 boltyy = t7y + cty

These relations impose relations on elements of successive gi, k > 1. We see that each gz,
where k > 1 is 4-dimensional with a basis given by the following vector fields:

N 4 o\t o
U= lup > <—1 n bc> TR (—1 n bc> w2 9y

i€2,2i<k—1

i i
c k—2i 1+2i c k—2i 2
+ Z <1+bc> uy 'ug Oz + |uy Z <1+bc) uy” “ug

i€2,2i<k i€2,2i<k

i i
C k—1-2i 142 c k+1—2i 2i .
+ uo E (1—|—bc> U 1u3+l O3+ |b E <1—|—bc) Uy + lu37f 84,

i€2,2i<k—1 i€2,2i<k+1
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i i
k ¢ k—1-2i 1+42i ¢ k—2i 2
\112 = |u2 E (1 n bc) uy 1u3+ vy Uy E <1 n bc) uy Z’U,37‘ 81

i€2,2i<k—1 i€7,2i<k

i—1 i—1
C k+1—2i 2i C k—2i 2
iy <1+bc> o Gt fun ) <1+bc> R

i€2,2i<k+1 i€2,2i<k

i i
C k—1-2i 1+2i c k—2i 1+2i
+ Uy E <1 n bC> Uy lug-‘r i O3+ |b E < > uy 1u3+ 7 O4;

= | 14 bc
1€2,2i<k—1 1€2,2i<k
[ c l . . c l . .
\Ilk — uk+1—21u21 61 + uk—27,u1+27, 83'
Sl Z T4+bc) 3 ,Z T+bc) + 3 ’
_zGZ,Qsz—i—l 1€2,2i<k
[ ¢ 7 ¢ 1—1
k—2i, 1421 k+1—2i, 23
Uk = E U Us- o + U usz' | O3.
T4 \Tgbe) P . Z 1+ be ! 3
_zGZ,2z§k 1€2,2i<k+1

By multiplying the above vector fields by (1 + bc)L%J we get the basic elements for every
gk, where k > 1, in the particular cases (¢ = 0,b # 0), (¢ = 0,b = 0), and (¢ # 0,14 bc = 0).
(5) We first consider the most general case where

abc(a + 1)(a + bc)(1 + be)(a + 1+ be) # 0.

The particular cases can be studied similarly.
For @ = . '0; € g1, where ' = Dot ti upus+ >, th,u?, using the fact that [®@,0,] €
g0, we see that for 1 < r <4 we have

t! t2 t3 t
1 _ 43 2 44 rd __ rl _ r2 _ r3
t'rl - tr37 t tr47 T

r2 c  (a+be) (L+bc) (a+bc+1)

th a+bc+1 a+1
t71n2:t23:t§4:%> t§2:<f>t$4+< p >t71n3>

These relations imply that ¢., = 0 for all indices.
(6) We prove the theorem for the case be(1 + be) # 0. The proof for the particular cases

are similar. We see that (obvious restrictions on k apply)
o e Koy, @, €Kos, D' Koy, @' €Ky,
P! e KV-, ®)eKV*t, oO}ecKH>, &)ecK(E+c(l+be)F),
01, ®F] = @1, [0, @} =T, (95, 0K = @51, [0, BF) = D5,

be _ _ _ -
[817(1)15] = <1 +bc> <I>§ 17 [827(1)15] = (I)g 17 [837(1)15] = (I)i 17 [847(1)15] = (I)]f 17
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[817 (I)Ig] =0, [827 (I)]Eﬂ = (I)]?f_l? [837 (I)]Eﬂ =0, [847 (I)Ig] = (I)IZ_17
[817 (I)i] =0, [827 @fﬂ = (I)Z_lﬂ [837 @i] =0, [847 (I)i] = (pg_l'

For k even, we have

[Hj(I)]f]:(I)h [H,‘I)é]:q)é:, [H,@lg]:o, [H,(I)Z]:O
[V+7 (plf] = (pk’ [v+7 (I)IQC] =0, [v+7 (I)I?f] =1+ bC)‘I’Ifa [V+7 @fﬂ = C(plfa

1
V=, 04 =0, [V-,04 = (—1 +bc> ok VT, 0 =0k, [V, 0k = @k,
1
[E + c(1 + be)F, dk] = (W) 5 [E+ c(1+be)F, ®5) = cdh,

[E 4 c(1+bc)F, 5] =0, [E+c(l+be)F,®k =0.

These formulae show that ®% ¢ g() and the set {9y, s, 03, s, @imin_l, @;min_l, @gmin_l}
is contained in g(l). Further, from the formulae for z, E, and F we see that they are
not generated by the set {d1,ds,ds,dy, B5min~t Pimin=t @gmi“_l}; in addition, z, E,F
are not in o(3)M. Thus g is not simple, and g® is generated by the set {d,0s,
03,0y, @imi“_l, @;mi“_l, @gmi“_l}. If 7 is a nontrivial ideal of g™, then we see that ZNg_; =
g_1. This in turn implies that ®F € Z for k < spyin — 1. Now [gél),ggil)m_l] = ggn)m_l cZ.
Hence g) is simple.

As every g,(:) is 4-dimensional for —1 < k < sy — 1, and dim gi}n)in_l = 3 (for, @Zmin_l ¢
a), it follows that dim g(") = 4(syim — 1) — 1.

(7) The proof is similar to the one done above. We present the relevant formulae for the
case bc(1 + be) # 0:

Ul €Ky, Uy €Ky, U3'eKoy, ;' eKos,
VeKRV™, W¥ekKV'T, WeKH, U)eK(E+c(l+bo)F),
[61’ \Iﬂf] = \I/If_la [62’ \Iﬂlc] = \I/I;_l’

Tk — ¢ g1 Wk — ¢ g1
o) = (1 ) W5 fowet = ()

01, \IIIQC] = \Ilé_la 02, \IIIQC] = \Ili_l’ 03, \IIIQC] = \Il]f_la 04, ‘IJIQC] = \I/I;_l,
_ & _
R R (= L

01, Uk = OE=1 0 [0y, Uh] =0, [05, Uk =TE1 [0, k] = 0.
For k even, we have

[H> \Il]f] = \Illlc’ [H> \IIIQC] = \IIIQC’ [H> \III:;] =0, [H> \IIIZ] =0
[v+7 \Ij]f] = \I;k’ [V+7 \IIIQC] =0, [v+7 \Ijlg] = 0\111267 [v+7 \Ij{ﬂ =(1+ bc)\lﬂfa
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1

Voo, (7= (G e (Vb= (v e - b

[E+c(1+be)F, U] =¥, [E+c(1+be)F, ¥k = (1 + be)eh,
[E+c(1+bc)F, U5 =0, [E+c(l+be)F, ¥k =0. O
In [9], there listed the irreducible modules g_; over the orthogonal Lie algebras go = o(n)
for which the prolong (g—_1,go)«n is a simple Lie algebra over C. Such modules are only
the identity module (for any n) and spinor modules for n < 10. Since at the moment we do
not know the description of irreducible modules over the analogs of orthogonal Lie algebras
for p = 2, and their “relatives”, and in view of the above theorem, we investigate if there

are prolongs (and if there are nonzero ones, what are the critical coordinates of V) only for
the identity op(n)-modules for various inequivalent B’s, all n’s, and the relatives of op(n).

3.2. The Cartan prolong of oy(k)™®)

The Lie algebra go = o7(k)(") consists of symmetric k x k-matrices whose diagonal elements
are equal to 0. Let g_; be the identity gg-module spanned by partial derivatives as gg is
embedded into vect(k; N)o:

k
g0 = Z alu;0; | al € K such that o] = a and a} = 0 for all i, j
ij=1

Theorem 3.2. (1) The prolong g consists of all vector fields ® =, '0; satisfying the
conditions:

0;¢" = 0! foralli,j=1,....k 0i¢"=0 forali=1,...,k.

In particular, fort >m =k — 2, we get g = 0. We have gi_o = Kw, where

(2) The following elements form a basis of g:

FJ:Z H uj | 0;, where JC{1,...,k}, |J|=t+1
ied \jeJ\{i}

Thus,

dimgt:(tfl) for1<t<m, dimg= Y dimg, =2"-1.

—1<t<m
We will need another description of the basis of each g;. For any t, where —1 <t < m,
let I = (i1,12,...,im—¢) be an (m — t)-tuple, where i; € {1,2,...,k} for each j. Then, we
set

(w), w(y:=w. (3.1)

(3

wr = aLdai1 o adai2 o---o0adg,

m—t
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A basis of gt is given by the set
{’w] |I = (il,’ig,...,’im_t), where 1 < i1 <9 < -+ <y < k}}

Note that wy = Fy when I is the complement of J in the set {1,...,n}.

(3) For k =2, the Lie algebra g is solvable.

(4) For k > 2, the set {01,0a,...,0k, w} generates g as a subalgebra of vect(k, N). The
Lie algebra g is not simple.

(5) The Lie algebra gV is simple for k > 2 and its dimension is 2F — 2.

Proof. (1) For Y, ¢'0; € go, we note that 9;(¢") =0 for 1 <i < k. Let ® =, ©'0; € g1.
As [®,0;] € go for all i, we conclude that 9;(¢") = 0 for 1 < i < k. In other words, ¢
does not have u;, uf in its description for 1 < i < k. Let

i § : ) § : 2
¥ = arl,TQUTI/U’TQ + AUy

r1<r2 r

%

o fOr 71 > 19, Then

The indices 71,79,7 are elements of {1,2,...,k}. Set a’ =a

i 1,72
7 — 7 — y
g = Ay =0 fori € {r,r,ra}.

Now, [0,, @] € go for any r such that 1 < r < k. We have

a

[0, ®] = a;.,.(u0; + u;0;) + rest of the terms
= ay ;(u;0r + u;0;) + rest of the terms.
As ay; =0, we get al., =0 for all r.
For i,71,rg such that r1 < rg and i ¢ {r1,r2}, we see that
[0y, ®] = a}., ,,(Ur,0; + u;0r,) + rest of the terms
= a,” ;(ury0; + u;0p,) + rest of the terms.
i

r1,r2 a’T‘l,i'
To summarize:

Hence, a

° a}rl’m =0forie {r,r}u{r}
e a,,=0for1<r<k.

; r .
° ap ., =ar; for1 <i,r,ry <k

Thus, a basis of g; is given by the set

{uﬁ Upy 0; + Upy uiaTz + uTzuiaTl }rl <rz, and i¢{ri,ro}"

3.2.1. Convention

Let u! replace the i-fold product u,u, - - - u,, where the product of u, with itself is zero and

2
r

divided power, not the usual one (which is 0).
For h > 2, let ® € gp—1. Let & =), ©'0;, where

u;. is not zero: that is if some of the r; coincide, then the formula contains the corresponding

Y = arl,TQ,...,Thurlu"‘Q cr Uy,
1<r1<ro<--<rp<k
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For any permutation ¢ on h elements, set

i — 4
To(1):To(2)rTo(h) T1,7250Th”
We then have:

1: o .

1 gy, = 0 for any i € {ri,ra, ..., 74}

: e . .

72y, = 0 if r; = rj41 for some j, where 1 < j < h.

l = aTh .

T1,725---sTh 1,72, h—1,0"

Hence the result.

(2) For any @ € g;, where 0 < ¢ < m, note that ®; =, ¢'9;. If al. ., # 0, then

~Tt41

b, =da Fy+ ®y for J = (r1,72,...,74+1),

71,725 t+1

where the coefficient function of 9; in ® does not have the term w;, u,, - - - u,,,. The linear
independence of Fy is immediate.

(3) For k = 2, the Lie algebra go is 1-dimensional spanned by usd; + u10;. Further,
g1 = 0. Thus, we have g = g_1 @ go, whose derived algebra is abelian.

(4) Note that

[ulf)],w] :ul@uk@—i—ulﬂ\lwk@ for i # j.

Thus, [u;0; + u;0;, w] = 0. Therefore, [gy, w] = 0. Now consider [w;,wy], for w; € g, and
wy € gs, where r +s =m, r,s > 1. Let I = (i1,...,0m—r), and J = (j1,...,Jjm—s). Note
that

[wr,wy] = [[0;,ws],wr] + [0, [wr,wy]], where I' = (ia,...,im—r).

As [wp,wy] € gmy1 = {0}, we get [wr,ws] = [[0;,,ws],wr]. Continuing further, we see
that [wr,wys] € [go, w] = {0}. In other words, w ¢ [g, g].

(5) Indeed, 69?;111 gi C g, and w ¢ gM. Thus, gtV) = 69?;111 gi-

Let Z be a nontrivial ideal of gi). Then, taking commutators of a nonzero element of 7
with appropriate 9;, we see that ZNg_1 # 0. This implies that ZNg_; = g_1. This in turn

m—21 g; C Z. Lastly, since [go, w] = {0}, it follows that g,,_; is isomorphic to

i=—

implies that &
g_1 as a go-module. In other words, g,—; C Z. Hence, dim g(!) = dimg — 1. O

Corollary 3.3. In this prolong, there are no critical coordinates of N.

3.3. The Cartan prolong of c(ogl)(k:))

The Lie algebra c(ogl))(k:)) consists of symmetric k x k-matrices such that all their diagonal
elements are equal to each other.

Let g_; = K(01,02,...,0;) be the identity go = c(ogl)(k:))—module spanned by partial
derivatives as go is embedded into vect(k; N )o:

k
go = Z alu;0; | a] € K such that a] = aé- and a! = a?- for all 4, 5
ij=1
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Theorem 3.4. (1) The prolong g consists of all vector fields ® =, $'0; satisfying the
conditions:

0t = i), 0,0t =0;¢7 forallij=1,... k.

Theng=9g-1Dgo D g1 Dg2 D D P, nth—3-
(2) Let > u" be the sum taken over all r = (r1,...,r) such that all r; are non-negative
and even, and r1 4+ -+ + 7T = Smin — 1. A basis of g is given by the set

{ad .. adgk w|d € Z5\{($min, 1, 1,..., 1)} with di < Smin,
and d;j <1 for j # 1} U {n},

where

n = (Z ui) (u101 + ug02 + -+ - + uOy), and w:= (Z ) ( Uy . uk8>

3) The Lie algebra g is not simple.
4) For smin # 1, the Lie algebra g is simple for k > 1. As a Lie subalgebra of

{01,02,..., O, w} if k is odd,
{01,02,..., O, W(1)s - -+ wy}  if k is even.

(5) For smin # 1, dimg") = {(9‘“‘“ + 12— 1 if ki is odd,

(Smin + 1)2]‘ —2 if k is even.

(
(

vect(k, N) it is generated by the set {

(6) For smin = 1 and k odd, the Lie algebra g is simple of dimension 28 — 2.
For smin = 1 and k > 2 even, the Lie algebra gV is simple of dimension 2% — 2; for
k = 2, the Lie algebra g is solvable.

Proof. (1) Let ® = 3, ¢'0; € g1. Let <p‘ Zr1<7“2 ALy sy Uy + > ak u?. The indices

r1,72,7 are elements of {1,2,...,k}. Set al ., =al, . forry > 7.

As [, 0;] € go for all i, we get

:"177"2 = a;?,l
°a, ;=al j forall 4, 7.
Thus, a basis of gy is given by the set

k
- 2
wi(ur0r + ug0o + - -+ + u;0; + - -+ + upOg) + Zuj 0;
j=1

1<i<k
U {uiujﬁr + uiu,ﬁj + ujur&}

i,7,r are distinct
For h > 2, let ® € gj_1. Let & =", ©'0;, where

i f— i ..
Y = § arl ,TQ,...,Thurl Uy Urp,
r1<ra<--<rp

see (3.2.1).
For o a permutation on h elements, set

% %

=a .
To(1)sTo(2)s T (h) T1,725.-Th
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We get
i _ . Th
[ ] = .
aT‘l:"‘Q:---:"‘h a/7'17r27~~~7rh7171
i _ ]

. for all 4, 5.

=a
T1,725--sTh—1, T1,725--Th—1,]

In other words, the nonzero coefficients ail’m’rh determine the corresponding vector fields.
So, we denote by ® v, € Bn—1 the vector field Do ©'0;, where

T1,T2ymey
0" = uf'ug -+ + related terms,
where i; is the number of times j appears in the sequence (11,72, ...,75); the related terms

are those monomials which arise by the above two equalities. For example,

@%,1,2,3 = (ufugus + ujus + usu3)or + (ufus + uruius + uiul)do
+ (udug 4+ urus 4 uyusul)ds
= (uf +u3 + u3)(ugus0 + uruzde + urugds)
= ad%‘;“i“_?’ adg, adg, - - - ady, w.

Note, if ufuy = 0, then ®} | , 5 = 0.
Consider <I>% 1 193 k- Let spmin = s = 2N — 1 which is an odd number. Then,

sy ydydyeeey

Smintimes
1 — Hl
(I)lvlv"'717273v"'vk B CDLL...,1,273,---7?,---7/6' Now,
N e’

Smin+1times

! &l _
1,101,123, 0.k P, 0,3,k = 0.

ceey

e Let k > 2. Similar arguments as above show <I>t1717'.'7172737.“71C = 0 for any t # 1. Thus,

Simin — ltimes

gn =0 for h > spin + k — 3.
For m = spyin + k — 3, we have g,, = Kw, where w = @11,1,._. 12,3, k"

Likewise, n = ®1 , . Note that 7 is an element of g_. 1.

Smintimes

e For k = 2, we see that m = spijn +k — 3 = Spin — 1, and g,,, is 2-dimensional spanned by

{w,n}.

(2) For t > 0, let I = (i1,12,...,i;) be a t-tuple, where i; € {1,2,...,k} for each j. For
any sequence I such that wy # 0 (for I large enough, w; = 0, but we want to consider only
those wy which are nonzero to be basis vectors), we see that I is a subsequence of some

sequence M such that w = @gw for some j. Then w; = that is, delete the entries of

o’ |
(M,I)
the sequence I from the sequence M).

Thus, we see that a basis of g is given by the set

{wr [wr # 0} U {n}.
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Now, to find those w;’s which are nonzero, it is enough to view w as <I>11 1 193 - Then

[ —

Smin — ltimes

wy = 0 if and only if 1 appears more than sy, times in I, or j appears more than once in
Iforj#1,orI=(1,1,...,1,2,3,... k).
——

Smintimes

(3) We prove this by highlighting some important properties of w; and 7.

e [go, w] = {0}. Indeed, [ZJ ujaj,w} = 0. Next, note that for j # r, we have

[w;0r + u, 05, w] = ((uj&« + u,0;) (Z uﬁ)> (zk: Uy uk81>
=1
+ (Zui>

Note that [ujf)r + 1,05, Zle ITRERETIEE -ukal} = 0. Further

k
ujﬁr +U7«8j,Z’U,1 . ’l/l,\l . ’U,kal] .
=1

+---+ul) =0 forteven.

(w0 + ur0;) (ul + ul2u? + ul ™ty ¥

J

(O

Thus, [gg, w] = 0.
o Let I = (iy,i9,...,i,) and J = (j1,j2,---,Jt). Consider

[wj,wJ] = [[8¢1,wj],w]/] + [81'1, [w[/,w]]], where I’ = (ig, o ,im_r).

Note that, by definition, [0;,, w ] = w7, where J= (41,71, 72, - - -+ jt). Now using induction
on the length of I we see that

[wr,wy] € Span{w; | wy # 0}.

The same arguments along with the fact that [go, w] = 0 show that w ¢ [g, g].

o Asn = @%71 77777 1 € ¥s,.;,—1 has a higher power of u; than any of the w; € g, for any r,
N —

Smintimes

we have 1 ¢ [g_1, g]. Note that [go,n] = {0}. Further,

[wIJ 77] = [[811 y 77]7 ’U)[/] + [81'17 [wI’a 77]]
By induction on the length of I, we have n ¢ [g, g].
(4) Let spin # 1 and k be even. g = 69;2111 ggl). Note, gl(-l) = g; for i # spmin — 1. Let
7 be a nontrivial ideal. Then taking commutators of a nonzero element of Z with appropriate
0;, we see that Z N g(_li % 0 which gives 7 N g(_li = g(_li This implies @?:fl ggl) C T. Lastly,
Wy = [ZJ Ujaj, w(T)] € 7 for all r.

Let syin # 1 and k be odd. gV = S ggl). Note, gl(-l) = g; for i # Spmin — 1.
Simplicity follows similarly.

(5) Let smin # 1 and k be even. The dimension of g™ is the cardinality of the set
{wr |wr # 0,]I| > 0}. For this, recall that w = &', | 1 23, Hence, wr # 0 if and

[ —

Smin — ltimes
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only if the number of 1’s in I is between 0 and S5, and the number of j’s in I is 0 or 1;
furthermore, I # () and I # (1,1,...,1,2,3,... k). This number is (s, + 1)2871 — 2.
~—

Smin— ltimes
Let smin # 1 and k be odd. The dimension, by similar arguments and the fact that
w € gW, is (Spmin +1)2871 — 1.
(6) Let syin = 1. If k is odd, [,w] = w € g(!). Further, w ¢ g®. The Lie algebra g(?
is simple and generated by {04, ..., 0, Wy, - - - ,w(k)}.
If k> 2is even [n,w] = 0, and thus w ¢ gM. The Lie algebra g(!) is simple and
generated by {01,..., O, w1y, - -+, W)} Hence the result.

For k = 2, we have g = {w,7n,81,0;} and gV = {9y, 85} is abelian. O

Corollary 3.5. The critical values of N in this case are of the form (n,n,...,n).

3.4. The Cartan prolong of or(k)

The algebra o7(k) consists of symmetric k x k-matrices. Let g_; = K(01,0a,...,0k) be the
identity go = o7(k)-module spanned by partial derivatives as go is embedded into vect(k, IV):

k
go = Z alu;0; | a] € K such that o] = aé» for all 4, j
t,j=1

Theorem 3.6. (1) We obtain the Cartan prolong as a Lie algebra
0=1(0-1,00)+N=0-1DG0 D1 D g2 D D g,

where m = (3 s;) — 2. The prolong g consists of all vector fields ® =Y. ¢'0; satisfying the
condition

8;¢' = ;) foralli,j=1,... k.

(2) The following elements form a basis of g:

Fepe Zu g T e k0, where
c; >0
0<c¢ <2V foralli=1,... k; (3.2)

c¢; >0 for some i;
if ¢; = 2Nt for some i, then c; =0 for all j # 1.

Another description of the basis is needed: Let

S81,.82 Si—1_ 8;—1 Sit+1 Sk 9.
w_E:’UQUZ"' L A A
_ s1—1 52 1 k 1
=u] g WU - - Uup0; € Gm,

ni = u;'0; € gs;—1-

Then, a basis of g is given by the set {n;}*_, U {wy |ws # 0}.
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(3) The Lie algebra g is not simple.
(4) For k = 1, the Lie algebra is nilpotent.
(5) Let k > 1. If N; > 1 for some i such that 1 < i < k, the Lie algebra gV =
g,9] = & _, gz(-l) is simple. As a Lie subalgebra of vect(k, N) it is generated by the set
{01,02,...,0k, w}.

If Kk = 2,N; = Ny =1, then g is solvable. If k > 2, and N; = 1 for all i such that
1<i<k, then g is simple and generated by {01,04,. .. s Oy W(1)y -+ Wk -

(6) Let k > 1. Then dimg™®) = 2N2N2... 9Nk _ 1 if N; > 1 for some i, where 1 <i < k.
dimg® =28 —2 if N; =1 for all i such that 1 <i < k.

Proof. (1) Arguments similar to the ones in the previous examples give that a basis of g;
is given by the set
{uiw;O + winy0; + urO; Vi g distines U {20 + ity 0; b distinet
U {ugai}sz'#l'
For h > 2, let ® € g;_1. Write ® = Y, ©'9;, where

_ 7
Y = E Qry rg,.ory Wi Urg = Upy
r1<ra<--<rp

see (3.2.1). We then have:

7 _Th

Oy royrn = Qe rorn i

In particular, for h > (>, s;) — 2, we get g5, = 0. For m = (> s;) — 2, we have g,, = Kw.
(2) For any ®; € g¢—1,1 <t < m, note that &; =), ©0'0;.

Let afﬂhm’wm # 0 for some 7, where 1 < ¢ < k. Let [; denote the number of times j
appears in the sequence (ri,79,...,7¢).
Case (a). If [; = s;. Further, if r; # i for some j, then al _, = a:,];“l,...,@,...,rt = 0.

Therefore, r; = ¢ for every j. In this case, ®; = afﬂl,...,rtm + ®5 and P, does not have the
term 7);.

Case (b). If l; < s;, let I = (j1,j2,...,Jp) be the sequence, where j appears s; — [; times
for j # ¢ and i appears s; — [; — 1 times. Then, ®; = a;"177'27~~~,7"tw1 + @3, where ®9 does not
contain the term w, uy, - - - uy, 0;.

To make this choice clear, let M; denote the sequence
(L,1,...,1,2,2,...,2,... k. k... k),
where each j appears s; times for j # i , and ¢ appears s; — 1 times. Notice that

w = up,0; and  wyy, = 0;.
M;

Let I be the complement of the subsequence (r1,73,...,7:) in the sequence M;.
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Using the facts that adp, oads, = ady, o ady,, and audslJrl

of g is given by the set

= 0, we conclude that a basis

{n:¥5_, U{wy | T is a subsequence of M; for some i}.
(3) We prove this pointing out some important properties of g.
o Let [ = (iy,i9,...,4,) and J = (j1,j2,...,Jt). Consider
[wr, wy] = ([0, ws],wr] + [0y, [wp,wy]], where I' = (ia,...,im—r).

Note that, by definition, [0;,,w;] = w3, where J= (11,71, 72, - - - jt)- Now using induction
on the length of I we see that

[wr,wy] € Span{wr | I is a subsequence of M; for some i}.

e As each 7; = u;'0; € gs,—1 has a higher power of u; than any of the wr, we have
n; ¢ [g—1,8]. Note that [u;0;,n;] = {0} for any 4, j. Further,

[wr,ni] = [0y, mil, wrr] + [Biy, [wres mill.

By induction on the length of I, we see that [wr, n;] € Span{w;}. Thus, we have n; ¢ [g, g
for every 1.

(4) When k = 1, g is generated by the set {91, ;'d;} which is a nilpotent Lie algebra.

(5) Let k> 1,N; > 1 for some i such that 1 <i <k, then gt = [g,¢] = @?;_lggl),
where g(-l) =g fori¢ {s;—1,55—1,...,5; —1}. Let T be a nontrivial ideal of g(!). Then
takm% commutators of a nonzero element of Z with some appropriate 9;’s, We see that
INng 11 # 0. This implies that Z N g(l) (1) . This, in turn, implies that & gg ) cT.
Lastly, w = [u;0;,w] € T.

Let k =2, and N; = Ny = 1. Then, g = {01, 02, u101, u202,u102 + u20; }. This is a
solvable Lie algebra.

Let £ > 2 and N; =1 for all i such that 1 <i < k. Then, g(l) = EB?;—_ll ggl), where
ggl) = g; for i # 0. Further, w = [1;0;,w] € gM. Note that g = [g(!), gM] does not contain
w, whereas g(?) = @1 gfl)

The simplicity of g( ) follows as in the previous case. Note that here, 9(2) is isomorphic
to the derived algebra of the Cartan prolongation of (ogl)(k), g-1)« N (see 3.2).

(6) Let £ > 1 and N; > 1 for some i and 1 < ¢ < k, a basis of gg)_t, where
1 <t <m+1,is given by the set

{wr | I is a subsequence of M; of length ¢ for some i}.

Recall that

_ ,s1—1, so—1 sk 1
w=u;" Uy (g uug - u;ﬁ)

So, to count the number of wy, we first count the number of indexing sets I, where the
appearance of the index ¢ is determined by 0 < ¢ < s; excepting the index in which every 4
appears s; times (for, in this case, we get 0). So, dim g(l) =2N1gNo . 9Nk _ 1,
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Let £ > 1 and N; =1 for all i such that 1 <i < k. The argument is similar to that
in 3.2 and the dimension is 2F — 2. O

Corollary 3.7. All coordinates of N are critical in this case.

3.5. The Cartan prolong of og)(zkz)

The algebra og) (2k) consists of 2k x 2k-matrices A symmetric with respect to the anti-

diagonal such that all the elements of the anti-diagonal are 0 and A1y + -+ - + Agr = 0. So,
when we construct the Cartan prolong with go = 0(52)(2141) and g_; = id, we embed g into
vect(2k; N )o so that the image is

2%k
g alu;0; | al € K such that a! = a%iﬁ:é and
1,j=1

k
a2k 171 — 0 for all 1,7; and Z Qi = O} .

7
i=1

Theorem 3.8. (1) The prolong g consists of all vector fields ® = Y, ¢'0; satisfying the
conditions:

ajﬁf)i = Oopp1— KT foralli,j=1,...,2k;
0™t =0 foralli=1,...,2k;

k
D o' =o0.
i=1

Fork=2,9=g-1® go-
For k > 2, we have

(3.3)

g= @ i,

—1<i<m

where m = 2k — 4 and g,, = Kw, where

Uu - - - Uk
=X 9.

U;U —_ iU —q
1<i<2k \j<k,j¢{i2k+2—i} I 2hH1—j72k+1=i

The prolong g is not simple.
Its first derived algebra gV is simple, and gt = C_1<i<m—1 ggl).

We have
) M)\ ok 2k _ 2k 2k o
dim(g,, ) = =2 +<k> (k:—2 Tk-a ’

dim(gg)_t) = <2tk> - dim(gg)_ﬂ_g) fort>3 and t # k.
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Proof. It is easy to check that g; = 0 if & = 2. (For £k = 1, we have 0(52)
0.) Let ¥ > 2. For h > 1, let ® € gp1. Let & = >, ¢'9;, where ¢ =

1
D 1<y <ra< iy <2k Oy rgry Uy Uy *** Upy, , S€€ (3.2.1). We get,

(1) at Th:0for2k—|—1—ie{rl,rg,...,rh}.

T1y72500y
1 2
(2) Oy oyl T Orirgprp g2 Tt aTlﬂ”Qv STho1k T 0.
; 2k+1 .
(3) Wpygrry = rljfm ijh Lok+1_i- These relations imply that aJ irvnm_, = 0 for any i, j.
Further, for h > 2k — 4, we get g, = 0, and gop_4 = Kw.
Let ®¢ 1 ra....r, denote that vector field which has al 7o, — Landis then determined by

_ &l
the above condltlons on its other coefficients. For 1nstance w = <I>L2’. ke k2. k43, 21
Then, in addition to w, we have a set, F, of cardinality 2¥, consisting of vector fields,
i

rire,orp— 1 8k—2; where

ri<ro < - <rg1<2k+1—1i, wherei & ri,ro,...,Tp 1,

and r; # 2k + 1 —r, for j,s.

For instance,

1 U -+ - UpU
<I>2,3,...,k = ugug - upOy + Z ———opr1—-
2<i<k

The prolong g is generated as a Lie algebra by the set {0, . . ., o JU{w} U {(I>T1’ o JF

The Lie algebra g is not simple as g(!) does not contain {w} U{®L .. . }r

As [u;0; + ugpy1-iO2k+1-i,w] = 0, we see that [u;0; + ugkr1-iO2k+1-i, Wi = we,
where w(;) = ady, (w). Thus, g is generated as a Lie algebra by the set {wey, Oi bicor-
Any nontrivial ideal of g() intersects g_; nontrivially. This in turn implies that the ideal
contains g(!). Hence, the Lie algebra gV is simple.

For 1 <t < 'm, consider sequences I = (i1,1i9,...,4;) such that i1 < iy < --- < iz, where
i; € {1,2,...,2k}.We then have:

W(ry,ra,ers,1,2k) T Wy ra,rs 2,26=1) T T Wy o rg ko k1) = 0,

W(r1 79,0\ Tsyi1,i2,0 i) — 0 for ij S {]7 2k +1— ]}

The dimension of gg)_t is given by the number of distinct wj, subject to the conditions
listed above, where [ is of length ¢.
Let n = wq o) w2 op—1)+" -+ Wk k+1)- Note that n = 0. This gives a linear dependence

on the vectors wy ox), W(2,2k-1)s - - - » W(kk+1)- Lhus,
dlm(gm 1) = F#we) |1 <0 <2k} = 2k,

dim(gl)) = w11 =i <5 < 20— = (5) -1,
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. . 2k
dim(gl))) = (o 1< 1< <0< 20) = o} = () - 20

dim(g}}) ) = <2tk> - dim(gg)—t+2)> fort >3, t#k,

. 2k : . ) )
mm@iﬁz(k)—mm@iﬂﬁ—#W%@meﬂﬂ$%+l—ﬁ} .

Corollary 3.9. No critical coordinates of N in this case.

3.6. The Cartan prolong of og)(Zk)

The algebra 0(51) (2k) consists of 2k x 2k-matrices symmetric with respect to the anti-diagonal

such that all the elements of the anti-diagonal are 0. So, when we construct the Cartan
prolong with gy = og)(Qk) and g_1 = id, we embed gg into vect(2k; N)o so that the image is

2k
— T | od J_ 2k+1—i 2k+1—i _ .
go = E alu;0j |a] € K such that a] = Qo1 and a; =0 for all 4,7
t,j=1

Theorem 3.10. (1) The prolong g consists of all vector fields ® = Y. ¢'0; satisfying the
conditions:

0;¢' = Oopy1 i * 1T foralli,j=1,...,2k; 0;¢* 11 =0 foralli=1,...,2k.

Further, g, =0 for h > 2k — 2. For m = 2k — 2, we have g,, = Kw, where

2k
—_—
w = g (Ul Cr Ukl —i 'Uzk) 0;.
i=1

(2) The following elements form a basis of g;—1 for any N:

FJ:Z H uj | Oaky1—i, where J C{1,...,2k}, |J|=1+1.
ieJ \jeJ\{i}

(In particular, g; = {0} for any 1 > 2k — 1.)
Consequently, dim g; = (tikQ) for any t such that —1 <t <2k —2 and

dimg= Y dim(gn-¢) =2 - 1.
0<t<2k

Another description of the basis is needed: Fort > 1, let I = (iy,19,...,1;) be a t-tuple,
where i; € {1,2,...,2k} for each j. A basis of gm—¢, where 0 <t < 2k, is given by the set

{w1|I:(il,ig,...,it),where1§i1<i2<---<it§2k}.

Note that wy = Fy if I is the complement of J in the set {1,...,n}.
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(3) The Lie algebra g is not simple.

(4) For k = 1, the Lie algebra g is solvable (observe that N1 can be anything; further,
when k=2 or 3, and N; =1 for all i, then again we get solvability).

(5) The Lie algebra gV is simple for k > 2 and its dimension is 221 — 2 (here N; > 1
for some t).

Proof. (1) Similar arguments as before give us a basis of g; is given by the set

{try Ury O + Uy Uk 1— 02k 1 -1y Ury U102k 411y Yy <ro, and 2kt 1—ig{r1,ro}-
For h > 2, let ® € gj_1. Let ® = >, 0'9;, where
i Z i
Y = Ay o,y W Urg » 0" Uy

1<ry<rp<--<rp<2k

see (3.2.1). We get,

® ap yy oy =0for 2k +1 i€ {r;,ra,...,m4}
o If r; =r;4 for some j, where 1 < j < h, then ay, ,, . =0.
° 7 2k+1—rp,

Aryrg,ern = 71,725 Th—1,2k+1—3"

So, for h > 2k — 2, we get g, = 0, and g,,, = Kw for m = 2k — 2.

(2) For any ®; € gy, where 0 < ¢ < m, note that & = Y, ¢'0;. If
Uy rgormips 7 05 then I ={ri,ra,...,rm_¢11} is a subsequence in {1,2,...,2k}. Then,
Q1 = ay, o BT+ P2, where the coefficient function of 9; in @3 does not have the
term wy up, - - - Uy, . Further, note that ads, oady, = ady, o ads, and ad%i (w) = 0. Hence
the result.

(3) Let h; = u;0; + ugk+1—iOok+1—; for 1 <i < k. Note, [w, h;] = 0 for every i. Note that
{hi|1 < i < k} spans the Cartan subalgebra of go. Therefore, [gog, w] = 0. Now as seen in
earlier examples, [wr,w;]| € [go,w] = 0, for w; € g, and w; € g5, where r + s = m, and
r,s > 1. In other words, w ¢ [g, g].

(4) For k = 1, we see that g = g_1 @ go and is spanned by {01, 02,u191 + 92}. The
derived algebra g) = g_; is abelian.

(5) Indeed, in this case,

m—1
g(l) = @ 91(1) with g(l) =g; fori<m-—1.

i
i=—1

Let Z be a nontrivial ideal of g('). Then, taking commutators of a nonzero element of Z
with appropriate 0;, we see that ZN g(_li = 0. This implies that ZN g(_li = g(_li This, in turn,
implies that EB?;__QI ggl) C I. Lastly, w) = [hi,w(i)] €7 and wiggq1-4) = [hi,w(QkJ’_]__i)] el
(Here and in sections below, we have h; in both equalities (not hogy;—1 in the second one),
so the second one cannot be obtained from the first one by a change of the index.)

The dimension of g(!) is therefore one less than that of g; hence, dimg(!) = 2% —2. [

Corollary 3.11. No critical coordinates of N in this case.
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3.7. The Cartan prolong of os(2k)

The algebra 0g(2k) consists of 2k x 2k-matrices symmetric with respect to the anti-diagonal.
So, when we construct the Cartan prolong with gyg = 0g(2k) and g_; = id, we embed go
into vect(2k; N)o so that the image is

2%k
j j | 2ktl—
g0 = Z alui0; | al € K such that o] = a57 ; for all 7, j
ij=1

Theorem 3.12. (1) The prolong g = (g—1,80)«n consists of all vector fields ® = . ¢'0;
satisfying the conditions:

8j¢i = 82k+1_i¢52k+1_j fOT all i,j = 1, . ,2]€.

(2) The following elements form a basis of g:

7. 73 —1 ¢
Fe..c Z (T Vil T T U Oopy1—i,  where
c; >0
0<¢ <2V foralli=1,...,2k; (3.4)

c¢; >0 for some i;

if ¢; = 2Ni for some i, then c; = 0 for all j # 1.

Another description of the basis is needed: For m = (> s;) —2, we have g, = Kw, where

51 1 8;—1 Sit1 Sok )
w = E :ul wy® g g U ugy O

Fort > 1, let I = (i1,i2,...,1) be a t-tuple, where i; € {1,2,...,2k} for each j.
Further, let n; = u; Oap41—i € 9s,—1. Then, a basis of g is given by the set

{0 Y2k, U {wy | is a subsequence of M; for some i},

where
M;=(1,1,...,1,2,2,...,2,...,2k, 2k,...,2k);

here each j appears s;j times for j # 2k +1 — 1, and 2k + 1 — i appears sgp41—; — 1 times.

(3) The Lie algebra g is not simple.

(4) The Lie algebra gV = [g, g] is simple and is generated as a subalgebra of vect(2k, N)
by the set {01, Do, ..., 0041, W1, W2, ..., wat. Further, a basis ofgg)_t, where 1 <t < m+1,
is the set of Iy, .. c,., where ¢; < oNi _q forallt=1,...,2k, and the inequality is strict at
least for one 1.

(5) dimg(t) = 2Nt tNap 9,
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Proof. (1) Note that a basis of g; is given by the set

{ur, Uy 0i + Upy U1 —i 021 —ry + Uy Ukt 1—iO2k+1—11 Fry<ra, and 2k+1—ig{r1,r2}
2
U{udpp1— 021y + Ur U2kt 1—i 05 oy 22k 41—
2
U {uf Ookt1—i}s;1-
For h > 2, let ® € gp—;. Let & =", ©'0;, where
i pr— i Y
Y = aTl,TQ,...,Thu"‘luTQ Uy, -
r1<re<--<rp

Then

7 _ 2k+1—7rp

Ay rgpern = 1,72y, Th—1,2k+1—3"

Hence, for h > (>, s;) — 2, we get g, = 0. For m = (> _ s;) — 2, we have g,, = Kw.
(2) For any ®; € g1, where 1 <t < m, note that ®; =), ©0'0;.

Let afal’m’mrt # 0 for some ¢, where 1 <4 < 2k. Let [; denote the number of times j
appears in the sequence (r1,79,...,7¢).

Case (a). If lop11-; = sop41-; and rj # 2k + 1 — i for some j, then

i . 2k+1—r; .
U peore = Dol 1y — O
Therefore, rj = 2k + 1 — i for every j. In this case, 1 = ay, . mok+1-i + P2 and Py does

not have the term nog11_;.

Case (b). If lop1-i < Sopti1—i, let I = (ji,72,...,7p) be the sequence in which j appears
sj — l; times for j # 2k + 1 — 4 and 2k + 1 — 7 appears sgp11—; — lop+1—; — 1 times. Then,

Q) =ay, ,,  y,wr + P2, where @2 does not contain the term ;. up, - - - ur, 0;.

To make this choice clear, let M; be as described in the statement of the theorem.

Notice that w =37, un,0; and wyy; = 9;. Let I be the complement of the subsequence
(ri,7r9,...,7¢) in the sequence M.

(3) We see this by noting the following important properties of g.

e First note that [h;,w] = 0, and hence [go, g,n] = 0. Further,
[wr,wy] € Span{wy | I is a subsequence of M; for some i}.

e As each 7; = u;'Oop1+1-; € gs,—1 has a higher power of u; than any of the wr, we have
n; ¢ [g—1,9]. Note that [h;,n;] = {0} for any ¢, j. Further,

[wr, il = [0y, mil, wir] + [04,, [wrr, mi]].
By induction on the length of I, we see that [wr, n;] € Span{w;}. Thus, we have n; ¢ [g, g
for every i. Further, similar arguments show w ¢ [g, g].
(4) Indeed, suppose Z is a nontrivial ideal of g = @~} ggl). Here, gl(.l) = g, for
i¢{s1—1,s9—1,...,59 — 1}. Then taking commutators of a nonzero element of Z with
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appropriate 9;, we see that Z N g(_1% # 0. This implies that Z N g(_lz = g(_lz This in turn
(1)

)

implies that @1_71 1}
(5) Note that

C I. Lastly, w; = [hi, w;], and wap1—; = [hs, worg1-i] € T.

s1—1 so— ]. Sop—1
wW=U; Uy  Ugyp, u1u2 U1 -2k | -

So, to find the number of w;, we see that in the indexing set I the number ¢ appears at
most s; times. At the same time, the indexing set I, where every i appears s; times, gives
the 0 vector. So, the number of nonzero wy’s is (s1 + 1)(sg +1)--- (s +1) — 1. We next
subtract 1 to delete w from our count, as w ¢ g.

Thus, dimg(") = 2M2N2...9Naw _ 9, O

Corollary 3.13. All coordinates of N are critical in this case.

3.8. The Cartan prolong of og)(Zk +1)

This algebra is isomorphic to 07(2k 4+ 1), and the identity representations of these two real-
izations of the algebra are equivalent, so the Cartan prolongs in this section are isomorphic
to the corresponding prolong in the Subsecs. 3.2-3.4.

The algebra og) (2k + 1) consists of (2k + 1) x (2k + 1)-matrices symmetric with respect
to the anti-diagonal such that all the elements of the anti-diagonal are equal to 0. So, when
we construct the Cartan prolong with gg = og)(Zk: + 1) and g_1 = id, we embed gp into
vect(2k + 1; V) so that the image is

2k-+1
— T | od J_ 2k+2—i 2k+2—i _ .
go = E alu;0j |a] € K such that a] = Uopto; and a; 0 for all 7, j
ij=1

Theorem 3.14. (1) The prolong g consists of all vector fields & =), ¢'0; satisfying the
conditions:

0" = Oopyoi@® 277 9,62 =0 foralli=1,...,2k+1.
(2) The following elements form a basis of g; for any N:
Fy = Z H uj | Oakyo—i, where J C{1,...,2k+1}, |J|=1+1.
ieJ \jeJ\{i}

In particular, g, = 0 for h > m, where m =2k — 1, and g,, = Kw; here,

2k+1
w = Z (Ul"'uﬁi"'u%ﬂ) 0;
i=1
Another description of the above basis is needed: For t > 1, let I = (iy,i9,...,i) be a

t-tuple, where i; € {1,2,...,2k + 1} for each j. A basis of gm—¢, where 0 <t < m, is given
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by the set
{wr | I = (i1,d2,...,0), where 1 <1y < ig < --- <iy <2k + 1}.
Thus, dim g,,_¢ = (** ") for 0 <t < 2k and
dimg= > dimgy, ,=2%" 1.
0<t<2k

(3) The set {01,0a,...,000+1,w} generates g as a Lie subalgebra of vect(2k+1, N). This
Lie subalgebra is not stmple.

(4) For k = 1, the Lie algebra g is solvable.

(5) The Lie algebra g is simple for k > 2 and its dimension is 22+ — 2.

Proof. (1) Arguments similar to those used before give us the following basis of g;:

Lty Ury O + Upy Uk 202121y + Ury Uk 42— iO2k 4211 Fry <ro, and 2k4-2—ig{r1,ro}-
For h > 2, let ® € gj_1. Let ® = >, 0';, where
i i
p = E : Ay irg,. gy Uy Urg " Uy,
1<r1<ro<.-<r,<2k+1

see (3.2.1). We have,

7 o .

® ap py g =0for 2k +2—i€{ry,ro,..., 74}

o If r; =r;4 for some j, where 1 < j < h, then ay, ,, . =0.
7 _ 2k+2—7‘h

° a’7“1,1”27---77”h — Yryre,.rp_1,2k4+2—i"

So, for h > 2k — 1, we get gp = 0. For m = 2k — 1, we have g,, = Kw.

(2) For any ®1 € gy,—t, where 0 < t < m, note that ®; = >, ©'0;. If a7i"17"‘27---7"‘m7t+1 # 0,
then let {i1,72,...,4:} be the complement of the subsequence {r1,72,...,"m—t+1,2k+2—1}
in the sequence {1,2,...,2k + 1}. Then

®; = a' wy + o,

T1,725 s Tm—t+1

where the coefficient function of 9; in ®3 does not have the term w,, up, - - - Up,, .-

(3) Let h; = u;0; + uggr2—;Ookro—; for 1 <i < k. Note, [w, h;] = 0 for every i. Note that
{hi|1 < i < k} spans the Cartan subalgebra of go. Therefore, [go, w] = 0. Now consider
[wr,wy], for wy € g, and wy € gs, where r+ s =m, r,s > 1. Then [wr,wys] € [go, w] = {0}.
In other words, w ¢ [g, g].

(4) Indeed, in this case, we see that g = g_1 ® go ® g1. We have g = [g, 9] = g_1 ® go,
and g® = [g("), gM] = g_; is abelian.

(5) Indeed, in this case, g = [g,g] = @7 g;. Let Z be a nontrivial ideal of g(!).
Then, taking commutators of a nonzero element of 7 with appropriate 0;, we see that
ZNg_q # 0. This implies that ZN g_1 = g_1. This in turn implies that EB?:_ZI g; C 1.
Lastly, w) = [hi,w@)] € T and wigpio—i) = [hi; wokt2—s] € Z. The dimension is one less
than the dimension of g. O

Corollary 3.15. No critical coordinates of N in this case.
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3.9. The Cartan prolong of c(og)(Zk + 1))
Let n € Z>1 and

N = (N1,Na,...,Ni,n, Niyo, Nigs, ..., Nogy1),

where the n appears at the (k + 1)% position. Let s = 2" — 1.

The algebra c(o(sl) (2k+1)) consists of (2k+1) x (2k+1)-matrices symmetric with respect
to the anti-diagonal such that all the elements of the anti diagonal are equal to each other.
So, when we construct the Cartan prolong with go = c(og) (2k+1)) and g_; = id, we embed
go into vect(2k + 1; N)p so that the image is

2k+1
— Jnr.9. 1 oJ J o 2k+2—i 2k+2—i _ 2k+2—j ..
g0 = g a;u;0j | a] € K such that a] = Ao yo—; and a; = a; for all 1, j
,j=1

Theorem 3.16. (1) The prolong g = (g—1,80)s N consists of all vector fields ® = >, ¢'0;
satisfying the conditions:

0;¢" = Oopyo_i¢* 1270 9,621 = 9,0*M 27T for alli,j=1,...,2k + 1.

For h > 2™ + 2k — 3, we get g, = 0. For m = 2" + 2k — 3, we get g, = Kw, where

2k+1
S —_—
i=1;i£k—+1

s—1
+ (Ul T U U Uk 'U2k+1) Og+1-

(2) The following elements form a basis of g for any N:

7. 1 cl 1 Ci+1 +1
Fey.oconin = E uft ... (A TH u2k+182k+2 i, where
c;>0

;=0 or 1fori#k+1,

0<cpy1 < oNk+1 — 1. and ¢ >0 for some 1.

(3.5)

Another description of the basis is needed: For each i # k + 1, let M; be the sequence
(1,2,...,2k+2—z‘—1,2k:2\—z',...,k+1,k+1,...,k+2,k+3,...,2k+1),

where k + 1 appears s times. (Note that 2k + 2 — i may be greater than k+ 1.)
We define M; to be the sequence where the entries are placed in increasing order, k + 1
appears s times, and 2k + 2 — i is absent. Let

Meii=01,2,...,k+1,k+1,....,k+2,k+3,...,2k+ 1),

where k + 1 appears s — 1 times. Note, w = Y un,0;. Here, Ui ry  py) = Hfﬁl X
J1sistri=i|
; )
Fort > 1, let I = (i1,12,...,%) be a t-tuple, where i; € {1,2,...,2k 4+ 1} for each j.
Note that wyy, = 0;. Further, let n = uz+10k+1 € gs—1-
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A basis of g is given by the set
{n} U{wr|I is a subsequence of M; for some i}.

(3) The Lie algebra g is not simple.
(4) The Lie algebra gV = [g, g] is simple.
(5) dim g(t) = 2722k _ 1.

Proof. (1) We see that a basis of g; is given by the set
Lty Uy Op + Uy Uk 12102k 421y + Uy Uk 121024211 Jry <ro, and 2k-4+2—ig{r1,ra}

2
U{ug 105 + Upr1Uop2—iOk41 Fitht1

U{ui10k41}

For h > 2, let ® € gp—;. Let & =), ©'0;, where

i i -
¥ = E : Apy rg,eyry Wra Ury = Uy
r1<re<--<rp

see (3.2.1). We then have:

a7i"1:"‘2:---:"‘h =0fori#k+1land 2k +2—i¢€{ri,ro,...,rp}
vy, = 0 if 7y =141 =r for some j, where 1 < j <h, and r # k + 1.
° 7 _ 2k+2—7‘h
Arirg,ern = Gy rg,er, 1 2k42—i0

So, for h > 2" 4 2k — 3, we get g = 0. For m = 2" + 2k — 3, we have g,, = Kw.
(2) For any ®; € g1, where 1 <t < m, note that ®; =), ©0'0;.
Case (a). Let a! +, 7 0 for some i # k + 1. Let | denote the number of times k + 1

T1,72,5-

appears in the set (ry,72,...,r;). Then,let I = (k+ 1,k +1,...,k+ 1,41,42,...,4,), where

s—Itimes

the sequence {i1,1i2,...,1,} is the complement of the sequence {r;|r; # k+1}U{k+1,2k+
2—i}in {1,2,...,2k+1}. We then have ®; = a' - Wr+®2, where the coefficient function

J T2,y
of 0" in @5 does not have the term wu,, uy, - - - Uy, .

Case (b). Let a! + 7 0 for i = k+ 1. Let | denote the number of times k + 1

T1372500y
appears in the sequence (ri,79,...,7). Further, suppose that [ < s. Then, let I =

(k+1,k+1,...,k+1,i1,i2,...,ip), where the sequence {i1,i2,...,i,} is the complement

s—I—1times
of the sequence {r;|r; # k+1}U{k+ 1,2k +2 — i} in {1,2,...,2k + 1}. Now again, we

get &1 = a,’fi}%w?ﬂtw[ + @, where the coefficient function of 9*+1 in ®5 does not have the

term Up, Upy ** * Up, -

Case (c). Let aft! ., # 0 and k + 1 appears s number of times in the sequence

1,72y,
2k+2—7‘j

: k41
(r1,7r2,...,7¢). If 5 # k + 1 for some j, then at! | = Wi 1oy ot

Therefore, r; = k 4 1 for every j, and we have ®; = a’ﬁlfln’”n + O,.

s+1 :O

=0, as u |
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(3) Note that 9; = [0;, hi], w = [ug4+10k+1, w] € [g, g] for all 7.
e Let I = (iy,i9,...,i,) and J = (j1,j2,-..,Jt). Consider
[wr,wy] = [[0iy,ws], wr] + [0y, [wr,wy]], where I' = (i, ..., im_r).

Note that, by definition, [0;,,w ] = w7, where J= (11,71, 72, - -+ jt). Now using induction
on the length of I we see that

[wr,wy] € Span{wr | I is a subsequence of M; for some i}.

e Asnp = Uz+18k+1 € gs—1 has a higher power of ug,q than any of the w; € g, for any
r < s—1, we have n ¢ [g_1, g]. Note that [h;,n] = {0} for every i. Further,

[wfan] = [[8i1777]7w1’] + [8i17 [wflan]]'
By induction on the length of I, we have n ¢ [g, g].

(4) Note g(V) = o _y ggl), where gz(-l) = g; for i # s — 1. Let Z be a nontrivial ideal
of g(l) Then taking commutators of a nonzero element of Z with appropriate 01, we see
that ZNg_; # 0. This implies that ZN g_; = g—1. This in turn implies that @1_71 gi CT.
Lastly, w = [ug4+10k+1,w] € T.

(5) Note that

w = UkH (g uj - U2k+2 i U2k+1ai> .

Then, a basis of g(!) is as follows:

{W7, W 70 (k41)> WIO (kA 1k 1) W TU (kA1 k41 kA1) - - -

wJu(k+1,k+1,k+1,...,k+1)}Jg{1,2,...,2k+1},k+1¢J

and the maximum number of times that k 4+ 1 appears in the index is s. Note that for
J={L2,... . kk+2,...,2k + 1}, we get Wj(ei1pi1hi1,.541) = 0- S0, the number of
—_——

,,,,,

s times

nonzero wy’s is one less than 2722k
Thus, dim g™ = 2722k — 1. O

Corollary 3.17. The critical values of N in this case are of the form (1,...,1,n,1,...,1),
where n occurs at the (k + 1)-st place.

3.10. The Cartan prolong of os(2k + 1)

The algebra 0g(2k + 1) consists of (2k + 1) x (2k + 1)-matrices symmetric with respect
to the anti-diagonal. So, when we construct the Cartan prolong with go = 05(2k + 1) and
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g—1 = id, we embed g¢ into vect(2k 4+ 1; V)¢ so that the image is

2%+1
go = Z alu;0; |a] € K such that a] = a%iig ; for all 4, j
ij=1

Theorem 3.18. (1) The algebra g consists of all vector fields ® = >, $'0; satisfying the
conditions:

3j¢i = 82k+2_i¢2k+2_j foralli,j=1,...,2k+ 1.

(2) The following elements form a basis of g:

Cz 1, ¢c;i—1 Cit1
Fepcopin = Z ult g wly u2k+1 ' Oogro_i, where
c; >0
0<¢ <2V foralli=1,...,2k+1; (3.6)

c¢; >0 for some i;
if ¢; = oNi for some i, then c; = 0 for all j # 1.
In particular, g, =0 form = (3, si) — 2, and g, = Kw, where
2k+1

S1. .82 51 1 8;—1 Sit1 S2k+1
w = E:ul% U U Uiyt u2k+162k+2l

Another description of the basis is needed: For t > 1, let I = (i1,12,...,1;) be a t-tuple,
where ij € {1,2,...,2k + 1} for each j. A basis of g is given by the set

{nihi<i<or+1 U{wr | I is a subsequence of M; for some i},
where M; denotes the sequence
(1,1, 1,2,2,0 0,2, 2k + 1,2k + 1,..., 2k + 1);

here each j appears sj times for j # 2k +2 — i, and 2k 4+ 2 — i appears sop42—; — 1 times.
(3) The Lie algebra g is not simple.
(4) The Lie algebra gV = [g, g] is simple.
(5) dim g™ = 2NNz ... 9Nakt192k _ 7

Proof. (1) Arguments as in the earlier examples give us the following basis of g;:
{uh UT28i + Uy u2k+2—i82k+2—7‘2 + ur2u2k+2—i82k+2—7"1 }7“1<r2, and 2k+2—i¢{ri,r2}
2
U{udp o iO0okyo—r, + Ur Uokt2—i0; fri £2k12—i
2
U{w; Oor2—i}s;#1-

For h > 2, let ® € g,_1. Let ® =Y, ¢©'9;, where

i 7
Y = E Ary rg,yery Wy Wrg w0 Upy,
r1<ra<--<rp
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see (3.2.1). We then get

7 _ 2k+2—7‘h

a = ..
T1,725-5Th 1,72, Th—1,2k+2—1

So, for h > (3, s;) — 2, we get g5, = 0 and for m = (}_ s;) — 2, we have g,, = Kw.
(2) For any ®; € g;—1, where 1 < ¢ < m, note that ®; =, ¢'0;.

Let a£'177'27~~~77't # 0 for some 7, where 1 <14 < 2k 4 1. Let [; denote the number of times
J appears in the sequence (r1,79,...,7¢).

Case (a). If lyp o = sopyo—; and if rj # 2k + 2 — 4, then

7 _ 2k+2—ry
a"’l:---ﬂ"t - a2k+2—i,r1,...,7/‘3,...,7‘t

= 0.
Therefore, 7; = 2k + 2 — i for every j. In this case, ®; = (12;17“.7”772]@4-2—1' + &3 and P2 does
not have the term 7sx12-—;.

Case (b). If lyp12-; < Sopy2—i, then let I = (ji,72,...,7p) be the set in which j appears
sj — l; times for j # 2k + 2 — i and 2k 4 2 — ¢ appears sgp19—; — lop12—; — 1 times. Then,

¢y =ay, ,, w1+ P2, where $o does not contain the term u,, uy, - - - uy, ;.

To make this choice clear, let M; denote the sequence
(L,1,...,1,2,2,...,2,...,2k+ 1,2k + 1),...,2k + 1),

where each j appears s; times for j # 2k 42 — 4, and 2k + 2 — ¢ appears sgp49—; — 1 times.
Notice that

w = up,0;  and  wyy, = 0;.
M;

Let I be the complement to the subsequence (r1,r9,...,r¢) in M;.
Hence, a basis of g is given by the set

{32511 U {wy | T is a subsequence of M; for some i},

(3) This can be proved by noting the following important properties of g:
e Let I = (iy,i9,...,1,) and J = (j1,j2,-..,Jt). Consider
[wr,wy] = ([0, ws],wr] + [0y, [wrr,wy]], where I' = (ig, ..., im—r).

Note that, by definition, [0;,,w ] = w3, where J = (41,71, 72, - - -, jt). Now using induction
on the length of I we see that

[wr,wy] € Span{wy | I is a subsequence of M; for some i}.

e As each 1; = w;'Oop12—i € gs,—1 has a higher power of w; than any of the w;, we have
n; ¢ [g-1,9]. Note that [h;,n;] = {0} for any ¢, j. Further,

[wr,ni] = [0, mi], wr] + (O, [wr s il
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By induction on the length of I, we see that [wy,7;] € Span{w;}. Thus, we have
n; ¢ |g, g] for every i.

(4) Let g =@ | ggl). Then g(-l) =g, fori¢ {s1—1,s9—1,...,80 —1}. Let Z be a

[ (
nontrivial ideal of g(l). Then taking commutators of a nonzero element of Z with appropriate

0;, we see that Z N g_1 # 0. This implies that Z N g_; = g_1. This in turn implies that

oY gg ) € 7. Lastly, w = [Uk+10k+1,w] € .
(5) A basis of gﬁ,?_t, where 1 <t <m+ 1, is given by the set

{wr | I is a subsequence of M; of length ¢ for some i}.

Note that

2k+1
s1—1 so— 1 32k+1 1
W=1U Uy T Ugpyq g uyug - U2kz+2 i u2k+18i .

Similar to the arguments for dimension in the case of 3.9, we see that in this case,

dim g(l) — 9NigNa | 9Nary192k _ 1

Corollary 3.19. All coordinates of N are critical in this case.

4. Superization: Conjectures and Several Theorems

Theorem 4.1. (1) Let g_1 = Q(a,b,c) = Span(dy, ..., 0s1), where p(9;) =i (mod 2), and
let go be 00%—}(1\2) or go = 0011(1]2) ~ coorrr(1|2)M) P realized by vector fields so that

VT = (a+ bc)ugdy + (1 + be)uzdo + (a + 1 + be)ugds + cuq 0y
V™ = buyO + w102 + us03 + u30y
H = a(u161 + U383) + (CL + 1)(U282 + U484).
Then g1 = 0 for any N unless a = 0. If a = 0,b # 0,° and N is large enough, then

sdim g = 2|2 at least for k = 1,2,3,4. (Probably for all k > 0.) Here are bases of gi for k
small:

Fork=1:
C(U1UQ64 + bu%@l) (1 =+ bC) (U1UQ84 + UQU382 + UQU463 =+ U3U464 + bui@l),
C’LL284 + (1 + bC)(’UQU482 + u484)
C(u1u202 + ugua04 + u263 + usuzOy + bu2u461) + (1 + bC) (U3’LL462 + uiag),
c(u20s + ugus0y) + (1 4 be)u20s.

PThese algebras are isomorphic since oo (1)2) = Span(oo%-}(ﬂ?)7 1y)2)-

°If a = b = 0, the representation is reducible, so we ignore it.
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For k = 2:
c(uruddy + buddy) + (1 + be) (ugugugds + ugurdy + uduzdy + uidugds + uguzugdy
+ bugu?l@l + (1 + bc) (u;;u?lag + ui@y,)),
cu3dy + (14 be) (udugdo + ugudy + (1 + be)uios,
c(uru3ds + UrugugOy + udds + uiuzdy + budusdr)
+ (1 + be) (uluiaz + uguszugdy + uguﬁﬁg + U3u?la4 + buﬁ@l,
c(u30y + u3ug0y) + (1 + be)(uguidy + u3dy).

If we set instead g—1 = I(Q(a, b, c)), i.e., p(u;) =i+ 1 (mod 2), then gy =0 for any N
unless a = 1. If a =1, and b # 0, and N is large enough, then sdim g, = 2|2, at least, for
k=1,234.

(2) Let g-1= Q(Aa Ba C) = Span(ab e 764)a where p(al) = p(62) = 67 p(63) = p(a4) =
1, and let gy be 009(1\2) or go = 0077(1]2) ~ coor7(112)M) 4 realized by vector fields so that

E? + B3 = A(u101 + u202) + (A + 1)(u303 + u404) + u102 + uzdy,
E? 4 E?' = Buy03 4+ 1203 + (B + 1)ug04 + (A + BC + C)uzdr + (A + B)ugds
+ Cug0y + (A + BC + 1)uy0s, (4.1)
BB 4+ B3 = (B + 1)u103 + w104 + u203 + Bugdy + (A + BC)uz0;
+(A+ B+ C +1)ugdy + Cugdy + (A+ BC + C + 1)uyds.
Then dimgy = 0 unless A = C =0, but in this case the representation is reducible.
(3) If go = oorm1(1|2), and g_1 is its identity module, then, for N = (n) with n > 1, the
prolong obtained, g« N = ®;>_1 @i, 15 almost simple; that is, gilj)v 1s simple. If 1 < k < 2"—2,
then the following elements form a basis of g n:

03 + ugk)u261, u§k+1)62 + ugk)’LLg;al,

ugk)UQOQ + ugk)u;;ag + u(k_l)

k+1)

u§k+1)61, ug

(4.2)
UQU361.

(4) If go = 0077(1|2), and g1 is its identity module, then, for N = (n) with n > 1, the
prolong obtained, g« N = ®;>_1 @i, 15 almost simple; that is, gilj)v 1s simple. If 1 < k < 2"—2,

then the following elements form a basis of gi n:

ugkﬂ) o, u§k+1) 9y + ugkz) 50, u§k+1) D5 + ugk)ugala
(k)

N 1 (4.3)
ug Juyds + uy ug0s + ulF=)

UQU361.
(5) If go = oo/ (1|2) and g—1 = TI(id) (i-e., the identity oorr(2]1)-module), then dim gy
grows with k. (It is an open problem to describe it.)

Remarks 4.2. (1) It is, perhaps, possible to make the expressions (4.1) look simpler by
choosing some other basis and parameters.

(2) The relations between A, B,C and a, b, ¢ are very complicated. We cannot express one
set of parameters in terms of the other set.

dThese algebras are isomorphic since oo;7(1]2) = Span(oagll)(l\Q), Lyj2)-
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4.1. OOII(kiolkil). Here, B = Iko &%) Ik:1

The Lie superalgebra ooy (ko|k1) has a structure close to that of the Lie algebra o (ko + k7).
They have similar bracket structures, but oorr(ko|k1) in addition has a square operation
on its odd elements. Regardless, the process of constructing the Cartan prolongation of
0077 (ko|k1) is similar to that of o7(ko + k1) which was done in Sec. 3.4.

The algebra ooy (ko|k1) consists of symmetric (kg|k1) % (ko|k1)-matrices. Let g_1 be the
identity go = 007 (ko|k1)-module spanned by partial derivatives, where p(9;) = 0 for i < kg
and p(9;) = 1 for i > kg, as go is embedded into vect(ko|k1)o-

If k1 = 0, then this study is identical to that of o7(ko). Therefore, we assume that
ki # 0.

Let ky = 0 and k; = 1. Then g = {0y, u10;} is nilpotent.

Let ko = 0 and k; > 1. Then g is generated by {0, 7; }1<i<k, U{w} where 1; = u,;0;, and
W= uy U ug0;. We have n; ¢ g, but [, w] € gV). Note that gy has no odd
vector field. Thus, g!) is generated as a Lie superalgebra by the set {dy, ..., 0, } U {w}.

We claim that w is not a square of an odd vector field. Let ® = )", ¢;0; € g, is such
that ®2 = w. Then,

= 0idi(p)05 = 0i0;(:)0,
ij ij

Thus, >, 0i01(9i)01 = ugug - - UkyUky+1 - * - Ukg+k, O1. This is a contradiction as 9;(y;) = 0.

Now, note that [g(1), w] = 0. Thus, w ¢ g(®. We now see that g(® is simple with a basis
{wr | IS A{1,... ,k1},I# 0}. Hence, dim g® = 2k — 2,

For the rest of this subsection we assume that kok; #0.

Let k= ko + k; and s; = 2Vi — 1 for i < kg, and s; = 1 for i > k. Embedding gg in
Uect(k(];ﬂ‘kl)o we get:

k
go = Z alu;0; | al € K such that a] = aé- for all 7, j
ij=1

This implies that g = (go,g—1)«n consists of all vector fields ) . ¢;0; such that 0;(yp;) =
0 (i)
We now refer to the Subsec. 3.4.

Theorem 4.3. (1) We obtain the Cartan prolong as a Lie superalgebra g = (g—1,80)« N =
G 1D D gy form= > si)—2, and g,, = Kw, where

S1,,52 Sz 1, 8;—1, Sit1 k s1—1 32 1
w—g wptug® T g w0 = . g ULUS + U 0.

Further, let n; = u}'0; € gs,—1 for 1 <i <k.

For any sequence I = (i1,iz,...,i), where i; € {1,2,...,k}, let w )y = w and w; =
ad;, ad;, - - -ad;, w. Then, a basis of g is given by the set {n; h1<i<x U{wr|wr # 0}.

(2) If ko = k1 =1, and N1 = 1, then g is solvable.

If k> 2, and N; = 1 for all i such that 1 < i < kg, then the Lie superalgebras g, g™ are
not simple. In this case, the Lie superalgebra g® = [gV), g(M] = @1 g§2) is simple.



292 U. N. Iyer, A. Lebedev & D. Leites

As a Lie subsuperalgebra of vect(ko; N|ki) it is generated by the set {01,0,...,
Ok, W(1), - - > Wk }-

If N; > 1 for some i, where 1 < i < kg, then g is simple and is generated by the set
{61, 62, ce ,6k,w}.

(3) When N; = 1 for all i such that 1 < i < ko, then g is simple, and dimg® =
2k + k — 3.

When N; > 1 for some i such that 1 < i < kg, then dimg = 2N +Net+Ne _ 1 4

Proof. (1) The proof is similar to the theorem in 3.4.

(2) Let kg = k1 =1 and Ny = 1. Then g = {01, 02, u101,u202,u102 + u20;: } and is a
solvable Lie superalgebra.

Let N; =1 for all i such that 1 <i < k. Note that u;0; ¢ gV, [u;0;,w] = w € gV,
and (ulaj -+ Ujai)Z = u;0; + Ujaj € g(l).

As seen above, w is not a square of an odd vector field. Moreover, [g(()l),w] = 0. Hence,
w ¢ g3, whereas, [u;0; + u;0j, W] = we € g . We thus see that g(®) is generated by the
set {61, ce ,Ok,w(l), ce ,w(k)}

i+ 1
Let N; > 1 for some i such that 1 <i < ky. Let t; = Si +

. Then,

i = w0 = (ko1 + ' kg 410;)°
is a square of an odd vector field. Note that we are using the fact that (2;;1) is odd for
n > 1.

Thus 7;, and hence u;0;, are generated by the set {9,..., 0k, w} whenever N; > 1.

Note that (u;0, + u.0;)% = u;0; + 1,0, for every pair t,r such that r < kg < t. This in
turn implies that every u,0, for 1 < r < k are generated by the set {01,..., 0k, w}. Hence,
this set generates all of g.

We now claim that g is simple. Any nontrivial ideal Z of g intersects g_1 nontrivially, and
therefore g_1 NZ = g_1. Thus, Z contains wy for I # (). This implies that 7; € Z whenever
N; > 1. This in turn implies that u;0; € Z whenever N; > 1. Thus w = [w, u;0;] € Z. This
implies that all the generators of g are in 7.

(3) Let £ > 2 and N; =1 for all i such that 1 <i < ky. The set

{wﬂ[;{1,...,]{:},[75@}U{uiai—l-uj'aj‘i;ﬁj}

is a basis for g(®. Hence, the dimension is 2F —2 +k —1=2F 4 k — 3.
Let N; > 1 for some i such that 1 <i < ky. The set

{wrl I G {L Lk U {nihi<ick
is a basis for g. Hence, the dimension is 2V +Ne — 1 4 k. O
Corollary 4.4. All coordinates of N are critical in this case.

Remark 4.5. When k; is odd, w is not a square, as w is an odd vector field. When kg # 0,
k1 is even, and NV; > 1 for some 4 such that 1 < i < kg, then w is a square of an odd vector
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field. Without loss of generality, assume that Ny > 1. Then let

Q= w3 . kokot2kot3rk) T W 101 L 202 e gk okot1)
~ <~ —

s1—2times so—1times sko—ltimes

Sk0—2

ko
s1—1 so—2 2 : ~
:ull UQQ ,..uko ( Ul"'ui"'uk0+1ai+U1"‘Ukoak0+1>
i=1

k
i=1,iko

Then we can see that ® is an odd vector field and ®2 = w.

4.2. 00\ (ko|k1)

If k&1 = 0, then this study is the same as that of the Cartan prolongation of ogl)(k:o), see
Sec. 3.2.

If ko = 0, ky # 0, then the Lie superalgebra 0o\ (ko|k1) = {[X,Y]| X, Y € 007 (ko|k1)},
consists of symmetric matrices with diagonal entries equal to zero. In this case, the Cartan
prolongation, g is generated as a Lie superalgebra by the set {w,d,...,0, } where w =
Zf;l uy U ug, 0; (see 3.2 for the case N = (1,1,...,1)). Note that this w is not a
square of an odd vector field as seen in Subsec. 4.1. Hence, g(!) is simple of dimension
2k1 — 2 (identical argument as in 3.2).

For the rest of this subsection we assume that koki #£0.

Then, 00'Y (kolk1) = {[X,Y]| X,Y € ooss(ko|k1)} @ {X2| X € oos;(kolk1)i}. consists of
symmetric matrices of trace 0.

Let k = ko + k1 and go = 00'") (ko[k1), and g = (g0, g1)«.x = Sr> 18-

Theorem 4.6. The Lie superalgebra g consists of all vector field ), ¢;0; such that
> 0i(¢i) = 0 and 0i(p;) = 0;(i) fori # j.

(1) If k =2, then g = g_1 @ go 1s solvable.

(2) Let k > 2, and N; = 1 for all 1 < i < ko. Then g = @S_1<r<k—20r,
and gi—2 is one dimensional spanned by w = Y, ujug---U;---upd;. Let wr denote
ady, adg,, -~ -ady, (w) for I = (iy,...,i).

The Lie superalgebra g is not simple. The first derived algebra g(l) is simple, gener-
ated as a Lie superalgebra by the set {w(i), Oi h<i<k and of dimension 2k 4k — 3.
The same result is obtained when kok, # 0, and N; = 1 for exactly one i,1 <
1 < ko.
(3) Let ko > 1 and k1 > 0, and N; = 0o for every i,1 < i < ky.

m+2—r

Form >k — 1, we have dimgm:2:::01(’“71)(14:0—1)L > Foro<m<k—1,

r

+ (ko)

m+42—r J

we have dim g, = 27 (¥ 1) (ko — 1)1

r

Proof. Let ® € g; for h > 1. Write

_— . . R i DR
¢ = E ©i0;, where @; = E Ay g yrgy g U Urg Urp g
7

T1,725--sTh+1
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1

(earlier conventions apply). As [0;, ®] € g1, we see that a, .
k _ i — L
ryrg,ernik = 0, and Aryrgernsd = Yy ra,rysg for i # j.

2
..,Th,1+ar1, g Tt

T2y.5Th;

(1) If k = 2, then the conditions on a’ imply that aé’j =0 for any 4, j. As aﬁjj = a{ji =0,
we get g1 = 0. Hence the result.

(2) Let k > 2, and N; = 1 for all 4; that is, s; = 1 for all 4. The conditions on a} imply
that every af‘h...,rh,j,j = 0. Thus, we have g, =0 for h > k — 2 and g;_» = Kw.

We have seen in 4.1 that w is not a square of an odd vector field. As [go, w] = 0 and w
cannot be square of a vector field, we see that w ¢ g(l). Let h; = w101 +u;0; for i > 1. Then,
hi = (u10; + u;01)% € gV, As [hy, w] = 0, we have [hi, w)] = wey and [y, w()] = w(yy for
i > 1. Thus, g(!) as a Lie superalgebra is generated by {w(), Oi}1<i<k- As in the case of
the Cartan prolongation of ogl)(k:) (see 3.2), we see that the set {wy |1 G {1,2,...,k},I #
¢} U {hiya<i<k is a basis of g(1). Hence the dimension is 28 —2 + (k —1) = 2F + k — 3.

(3) Let kg > 1 and k; > 0, and N; = oo for every i,1 < i < k.

We first present an example: Let kg = 3 and k; = 1 and consider ® = Y. ¢;0; € g3
where each p; = Zm,...,m a}ﬁhmmu” -+ - uy,, and the usual conventions apply. To find a basis
for g3, we note that

1 _ 2 3 4
111,10 = 01112 T 0111301114

1 1

=aj 199+ 0a1133+0

_ 2 3 2 3

= (ajg09+aigs3) +(aia33+ajsss)

_ 1 1 1 1

= (ag999 +a2233) +(a29335+a3333)-
Thus, we get four linearly independent vector fields determined by a% 111

(uf + udu3 + u3)01 + (vdus + uiud)ds,
(uf + uiud + udud) o + (ufus + urusud)ds + (wrudus)ds,
(uf + uiud + u3u3)0r + (urugu3)ds + (wius + uiu3ug)os,

(1/1l + u%u% + u§)81 + (u‘;’u;), + ulug)ﬁg.

That is, we see that the coefficient a:11,1,1,1 can be transformed by changing every pair
(1,1) to a (2,2) or (3,3). Since there are 2 pairs of (1,1) and a single 1 (a single 1 cannot
be transformed, so it does not contribute towards the count) in the description of ah’l,l,
there are 4 linearly independent vector fields. See figure below for a%,l,l,Q:

2 . al _ a2 .
= al,],l,l * 1,2,2,2 - 1,1,2,2’

2
— -
= 33220

= 2 = a3 L]
1133 1,1,2,3 »
2 3 3 2

= @133 = %0230 %332 = D5
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Thus, we get 4 linearly independent vector fields determined by a%,l,lﬂ’ a%717173, or ail,lﬁl'
There are 2 linearly independent vector fields determined by a%,1,2,3’ a%717274, a%717374, or by
aim’ 4- Note that the vector fields corresponding to a%,2,2,2 or any other coefficient can be
obtained as a linear combination of the above. That is, g3 is 24 dimensional.

Let m > 3. For any natural number ¢, denote by L%j the greatest natural number less
than or equal to (%) For S C {2,3,4} of cardinality m +2 —t, S = {j1,..., jm+2—t}, the

number of linearly independent vector fields in g,,, determined by alL L jma 1S olsl,
t—1times
Note that all,._”l,jlw’jmﬁit has ¢t number of 1’s including the upper index.
t—1times

Returning to the general case, let m > k — 1. For S C {2,...,k}, S =
{ji,-- -, jm+2—t}, the number of linearly independent vector fields in g,, determined by
al 1 joeimsns 18 (ko — 1)L%J. Thus the number of linearly independent vector fields cor-

t—1times
m+2—r

responding to all the subsets of {2,...,k} of cardinality r is (¥ (ko — 1)L 5=, Hence,

m+2—r

the dimension of g, is Zf;ol(k " (ko — 1)

”

Now let 0 < m < k — 1. Those vector fields in g,, determined by the coefficients

a%,jl,‘u,jm correspond to subsets of {2, ..., k} of cardinality at most m. In addition to these,
we need to count those vector fields determined by the coefficients a% .,
elements i, j1, ..., jm+1 are distinct. Every such coefficient gives exactly one vector field; for
example, a%73 = ai3 = a‘i’a corresponds to ususzd; + ujuzde + uiusd3. This count is (mi 5)-

Hence the result. O

where all the

Remark 4.7. When kg > 1,k > 0, N; < oo for all ¢ such that i < kg and N; > 1,N; > 1
for any 7 # j,4,j < kg, then computing the dimension and checking for simplicity of g seems
to be a difficult problem. At this point we are unable to conclude anything for this case
especially when kg > 2. Conjecturally, all coordinates of [N are critical in this case.

4.3. c(00'Y (kolk1))

If k1 = 0, then this study is the study of c(ogl) (ko)) (see Subsec. 3.3).
If ko = 0, k1 # 0, then c(oogll) (0]k1)) consists of symmetric matrices such that all the

diagonal entries are equal. The Cartan prolongation is again similar to that of c(og-l)(kzl))
(see Subsec. 3.3) with sy, = 1. Here, g is generated, as a Lie superalgebra, by the set
{01,...,0k,,w,n}, where n = > u;0;, and w = ), uy--- ;- - - ug, 0;. Recall that w is not
square of an odd vector field. Note that gy has no odd vector field.

(1) When k; > 2 is odd, 7 is not a square of an odd vector field. Moreover, [n,w| =w €
g, and n ¢ g™, Thus, g(V) is generated as a Lie superalgebra by the set {0y, ...,,, w}.
But w ¢ g®). Thus, a basis for g(®) is given by the set {wy | I GA{l,... k1}, 1 # (}. Hence,
g®? is simple of dimension 2F1 — 2.

(2) When k; > 2 is even, w,n ¢ g(') as [go,w] = 0 and w is not a square of an odd
vector field (likewise for ). In this case, g(!) is simple of dimension 2¥* — 2 for the same
reason as above.

(3) For k1 =1, g = {61,11431} is nilpotent. For k1 = 2, g = {81,82,U181 + U900, u109 +
u201 } is solvable.
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If kgky # 0, then there are two cases to be considered:

Case 1: kg + k1 is even. In this case, 00%—)(]60“61) contains the scalar matrices, and hence
c(oogll)(k:o|k:1)) = 00511)(160‘]61), which has been studied in Subsec. 4.2.

Case 2: ky + k1 is odd. In this case, we see that
(004} (kolk1)) = 00} (olkn) © K(I) = 007 (hokn)

where I stands for the (ko|k)-identity matrix. This case thus reduces to that studied in
Subsec. 4.1.

4.4. 00[1‘[(k§0|2k§1). Here B = Iko b H2k1

The Lie superalgebra gg = oory(ko|2k1) consists of matrices

ko k1 k
ko [ A Cy CF
kx| C1 Dy Do |, where A" = A, D} = Dy, D} = Dj.
ky \Cy D3 D}

If k1 = 0, then the study is the same as that of 07(kg) (see Subsec. 3.4).
Let g_1 be the identity gg-module spanned by partial derivatives as gg is embedded into

vect(ko; N|2ky)g. Let s; = 2Vi — 1 for i < ko, and s; = 1 for i > k.

We then have: Z” a; ulf) € go for a] € K, where aj = acgj)) and where

r if r < ko,
cr)y=<Sr+k ifkg+1<r<ky+ ki,
’I”—kl 1fk0+]€1+1§7”§]€0+2k1

Theorem 4.8. (1) The Cartan prolong (§—1,80)«n s a graded Lie superalgebra
9=(0-1,00)sN =0-1 DG DI DR D D g,

where m = 2k; — 2 + Zl 1 8i- Further, g, = Kw, where

. ko+2k1
s1—1 so— 1 Sk -
w=u" Uy o 0 E ULU - C Ukg42k, 05 | -

(2) Let n; = ufiﬁc(i) € gs,—1 and let M; = (1,1,...,1,2,2,...,2,...) be a sequence of
elements from {1,2,... ko + 2k1} such that j appears s;j times when j # c(i), and c(i)
appears Sq;) — 1 times.

For any subsequence I = (i1,ig,...,it) of some M;, let wy = w and w; =
adp, adg,, --- ady, w. Then, a basis for g is {ni}or2k G fwr | wr # 0}.

(3) For ky =0, ky = 1, the Lie superalgebra g is solvable of dimension 5.

(4) For kg = 0,ky > 1, the Lie superalgebra g is not simple, but g(l) is simple of
dimension 22 — 2 with basis {wr |1 S {1,...,2k}, 1 # 0}.
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(5) Let kok1 # 0 and k = ko + 2ky, and N; =1 for all i such that 1 < i < kg. Then the
Lie superalgebras g and gV are not simple.

The Lie superalgebra 9(2) is simple of dimension 2 —2 + 2ky; it is generated, as a Lie
superalgebra, by the set {01, ..., 0k, Wy, .-, Wk }-

(6) Let kok1 # 0 and k = ko + 2k1, and N; > 1 for some i such that 1 <i < kqo. The the
Lie superalgebra g(l) is simple of dimension 2Nt +tNe — 1 4 2ky; it is generated as a Lie
superalgebra by the set {w, 0y, ...,0}.

Proof. (1) For h > 1, let ® € gj,_1. Write

¢ = 2 617 where Y = arl,rg,...,rhu"‘lum Ury,
i r1<ra<--<rp

and where we use the same conventions as before. We then have

i _c(rp)
Ay rgseern = By ra,rn_yeli)”

(2) The proof is similar to the proofs used for the study of Cartan prolong of o7(k); see
Subsec. 3.4.

(3) Let kg = 0 and k; = 1. Then g = {01,0,w, 771,772} where w = w101 + u20s,
m = w102, and 1y = usd;. Further, gt = = {01, 02, w}, and g® = = {01,02}. So g is solvable.

(4) Let ko = 0 and k1 > 1. Here, w = Y, up -+ ey - u2k18. We see that 7; = u.(;0;
cannot be obtained as from w via successive commutators with elements of g_1, as u.(;) is
not a factor of the coefficient of 0; in w. As n; € go, and go has no odd derivation, n; cannot
be a square of an odd derivation. Thus 7; ¢ g,

We now claim that w ¢ g(M). Note that [u,.d, + Ue(r)Oe(ry; w] = 0. Hence, [u,0; +
Ue(#)Oc(ry; w] = 0 for r # c(t). Likewise, [uc()0r, w] = 0. Therefore, [go,w] = 0, hence w
is not a commutator in g. It remains to be checked whether w is a square of an odd vector
field.

Let w = ®2 for some odd derivation ® = > ©i0;. As m; is even, it is not a summand of
®. Thus 9;(¢.;)) = 0 for every i. Now, ®* = Z” ©i0i(7)05 = >, ; Pi0c(j) (Pe(i) )0

Thus, Zz 90181614-1(906(1)) = w ukl-‘rl T U2k, - That is, 8k1+1(21§k1 90190@(1‘)) =
ul---m-uu%. Hence, Zigkl PiPe() = U1 Ugk, + f for some polynomial f such
that 01(f) =

As 0,3)(¢i) = 0 for every i, there is a j such that 0.;)(¢.s;)), and 9;(¢;) are both
nonzero and pjp.;) = u1 - - - ugg, + lower degree terms.

Now let ¢; = ujg + h and as 0;(p;) = 3,;(]')(90(:(]')), we have ¢.(j) = uc(;)g + ¢ such that
deg(g) > 1 and

0)(9) = 0w (9) = B5(h) = Dy (1) = 0.

But ¢;pc;) = wjgy + uejygh + htp which has lower degree than 2k;. Therefore, w ¢ gt
Hence the result.

(5) A basis for g is {n;}; U{wr|I S {1,...,k}}. Note that n; = uc;0; = (uc;)01 +
u10;)? € g for i > ko. But n; ¢ g for 1 < i < kg as it cannot be obtained as through
commutators nor is it a square of an odd vector field.

Also, [uim,w] = w € g, Thus, gV is generated by the set {w,dy,...,d}. Using
the fact that 0;(¢;) = 0 for ® = 3, ¢;0; € g) odd and i < ky and arguments as in the
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previous case gives w ¢ 9@ . Moreover, the Lie superalgebra g is simple generated by the
set {w(1y, .- W), 01, .., 0k} A basis for g is given by the set

{01, 0y Udwr | TG {1, k)T # 0} U {nidisi-

Hence, dim g® = 2F — 2 4 2k;.

(6) Note that for j < ko, and N; = 1, we have seen that 1; cannot be obtained as a
commutator nor as a square of an odd vector field. We now show that for j < kg and N; > 1,
again 7; ¢ g, As 7n; has the highest degree of u; in its description, it cannot be the result
of a commutator. We are using the fact that [go,n;] = 0, and [wr,,wy,] € Span {w;}.

Without loss of generality, assume that j = 1. Let there be an odd vector field
® = > .¢0; € g such that 2 = p = uj*01. Then we have Zi<k0 wioh (¢i) +
N (ko r1<i<horks Pite(i)) = ui'- If ¢; = 0 for every i < ko, then uj' is in the image of o1,
which is not possible. Therefore, ¢; # 0 for some i < kg, and ;01 (¢;) = uj' + other terms.
As ¢; is odd, there exists a j, j > ko such that ¢; = u; f + g, where f is even, g is odd, and
9;(f) = 9;(g) = 0. Thus, p;01(p;) = u; f? + gf. As g is odd, there exists a t,t > ko such
that ¢ = u; f1 + g1 where g1 is now odd. Continuing thus, we see that no term of ;0;(¢;)
is free from odd variables. In other words uil cannot be a term of ;0;(p;). This gives us
the necessary contradiction.

Thus g™ is a proper ideal of g. Note that if N; > 1 for some j < ko, then u;0; can be
obtained by successive commutators from w. Now, w = [u;0;,w] € g,

We now show that g(!) is simple. Let Z be a nontrivial ideal of g Then we see that
INg_1# ¢, which implies that ZNg_1 = g_1. Thus, w; € Z for I # () and so w € Z.

For t > ko, e = uc(t)at = (uc(t)ﬁl + ulat)Q S Therefore, 1= g.

A basis for g is {wy |w; # 0} U {n;}isk,- Hence, dimg = 2M++Ne — 1 4 2. O

Corollary 4.9. All coordinates of N are critical in this case.

4.5. 001 (ko|2k1)
The Lie superalgebra

g0 = 00\ (ko|2k1) = {[X, Y| X,Y € oo (ko|2k1)} @ {X?| X € oosm(ko|2k1)7}

consists of matrices

ko ki k1
ke /A CY Ct
ki| ¢y Dy Dy |, where A' = A, Dé = D>, Dé = D3, diagonal entries of A are 0.
ki \Cy D3 D!

If k1 = 0, then this study is identical to that of ogl)(kzo) done in Subsec. 3.2.
In this subsection we assume that k; # 0.
Let g_1 be the identity go-module spanned by partial derivatives as gg is embedded into

vect(ko; V[2k1)o. We then have: >, . alu;0j € go for a] € K, where aé- = azg)) and a! = 0
for i < ko; here ¢(r) is defined in Sec. 4.4.
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Theorem 4.10. (1) The Cartan prolong, (g—1,90)«nN, i a graded Lie superalgebra
0=(9-1,00«N=0-1D00Pg1 DPI2D - Dgm, wherem =ko+ 2k —2.

Further, g,, = Kw, where

ko+2k1
w = E LU Ug(f) Uk +2k, 05 | -
i—1

For any proper subset I = (iy,iz,...,i;) of the set {1,2,... ko + 2k1}, let wiy = w and
wr = ady, ady,, -+ adg,, w. Then, a basis for g is {wr}rcria,  kot2k}-

(2) For kg = 0,k; = 1, the Lie superalgebra g is solvable of dimension 5.

(3) For kg = 0,ky > 1, the Lie superalgebra g is not simple, but g(l) 1s simple with basis
{wr | I G{1,...,2k}, 1 # 0}, and dimg!) = 22k — 2,

(4) Let koki # 0, and k = ko + 2k1. Then the Lie superalgebras g, and gV are not
stmple. The Lie superalgebra 9(2) is simple of dimension 28 — 24 2k, and is generated as a
Lie superalgebra by the set {01,. .., Ok, Wy ,w(k)}.

Proof. (1) For h > 1, let ® € g;,_1. Write

¢ = 2 617 where Y = arl,rg,...,rhu"‘lum Ury,
i

r1<re<--<rp

and where we use the same conventions as before.

We then have al ., . = :Efgz),m,rh_l,cu)’ and al, ., . = 0fori < koifi=r; for
some some j. Rest of the proof is similar to the proofs used for the study of Cartan prolong
of ogl)(k:); see Sec. 3.2.

(2) Identical proof as part (3) of Theorem 4.4.

(3) Identical proof as part (4) of Theorem 4.4.

(4) Identical proof as part (5) of Theorem 4.4. Note that the fact that N; > 1 does not

affect the Cartan prolongation in this result. O

Corollary 4.11. No critical coordinates of N in this case.

4.6. c(00'1)(ko|2k1))

Here, we extend the Lie algebra 00%—}(160‘2]{}1) with a central element. Thus, the Lie super-
algebra go = c(oo%(kgﬂk‘l)) consists of matrices
ko ki ki
ke [ A CL Ct
kl Cl D1 D2 s and At =A= (ai]’), Qi = Ajy4, Dé = DQ, Dé = D3.
ki \C» Ds; D!

If k1 = 0, then this study is identical to that of c(og-l)(k:o)); see Subsec. 3.3. If kg = 0, then

c(oo%—}(0|2k1) o~ 00%—}(0|2k1)) which has been studied in Subsec. 4.5.
For the rest of this subsection we assume that kok; # 0.
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Let g_1 be the identity gg-module spanned by partial derivatives as we embed gg into
vect(ko; N|2k1)o. We then have: Z” alu;0; € go for al € K, where aé- = azg)) for all 7, and
where a! = a;: for 4,5 < ko. Again, ¢(r) is same as defined in Sec. 4.4.

Theorem 4.12. (1) The Cartan prolong, (§—1,90)« N, i a graded Lie superalgebra

9=(9-1,00)«N=0-19000P 01 DG P Dgm, wherem = Syin + ko + 2k; — 3.

Further, g,, = Kw, where

ko+2k1
i=1
here (3_u™) is the sum taken over all v = (ry,...,7r,) such that all r; are non-negative

and even, and 11+ -+ -+ Tk, = Smin — L. Let n = (D u") (w101 + w202 + - - - + up, Ok, ) , where
(>_u™) be the same as above. A basis of g is given by the set

{a‘dgi T adg];: w, [(dy,....dy) € Zgo\{(smina L1,....,0)}d < Smin,dj <1 for j # 1}
U{n} U {ucw i tro+1<i<k

(2) Let smin = 1. If ko is even, then w,n ¢ gV, and gV is simple of dimension
2k — 2 4 2k, generated as a Lie superalgebra by the set {w(l), s Wk, Oy , Ok}

If ko is odd, then n ¢ gV w ¢ g® and g is simple of dimension 25 — 2 + 2k,
generated as a Lie superalgebra by the set {w(l), W), O1y , Ok}

(3) Let Smin # 1. The Lie superalgebra g is not simple.

If ky is odd, then gV is simple, generated as a Lie superalgebra by the set {w,
O1,...,0c}, and of dimension (symin + 1)2F — 1 + 2k;.

If ko is even, then the Lie superalgebra gV is simple, generated by {w(l),...,
W), 01, - -, Ok}, and of dimension (Smin + 1)2F — 2 4 2k;.

Proof. (1) For h > 1, let ® € gj,_1. Write

¢ = ' 617 where Y = arl,rg,m,rhu"‘lu"? Ury,
i r1<ra<--<rp

. 3 c(r
and where we use the same conventions as before. We then have a;, ,, . = arg 772) rn (i)
I’ RS — 1
Ay rg,.ry, = 0 if ¢(i) = rj for i > ko and some j, and where a; ., . = a;ﬂ"%---ﬂ"h for i,j < ko.

Rest of the proof is similar to the proofs used for the study of Cartan prolong of c(ogl) (k));

see Sec. 3.3.

(2) Let Smin = 1. Note that [, w] = 0 if kg is even, and [n, w] = w if kg is odd. In either
case, note that square of an odd vector field in go is of the form u,;)0; for j > ko. Moreover,
7 cannot be be obtained as a commutator. Hence 7 ¢ g, Thus, gV is generated as a Lie
superalgebra by the set {w,01,...,0;} if k is odd, or by the set {w(y),...,wg), 01, .., 0k}
if k is even. The result therefore follows.

(3) Let Smin # 1. Then, an argument identical as in part (6) of Theorem 4.4 shows that
n is not a square of an odd vector field from g. Moreover, 7 ¢ [g, g] as seen in Subsec. 3.3.
Hence, 7 ¢ g1,
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If ko is odd, then [}, w0, w] = w € g, Thus, g(V) is generated as a Lie super-
algebra by the set {w, 01, ..., 0}, with basis

{adgi e adg: w, | (dy,...,dg) € Zgo\{(smm, L1,....,10)}di < Smin,d;j <1 for j # 1}
U{te(i)0i b ro+1<i<k

Hence, gV is of dimension (Smin + 1)2F — 1 + 2k1.

If ko is even, then [> ., u;0;,w] = 0. In fact, one can check that [go,w] = 0, so
w ¢ [g,g]. It remains to be checked whether w is a square of an odd vector field from g. Let
® =", ;0; € g be an odd vector field such that ®? = w. Then

i<ko ko+1<i<ko+k1
the coefficient of 0; in w. As ® € g, we get 0;(p;) = 0;(;), and 0;(p;) = 0j(p;) for i, j < ko.
So, (using the fact that ko is even), we get >, 0iO1pi = Y ocicp, Oi(p14pi). Thus,

> i) + 0 Yo e | = (ZU£> Up - Up.

2<i<kg ko+1<i<ko+k1

Let (> u)ug - - uy be a term in 9;(p1¢p;) for some i < k.

Without loss of generality, let d2(p1902) = (> ut)ug - - - up+ other terms. This is impos-
sible if spin = So. If So > spin then o1 = (ZO<2t<smin+l gf(t)u%t)ug -+ - up+ other terms;
here, u®) stands for the sum taken over all r(t) = (ri(t),r3(t),...,rk(t)) such that
every 7;(t) is non-negative, even, and 7(t) + r3(t) + -+ + 7k, (t) = Smin + 1 — 2¢, and
Ut = ululE e uto.

U 1 U3 ko

Now, (D 0cot<s.. 1 uf®y3t) is irreducible and hence is a factor of a term of ¢; or o,
which is not possible. Hence, w is not a square of an odd vector field.

On the other hand, (Y u")ug - --uy cannot be a term of O (pip.(;)) for i > ko, is not a
multiple of u;u.;) as argued in part 4 of Theorem in Subsec. 4.4.

Thus w ¢ g, Hence, gV is generated as a Lie superalgebra by the set

{w(1)7 e W), O1y e , O}, with basis
{add ...ad@ w, | (dy,....dy) € ZEN{(0,...,0), (Smin, 1,..., 1)},
di < Smin, dj <1 for j # 1} U {ue) i kg +1<i<k-
Hence, gV is of dimension (Smin + 1)2F — 2 + 2k O

Corollary 4.13. The critical values of N in this case are of the form (n,n,...,n).

4.7. 001‘[[(2ko|k1)
The Lie algebra go = oori(2ko|k1) consists of matrices
ko ko ki
ko (A1 Ay B

k(] A3 A'i Bg 5 where Ag = AQ, At = Ag, Dt =D.
ki \B, B! D
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Let g_1 be the identity ggo-module spanned by partlal derivatives as gg is embedded into
vect(2ko; N|k1)o. We then have: Z” azuﬁ € go for al € K, where aj =a E])) and where
r+ ko if r <k,
cr)=<9r—ky ifkg+1<r <2k,
r if 2k +1 <17 <2kg+ k1.

Let s; = 2Ni — 1 for i < 2kg, and s; = 1 for i > 2kg.
Theorem 4.14. (1) The Cartan prolong, (§—1,90)«nN, 15 a graded Lie algebra

2%ko
0=(9-1,00)«sN=0-1D g0 DG Dg®D - Dgm, wherem =k _2+Z‘9i'
=1

Further, g,, = Kw, where

1 2ko+k1
s1—1_ so— ]. 52k0_
w=u'"" U C Ugy g ULUS * Uk 4k, Oi | -

For every i,1 <i <k, let n; = u*Oc(y € gs,—1 and let M; = (1,1,...,1,2,2,...,2,...) be
sequences of elements from {1,2,...,2ky + ki} such that j appears s;j times when j # c(i),
and c(i) appears sq;y — 1 times. For any subsequence I = (i1,ia,...,%) of some M;, let
w(y =w and wr = ady,, ady,, -+ ady,, w. Then, a basis for g is {nihi<i<i U{wr |wr # 0}.

(2) Let k1 =0 and N; =1 for every i,1 <i < 2kg. Let kg = 1, then g is solvable. If
ko > 1 then g is simple, of dimension 2250 — 2 and generated as a Lie algebra by the set
{ways - wey, O,y - -+, Ok}

Suppose k1 =0 and N; > 1 for some i,1 < i < 2ky. In this case g(l) is simple of
dimension 2N1 TNk _ 9,

(3) Suppose koki # 0. Then g is simple of dimension 2N FNekotkr _ 9 4 ok,
generated as a Lie superalgebra by the set {w(l), s Wk, Oy , Ok}

Proof. (1) For h > 1, let

® cgp_1, where & = Z(piai,
i

and where ' = Z Up, Upy - - - Uy, , under the same conventions as before.

ai
r1<ro<--<rp T1,72,..0Th

We then have a' — o)

T1,72,--,Th 71,72, Th—1,¢(2) "

Rest of the proof is similar to the proofs used for the study of Cartan prolong of o7(k);
see Sec. 3.4.

(2) Let kg = 1, k1 = 0, Ny = 1. Then g = {01, 02, u102,u201,u101 + uzds}. Further,

b= {01, 02, u101 + uz02} and g = {01, 0,2} is abelian.

Let kg > 1, k1 = 0, and N; = 1 for every ¢ such that 1 < ¢ < 2ky. Then, note that
ni = w0y ¢ gM). Moreover, [go, w] = 0. Thus, g!) is generated as a Lie algebra by the set
{way, - wy, 01, - .., Ok} and a basis for gV is given by the set {wy | T GAL... K} T # ¢}
Hence the result.
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Suppose k1 = 0, and N; > 1 for some i,1 < i < 2ky. Again in this case we see that
n; = ujjac(j) ¢ g for every j,1 < j < 2kg, and w ¢ g, Therefore, a basis for g(!) is given
by the set

{adg! - ad® (w) [ (di, ..., d) € ZEN (51, 58), (0,...,0)}}.

(3) Note that w = [nog,+1,w] € g, and for every i < 2kg, we get n; = (’U/l;iagko_t,_l +
uﬁi_1u2k0+186(i))2 e g, where t; = %(sl +1). On the other hand, if ¢ > 2kg, then n; = u;0;
cannot be obtained as a commutator, neither is it a square of an odd vector field from gg. So,
n; & g(l) for i > 2kg. Thus, g(l) is generated as a Lie superalgebra by the set {w, 01, ...,0}.

We now claim that w ¢ g(®. Note that [gél),w] = 0, and this implies that w ¢ [g(V), g™)].
It remains to be seen that w is not a square of an odd vector field from g(¥).

If k1 is odd, then w is not a square of an odd vector field. So suppose that k; > 1 is
even. Let ® = 3", ;0; be such that ®? = w. As ® € g, di(p;) = Oc(j)(¢eiy) for every pair
i,7; as ® is odd, ; is odd for ¢ < 2kg, and for i > 2kg, ¢; is even, and 0;(¢;) = 0. Thus,

— S
D h(piven) + Y widi(wi) = uft T IuS g gk 41 - up
i<ko i>2ko

(the coefficient of 9y in w). As ¢; does not have wu; in its description for i > 2k, we see that

s1—1 s S2k
Z 81(%’%(@) =uy' uy - -u%o‘) Ugko+1 - - Uk + other terms.
i<ko

Thus for some ¢ such that ¢ < kg, we have

51, 8 52k
PiPe(i) = Uy U” ++ + Ugy "Usky41 * * - U + other terms.

Let ¢; = > yurfr and let ;) = D yurgr where uy denote an odd degree mono-
mial in the odd variables uag,41,...,ux, and fr,gr are polynomials in the even variables
Ui, ..., Usk,. Thus, there exist indexing sequences I, J such that

Sak
urug frgr = ujtus? - - -u;m"quOH -+ -u + other terms.

As 0i(pi) = Oc(iy(@e(s)), we see that 0;(fr) = 0O.z)(gr) for every indexing sequence I.
So, if fr has the term auj'-- u;i’;o for some nonzero scalar «, then g; has the term
auft i uzgﬂ - ugizo (assuming without loss of generality that i < ¢(i)). Using
the combinatorial fact that (277'; 1) is odd for any r,0 < r < 2" — 1 and n > 1, we see that
ugyurfrgr also has ujtus?® - - - uzzzo Ugkg+1 - Uk as a term. This implies that ¢;p.;) does not
have uj'u3? - u;i’;‘) Ugko+1 * - - Uk as a term. Hence w ¢ g,

Therefore, a basis for g is given by the set
{adg! -+ ad@ (w) [ (d, ..., dy) € ZEN{(0,...,0), (51, ., 56)}} U {mi hr<i<ono-
Simplicity is proven as in the previous cases. U

Corollary 4.15. All coordinates of N are critical in this case.
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4.8. OO (2’450“{:1)
The Lie algebra go = 00%}(2]4:0%1) consists of matrices
ko ko ki
ko (A1 Ay B
ko| A3 A} B2 |,
ki \B, B! D

where AY = Ay, AL = A3, D' = D,
the diagonal entries of D are all equal to 0.

The case of kgk1 = 0 has been studied in previous sections. So, assume for the rest of
this subsection that kok; # 0. Let g—; be the identity go-module spanned by partial
derivatives as gg is embedded into Uect(2k‘0;N|k‘1)g. We then have: Y. . alu;0; € go for

1,7 1
al € K, where a’ = Ej)) for all 4, j, and a i) = 0 for ¢ > 2kg, where ¢(r) is defined in

J
Sec. 4.7.

Theorem 4.16. (1) The Cartan prolong, (§—1,90)«nN, i a graded Lie algebra
9=(0-1,00)«N=0-1DP90P g1 PP D Dgm, wherem =2ky+ ki —2.

Further, g,, = Kw, where

ko+2k1
s1—1 52 1 SQko
w=up U © Ugkg § : uru2 - uko-i-?kla .

Fori < 2kg, let n; = ufiﬁc(i) € gs,—1 and let M; = (1,1,...,1,2,2,...2,...) be sequences
of elements from {1,2,...,2ko + k1} such that j appears s; times when j # c(i), and c(i)
appears sy — 1 times. For any subsequence I = (i1, 12, ...,it) of some M;, let wiy = w and
wjzada ada ada w.

Then, a baszs for g is {n;} 2% U {wy | wy # 0}.

(2) The Lie superalgebra g is not simple but g( ) is simple, of dimension 2N+ N2k
2 + 2kg, and 1s generated as a Lie superalgebra by the set

{w(l), ce ,w(k),ﬁl, ce ,Ok}
Proof. (1) For h > 1, let ® € gj,_1. Write

— 19, (- i .
® = g ©'0;, where ¢" = g Apy gy Uy Uy Uy
i

r1<ra<-<ry

+k1

and where we use the same conventions as before. We then have ar1 ot = ai(m) .
1,725 5T h—1,¢(7)
and arl ro.. = 0 for @ > 2kg if @ = r; for some j. Rest of the proof is snnilar to the proofs

used for the study of Cartan prolong of ogl)(k:); see Sec. 3.2.

(2) Unlike in the case of oorr(2kg|k1), (Subsec. 4.7), in this case u;0; ¢ g for i > 2kg.
We have also seen that w is not a square of an odd vector field. Hence, g(!) does not contain
w. We get gV is generated as a Lie superalgebra by the set {w(l), Wy, O1y , Ok}
Identical proof as in part (3) of Theorem 4.7 gives us the result. O

Corollary 4.17. All coordinates of N are critical in this case.
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4.9. c(o0l1)(2kolk1))

The Lie algebra gg = c(oo%(2k0|k1)) is an extension of the Lie algebra 00% by a central

element. Thus, go consists of matrices

ko ko k1
ko Al A2 By
ko A3 Ali Bg y where
k1 Bé B{ D

Ag = AQ, Ag = Ag, Dt =D = (di]’), where
dii = djj for any ’L,j

The case kok; = 0 have been studied in previous subsections. So assume for this sub-

section that kok; # 0. Let g—1 be the identity go-module spanned by partial derivatives

as go is embedded into vect(2kg; N|k1)o. We then have Z” alu;0; € go for a] € K, where
c(4)

aé- = 0. for all 4,7, and a! = a? for i, j > 2ko, where ¢(r) is defined in Subsec. 4.7.

Theorem 4.18. (1) The Cartan prolong, (§—1,80)«nN, is a graded Lie superalgebra

g=(0-1,00)+N=0-1DPg0Dg1 PGP D D gn,
where m = 2kg + k1 — 2. Further, g,, = Kw, where

1 ko+2k1
_ ,851—1, s2—1 52k — — .
W=y Uyt Uy E ULU * Ug(f) Uk +2k, 05 | -
i=1

Fori < 2kg, letn; = ufiﬁc(i) € gs,—1 and let M; = (1,1,...,1,2,2,...,2,...) be sequences
of elements from {1,2,...,2ko + k1} such that j appears s; times when j # c(i), and c(i)
appears Sy — 1 times. For any subsequence I = (i1, 12, ...,1i) of some M;, let wiy = w and
wr = ady, ady,, -+ ady,, w.

Further, let n = Z?ﬁ%ﬁfl u;0;. Then, a basis for g is

Y2277 U {n} U {wr | wr # 0}

(2) Let ki be odd. Then g,0Y are not simple, but g@ is simple, of dimen-
sion 2N FTNao R 9 4 ok and generated as a Lie superalgebra by the set
{way, - wy, 01, -+ Ok}

Let k1 be even. Then g is not simple, but g(l) 1s simple, of dimension
2 + 2kg, and generated as a Lie superalgebra by the set {w(l), e Wk, Oy , Ok}

Proof. (1) For h > 1, let ® € g;,_1. Write

¢ = 2 617 where Y = arl,rg,...,rhu"‘lum Ury,
i

r1<re<--<rp

N1+ Nogy+k1 _

. ; c(r
and where we use the same conventions as before. We then have a’ =aq (a) .
T1,72,.,Th 71,72, h—1,¢(%)

Further, the condition a! = aj: for i,j > 2kg does not affect the Cartan prolongs g; for j > 0
since a,, = al; = 0 for ¢ > 2ky. Rest of the proof is similar to the proofs used for the study
of Cartan prolong of ogl)(k:); see Sec. 3.2.

(2) When k; is odd, we see that w = [n,w] € g). But n ¢ g(). Therefore, gV is
generated as a Lie superalgebra by the set {w, 01, ..., 0 }. Now proceeding as in Subsec. 4.7,
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we see that 9(2) is generated as a Lie superalgebra by the set {w(l), e Wk, O1,y - , O} and
hence the result.

When k; is even, we get [w,go] = 0, and w is not a square of an odd vector field.
Thus, here g(l) is generated as a Lie superalgebra by the set {w(l), Wy, Oy , Ok} and
hence the result. O

Corollary 4.19. All coordinates of N are critical in this case.

4.10. 001‘[1‘[(2](70 |2k§1)

The Lie algebra go = oo (2ko|2k1) consists of matrices

ko ko k1 ki
ko [fA1 Ay By By
ko| A3 AL By Ba
k| B B, D D, |
ki \B, B! D; D!

where Ay = Ay, AL = A3, DY =D, D} = Dj.

The case kgki = 0 have been studied in the previous subsections. So assume for this
subsection that kok; # 0. Let g1 be the identity go-module spanned by partial derivatives
as go is embedded into vect(2kg; N |2k1)o. We then have Y. . alu;0; € go for a! € K, where

i, 1
@t = aV ), and where
J c(7)

r+ ko if r <k,

r—ko ifkg+1<r <2k,
c(r) =

r+ky if 2kg + 1 <r < 2ky + kq,

’I”—kl if2]€g+l€1<7‘.

Theorem 4.20. (1) The Cartan prolong (§—1,80)«n is a graded Lie superalgebra

2ko
0=(0-1,00)«N=0-1900D g1 D g D D g, wherem:2k:1—2+z$i.
=1

Further, g, = Kw, where

2ko+2k1
s1—1 52 1 SQko
W=y Uyt Uy E ULy gl - Ugkg 2k O

Fori < k, we have n; = ufiac(i) € gs,—1 and let M; = (1,1,...,1,2,2,...,2,...) be sequences
of elements from {1,2,...,2ko + 2k1} such that j appears s; times when j # c(i), and c(i)
appears sy — 1 times. For any subsequence I = (i1, 12, ...,1it) of some M;, let wiy = w and
wy = adai1 adai2 --'adait w. Then, a basis for g is

{nihi<i<orgrar U{wr |wr # 0}

(2) The Lie superalgebra g is not simple, but its derived algebra g s simple, gen-
erated as a Lie superalgebra by the set {w(y,...,wy),01,...,0k}, and of dimension
N1+ +Nog+2k1 _ o
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Proof. (1) For h > 1, let ® € gj,_1. Write

¢ = 2 617 where Y = arl,rg,m,rhu’l‘lu"? uT}m
i r1<ra<--<ry

and where we use the same conventions as before. We then have a:’i‘ly"‘Q,---,Th = aiitﬁQ)"”7rh717c(i).
Rest of the proof is similar to the proofs used for the study of Cartan prolong of o7(k); see
Sec. 3.4.

(2) We first prove that w, and n; for every 4,7 < k are not in g(!).

As [go, w] = 0, we see that w ¢ [g, g]. Suppose an odd vector field ® = )", ¢;0; is such

that ®2 = w. Then using the fact that 9;(¢;) = Oc(j) (Pe(iy)) We get

_s1—1 so S2kq
o1 E YiPe() t E PiPei) | =Up Uy Ugp  Udkg 41 - Uk
i<ko 2ko+1<i<2ko+k1

the coefficient of Jk,41. So

_ s1—1_so S52kq
g PiPe(s) T g PiPe(iy = Uy Uy’ Ugy PUgggt1 -+ - Ug + other terms.
i<ko 2ko+1<i<2ko+k1
.. . _ Sok
This implies, wi@em) = uy' 1u§2 . -UQ?COOU%OH - up+ other terms. We now refer to the

proof of part (3) of Theorem 4.7, to claim that such a ® does not exist.
For every i, observe that 7; cannot be obtained as a commutator. It remains to be
checked whether 7; is square of an odd vector field. Let ®? = 7;, where ® = > i0;. Then

O | D eyt DL e | =u
j<ko 2ko+1<j<2ko+k1
the coefficient of d.;). But w;" is not in the image of 9;. So n; ¢ g,
We conclude that g(!) is generated as a Lie superalgebra by the set
{way, s wy, 01, ..., O}, and has a basis given by the set

{adgt - adgt (w) | (dy, ..., di) € ZEN{(0,...,0), (51, ., sk)}}.
Hence the result. Ol

Corollary 4.21. All coordinates of N are critical in this case.

4.11. o0l]) (2ko|2k1)
The Lie algebra go = 00%)'1 (2ko|2k1) consists of matrices
ko ko ki ki
k(] A1 A2 By Bs
kg Ag Ali Bg B4 where Ag = AQ, Ag = A3, Dé = D, Dé = Dg,
ki | BY BY Dy Dy |’ the diagonal entries of Ay, A3, Do, D3 are 0.
ky \B, B! D; D!
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The case kgki = 0 have been studied in the previous subsections. So assume for this
subsection that kgk; # 0. Let g_1 be the identity go-module spanned by partial derivatives
as go is embedded into vect(2kg; N |2k1)o. We then have

Za{ulﬁj €go for ag € K, where aé- = azg)) and ai(i) =0,
.3
and where ¢(r) is defined in Sec. 4.10.

Theorem 4.22. (1) The Cartan prolong (§—1,80)«n is a graded Lie superalgebra
0=(0-1,00)+N=0-1DPF0 DG DG D D gm, wherem = 2ky+ 2k —2.

Further, g,, = Kw, where

2ko+2k1
w = E UTUg - Ug(y) U2k 42k, i | -
i=1

For any proper subset I = (i1,iz,...,i;) of the set {1,2,...,2ko + 2k1}, let wiy = w and
wy = ady, ady,, -+ ady, w. Then, a basis for g is {wI}I;{1,27~~,2k0+2k1}'

(2) The Lie superalgebra g is not simple, but g(l) is simple, generated as a Lie superal-
gebra by the set {0;} U{w)}, of dimension of 22kot2k1 _ 9

Proof. (1) For h > 1, let ® € gj,_1. Write

— 19, (- i .
® = g ©'0;, where ¢" = g Apy gy Uy Uy * Uy
i

r1<ra<<ry

: i _ clrn)
and where we use the same conventions as before. We then have a;, ,, . = W oo 12c(i)?
and a;, ., . = 0if ¢(i) = r; for some j. The rest of the proof is similar to the proofs used
b RS

for the study of Cartan prolong of ogl)(k:); see Sec. 3.2.

(2) As seen in the previous section, we see that w ¢ g!). And g") is generated as a
Lie superalgebra by the set {w(l), ces W), Oy ,Or}, and has a basis given by the set
{wr [T G A{1,...,k}, I # ¢}. Hence the result. O

Corollary 4.23. No critical coordinates of N in this case.
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