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Cartan described some of the finite dimensional simple Lie algebras and three of the four series of
simple infinite dimensional vectorial Lie algebras with polynomial coefficients as prolongs, which
now bear his name. The rest of the simple Lie algebras of these two types (finite dimensional and
vectorial) are, if the depth of their grading is greater than 1, results of generalized Cartan–Tanaka–
Shchepochkina (CTS) prolongs.

Here we are looking for new examples of simple finite dimensional modular Lie (super)algebras
in characteristic 2 obtained as Cartan prolongs. We consider pairs (an (ortho-)orthogonal Lie
(super)algebra or its derived algebra, its irreducible module) and compute the Cartan prolongs
of such pairs. The derived algebras of these prolongs are simple Lie (super)algebras.

We point out several amazing phenomena in characteristic 2: a supersymmetry of representa-
tions of certain Lie algebras, latent or hidden over complex numbers, becomes manifest; the adjoint
representation of some simple Lie superalgebras is not irreducible.

Keywords: Modular Lie algebra; modular Lie superalgebra.

Mathematics Subject Classification: 17B50

1. Introduction

For general background, see [18, 3, 9, 10, 8]. Hereafter the ground field K is assumed to be
algebraically closed of characteristic 2 unless otherwise stated.
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1.1. Notation

Apart from standard notation used in [7], we denote by K〈S〉 the vector space over K
spanned by the set S (or just KS for one element sets). For any Lie (super)algebra g ⊂
g1(V ), we call V the identity representation of g. For the definition of the orthogonal Lie
algebra oB(n) preserving the bilinear form B, see Sec. 1.

1.2. Motivation

The classification of simple finite dimensional modular Lie algebras over algebraically closed
fields of characteristic p > 3 is completed [13, 18, 2]. The answer can be (more succinctly
than in [13]) summarized as follows:

“If p > 3, all simple finite dimensional Lie algebras can be represented as the
CTS prolongs — the results of generalized Cartan–Tanaka–Shchepochkina pro-
longations — of the pairs (g−, g0) obtained by taking the non-positive parts in
the simplest Z-gradings (of the least depth 1 or 2) of the Lie algebras g(A) with
Cartan matrix A and deforms of these prolongs (g−, g0)∗,N or of their derived
algebras, factorized modulo center, if any”.
Over C, this method brings also all four series of infinite dimensional simple
vectorial Lie algebras (i.e., Lie algebras of polynomial vector fields).

(1.1)

Formulated like this we see that “all is obtained from Lie algebras of the form g(A)”.
It is time to pass to characteristics 3 and 2 and to superization of the classification

problem. The displayed statement (1.1) does not survive superization, even over C: in
addition to g(A) new ingredients are needed. Briefly, these ingredients are partial CTS
prolongs and several new types of Lie superalgebras for the role of g0:

Over C, in addition to Lie superalgebras of the form g(A), we have to con-
sider complete and partial CTS prolongs of the non-positive parts in simplest
Z-gradings of the queer superalgebras, and CTS prolongs of the exceptional
pairs, where g0 is a simple finite dimensional Lie superalgebra of vector fields
(or its central extension).
In addition to these examples, there are partial CTS prolongs.
Some of these simple Lie (super)algebras can be deformed.

(1.2)

The way of obtaining simple Lie (super)algebras (1.1) does not hold for p = 3 or 2, even
for Lie algebras.

For a conjectural list of simple finite dimensional modular Lie superalgebras over alge-
braically closed fields of characteristic p > 5, see [9]. Briefly:

The list is the union of the modular versions of the lists of finite dimensional
simple Lie superalgebras and infinite dimensional simple Lie superalgebras of
polynomial vector fields (both over C), and deforms of these examples when
exist.

(1.3)

In [3], simple finite dimensional modular Lie superalgebras of the form g(A) are classified.
In [4], for p ≤ 5, the CTS prolongs of the pairs (g−, g0), where g− = ⊕i<0 gi, in selected
“simplest” Z-grading of these g(A) = ⊕gi are listed for the Lie (super)algebras g(A) of
small rank.
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For p = 2, there are two types of (ortho-)orthogonal Lie (super)algebras (or, perhaps,
of their derived, or central extensions thereof) with and without Cartan matrix. A difficult
open problem is description of the minimal possible set of the inputs (g−, g0). At the moment
we do not even have a conjectural explicit list and proceed, case-by-case, along a rather
implicit list suggested in [9].

1.3. Setting

We continue the quest for simple finite dimensional modular Lie (super)algebras over K
along the strategy outlined in [9] together with a review of the examples known. Here we
investigate and describe Cartan prolongs for the cases where g0 is one of several types of
(ortho-)orthogonal (or periplectic) Lie (super)algebras and g−1 is an identity g0-module;
and several more types of cases for g0 of rank 1.

Kochetkov and Leites [6] were the first to offer a new approach to the description of
characteristic 2 analogs of the simple modular Lie algebras, but their conjectural list was
obviously incomplete, see Lin’s analogs of Hamiltonian Lie algebras [11] (as well as Jurman’s
and other examples, see Ref. [9]). For an elucidation and correction of [6, 11, 12], see [8]
based on [7], where it was shown that there are two non-isomorphic series of orthogonal Lie
algebras and their simple derived were described. As expected, the Hamiltonian series are
Cartan prolongs of the orthogonal Lie algebras, although characteristic 2 brings in various
subtleties.

1.4. Main results

(1) We sharpen a description of Hamiltonian Lie (super)algebras given in [8], in which only
the cases where either N = N s := (1, . . . , 1) or N without any restrictions are considered,
but it is not investigated what are the actual possible values of the components of N . In
other words, if we impose no restrictions on N , will it follow that N i = ∞ for all
i?

Answer: For Lie algebras, the prolongs (V, o(1)
Π (2n + 1))∗,N depend on N = (1, . . . ,

1, n, 1, . . . , 1), whereas the prolongs (V, o(1)
I (2n + 1))∗,N depend on N = (n, . . . , n) (still

one parameter but embedded differently).
On the other hand, the prolongs (V, o(1)

Π (2n))∗,N depend on N = (1, . . . , 1), whereas the
prolongs (V, o(1)

I (2n))∗,N depend on N = (n, . . . , n).
(2) We also consider Cartan prolongs with the same g0 as in [8] but different g0-modules

g−1. In doing so we have observed, somewhat unexpectedly, that the adjoint represen-
tation of a simple Lie superalgebra might, if p = 2, be reducible. To see that the
claim is not self-contradicting, recall that the action ad is performed by bracketing which
is defined by squaring but is not equivalent to it if p = 2, and there is no way to tell the Lie
superalgebra that now it is acting not on “a” module, but on itself, and hence the squares
of odd elements of the module make sense.

(3) Rittenberg and Scheunert had observed long ago “a remarkable likeness” between
the representations of the Lie superalgebras osp(1|2n) and the Lie algebras o(2n + 1) (this
likeness can be interpreted as a hidden supersymmetry of the set of representations of
o(2n+1), or of o(2n+1) itself). This likeness finds its explanation over fields of characteristic
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2: the enveloping algebra U(osp(1|2n)) coincides with U(o(2n + 1)) under an appropriate
definition of the arguments of U(·) and forgetting the superstructure.

2. Background

2.1. Non-degenerate symmetric bilinear forms and Lie (super)algebras

that preserve them

Let

oB(n) = {F ∈ EndV |B(Fx, y) +B(x, Fy) = 0}
be the orthogonal Lie algebra over K preserving the non-degenerate symmetric bilinear form
on V with the Gram matrix B.

Although in the theory of simple finite groups it was known long ago that there are two
non-isomorphic orthogonal groups for n even (preserving non-equivalent quadratic forms),
nowhere in the works devoted to the classification of simple Lie algebras in characteristic
2 was it stated before [7] that, for n even, there are two non-isomorphic orthogonal Lie
algebras (preserving non-equivalent supersymmetric bilinear forms). If p = 2, there is no
one-to-one correspondence between quadratic and polar bilinear forms, so the results on
quadratic and bilinear forms are n o t e q u i v a l e n t.

In [7], it is proved that whereas, for n odd, all non-degenerate symmetric forms are
equivalent, for n = 2k, there the two equivalence classes: the one, with at least one nonzero
element on the main diagonal is equivalent to the bilinear form whose Gram matrix is
In = 1n, the other one with all diagonal elements vanishing contains the following equivalent
Gram matrices

S2k = antidiagn(1, . . . , 1) ∼ Π2k := antidiag2(1k, 1k) =
(

0 1k

1k 0

)
.

The orthogonal Lie algebras oI(n) and oS(n) 	 oΠ(n) preserving the forms with matrices
In = 1n and S2k, respectively, are n o t i s o m o r p h i c. (Clearly, the algebras oI(n)
and oS(n) consist of matrices symmetric with respect to their main (respectively, side)
diagonal.)

It was known already to Albert [1] that, for n even, there are non-equivalent non-
degenerate symmetric bilinear forms. However, since non-equivalent bilinear forms can
be preserved by isomorphic Lie algebras, the fact (established in [7]) that t h e L i e
a l g e b r a s p r e s e r v i n g n o n - e q u i v a l e n t n o n - d e g e n e r a t e s y m m e t -
r i c f o r m s a r e i s o m o r p h i c is non-trivial.

The derived algebras of oI(n) and oS(n) 	 oΠ(n) — they are simple for n > 4 — are
not isomorphic either.

2.2. Analogs of functions and vector fields for p > 0: Divided powers

Let us consider the supercommutative superalgebra C[x] of polynomials in a indeterminates
x = (x1, . . . , xa), for convenience ordered in a “standard format”, i.e., so that the first m
indeterminates are even and the rest n ones are odd (m+n = a). Among the integer bases of
C[x] (i.e., the bases, in which the structure constants are integers), there are two canonical
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ones — the usual, monomial, one and the basis of divided powers, which is constructed in
the following way.

For any multi-index r = (r1, . . . , ra), where r1, . . . , rm are non-negative integers, and
rm+1, . . . , rn are 0 or 1, we set

u
(ri)
i :=

xri
i

ri!
and u(r) :=

a∏
i=1

u
(ri)
i .

These u(r) form an integer basis of C[x]. Clearly, their multiplication relations are

u(r) · u(s) =
n∏

i=m+1

min(1, 2 − ri − si) · (−1)

P
m<i<j≤a

rjsi

·
(

r + s

r

)
u(r+s),

where
(

r + s

r

)
:=

m∏
i=1

(
ri + si

ri

)
. (2.1)

In what follows, for clarity, we will write exponents of divided powers in parentheses, as
above, especially if the usual exponents might be encountered as well.

Now, for an arbitrary field K of characteristic p > 0, we may consider the supercommu-
tative superalgebra K[u] spanned by elements u(r) with multiplication relations (2.1). For
any m-tuple N = (N1, . . . , Nm), where Ni are either positive integers or infinity, denote (we
assume that p∞ = ∞)

O(m;N ) := K[u;N ] := SpanK

(
u(r) | ri

{
< pNi for i ≤ m

= 0 or 1 for i > m

)
. (2.2)

As is clear from (2.1), K[u;N ] is a subalgebra of K[u]. The algebra K[u] and its subalgebras
K[u;N ] are called the algebras of divided powers; they can be considered as analogs of the
polynomial algebra.

For any shearing parameter N , let Ns = (1, . . . , 1) be its simplest value. Only one of
these numerous algebras of divided powers O(n;N) is indeed generated by the indetermi-
nates declared: If N = N s. Otherwise, in addition to the ui, we have to add u

(pki )
i for

all i ≤ m and all ki such that 1 < ki < Ni to the list of generators. Since any deriva-
tion D of a given algebra is determined by the values of D on the generators, we see that
der(O[m;N ]) has more than m functional parameters (coefficients of the analogs of partial
derivatives) if Ni 
= 1 for at least one i. Define distinguished a partial derivatives by the
formula

∂i(u
(k)
j ) = δiju

(k−1)
j for any k < pNj .

The simple vectorial Lie algebras over C have only one parameter: the number of inde-
terminates. If Char K = p > 0, the vectorial Lie algebras acquire one more parameter: N .
For Lie superalgebras, N only concerns the even indeterminates.

aThese derivatives are sometimes called special which is unfortunate in view of the fact that the Lie
(super)algebra of divergence-free vector field is called special, and hence all its elements are special.
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The Lie (super)algebra of all derivations der(O[m;N ]) turns out to be not so interesting
as its Lie subsuperalgebra of distinguished derivations: Let

vect(m;N |n) a.k.a W (m;N |n) a.k.a

derdist K[u;N ] = SpanK

(
u(r)∂k | ri

{
< pNi for i ≤ m,

= 0 or 1 for i > m;
1 ≤ k ≤ n

)
(2.3)

be the general vectorial Lie algebra of distinguished derivations. The next notions are analogs
of the polynomial algebra of the dual space.

2.2.1. A generalization of the Cartan prolong: The Cartan–Tanaka–Shchepochkina
(CTS) prolong

Let g− = ⊕−d≤i≤−1 gi be a nilpotent Z-graded Lie algebra and g0 ⊂ der0g a Lie subalgebra
of the Lie algebra of Z-grading-preserving derivations. Let DSk be the operation of rising
to the kth divided symmetric power and DS· := ⊕kDS

k; we set

i : DSk+1(g−)∗ ⊗ g− → DSk(g−)∗ ⊗ g∗− ⊗ g−;

j : DSk(g−)∗ ⊗ g0 → DSk(g−)∗ ⊗ g∗− ⊗ g−
(2.4)

be the natural maps. For k > 0, define the kth prolong of the pair (g−, g0) to be:

gk,N = (j(DS·(g−)∗ ⊗ g0) ∩ i(DS·(g−)∗ ⊗ g−))k,N , (2.5)

where the subscript k in the right-hand side singles out the component of degree k. Together
with O(n;N) all prolongs acquire one more — shearing — parameter: N . Superization is
immediate.

Set (g−, g0)∗,N = ⊕i≥−d gi,N ; then, as is easy to verify, (g−, g0)∗ is a Lie (super)algebra.
Provided g0 acts on g−1 without kernel, (g−, g0)∗,N is a subalgebra of vect(m;N |n) for
m|n = sdimg− and some N .

Example 2.1. In [8], a sequel to [7], it is shown that there are two (respectively, four in
the super case) non-isomorphic Hamiltonian-type Lie (super)algebras and their subalgebras
corresponding to the prolongs of the derived (ortho-)orthogonal Lie (super)algebras are also
described.

Here we consider Z-graded vectorial Lie algebras (g−1, g0)∗,N obtained as Cartan pro-
longs of the pair (g−1, g0), where g0 is either oB(n) or the derived algebra oB(n)(1) or a
central extension of either of them and g−1 is any irreducible g0-module for small values of
n; we establish the actual number of parameters the shearing vector N depends on.

In examples known so far, if N i can be > 1, then it can take any value. Accordingly,
the coordinate of the shearing vector N is said to be critical if it can take values other than
1. If the only possible value of N is (1, . . . , 1) we say that N has no critical coordinates.
Obviously, none of the coordinates of N concerning the odd indeterminates can be critical;
in what follows the notion only concerns the even indeterminates.
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Set

hI(n;N) := (id, oI(n))∗,N ; hS(n;N ) := (id, oS(n))∗,N ;

h̃I(n) := (id, c(o(1)
I (n)))∗; h̃S(n) := (id, c(o(1)

S (n)))∗.
(2.6)

As was shown in [8] for the tilde-ed series, N has no critical coordinates.

Remark 2.2. The Lie algebras (2.6) are direct analogs of the Hamiltonian Lie superalge-
bras h(0|n). This is even more true for super analogs of the Lie algebras (2.6).

Kochetkov and Leites [6] considered Hamiltonian and contact Lie algebras as reductions
of Z-forms of the Hamiltonian Lie superalgebras h(2n|m) and k(2n+ 1|m) but they did not
study the possible number of parameters the vector N depends on and did not observe that
there are several types of the h series: as many as there are types of orthogonal Lie algebras,
see (2.6).

Lin [11] described simple Lie algebras similar to one of our Hamiltonian series (2.6)
and, in [12], to our contact series: as the derived algebras of hI(n;N ) and k(2n + 1;N ),
respectively. Lin [12] did not investigate the possible number of parameters the vector
N depends on and attributed certain removable, hence immaterial (see [7]), continuous
parameters to the contact Lie algebras. Lin did not notice non-isomorphic types (2.6) and
considered only one of them.

2.3. Irreducible modules over o(3), o(3)(1) and co(3)(1)

Since for n odd, all non-degenerate symmetric bilinear forms B are equivalent, we skip
indicating the form B and use the split forms of oB(n) and its relatives.

The irreducible o(3)(1)-modules are described (with a typo) in [5]. Although the proof
in [5] literally follows the proof due to Rudakov and Shafarevich in [14] for the cases where
p > 2, the answer is somewhat different:

There are two types of nontrivial irreducible modules g−1 over g0 = o(3)(1) naturally
extendable to the trivial central extension co(3)(1)- and even to o(3)-actions: one, T, of
dimension 3 with a highest and lowest weight vectors (the identity representation) and a
3-parameter family Q(a, b, c), where a 
= 0, 1 and b, c ∈ K, of dimension 4 given by the
matrices:

∇− =


0 0 0 b

1 0 0 0
0 1 0 0
0 0 1 0

 , H =


a 0 0 0
0 1 + a 0 0
0 0 a 0
0 0 0 a+ 1

 ,

∇+ =


0 a+ bc 0 0
0 0 1 + bc 0
0 0 0 a+ 1 + bc

c 0 0 0

 .

The extension of this representation to the trivial central extension is by introducing scalar
matrices. The extension to o(3) is by letting

E = (∇+)2 and F = (∇−)2.
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There are no 2-dimensional irreducible o(3)(1)-modules (hence, no 2-dimensional irre-
ducible co(3)(1)- and o(3)-modules). Moreover, unlike the irreducible highest weight o(3)-
modules for p 
= 2 for which we have

Ln = Sn(L1),

the modules T and Q cannot be obtained in this way since the 2-dimensional module L1

does not exist.
Moreover, as algebras (the superstructure of U(oo(1)

IΠ(1|2)) forgotten),

U(o(3)(1)) 	 U(oo(1)
IΠ(1|2)), (2.7)

where oo
(1)
IΠ(1|2) is a characteristic 2 version of osp(1|2), i.e., the Lie superalgebra spanned

by

X−, ∇−, H, ∇+, X+,

where ∇± are now odd, the other basis elements being even, and whose defining relations
are (here we simultaneously take either + or −)

[H,∇±] = ±∇±, [∇+,∇−] = H, (∇±)2 = X±.

Due to the isomorphism (2.7) the description of irreducible oo
(1)
IΠ(1|2)-modules is the same

as that of o(3)(1) if we forget about parities. In particular,

although the Lie superalgebra oo
(1)
IΠ(1|2) is simple of superdimension 3|2 its

adjoint representation is reducible with the irreducible submodule of superdimen-
sion 1|2.

(2.8)

Indeed, recall that an even linear map r : g → gl(V ) is said to be a representation of the
Lie superalgebra g in the module V if

r([x, y]) = [r(x), r(y)] for any x, y ∈ g;

r(x2) = (r(x))2 for any x ∈ g1.
(2.9)

Therefore adx2(z) = [x2, z], whereas no bracketing produces all elements x2.

3. Theorems: Description of Cartan Prolongs of Orthogonal Lie Algebras

Throughout, when we work on vect(k,N ), we let N = (N1, N2, . . . , Nk). Let si = 2Ni−1 and
smin = min1≤i≤k si.

In any expression involving a variable, say y, when we write ŷ we mean “delete y from
the expression”.

Let

g = (g−1, g0)∗,N := g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm

be the Cartan prolong of the pair (g−1, g0). In other words, m (= m(N )) is the height of
the prolong.



November 22, 2010 8:41 WSPC/1402-9251 259-JNMP 00086

Prolongs of (Ortho-)orthogonal Lie (Super)algebras 261

3.1. Cartan prolong of g0 = o(3) and its relatives with g−1 = Q(a, b, c)

Theorem 3.1. Let g−1 = Q(a, b, c) = Span(∂1, . . . , ∂4) and let o(3)(1) be realized by vector
fields as follows:

∇+ = cu4∂1 + (a+ bc)u1∂2 + (1 + bc)u2∂3 + (a+ bc+ 1)u3∂4

∇− = u2∂1 + u3∂2 + u4∂3 + bu1∂4

H = a(u1∂1 + u3∂3) + (a+ 1)(u2∂2 + u4∂4).

For the same g−1, this action is extended to c(o(3)(1)) by setting z = u1∂1 + u2∂2 + u3∂3 +
u4∂4.

Extend the action of c(o(3)(1)) to an action of o(3) by setting

E = c(a+ 1 + bc)u3∂1 + c(a+ bc)u4∂2 + (a+ bc)(1 + bc)u1∂3

+ (1 + bc)(a + 1 + bc)u2∂4,

F = u3∂1 + u4∂2 + bu1∂3 + bu2∂4.

(1) c = 0, and g0 = o(3)(1) or g0 = c(o(3)(1)):
(1a) For a = b = 0, then g = (g−1, g0)∗,N is g = g−1 ⊕ g0 ⊕ g1, where g1 = Kw is one

dimensional, and where

= u2
2∂1 + u2u3∂2 + u2u4∂3 + u3u4∂4.

Further, w /∈ g(1).
Note that the representation Q(0, 0, 0) is not simple.

(1b) If a or b is not zero, then g1 = 0.
(2) c 
= 0, and g0 = o(3)(1) or g0 = c(o(3)(1)):

(2a) For a = b = 0, then g = (g−1, g0)∗,N is g = g−1 ⊕ g0 ⊕ g1, where g1 = Kw is one
dimensional and

w = (u2
2 + cu2

4)∂1 + u2u3∂2 + u2u4∂3 + u3u4∂4.

Further, w /∈ g(1).
Note that the representation Q(0, 0, c) is not irreducible.

(2b) If a or b is not zero, then g1 = 0.
(3) Let g0 = o(3).

(3a) If a = 0, then for (g−1, o(3))∗,N = ⊕k≥−1 gk, every gk, where k ≥ 1, is 4-dimensional
for generic k. Let smin = min{s2, s4}. Let smin 
= 1. Then gk = 0 for k ≥ smin.

The Lie algebra g is not simple. Its derived algebra g(1) = ⊕−1≤k≤smin−1 g
(1)
k is

generated, as a Lie algebra, by the set

{∂1, ∂2, ∂3, ∂4,Φ
smin−1
1 ,Φsmin−1

2 ,Φsmin−1
3 };

it is simple of dimension 4(smin + 1) − 1. The critical coordinates of N in this case
are the 2nd and the 4th: (1, n, 1, n). When smin = 1, then g1 = 0.

(3b) If a = 1, then for (g−1, o(3))∗,N = ⊕k≥−1 gk, every gk, where k ≥ 1, is 4-dimensional
for generic k. smin = min{s1, s3}. Let smin 
= 1. Then gk = 0 for k ≥ smin. The Lie
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algebra g is not simple. Its derived algebra g(1) = ⊕−1≤k≤smin−1 g
(1)
k is generated, as a

Lie algebra, by the set

{∂1, ∂2, ∂3, ∂4,Φ
smin−1
1 ,Φsmin−1

2 ,Φsmin−1
3 };

it is simple of dimension 4(smin + 1) − 1. The critical coordinates of N in this case
are the 1st and the 3rd: (n, 1, n, 1). When smin = 1, then g1 = 0.

(3c) If a 
= 0, a 
= 1, then for (g−1, o(3))∗,N = ⊕k≥−1 gk, we have gk = 0 for k ≥ 1 and
any N .

Proof. (1a) We prove this for g0 = c(o(3)(1)), and the proof for g0 = o(3)(1) is similar.
When a = b = c = 0, we get

∇+ = u2∂3 + u3∂4, ∇− = u2∂1 + u3∂2 + u4∂3, H = u2∂2 + u4∂4,

z = u1∂1 + u2∂2 + u3∂3 + u4∂4.

For Φ =
∑

i ϕ
i∂i ∈ g1, where

ϕi =
∑
r �=s

tirsurus +
∑

r

tirru
2
r,

using the fact that [Φ, ∂r] ∈ g0, we see that

t1r3 = t1r4 = t2r1 = t2r4 = t3r1 = t4r1 = t4r2 = 0.

In addition,

t3r2 = t4r3, t1r2 = t2r3 = t3r4, t1r1 = t3r3, t2r2 = t4r4.

This gives us w ∈ g1.
Continuing further, we see that g2 = 0. As [H,w] = 0, we get w /∈ g(1).
(1b) This case branches into several subcases; namely,

(a 
= 0, a+ 1 
= 0, b 
= 0),

(a 
= 0, a+ 1 
= 0, b = 0),

(a = 1, b 
= 0), (a = 1, b = 0),

(a = 0, b 
= 0).

Every case has been studied to claim the result.
(2a) We prove this for g0 = c(o(3)(1)), and the proof for g0 = o(3)(1) is similar.
When a = b = 0, we get

∇+ = cu4∂1 + u2∂3 + u3∂4, ∇− = u2∂1 + u3∂2 + u4∂3, H = u2∂2 + u4∂4,

z = u1∂1 + u2∂2 + u3∂3 + u4∂4.

For Φ =
∑

i ϕ
i∂i ∈ g1, where ϕi =

∑
r �=s t

i
rsurus +

∑
r t

i
rru

2
r , using the fact that [Φ, ∂r] ∈

g0, we see that

t1r1 = t3r3, t2r2 = t4r4, t1r3 = t2r1 = t2r4 = t3r1 = t4r1 = t4r2 = 0.

In addition,
t1r4
c

= t3r2 = t4r3, and t1r2 = t2r3 = t3r4. This gives us w ∈ g1.

Continuing further, we see that g2 = 0. As [H,w] = 0, we get w /∈ g(1).
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(2b) This case branches into several subcases; namely,

(a+ bc = 0, a = 1),

(a+ bc = 0, a 
= 0, a 
= 1),

(a+ bc 
= 0, 1 + bc = 0, a = 0),

(a+ bc 
= 0, 1 + bc = 0, a 
= 0, a 
= 1),

(a+ bc 
= 0, 1 + bc 
= 0, a + bc+ 1 = 0),

(a+ bc 
= 0, 1 + bc 
= 0, a + bc+ 1 
= 0, a = 0),

(a+ bc 
= 0, 1 + bc 
= 0, a + bc+ 1 
= 0, a = 1),

(a+ bc 
= 0, 1 + bc 
= 0, a + bc+ 1 
= 0, a 
= 0, a 
= 1, b = 0),

(a+ bc 
= 0, 1 + bc 
= 0, a + bc+ 1 
= 0, a 
= 0, a 
= 1, b 
= 0).

Every case has been checked to claim the result. We prove here the last subcase for g0 =
c(o(3)(1)).

For Φ =
∑

i ϕ
i∂i ∈ g1, where ϕi =

∑
r �=s t

i
rsurus +

∑
r t

i
rru

2
r , using the fact that [Φ, ∂r] ∈

g0, we see that for 1 ≤ r ≤ 4, we have

t1r1 = t3r3, t
2
r2 = t4r4,

t1r4
c

=
t2r1

(a+ bc)
=

t3r2
1 + bc

=
t4r3

(a+ bc+ 1)
,

t1r2 = t2r3 = t3r4 =
t4r1
b
, t1r3 = t2r4 = t3r1 = t4r2 = 0.

This implies that tirs = 0 for all indices. Hence, g1 = 0.
(3) This case branches into several subcases. We first describe the prolongation in the

most general case; that is, when bc(1 + bc) 
= 0.
For Φ =

∑
i ϕ

i∂i ∈ g0, where ϕi =
∑

r t
i
rur, we have

t1r1 = t3r3; t2r2 = t4r4;
t1r4
c

=
t2r1
bc

=
t3r2

1 + bc
=

t4r3
1 + bc

;

t1r2 = t2r3 = t3r4 =
t4r1
b

; bt1r3 = t3r1; ct4r2 = t1r3 + (1 + bc)t2r4.

These relations impose relations on elements of successive gk, where k ≥ 1. We see that
each gk, where k ≥ 1, is 4-dimensional with a basis given by the following vector fields:

Φk
1 =

 ∑
i∈Z,0≤2i≤k+1

(
c

1 + bc

)i

uk+1−2i
2 u2i

4

∂1 +

bu1

∑
i∈Z,0≤2i≤k−1

(
c

1 + bc

)i+1

uk−1−2i
2 u1+2i

4

+u3

∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i

uk−2i
2 u2i

4

 ∂2 +

 ∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i

uk−2i
2 u1+2i

4

 ∂3

+

bu1

∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i

uk−2i
2 u2i

4 + u3

∑
i∈Z,0≤2i≤k−1

(
c

1 + bc

)i

uk−1−2i
2 u1+2i

4

 ∂4;
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Φk
2 =

 ∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i+1

uk−2i
2 u1+2i

4

 ∂1 +

bu1

∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i+1

uk−2i
2 u2i

4

+ u3

∑
i∈Z,0≤2i≤k−1

(
c

1 + bc

)i+1

uk−1−2i
2 u1+2i

4

∂2 +

 ∑
i∈Z,0≤2i≤k+1

(
c

1 + bc

)i

uk+1−2i
2 u2i

4

∂3

+

bu1

∑
i∈Z,0≤2i≤k−1

(
c

1 + bc

)i+1

uk−1−2i
2 u1+2i

4 + u3

∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i

uk−2i
2 u2i

4

 ∂4;

Φk
3 =

 ∑
i∈Z,0≤2i≤k+1

(
c

1 + bc

)i

uk+1−2i
2 u2i

4

 ∂2 +

 ∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i

uk−2i
2 u1+2i

4

∂4;

Φk
4 =

 ∑
i∈Z,0≤2i≤k

(
c

1 + bc

)i+1

uk−2i
2 u1+2i

4

 ∂2 +

 ∑
i∈Z,0≤2i≤k+1

(
c

1 + bc

)i

uk+1−2i
2 u2i

4

 ∂4.

Let �k+1
2 � denote the greatest integer less than or equal to k+1

2 . By multiplying the above
vector fields by (1 + bc)�

k+1
2

� we get the basic elements for every gk, where k ≥ 1, in the
particular cases (c = 0, b 
= 0), (c = 0, b = 0), (c 
= 0, b = 0), and (c 
= 0, 1 + bc = 0).

(4) This case branches into several subcases. We first describe the prolongation in the
most general case; that is, when bc(1 + bc) 
= 0.

For Φ =
∑

i ϕ
i∂i ∈ g0, where ϕi =

∑
r t

i
rur, we have

t1r1 = t3r3; t2r2 = t4r4;
t1r4
c

=
t2r1

1 + bc
=

t3r2
1 + bc

=
t4r3
bc

;

t1r2 = t2r3 = t3r4 =
t4r1
b

; bt2r4 = t4r2; (1 + bc)t1r3 = t2r4 + ct3r1.

These relations impose relations on elements of successive gk, k ≥ 1. We see that each gk,
where k ≥ 1 is 4-dimensional with a basis given by the following vector fields:

Ψk
1 =

u2

∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u2i

3 + u4

∑
i∈Z,2i≤k−1

(
c

1 + bc

)i+1

uk−1−2i
1 u1+2i

3

∂1

+

 ∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u1+2i

3

 ∂2 +

u4

∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u2i

3

+u2

∑
i∈Z,2i≤k−1

(
c

1 + bc

)i

uk−1−2i
1 u1+2i

3

 ∂3 +

b ∑
i∈Z,2i≤k+1

(
c

1 + bc

)i

uk+1−2i
1 u2i

3

∂4;
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Ψk
2 =

u2

∑
i∈Z,2i≤k−1

(
c

1 + bc

)i

uk−1−2i
1 u1+2i

3 + u4

∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u2i

3

 ∂1

+

 ∑
i∈Z,2i≤k+1

(
c

1 + bc

)i−1

uk+1−2i
1 u2i

3

∂2 +

u2

∑
i∈Z,2i≤k

(
c

1 + bc

)i−1

uk−2i
1 u2i

3

+u4

∑
i∈Z,2i≤k−1

(
c

1 + bc

)i

uk−1−2i
1 u1+2i

3

∂3 +

b ∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u1+2i

3

 ∂4;

Ψk
3 =

 ∑
i∈Z,2i≤k+1

(
c

1 + bc

)i

uk+1−2i
1 u2i

3

∂1 +

 ∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u1+2i

3

 ∂3;

Ψk
4 =

 ∑
i∈Z,2i≤k

(
c

1 + bc

)i

uk−2i
1 u1+2i

3

 ∂1 +

 ∑
i∈Z,2i≤k+1

(
c

1 + bc

)i−1

uk+1−2i
1 u2i

3

 ∂3.

By multiplying the above vector fields by (1 + bc)�
k+1

2
� we get the basic elements for every

gk, where k ≥ 1, in the particular cases (c = 0, b 
= 0), (c = 0, b = 0), and (c 
= 0, 1+bc = 0).
(5) We first consider the most general case where

abc(a+ 1)(a+ bc)(1 + bc)(a+ 1 + bc) 
= 0.

The particular cases can be studied similarly.
For Φ =

∑
i ϕ

i∂i ∈ g1, where ϕi =
∑

r �=s t
i
rsurus +

∑
r t

i
rru

2
r , using the fact that [Φ, ∂r] ∈

g0, we see that for 1 ≤ r ≤ 4 we have

t1r1 = t3r3, t2r2 = t4r4,
t1r4
c

=
t2r1

(a+ bc)
=

t3r2
(1 + bc)

=
t4r3

(a+ bc+ 1)
,

t1r2 = t2r3 = t3r4 =
t4r1
b
, t4r2 =

(
a+ bc+ 1

c

)
t2r4 +

(
a+ 1
c

)
t1r3,

t3r1 =
(
a

c

)
t2r4 +

(
a+ bc

c

)
t1r3.

These relations imply that tirs = 0 for all indices.
(6) We prove the theorem for the case bc(1 + bc) 
= 0. The proof for the particular cases

are similar. We see that (obvious restrictions on k apply)

Φ−1
1 ∈ K∂1, Φ−1

2 ∈ K∂3, Φ−1
3 ∈ K∂2, Φ−1

4 ∈ K∂4,

Φ0
1 ∈ K∇−, Φ0

2 ∈ K∇+, Φ0
3 ∈ KH >, Φ0

4 ∈ K(E + c(1 + bc)F ),

[∂1,Φk
1 ] = Φk−1

4 , [∂2,Φk
1 ] = Φk−1

1 , [∂3,Φk
1 ] = Φk−1

3 , [∂4,Φk
1 ] = Φk−1

2 ,

[∂1,Φk
2 ] =

(
bc

1 + bc

)
Φk−1

3 , [∂2,Φk
2 ] = Φk−1

2 , [∂3,Φk
2] = Φk−1

4 , [∂4,Φk
2] = Φk−1

1 ,
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[∂1,Φk
3 ] = 0, [∂2,Φk

3 ] = Φk−1
3 , [∂3,Φk

3 ] = 0, [∂4,Φk
3 ] = Φk−1

4 ,

[∂1,Φk
4 ] = 0, [∂2,Φk

4 ] = Φk−1
4 , [∂3,Φk

4 ] = 0, [∂4,Φk
4 ] = Φk−1

3 .

For k even, we have

[H,Φk
1 ] = Φk

1, [H,Φk
2 ] = Φk

2, [H,Φk
3 ] = 0, [H,Φk

4 ] = 0

[∇+,Φk
1 ] = Φk

3, [∇+,Φk
2 ] = 0, [∇+,Φk

3 ] = (1 + bc)Φk
2 , [∇+,Φk

4 ] = cΦk
1 ,

[∇−,Φk
1 ] = 0, [∇−,Φk

2 ] =
(

1
1 + bc

)
Φk

3, [∇−,Φk
3] = Φk

1, [∇−,Φk
4] = Φk

2,

[E + c(1 + bc)F,Φk
1 ] =

(
1

1 + bc

)
Φk

2, [E + c(1 + bc)F,Φk
2 ] = cΦk

1 ,

[E + c(1 + bc)F,Φk
3 ] = 0, [E + c(1 + bc)F,Φk

4 ] = 0.

These formulae show that Φk
4 /∈ g(1) and the set {∂1, ∂2, ∂3, ∂4,Φ

smin−1
1 ,Φsmin−1

2 ,Φsmin−1
3 }

is contained in g(1). Further, from the formulae for z,E, and F we see that they are
not generated by the set {∂1, ∂2, ∂3, ∂4,Φ

smin−1
1 ,Φsmin−1

2 ,Φsmin−1
3 }; in addition, z,E, F

are not in o(3)(1). Thus g is not simple, and g(1) is generated by the set {∂1, ∂2,

∂3, ∂4,Φ
smin−1
1 ,Φsmin−1

2 ,Φsmin−1
3 }. If I is a nontrivial ideal of g(1), then we see that I∩g−1 =

g−1. This in turn implies that Φk
i ∈ I for k < smin − 1. Now [g(1)

0 , g
(1)
smin−1] = g

(1)
smin−1 ⊂ I.

Hence g(1) is simple.
As every g

(1)
k is 4-dimensional for −1 ≤ k < smin−1, and dim g

(1)
smin−1 = 3 (for, Φsmin−1

4 /∈
g(1)), it follows that dim g(1) = 4(smin − 1) − 1.

(7) The proof is similar to the one done above. We present the relevant formulae for the
case bc(1 + bc) 
= 0:

Ψ−1
1 ∈ K∂4, Ψ−1

2 ∈ K∂2, Ψ−1
3 ∈ K∂1, Ψ−1

4 ∈ K∂3,

Ψ0
1 ∈ K∇−, Ψ0

2 ∈ K∇+, Ψ0
3 ∈ KH, Ψ0

4 ∈ K(E + c(1 + bc)F ),

[∂1,Ψk
1 ] = Ψk−1

1 , [∂2,Ψk
1 ] = Ψk−1

3 ,

[∂3,Ψk
1 ] =

(
c

1 + bc

)
Ψk−1

2 , [∂4,Ψk
1 ] =

(
c

1 + bc

)
Ψk−1

4 ,

[∂1,Ψk
2] = Ψk−1

2 , [∂2,Ψk
2] = Ψk−1

4 , [∂3,Ψk
2] = Ψk−1

1 , [∂4,Ψk
2] = Ψk−1

3 ,

[∂1,Ψk
3 ] = Ψk−1

1 , [∂2,Ψk
3 ] = 0, [∂3,Ψk

3 ] =
(

c

1 + bc

)
Ψk−1

4 , [∂4,Ψk
3 ] = 0,

[∂1,Ψk
4 ] = Ψk−1

4 , [∂2,Ψk
4 ] = 0, [∂3,Ψk

4 ] = Ψk−1
3 , [∂4,Ψk

4 ] = 0.

For k even, we have

[H,Ψk
1] = Ψk

1, [H,Ψk
2 ] = Ψk

2, [H,Ψk
3 ] = 0, [H,Ψk

4 ] = 0

[∇+,Ψk
1 ] = Ψk

3, [∇+,Ψk
2] = 0, [∇+,Ψk

3 ] = cΨk
2 , [∇+,Ψk

4 ] = (1 + bc)Ψk
1 ,
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[∇−,Ψk
1 ] = 0, [∇−,Ψk

2 ] =
(

1
c

)
Ψk

3 , [∇−,Ψk
3 ] = Ψk

1 , [∇−,Ψk
4 ] = Ψk

2 ,

[E + c(1 + bc)F,Ψk
1 ] = cΨk

2 , [E + c(1 + bc)F,Ψk
2 ] = (1 + bc)cΨk

1 ,

[E + c(1 + bc)F,Ψk
3 ] = 0, [E + c(1 + bc)F,Ψk

4 ] = 0.

In [9], there listed the irreducible modules g−1 over the orthogonal Lie algebras g0 = o(n)
for which the prolong (g−1, g0)∗,N is a simple Lie algebra over C. Such modules are only
the identity module (for any n) and spinor modules for n ≤ 10. Since at the moment we do
not know the description of irreducible modules over the analogs of orthogonal Lie algebras
for p = 2, and their “relatives”, and in view of the above theorem, we investigate if there
are prolongs (and if there are nonzero ones, what are the critical coordinates of N) only for
the identity oB(n)-modules for various inequivalent B’s, all n’s, and the relatives of oB(n).

3.2. The Cartan prolong of oI(k)(1)

The Lie algebra g0 = oI(k)(1) consists of symmetric k×k-matrices whose diagonal elements
are equal to 0. Let g−1 be the identity g0-module spanned by partial derivatives as g0 is
embedded into vect(k;N )0:

g0 =


k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = ai

j and ai
i = 0 for all i, j

 .

Theorem 3.2. (1) The prolong g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂iφ

j for all i, j = 1, . . . , k; ∂iφ
i = 0 for all i = 1, . . . , k.

In particular, for t > m = k − 2, we get gt = 0. We have gk−2 = Kw, where

w =
k∑

i=1

(u1 · · · ûi · · · uk) ∂i.

(2) The following elements form a basis of gt:

FJ =
∑
i∈J

 ∏
j∈J\{i}

uj

∂i, where J ⊂ {1, . . . , k}, |J | = t+ 1.

Thus,

dim gt =
(

k

t+ 1

)
for 1 ≤ t ≤ m, dim g =

∑
−1≤t≤m

dim gt = 2k − 1.

We will need another description of the basis of each gt. For any t, where −1 ≤ t ≤ m,

let I = (i1, i2, . . . , im−t) be an (m − t)-tuple, where ij ∈ {1, 2, . . . , k} for each j. Then, we
set

wI := ad∂i1
◦ ad∂i2

◦ · · · ◦ ad∂im−t
(w), w( ) := w. (3.1)
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A basis of gt is given by the set

{wI | I = (i1, i2, . . . , im−t), where 1 ≤ i1 < i2 < · · · < it ≤ k}.
Note that wI = FJ when I is the complement of J in the set {1, . . . , n}.

(3) For k = 2, the Lie algebra g is solvable.
(4) For k > 2, the set {∂1, ∂2, . . . , ∂k, w} generates g as a subalgebra of vect(k,N). The

Lie algebra g is not simple.
(5) The Lie algebra g(1) is simple for k > 2 and its dimension is 2k − 2.

Proof. (1) For
∑

i ϕ
i∂i ∈ g0, we note that ∂i(ϕi) = 0 for 1 ≤ i ≤ k. Let Φ =

∑
i ϕ

i∂i ∈ g1.
As [Φ, ∂i] ∈ g0 for all i, we conclude that ∂i(ϕi) = 0 for 1 ≤ i ≤ k. In other words, ϕi

does not have ui, u2
i in its description for 1 ≤ i ≤ k. Let

ϕi =
∑

r1<r2

ai
r1,r2

ur1ur2 +
∑

r

ar,ru
2
r

The indices r1, r2, r are elements of {1, 2, . . . , k}. Set ai
r1,r2

= ai
r2,r1

for r1 > r2. Then
ai

r1,r2
= ai

r,r = 0 for i ∈ {r, r1, r2}.
Now, [∂r,Φ] ∈ g0 for any r such that 1 ≤ r ≤ k. We have

[∂r,Φ] = ai
r,r(ur∂i + ui∂r) + rest of the terms

= ar
r,i(ui∂r + ur∂i) + rest of the terms.

As ar
r,i = 0, we get ai

r,r = 0 for all r.
For i, r1, r2 such that r1 < r2 and i /∈ {r1, r2}, we see that

[∂r1 ,Φ] = ai
r1,r2

(ur2∂i + ui∂r2) + rest of the terms

= ar2
r1,i(ur2∂i + ui∂r2) + rest of the terms.

Hence, ai
r1,r2

= ar2
r1,i.

To summarize:

• ai
r1,r2

= 0 for i ∈ {r1, r2} ∪ {r}.
• ai

r,r = 0 for 1 ≤ r ≤ k.
• ai

r1,r2
= ar2

r1,i for 1 ≤ i, r1, r2 ≤ k.

Thus, a basis of g1 is given by the set

{ur1ur2∂i + ur1ui∂r2 + ur2ui∂r1}r1<r2, and i/∈{r1,r2}.

3.2.1. Convention

Let ui
r replace the i-fold product urur · · · ur, where the product of ur with itself is zero and

u2
r is not zero: that is if some of the ri coincide, then the formula contains the corresponding

divided power, not the usual one (which is 0).
For h ≥ 2, let Φ ∈ gh−1. Let Φ =

∑
i ϕ

i∂i, where

ϕi =
∑

1≤r1≤r2≤···≤rh≤k

ai
r1,r2,...,rh

ur1ur2 · · · urh
.
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For any permutation σ on h elements, set

ai
rσ(1),rσ(2),...,rσ(h)

= ai
r1,r2,...,rh

.

We then have:

• ai
r1,r2,...,rh

= 0 for any i ∈ {r1, r2, . . . , rh}.
• ai

r1,r2,...,rh
= 0 if rj = rj+1 for some j, where 1 ≤ j ≤ h.

• ai
r1,r2,...,rh

= arh
r1,r2,...,rh−1,i.

Hence the result.
(2) For any Φ1 ∈ gt, where 0 ≤ t ≤ m, note that Φ1 =

∑
i ϕ

i∂i. If ai
r1,r2,...,rt+1


= 0, then

Φ1 = ai
r1,r2,...,rt+1

FJ + Φ2 for J = (r1, r2, . . . , rt+1),

where the coefficient function of ∂i in Φ2 does not have the term ur1ur2 · · · urt+1. The linear
independence of FJ is immediate.

(3) For k = 2, the Lie algebra g0 is 1-dimensional spanned by u2∂1 + u1∂2. Further,
g1 = 0. Thus, we have g = g−1 ⊕ g0, whose derived algebra is abelian.

(4) Note that

[ui∂j, w] = u1 · · · ûj · · · uk∂i + u1 · · · ûi · · · u2k∂j for i 
= j.

Thus, [ui∂j + uj∂i, w] = 0. Therefore, [g0, w] = 0. Now consider [wI , wJ ], for wI ∈ gr and
wJ ∈ gs, where r + s = m, r, s ≥ 1. Let I = (i1, . . . , im−r), and J = (j1, . . . , jm−s). Note
that

[wI , wJ ] = [[∂i1 , wJ ], wI′ ] + [∂i1 , [wI′ , wJ ]], where I ′ = (i2, . . . , im−r).

As [wI′ , wJ ] ∈ gm+1 = {0}, we get [wI , wJ ] = [[∂i1 , wJ ], wI′ ]. Continuing further, we see
that [wI , wJ ] ∈ [g0, w] = {0}. In other words, w /∈ [g, g].

(5) Indeed, ⊕m−1
i=−1 gi ⊂ g(1), and w /∈ g(1). Thus, g(1) = ⊕m−1

i=−1 gi.
Let I be a nontrivial ideal of g(1). Then, taking commutators of a nonzero element of I

with appropriate ∂i, we see that I ∩ g−1 
= 0. This implies that I ∩ g−1 = g−1. This in turn
implies that ⊕m−2

i=−1 gi ⊂ I. Lastly, since [g0, w] = {0}, it follows that gm−1 is isomorphic to
g−1 as a g0-module. In other words, gm−1 ⊂ I. Hence, dim g(1) = dim g − 1.

Corollary 3.3. In this prolong, there are no critical coordinates of N .

3.3. The Cartan prolong of c(o(1)
I (k))

The Lie algebra c(o(1)
I )(k)) consists of symmetric k×k-matrices such that all their diagonal

elements are equal to each other.
Let g−1 = K〈∂1, ∂2, . . . , ∂k〉 be the identity g0 = c(o(1)

I (k))-module spanned by partial
derivatives as g0 is embedded into vect(k;N )0:

g0 =


k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = ai

j and ai
i = aj

j for all i, j

 .
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Theorem 3.4. (1) The prolong g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂iφ

j , ∂iφ
i = ∂jφ

j for all i, j = 1, . . . , k.

Then g = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gsmin+k−3.
(2) Let

∑
ur be the sum taken over all r = (r1, . . . , rk) such that all ri are non-negative

and even, and r1 + · · · + rk = smin − 1. A basis of g is given by the set

{add1
∂1
. . . addk

∂k
w | d ∈ Zk

≥0\{(smin, 1, 1, . . . , 1)} with d1 ≤ smin,

and dj ≤ 1 for j 
= 1} ∪ {η},
where

η :=
(∑

ur
)
(u1∂1 + u2∂2 + · · · + uk∂k), and w :=

(∑
ur

)( k∑
i=1

u1 . . . ûi . . . uk∂i

)
.

(3) The Lie algebra g is not simple.
(4) For smin 
= 1, the Lie algebra g(1) is simple for k > 1. As a Lie subalgebra of

vect(k,N ) it is generated by the set
{

{∂1, ∂2, . . . , ∂k, w} if k is odd,

{∂1, ∂2, . . . , ∂k, w(1), . . . , w(k)} if k is even.

(5) For smin 
= 1, dim g(1) =
{

(smin + 1)2k − 1 if k is odd,

(smin + 1)2k − 2 if k is even.

(6) For smin = 1 and k odd, the Lie algebra g(2) is simple of dimension 2k − 2.
For smin = 1 and k > 2 even, the Lie algebra g(1) is simple of dimension 2k − 2; for

k = 2, the Lie algebra g is solvable.

Proof. (1) Let Φ =
∑

i ϕ
i∂i ∈ g1. Let ϕi =

∑
r1<r2

ai
r1,r2

ur1ur2 +
∑

r a
i
r,ru

2
r. The indices

r1, r2, r are elements of {1, 2, . . . , k}. Set ai
r1,r2

= ai
r2,r1

for r1 > r2.
As [Φ, ∂i] ∈ g0 for all i, we get

• ai
r1,r2

= ar2
r1,i

• ai
r1,i = aj

r1,j for all i, j.

Thus, a basis of g1 is given by the setui(u1∂1 + u2∂2 + · · · + ûi∂i + · · · + uk∂k) +

 k∑
j=1

u2
j

 ∂i


1≤i≤k

∪{uiuj∂r + uiur∂j + ujur∂i}i,j,r are distinct

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

see (3.2.1).
For σ a permutation on h elements, set

ai
rσ(1),rσ(2),...,rσ(h)

= ai
r1,r2,...,rh

.
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We get

• ai
r1,r2,...,rh

= arh
r1,r2,...,rh−1,i

• ai
r1,r2,...,rh−1,i = aj

r1,r2,...,rh−1,j for all i, j.

In other words, the nonzero coefficients ai
r1,...,rh

determine the corresponding vector fields.
So, we denote by Φi0

r1,r2,...,rh
∈ gh−1 the vector field

∑
i ϕ

i∂i, where

ϕi0 = ui1
1 u

i2
2 · · · + related terms,

where ij is the number of times j appears in the sequence (r1, r2, . . . , rh); the related terms
are those monomials which arise by the above two equalities. For example,

Φ1
1,1,2,3 = (u2

1u2u3 + u3
2u3 + u2u

3
3)∂1 + (u3

1u3 + u1u
2
2u3 + u1u

3
3)∂2

+ (u3
1u2 + u1u

3
2 + u1u2u

2
3)∂3

= (u2
1 + u2

2 + u2
3)(u2u3∂1 + u1u3∂2 + u1u2∂3)

= adsmin−3
∂1

ad∂4 ad∂5 · · · ad∂k
w.

Note, if u3
1u2 = 0, then Φ1

1,1,2,3 = 0.
Consider Φ1

1, 1, . . . , 1
| {z }

smintimes

,2,3,...,k. Let smin = sl = 2Nl − 1 which is an odd number. Then,

Φ1
1,1,...,1,2,3,...,k = Φl

1, 1, . . . , 1
| {z }

smin+1times

,2,3,...,bl,...,k. Now,

Φl
1,1,...,1,1,2,3,...,bl,...,k = Φl

l,l,...,l,l,3,...,k = 0.

• Let k > 2. Similar arguments as above show Φt
1, 1, . . . , 1
| {z }

smin−1times

,2,3,...,k = 0 for any t 
= 1. Thus,

gh = 0 for h > smin + k − 3.
For m = smin + k − 3, we have gm = Kw, where w = Φ1

1, 1, . . . , 1
| {z }

smin−1times

,2,3,...,k.

Likewise, η = Φ1
1, 1, . . . , 1
| {z }

smintimes

. Note that η is an element of gsmin−1.

• For k = 2, we see that m = smin + k− 3 = smin − 1, and gm is 2-dimensional spanned by
{w, η}.
(2) For t ≥ 0, let I = (i1, i2, . . . , it) be a t-tuple, where ij ∈ {1, 2, . . . , k} for each j. For

any sequence I such that wI 
= 0 (for I large enough, wI = 0, but we want to consider only
those wI which are nonzero to be basis vectors), we see that I is a subsequence of some
sequence M such that w = Φj

M for some j. Then wI = Φj

(M,bI)
(that is, delete the entries of

the sequence I from the sequence M).
Thus, we see that a basis of g is given by the set

{wI |wI 
= 0} ∪ {η}.
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Now, to find those wI ’s which are nonzero, it is enough to view w as Φ1
1, 1, . . . , 1
| {z }

smin−1times

,2,3,...,k. Then

wI = 0 if and only if 1 appears more than smin times in I, or j appears more than once in
I for j 
= 1, or I = (1, 1, . . . , 1︸ ︷︷ ︸

smintimes

, 2, 3, . . . , k).

(3) We prove this by highlighting some important properties of wI and η.

• [g0, w] = {0}. Indeed,
[∑

j uj∂j , w
]

= 0. Next, note that for j 
= r, we have

[uj∂r + ur∂j , w] =
(
(uj∂r + ur∂j)

(∑
ur

))(
k∑

l=1

u1 · · · ûl · · · uk∂l

)

+
(∑

ur
)[

uj∂r + ur∂j ,

k∑
l=1

u1 · · · ûl · · · uk∂l

]
.

Note that
[
uj∂r + ur∂j ,

∑k
l=1 u1 · · · ûl · · · uk∂l

]
= 0. Further

(uj∂r + ur∂j) (ut
r + ut−2

r u2
j + ut−4

r u4
j + · · · + ut

j) = 0 for t even.

Thus, [g0, w] = 0.
• Let I = (i1, i2, . . . , ir) and J = (j1, j2, . . . , jt). Consider

[wI , wJ ] = [[∂i1 , wJ ], wI′ ] + [∂i1 , [wI′ , wJ ]], where I ′ = (i2, . . . , im−r).

Note that, by definition, [∂ii , wJ ] = w bJ , where Ĵ = (i1, j1, j2, . . . , jt). Now using induction
on the length of I we see that

[wI , wJ ] ∈ Span{wI |wI 
= 0}.

The same arguments along with the fact that [g0, w] = 0 show that w /∈ [g, g].
• As η = Φ1

1, 1, . . . , 1
| {z }

smintimes

∈ gsmin−1 has a higher power of u1 than any of the wI ∈ gr for any r,

we have η /∈ [g−1, g]. Note that [g0, η] = {0}. Further,

[wI , η] = [[∂i1 , η], wI′ ] + [∂i1 , [wI′ , η]].

By induction on the length of I, we have η /∈ [g, g].

(4) Let smin 
= 1 and k be even. g(1) = ⊕m−1
i=−1 g

(1)
i . Note, g

(1)
i = gi for i 
= smin−1. Let

I be a nontrivial ideal. Then taking commutators of a nonzero element of I with appropriate
∂i, we see that I ∩ g

(1)
−1 
= 0 which gives I ∩ g

(1)
−1 = g

(1)
−1. This implies ⊕m−2

i=−1 g
(1)
i ⊂ I. Lastly,

w(r) = [
∑

j uj∂j , w(r)] ∈ I for all r.

Let smin 
= 1 and k be odd. g(1) =
∑m

i=−1 g
(1)
i . Note, g

(1)
i = gi for i 
= smin − 1.

Simplicity follows similarly.
(5) Let smin 
= 1 and k be even. The dimension of g(1) is the cardinality of the set

{wI |wI 
= 0, |I| > 0}. For this, recall that w = Φ1
1, 1, . . . , 1
| {z }

smin−1times

,2,3,...,k. Hence, wI 
= 0 if and
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only if the number of 1’s in I is between 0 and smin and the number of j’s in I is 0 or 1;
furthermore, I 
= ( ) and I 
= (1, 1, . . . , 1︸ ︷︷ ︸

smin−1times

, 2, 3, . . . , k). This number is (smin + 1)2k−1 − 2.

Let smin 
= 1 and k be odd. The dimension, by similar arguments and the fact that
w ∈ g(1), is (smin + 1)2k−1 − 1.

(6) Let smin = 1. If k is odd, [η,w] = w ∈ g(1). Further, w /∈ g(2). The Lie algebra g(2)

is simple and generated by {∂1, . . . , ∂k, w(1), . . . , w(k)}.
If k > 2 is even [η,w] = 0, and thus w /∈ g(1). The Lie algebra g(1) is simple and

generated by {∂1, . . . , ∂k, w(1), . . . , w(k)}. Hence the result.
For k = 2, we have g = {w, η, ∂1, ∂2} and g(1) = {∂1, ∂2} is abelian.

Corollary 3.5. The critical values of N in this case are of the form (n, n, . . . , n).

3.4. The Cartan prolong of oI(k)

The algebra oI(k) consists of symmetric k× k-matrices. Let g−1 = K〈∂1, ∂2, . . . , ∂k〉 be the
identity g0 = oI(k)-module spanned by partial derivatives as g0 is embedded into vect(k,N ):

g0 =


k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = ai

j for all i, j

 .

Theorem 3.6. (1) We obtain the Cartan prolong as a Lie algebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm,

where m = (
∑
si)− 2. The prolong g consists of all vector fields Φ =

∑
i φ

i∂i satisfying the
condition

∂jφ
i = ∂iφ

j for all i, j = 1, . . . , k.

(2) The following elements form a basis of g:

Fc1,...,ck
=

∑
ci>0

uc1
1 . . . u

ci−1

i−1 u
ci−1
i u

ci+1

i+1 . . . u
ck
k ∂i, where

0 ≤ ci ≤ 2Ni for all i = 1, . . . , k;

ci > 0 for some i;

if ci = 2Ni for some i, then cj = 0 for all j 
= i.

(3.2)

Another description of the basis is needed: Let

w =
k∑

i=1

us1
1 u

s2
2 · · · usi−1

i−1 u
si−1
i u

si+1

i+1 · · · usk
k ∂i

= us1−1
1 us2−1

2 · · · usk−1
k

k∑
i=1

u1u2 · · · ûi · · · uk∂i ∈ gm,

ηi = usi
i ∂i ∈ gsi−1.

Then, a basis of g is given by the set {ηi}k
i=1 ∪ {wI |wI 
= 0}.



November 22, 2010 8:41 WSPC/1402-9251 259-JNMP 00086

274 U. N. Iyer, A. Lebedev & D. Leites

(3) The Lie algebra g is not simple.
(4) For k = 1, the Lie algebra is nilpotent.
(5) Let k > 1. If Ni > 1 for some i such that 1 ≤ i ≤ k, the Lie algebra g(1) =

[g, g] = ⊕m
i=−1 g

(1)
i is simple. As a Lie subalgebra of vect(k,N ) it is generated by the set

{∂1, ∂2, . . . , ∂k, w}.
If k = 2, N1 = N2 = 1, then g is solvable. If k > 2, and Ni = 1 for all i such that

1 ≤ i ≤ k, then g(2) is simple and generated by {∂1, ∂2, . . . , ∂k, w(1), . . . , w(k)}.
(6) Let k > 1. Then dim g(1) = 2N12N2 · · · 2Nk −1 if Ni > 1 for some i, where 1 ≤ i ≤ k.

dim g(2) = 2k − 2 if Ni = 1 for all i such that 1 ≤ i ≤ k.

Proof. (1) Arguments similar to the ones in the previous examples give that a basis of g1

is given by the set

{uiuj∂r + uiur∂j + uruj∂i}i,j,r distinct ∪ {u2
i ∂r + uiur∂i}i,r distinct

∪ {u2
i ∂i}si �=1.

For h ≥ 2, let Φ ∈ gh−1. Write Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

see (3.2.1). We then have:

ai
r1,r2,...,rh

= arh
r1,r2,...,rh−1,i.

In particular, for h > (
∑

i si) − 2, we get gh = 0. For m = (
∑
si) − 2, we have gm = Kw.

(2) For any Φ1 ∈ gt−1, 1 ≤ t ≤ m, note that Φ1 =
∑

i ϕ
i∂i.

Let ai
r1,r2,...,rt


= 0 for some i, where 1 ≤ i ≤ k. Let lj denote the number of times j
appears in the sequence (r1, r2, . . . , rt).

Case (a). If li = si. Further, if rj 
= i for some j, then ai
r1,...,rt

= a
rj

i,r1,..., brj ,...,rt
= 0.

Therefore, rj = i for every j. In this case, Φ1 = ai
r1,...,rt

ηi + Φ2 and Φ2 does not have the
term ηi.

Case (b). If li < si, let I = (j1, j2, . . . , jp) be the sequence, where j appears sj − lj times
for j 
= i and i appears si − li − 1 times. Then, Φ1 = ai

r1,r2,...,rt
wI + Φ2, where Φ2 does not

contain the term ur1ur2 · · · urt∂i.

To make this choice clear, let Mi denote the sequence

(1, 1, . . . , 1, 2, 2, . . . , 2, . . . , k, k, . . . , k),

where each j appears sj times for j 
= i , and i appears si − 1 times. Notice that

w =
∑
Mi

uMi∂i and wMi = ∂i.

Let I be the complement of the subsequence (r1, r2, . . . , rt) in the sequence Mi.
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Using the facts that ad∂i
◦ ad∂j

= ad∂j
◦ ad∂i

, and adsi+1
∂i

= 0, we conclude that a basis
of g is given by the set

{ηi}k
i=1 ∪ {wI | I is a subsequence of Mi for some i}.

(3) We prove this pointing out some important properties of g.

• Let I = (i1, i2, . . . , ir) and J = (j1, j2, . . . , jt). Consider

[wI , wJ ] = [[∂i1 , wJ ], wI′ ] + [∂i1 , [wI′ , wJ ]], where I ′ = (i2, . . . , im−r).

Note that, by definition, [∂ii , wJ ] = w bJ , where Ĵ = (i1, j1, j2, . . . , jt). Now using induction
on the length of I we see that

[wI , wJ ] ∈ Span{wI | I is a subsequence of Mi for some i}.
• As each ηi = usi

i ∂i ∈ gsi−1 has a higher power of ui than any of the wI , we have
ηi /∈ [g−1, g]. Note that [ui∂i, ηj ] = {0} for any i, j. Further,

[wI , ηi] = [[∂i1 , ηi], wI′ ] + [∂i1 , [wI′ , ηi]].

By induction on the length of I, we see that [wI , ηi] ∈ Span{wI}. Thus, we have ηi /∈ [g, g]
for every i.

(4) When k = 1, g is generated by the set {∂1, u
si
i ∂i} which is a nilpotent Lie algebra.

(5) Let k > 1, Ni > 1 for some i such that 1 ≤ i ≤ k, then g(1) = [g, g] = ⊕m
i=−1 g

(1)
i ,

where g
(1)
i = gi for i 
∈ {s1 − 1, s2 − 1, . . . , sk − 1}. Let I be a nontrivial ideal of g(1). Then

taking commutators of a nonzero element of I with some appropriate ∂i’s, we see that
I ∩ g

(1)
−1 
= 0. This implies that I ∩ g

(1)
−1 = g

(1)
−1. This, in turn, implies that ⊕m−1

i=−1 g
(1)
i ⊂ I.

Lastly, w = [ui∂i, w] ∈ I.
Let k = 2, and N1 = N2 = 1. Then, g = {∂1, ∂2, u1∂1, u2∂2, u1∂2 + u2∂1}. This is a

solvable Lie algebra.
Let k > 2 and Ni = 1 for all i such that 1 ≤ i ≤ k. Then, g(1) = ⊕m−1

i=−1 g
(1)
i , where

g
(1)
i = gi for i 
= 0. Further, w = [ui∂i, w] ∈ g(1). Note that g(2) = [g(1), g(1)] does not contain
w, whereas g(2) = ⊕m−1

i=−1g
(1)
i .

The simplicity of g(2) follows as in the previous case. Note that here, g(2) is isomorphic
to the derived algebra of the Cartan prolongation of (o(1)

I (k), g−1)∗,N (see 3.2).
(6) Let k > 1 and Ni > 1 for some i and 1 ≤ i ≤ k, a basis of g

(1)
m−t, where

1 ≤ t ≤ m+ 1, is given by the set

{wI | I is a subsequence of Mi of length t for some i}.
Recall that

w = us1−1
1 us2−1

2 · · · usk−1
k

(
k∑

i=1

u1u2 · · · ûi · · · uk∂i

)
.

So, to count the number of wI , we first count the number of indexing sets I, where the
appearance of the index i is determined by 0 ≤ i ≤ si excepting the index in which every i
appears si times (for, in this case, we get 0). So, dim g(1) = 2N12N2 · · · 2Nk − 1.
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Let k > 1 and Ni = 1 for all i such that 1 ≤ i ≤ k. The argument is similar to that
in 3.2 and the dimension is 2k − 2.

Corollary 3.7. All coordinates of N are critical in this case.

3.5. The Cartan prolong of o
(2)
S (2k)

The algebra o
(2)
S (2k) consists of 2k × 2k-matrices A symmetric with respect to the anti-

diagonal such that all the elements of the anti-diagonal are 0 and A11 + · · · +Akk = 0. So,
when we construct the Cartan prolong with g0 = o

(2)
S (2k) and g−1 = id, we embed g0 into

vect(2k;N )0 so that the image is
2k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+1−i

2k+1−j and

a2k+1−i
i = 0 for all i, j; and

k∑
i=1

aii = 0

}
.

Theorem 3.8. (1) The prolong g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂2k+1−iφ

2k+1−j for all i, j = 1, . . . , 2k;

∂iφ
2k+1−i = 0 for all i = 1, . . . , 2k;

k∑
i=1

∂iφ
i = 0.

(3.3)

For k = 2, g = g−1 ⊕ g0.
For k > 2, we have

g =
⊕

−1≤i≤m

gi,

where m = 2k − 4 and gm = Kw, where

w =
∑

1≤i≤2k

 ∑
j≤k,j /∈{i,2k+2−i}

u1u2 · · · u2k

uju2k+1−ju2k+1−i

 ∂i.

The prolong g is not simple.
Its first derived algebra g(1) is simple, and g(1) = ⊕−1≤i≤m−1 g

(1)
i .

We have

dim(g(1)
m−k) = −2k +

(
2k
k

)
−

(
2k
k − 2

)
+

(
2k
k − 4

)
− · · · ;

dim(g(1)
m−t) =

(
2k
t

)
− dim(g(1)

m−t+2) for t ≥ 3 and t 
= k.
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Proof. It is easy to check that g1 = 0 if k = 2. (For k = 1, we have o
(2)
S =

0.) Let k > 2. For h ≥ 1, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where ϕi =∑

1≤r1≤r2≤···≤rh≤2k a
i
r1,r2,...,rh

ur1ur2 · · · urh
, see (3.2.1). We get,

(1) ai
r1,r2,...,rh

= 0 for 2k + 1 − i ∈ {r1, r2, . . . , rh}.
(2) a1

r1,r2,...,rh−1,1 + a2
r1,r2,...,rh−1,2 + · · · + ak

r1,r2,...,rh−1,k = 0.

(3) ai
r1,r2,...,rh

= a2k+1−rh
r1,r2,...,rh−1,2k+1−i. These relations imply that ai

j,j,r1,...,rh−2
= 0 for any i, j.

Further, for h > 2k − 4, we get gh = 0, and g2k−4 = Kw.

Let Φi
r1,r2,...,rh

denote that vector field which has ai
r1,r2,...,rh

= 1 and is then determined by
the above conditions on its other coefficients. For instance, w = Φ1

1,2,...,k−1,k+2,k+3,...,2k−1.
Then, in addition to w, we have a set, F , of cardinality 2k, consisting of vector fields,
Φi

r1,r2,...,rk−1
in gk−2, where

r1 < r2 < · · · < rk−1 < 2k + 1 − i, where i /∈ r1, r2, . . . , rk−1,

and rj 
= 2k + 1 − rs for j, s.

For instance,

Φ1
2,3,...,k = u2u3 · · · uk∂1 +

∑
2≤i≤k

u2 · · · uku2k

ui
∂2k+1−i.

The prolong g is generated as a Lie algebra by the set {∂1, . . . , ∂2k}∪{w} ∪ {Φi
r1,...,rk−1

}F .
The Lie algebra g is not simple as g(1) does not contain {w} ∪ {Φi

r1,...,rk−1
}F .

As [ui∂i + u2k+1−i∂2k+1−i, w] = 0, we see that [ui∂i + u2k+1−i∂2k+1−i, w(i)] = w(i),
where w(i) = ad∂i

(w). Thus, g(1) is generated as a Lie algebra by the set {w(i), ∂i}i≤2k.
Any nontrivial ideal of g(1) intersects g−1 nontrivially. This in turn implies that the ideal
contains g(1). Hence, the Lie algebra g(1) is simple.

For 1 ≤ t ≤ m, consider sequences I = (i1, i2, . . . , it) such that i1 < i2 < · · · < it, where
ij ∈ {1, 2, . . . , 2k}.We then have:

w(r1,r2,...,rs,1,2k) + w(r1,r2,...,rs,2,2k−1) + · · · + w(r1,r2,...,rs,k,k+1) = 0,

w(r1,r2,...,rs,i1,i2,...,ik) = 0 for ij ∈ {j, 2k + 1 − j}.

The dimension of g
(1)
m−t is given by the number of distinct wI , subject to the conditions

listed above, where I is of length t.
Let η = w(1,2k)+w(2,2k−1)+· · ·+w(k,k+1). Note that η = 0. This gives a linear dependence

on the vectors w(1,2k), w(2,2k−1), . . . , w(k,k+1). Thus,

dim(g(1)
m−1) = #{w(i) | 1 ≤ i ≤ 2k} = 2k,

dim(g(1)
m−2) = #{w(i,j) | 1 ≤ i < j ≤ 2k} − #{η} =

(
2k
2

)
− 1,
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dim(g(1)
m−3) = #{w(i,j,l) | 1 ≤ i < j < l ≤ 2k} − #{η(i)} =

(
2k
3

)
− 2k,

...

dim(g(1)
m−t) =

(
2k
t

)
− dim(g(1)

m−t+2), for t ≥ 3, t 
= k,

dim(g(1)
m−k) =

(
2k
k

)
− dim(g(1)

m−k+2) − #{w(i1,i2,...,ik) | ij ∈ {j, 2k + 1 − j}}.

Corollary 3.9. No critical coordinates of N in this case.

3.6. The Cartan prolong of o
(1)
S (2k)

The algebra o
(1)
S (2k) consists of 2k×2k-matrices symmetric with respect to the anti-diagonal

such that all the elements of the anti-diagonal are 0. So, when we construct the Cartan
prolong with g0 = o

(1)
S (2k) and g−1 = id, we embed g0 into vect(2k;N )0 so that the image is

g0 =


2k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+1−i

2k+1−j and a2k+1−i
i = 0 for all i, j

 .

Theorem 3.10. (1) The prolong g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂2k+1−iφ

2k+1−j for all i, j = 1, . . . , 2k; ∂iφ
2k+1−i = 0 for all i = 1, . . . , 2k.

Further, gh = 0 for h > 2k − 2. For m = 2k − 2, we have gm = Kw, where

w =
2k∑
i=1

(
u1 · · · û2k+1−i · · · u2k

)
∂i.

(2) The following elements form a basis of gl−1 for any N :

FJ =
∑
i∈J

 ∏
j∈J\{i}

uj

∂2k+1−i, where J ⊂ {1, . . . , 2k}, |J | = l + 1.

(In particular, gl = {0} for any l ≥ 2k − 1.)
Consequently, dim gt = ( 2k

t + 2 ) for any t such that −1 ≤ t ≤ 2k − 2 and

dim g =
∑

0≤t≤2k

dim(gm−t) = 22k − 1.

Another description of the basis is needed: For t ≥ 1, let I = (i1, i2, . . . , it) be a t-tuple,
where ij ∈ {1, 2, . . . , 2k} for each j. A basis of gm−t, where 0 ≤ t ≤ 2k, is given by the set

{wI | I = (i1, i2, . . . , it),where 1 ≤ i1 < i2 < · · · < it ≤ 2k}.
Note that wI = FJ if I is the complement of J in the set {1, . . . , n}.
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(3) The Lie algebra g is not simple.
(4) For k = 1, the Lie algebra g is solvable (observe that N1 can be anything; further,

when k = 2 or 3, and Ni = 1 for all i, then again we get solvability).
(5) The Lie algebra g(1) is simple for k ≥ 2 and its dimension is 22k+1 − 2 (here Ni > 1

for some t).

Proof. (1) Similar arguments as before give us a basis of g1 is given by the set

{ur1ur2∂i + ur1u2k+1−i∂2k+1−r2 + ur2u2k+1−i∂2k+1−r1}r1<r2, and 2k+1−i/∈{r1,r2}.

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

1≤r1≤r2≤···≤rh≤2k

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

see (3.2.1). We get,

• ai
r1,r2,...,rh

= 0 for 2k + 1 − i ∈ {r1, r2, . . . , rh}.
• If rj = rj+1 for some j, where 1 ≤ j ≤ h, then ai

r1,r2,...,rh
= 0.

• ai
r1,r2,...,rh

= a2k+1−rh
r1,r2,...,rh−1,2k+1−i.

So, for h > 2k − 2, we get gh = 0, and gm = Kw for m = 2k − 2.
(2) For any Φ1 ∈ gm−t, where 0 ≤ t ≤ m, note that Φ1 =

∑
i ϕ

i∂i. If
ai

r1,r2,...,rm−t+1

= 0, then I = {r1, r2, . . . , rm−t+1} is a subsequence in {1, 2, . . . , 2k}. Then,

Φ1 = ai
r1,r2,...,rm−t+1

FI + Φ2, where the coefficient function of ∂i in Φ2 does not have the
term ur1ur2 · · · urm−t+1. Further, note that ad∂i

◦ ad∂j
= ad∂j

◦ ad∂i
and ad2

∂i
(w) = 0. Hence

the result.
(3) Let hi = ui∂i +u2k+1−i∂2k+1−i for 1 ≤ i ≤ k. Note, [w, hi] = 0 for every i. Note that

{hi | 1 ≤ i ≤ k} spans the Cartan subalgebra of g0. Therefore, [g0, w] = 0. Now as seen in
earlier examples, [wI , wJ ] ∈ [g0, w] = 0, for wI ∈ gr and wJ ∈ gs, where r + s = m, and
r, s ≥ 1. In other words, w /∈ [g, g].

(4) For k = 1, we see that g = g−1 ⊕ g0 and is spanned by {∂1, ∂2, u1∂1 + ∂2}. The
derived algebra g(1) = g−1 is abelian.

(5) Indeed, in this case,

g(1) =
m−1⊕
i=−1

g
(1)
i with g

(1)
i = gi for i ≤ m− 1.

Let I be a nontrivial ideal of g(1). Then, taking commutators of a nonzero element of I
with appropriate ∂i, we see that I ∩g

(1)
−1 
= 0. This implies that I ∩g

(1)
−1 = g

(1)
−1. This, in turn,

implies that ⊕m−2
i=−1 g

(1)
i ⊂ I. Lastly, w(i) = [hi, w(i)] ∈ I and w(2k+1−i) = [hi, w(2k+1−i)] ∈ I.

(Here and in sections below, we have hi in both equalities (not h2k+i−1 in the second one),
so the second one cannot be obtained from the first one by a change of the index.)

The dimension of g(1) is therefore one less than that of g; hence, dim g(1) = 22k − 2.

Corollary 3.11. No critical coordinates of N in this case.
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3.7. The Cartan prolong of oS(2k)

The algebra oS(2k) consists of 2k×2k-matrices symmetric with respect to the anti-diagonal.
So, when we construct the Cartan prolong with g0 = oS(2k) and g−1 = id, we embed g0

into vect(2k;N )0 so that the image is

g0 =


2k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+1−i

2k+1−j for all i, j

 .

Theorem 3.12. (1) The prolong g = (g−1, g0)∗,N consists of all vector fields Φ =
∑

i φ
i∂i

satisfying the conditions:

∂jφ
i = ∂2k+1−iφ

2k+1−j for all i, j = 1, . . . , 2k.

(2) The following elements form a basis of g:

Fc1,...,c2k
=

∑
ci>0

uc1
1 . . . u

ci−1

i−1 u
ci−1
i u

ci+1

i+1 . . . u
c2k
2k ∂2k+1−i, where

0 ≤ ci ≤ 2Ni for all i = 1, . . . , 2k;

ci > 0 for some i;

if ci = 2Ni for some i, then cj = 0 for all j 
= i.

(3.4)

Another description of the basis is needed: For m = (
∑
si)−2, we have gm = Kw, where

w =
2k∑
i=1

us1
1 u

s2
2 · · · usi−1

i−1 u
si−1
i u

si+1

i+1 · · · us2k
2k ∂2k+1−i.

For t ≥ 1, let I = (i1, i2, . . . , it) be a t-tuple, where ij ∈ {1, 2, . . . , 2k} for each j.
Further, let ηi = usi

i ∂2k+1−i ∈ gsi−1. Then, a basis of g is given by the set

{ηi}2k
i=1 ∪ {wI | is a subsequence of Mi for some i},

where

Mi = (1, 1, . . . , 1, 2, 2, . . . , 2, . . . , 2k, 2k, . . . , 2k);

here each j appears sj times for j 
= 2k + 1 − i, and 2k + 1 − i appears s2k+1−i − 1 times.
(3) The Lie algebra g is not simple.
(4) The Lie algebra g(1) = [g, g] is simple and is generated as a subalgebra of vect(2k,N )

by the set {∂1, ∂2, . . . , ∂2k+1, w1, w2, . . . , w2k}. Further, a basis of g
(1)
m−t, where 1 ≤ t ≤ m+1,

is the set of Fc1,...,c2k
, where ci ≤ 2Ni − 1 for all i = 1, . . . , 2k, and the inequality is strict at

least for one i.
(5) dim g(1) = 2N1+···+N2k − 2.
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Proof. (1) Note that a basis of g1 is given by the set

{ur1ur2∂i + ur1u2k+1−i∂2k+1−r2 + ur2u2k+1−i∂2k+1−r1}r1<r2, and 2k+1−i/∈{r1,r2}

∪{u2
2k+1−i∂2k+1−r1 + ur1u2k+1−i∂i}r1 �=2k+1−i

∪{u2
i ∂2k+1−i}si �=1.

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
.

Then

ai
r1,r2,...,rh

= a2k+1−rh
r1,r2,...,rh−1,2k+1−i.

Hence, for h > (
∑

i si) − 2, we get gh = 0. For m = (
∑
si) − 2, we have gm = Kw.

(2) For any Φ1 ∈ gt−1, where 1 ≤ t ≤ m, note that Φ1 =
∑

i ϕ
i∂i.

Let ai
r1,r2,...,rt


= 0 for some i, where 1 ≤ i ≤ 2k. Let lj denote the number of times j
appears in the sequence (r1, r2, . . . , rt).

Case (a). If l2k+1−i = s2k+1−i and rj 
= 2k + 1 − i for some j, then

ai
r1,...,rt

= a
2k+1−rj

2k+1−i,r1,..., brj ,...,rt
= 0.

Therefore, rj = 2k + 1 − i for every j. In this case, Φ1 = ai
r1,...,rt

η2k+1−i + Φ2 and Φ2 does
not have the term η2k+1−i.

Case (b). If l2k+1−i < s2k+1−i, let I = (j1, j2, . . . , jp) be the sequence in which j appears
sj − lj times for j 
= 2k + 1 − i and 2k + 1 − i appears s2k+1−i − l2k+1−i − 1 times. Then,
Φ1 = ai

r1,r2,...,rt
wI + Φ2, where Φ2 does not contain the term ur1ur2 · · · urt∂i.

To make this choice clear, let Mi be as described in the statement of the theorem.
Notice that w =

∑
Mi
uMi∂i and wMi = ∂i. Let I be the complement of the subsequence

(r1, r2, . . . , rt) in the sequence Mi.
(3) We see this by noting the following important properties of g.

• First note that [hi, w] = 0, and hence [g0, gm] = 0. Further,

[wI , wJ ] ∈ Span{wI | I is a subsequence of Mi for some i}.

• As each ηi = usi
i ∂2k+1−i ∈ gsi−1 has a higher power of ui than any of the wI , we have

ηi /∈ [g−1, g]. Note that [hi, ηj ] = {0} for any i, j. Further,

[wI , ηi] = [[∂i1 , ηi], wI′ ] + [∂i1 , [wI′ , ηi]].

By induction on the length of I, we see that [wI , ηi] ∈ Span{wI}. Thus, we have ηi /∈ [g, g]
for every i. Further, similar arguments show w /∈ [g, g].

(4) Indeed, suppose I is a nontrivial ideal of g(1) = ⊕m−1
i=−1 g

(1)
i . Here, g

(1)
i = gi for

i /∈ {s1 − 1, s2 − 1, . . . , s2k − 1}. Then taking commutators of a nonzero element of I with
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appropriate ∂i, we see that I ∩ g
(1)
−1 
= 0. This implies that I ∩ g

(1)
−1 = g

(1)
−1. This in turn

implies that ⊕m−2
i=−1 g

(1)
i ⊂ I. Lastly, wi = [hi, wi], and w2k+1−i = [hi, w2k+1−i] ∈ I.

(5) Note that

w = us1−1
1 us2−1

2 · · · us2k−1
2k

(
2k∑
i=1

u1u2 · · · û2k+1−i · · · u2k∂i

)
.

So, to find the number of wI , we see that in the indexing set I the number i appears at
most si times. At the same time, the indexing set I, where every i appears si times, gives
the 0 vector. So, the number of nonzero wI ’s is (s1 + 1)(s2 + 1) · · · (s2k + 1) − 1. We next
subtract 1 to delete w from our count, as w /∈ g.

Thus, dim g(1) = 2N12N2 · · · 2N2k − 2.

Corollary 3.13. All coordinates of N are critical in this case.

3.8. The Cartan prolong of o
(1)
S (2k + 1)

This algebra is isomorphic to oI(2k+ 1), and the identity representations of these two real-
izations of the algebra are equivalent, so the Cartan prolongs in this section are isomorphic
to the corresponding prolong in the Subsecs. 3.2–3.4.

The algebra o
(1)
S (2k+ 1) consists of (2k+ 1)× (2k+ 1)-matrices symmetric with respect

to the anti-diagonal such that all the elements of the anti-diagonal are equal to 0. So, when
we construct the Cartan prolong with g0 = o

(1)
S (2k + 1) and g−1 = id, we embed g0 into

vect(2k + 1;N )0 so that the image is

g0 =


2k+1∑
i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+2−i

2k+2−j and a2k+2−i
i = 0 for all i, j

 .

Theorem 3.14. (1) The prolong g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂2k+2−iφ

2k+2−j, ∂iφ
2k+2−i = 0 for all i = 1, . . . , 2k + 1.

(2) The following elements form a basis of gl for any N :

FJ =
∑
i∈J

 ∏
j∈J\{i}

uj

 ∂2k+2−i, where J ⊂ {1, . . . , 2k + 1}, |J | = l + 1.

In particular, gh = 0 for h > m, where m = 2k − 1, and gm = Kw; here,

w =
2k+1∑
i=1

(
u1 · · · û2k+2−i · · · u2k+1

)
∂i

Another description of the above basis is needed: For t ≥ 1, let I = (i1, i2, . . . , it) be a
t-tuple, where ij ∈ {1, 2, . . . , 2k + 1} for each j. A basis of gm−t, where 0 ≤ t ≤ m, is given
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by the set

{wI | I = (i1, i2, . . . , it),where 1 ≤ i1 < i2 < · · · < it ≤ 2k + 1}.
Thus, dim gm−t = ( 2k + 1

t ) for 0 ≤ t ≤ 2k and

dim g =
∑

0≤t≤2k

dim gm−t = 22k+1 − 1.

(3) The set {∂1, ∂2, . . . , ∂2k+1, w} generates g as a Lie subalgebra of vect(2k+1, N ). This
Lie subalgebra is not simple.

(4) For k = 1, the Lie algebra g is solvable.
(5) The Lie algebra g(1) is simple for k ≥ 2 and its dimension is 22k+1 − 2.

Proof. (1) Arguments similar to those used before give us the following basis of g1:

{ur1ur2∂i + ur1u2k+2−i∂2k+2−r2 + ur2u2k+2−i∂2k+2−r1}r1<r2, and 2k+2−i/∈{r1,r2}.

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

1≤r1≤r2≤···≤rh≤2k+1

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

see (3.2.1). We have,

• ai
r1,r2,...,rh

= 0 for 2k + 2 − i ∈ {r1, r2, . . . , rh}.
• If rj = rj+1 for some j, where 1 ≤ j ≤ h, then ai

r1,r2,...,rh
= 0.

• ai
r1,r2,...,rh

= a2k+2−rh
r1,r2,...,rh−1,2k+2−i.

So, for h > 2k − 1, we get gh = 0. For m = 2k − 1, we have gm = Kw.
(2) For any Φ1 ∈ gm−t, where 0 ≤ t ≤ m, note that Φ1 =

∑
i ϕ

i∂i. If ai
r1,r2,...,rm−t+1


= 0,
then let {i1, i2, . . . , it} be the complement of the subsequence {r1, r2, . . . , rm−t+1, 2k+2− i}
in the sequence {1, 2, . . . , 2k + 1}. Then

Φ1 = ai
r1,r2,...,rm−t+1

wI + Φ2,

where the coefficient function of ∂i in Φ2 does not have the term ur1ur2 · · · urm−t+1.
(3) Let hi = ui∂i +u2k+2−i∂2k+2−i for 1 ≤ i ≤ k. Note, [w, hi] = 0 for every i. Note that

{hi | 1 ≤ i ≤ k} spans the Cartan subalgebra of g0. Therefore, [g0, w] = 0. Now consider
[wI , wJ ], for wI ∈ gr and wJ ∈ gs, where r+ s = m, r, s ≥ 1. Then [wI , wJ ] ∈ [g0, w] = {0}.
In other words, w /∈ [g, g].

(4) Indeed, in this case, we see that g = g−1 ⊕ g0 ⊕ g1. We have g(1) = [g, g] = g−1 ⊕ g0,
and g(2) = [g(1), g(1)] = g−1 is abelian.

(5) Indeed, in this case, g(1) = [g, g] = ⊕m−1
i=−1 gi. Let I be a nontrivial ideal of g(1).

Then, taking commutators of a nonzero element of I with appropriate ∂i, we see that
I ∩ g−1 
= 0. This implies that I ∩ g−1 = g−1. This in turn implies that ⊕m−2

i=−1 gi ⊂ I.
Lastly, w(i) = [hi, w(i)] ∈ I and w(2k+2−i) = [hi, w(2k+2−i)] ∈ I. The dimension is one less
than the dimension of g.

Corollary 3.15. No critical coordinates of N in this case.
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3.9. The Cartan prolong of c(o(1)
S (2k + 1))

Let n ∈ Z≥1 and

N = (N1, N2, . . . , Nk, n,Nk+2, Nk+3, . . . , N2k+1),

where the n appears at the (k + 1)st position. Let s = 2n − 1.
The algebra c(o(1)

S (2k+1)) consists of (2k+1)×(2k+1)-matrices symmetric with respect
to the anti-diagonal such that all the elements of the anti diagonal are equal to each other.
So, when we construct the Cartan prolong with g0 = c(o(1)

S (2k+1)) and g−1 = id, we embed
g0 into vect(2k + 1;N )0 so that the image is

g0 =


2k+1∑
i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+2−i

2k+2−j and a2k+2−i
i = a2k+2−j

j for all i, j

 .

Theorem 3.16. (1) The prolong g = (g−1, g0)∗,N consists of all vector fields Φ =
∑

i φ
i∂i

satisfying the conditions:

∂jφ
i = ∂2k+2−iφ

2k+2−j, ∂iφ
2k+2−i = ∂jφ

2k+2−j for all i, j = 1, . . . , 2k + 1.

For h > 2n + 2k − 3, we get gh = 0. For m = 2n + 2k − 3, we get gm = Kw, where

w =
2k+1∑

i=1;i�=k+1

(
u1 · · · us

k+1 · · · û2k+2−i · · · u2k+1

)
∂i

+
(
u1 · · · uku

s−1
k+1uk+2 · · · u2k+1

)
∂k+1.

(2) The following elements form a basis of g for any N :

Fc1,...,c2k+1
=

∑
ci>0

uc1
1 . . . u

ci−1

i−1 u
ci−1
i u

ci+1

i+1 . . . u
c2k+1

2k+1 ∂2k+2−i, where

ci = 0 or 1 for i 
= k + 1,

0 ≤ ck+1 ≤ 2Nk+1 − 1, and ci > 0 for some i.

(3.5)

Another description of the basis is needed: For each i 
= k + 1, let Mi be the sequence

(1, 2, . . . , 2k + 2 − i− 1, ̂2k + 2 − i, . . . , k + 1, k + 1, . . . , k + 2, k + 3, . . . , 2k + 1),

where k + 1 appears s times. (Note that 2k + 2 − i may be greater than k + 1.)
We define Mi to be the sequence where the entries are placed in increasing order, k + 1

appears s times, and 2k + 2 − i is absent. Let

Mk+1 = (1, 2, . . . , k + 1, k + 1, . . . , k + 2, k + 3, . . . , 2k + 1),

where k + 1 appears s − 1 times. Note, w =
∑

i uMi∂i. Here, u(r1,r2,...,rt) =
∏2k+1

i=1 ×
u
|{j | 1≤j≤t,rj=i}|
i .

For t ≥ 1, let I = (i1, i2, . . . , it) be a t-tuple, where ij ∈ {1, 2, . . . , 2k + 1} for each j.
Note that wMi = ∂i. Further, let η = us

k+1∂k+1 ∈ gs−1.
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A basis of g is given by the set

{η} ∪ {wI | I is a subsequence of Mi for some i}.

(3) The Lie algebra g is not simple.
(4) The Lie algebra g(1) = [g, g] is simple.
(5) dim g(1) = 2n22k − 1.

Proof. (1) We see that a basis of g1 is given by the set

{ur1ur2∂i + ur1u2k+2−i∂2k+2−r2 + ur2u2k+2−i∂2k+2−r1}r1<r2, and 2k+2−i/∈{r1,r2}

∪{u2
k+1∂i + uk+1u2k+2−i∂k+1}i�=k+1

∪{u2
k+1∂k+1}.

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

see (3.2.1). We then have:

• ai
r1,r2,...,rh

= 0 for i 
= k + 1 and 2k + 2 − i ∈ {r1, r2, . . . , rh}.
• ai

r1,r2,...,rh
= 0 if rj = rj+1 = r for some j, where 1 ≤ j ≤ h, and r 
= k + 1.

• ai
r1,r2,...,rh

= a2k+2−rh
r1,r2,...,rh−1,2k+2−i.

So, for h > 2n + 2k − 3, we get gh = 0. For m = 2n + 2k − 3, we have gm = Kw.
(2) For any Φ1 ∈ gt−1, where 1 ≤ t ≤ m, note that Φ1 =

∑
i ϕ

i∂i.

Case (a). Let ai
r1,r2,...,rt


= 0 for some i 
= k + 1. Let l denote the number of times k + 1
appears in the set (r1, r2, . . . , rt). Then, let I = (k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸

s−ltimes

, i1, i2, . . . , ip), where

the sequence {i1, i2, . . . , ip} is the complement of the sequence {rj | rj 
= k+1}∪{k+1, 2k+
2−i} in {1, 2, . . . , 2k+1}. We then have Φ1 = ai

r1,r2,...,rt
wI+Φ2, where the coefficient function

of ∂i in Φ2 does not have the term ur1ur2 · · · urt .

Case (b). Let ai
r1,r2,...,rt


= 0 for i = k + 1. Let l denote the number of times k + 1
appears in the sequence (r1, r2, . . . , rt). Further, suppose that l < s. Then, let I =
(k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸

s−l−1times

, i1, i2, . . . , ip), where the sequence {i1, i2, . . . , ip} is the complement

of the sequence {rj | rj 
= k + 1} ∪ {k + 1, 2k + 2 − i} in {1, 2, . . . , 2k + 1}. Now again, we
get Φ1 = ak+1

r1,r2,...,rt
wI + Φ2, where the coefficient function of ∂k+1 in Φ2 does not have the

term ur1ur2 · · · urt .

Case (c). Let ak+1
r1,r2,...,rt


= 0 and k + 1 appears s number of times in the sequence

(r1, r2, . . . , rt). If rj 
= k + 1 for some j, then ak+1
r1,...,rt

= a
2k+2−rj

k+1,r1,..., brj ,...,rt
= 0, as us+1

k+1 = 0.

Therefore, rj = k + 1 for every j, and we have Φ1 = ak+1
r1,...,rt

η + Φ2.



November 22, 2010 8:41 WSPC/1402-9251 259-JNMP 00086

286 U. N. Iyer, A. Lebedev & D. Leites

(3) Note that ∂i = [∂i, hi], w = [uk+1∂k+1, w] ∈ [g, g] for all i.

• Let I = (i1, i2, . . . , ir) and J = (j1, j2, . . . , jt). Consider

[wI , wJ ] = [[∂i1 , wJ ], wI′ ] + [∂i1 , [wI′ , wJ ]], where I ′ = (i2, . . . , im−r).

Note that, by definition, [∂ii , wJ ] = w bJ , where Ĵ = (i1, j1, j2, . . . , jt). Now using induction
on the length of I we see that

[wI , wJ ] ∈ Span{wI | I is a subsequence of Mi for some i}.

• As η = us
k+1∂k+1 ∈ gs−1 has a higher power of uk+1 than any of the wI ∈ gr for any

r ≤ s− 1, we have η /∈ [g−1, g]. Note that [hi, η] = {0} for every i. Further,

[wI , η] = [[∂i1 , η], wI′ ] + [∂i1 , [wI′ , η]].

By induction on the length of I, we have η /∈ [g, g].

(4) Note g(1) = ⊕m
i=−1 g

(1)
i , where g

(1)
i = gi for i 
= s − 1. Let I be a nontrivial ideal

of g(1). Then taking commutators of a nonzero element of I with appropriate ∂i, we see
that I ∩ g−1 
= 0. This implies that I ∩ g−1 = g−1. This in turn implies that ⊕m−1

i=−1 gi ⊂ I.
Lastly, w = [uk+1∂k+1, w] ∈ I.

(5) Note that

w = us−1
k+1

(∑
i

u1 · · · û2k+2−i · · · u2k+1∂i

)
.

Then, a basis of g(1) is as follows:

{wJ , wJ∪(k+1), wJ∪(k+1,k+1)wJ∪(k+1,k+1,k+1), . . . ,

wJ∪(k+1,k+1,k+1,...,k+1)}J�{1,2,...,2k+1},k+1/∈J

and the maximum number of times that k + 1 appears in the index is s. Note that for
J = {1, 2, . . . , k, k + 2, . . . , 2k + 1}, we get wJ∪(k+1,k+1,k+1,...,k+1︸ ︷︷ ︸

s times

) = 0. So, the number of

nonzero wI ’s is one less than 2n22k.
Thus, dim g(1) = 2n22k − 1.

Corollary 3.17. The critical values of N in this case are of the form (1, . . . , 1, n, 1, . . . , 1),
where n occurs at the (k + 1)-st place.

3.10. The Cartan prolong of oS(2k + 1)

The algebra oS(2k + 1) consists of (2k + 1) × (2k + 1)-matrices symmetric with respect
to the anti-diagonal. So, when we construct the Cartan prolong with g0 = oS(2k + 1) and
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g−1 = id, we embed g0 into vect(2k + 1;N )0 so that the image is

g0 =


2k+1∑
i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = a2k+2−i

2k+2−j for all i, j

 .

Theorem 3.18. (1) The algebra g consists of all vector fields Φ =
∑

i φ
i∂i satisfying the

conditions:

∂jφ
i = ∂2k+2−iφ

2k+2−j for all i, j = 1, . . . , 2k + 1.

(2) The following elements form a basis of g:

Fc1,...,c2k+1
=

∑
ci>0

uc1
1 . . . u

ci−1

i−1 u
ci−1
i u

ci+1

i+1 . . . u
c2k+1

2k+1 ∂2k+2−i, where

0 ≤ ci ≤ 2Ni for all i = 1, . . . , 2k + 1;

ci > 0 for some i;

if ci = 2Ni for some i, then cj = 0 for all j 
= i.

(3.6)

In particular, gm = 0 for m = (
∑

i si) − 2, and gm = Kw, where

w =
2k+1∑
i=1

us1
1 u

s2
2 · · · usi−1

i−1 u
si−1
i u

si+1

i+1 · · · us2k+1

2k+1 ∂2k+2−i.

Another description of the basis is needed: For t ≥ 1, let I = (i1, i2, . . . , it) be a t-tuple,
where ij ∈ {1, 2, . . . , 2k + 1} for each j. A basis of g is given by the set

{ηi}1≤i≤2k+1 ∪ {wI | I is a subsequence of Mi for some i},

where Mi denotes the sequence

(1, 1, . . . , 1, 2, 2, . . . , 2, . . . , 2k + 1, 2k + 1, . . . , 2k + 1);

here each j appears sj times for j 
= 2k + 2 − i, and 2k + 2 − i appears s2k+2−i − 1 times.
(3) The Lie algebra g is not simple.
(4) The Lie algebra g(1) = [g, g] is simple.
(5) dim g(1) = 2N12N2 · · · 2N2k+122k − 1.

Proof. (1) Arguments as in the earlier examples give us the following basis of g1:

{ur1ur2∂i + ur1u2k+2−i∂2k+2−r2 + ur2u2k+2−i∂2k+2−r1}r1<r2, and 2k+2−i/∈{r1,r2}

∪{u2
2k+2−i∂2k+2−r1 + ur1u2k+2−i∂i}r1 �=2k+2−i

∪{u2
i ∂2k+2−i}si �=1.

For h ≥ 2, let Φ ∈ gh−1. Let Φ =
∑

i ϕ
i∂i, where

ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,
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see (3.2.1). We then get

ai
r1,r2,...,rh

= a2k+2−rh
r1,r2,...,rh−1,2k+2−i.

So, for h > (
∑

i si) − 2, we get gh = 0 and for m = (
∑
si) − 2, we have gm = Kw.

(2) For any Φ1 ∈ gt−1, where 1 ≤ t ≤ m, note that Φ1 =
∑

i ϕ
i∂i.

Let ai
r1,r2,...,rt


= 0 for some i, where 1 ≤ i ≤ 2k + 1. Let lj denote the number of times
j appears in the sequence (r1, r2, . . . , rt).

Case (a). If l2k+2−i = s2k+2−i and if rj 
= 2k + 2 − i, then

ai
r1,...,rt

= a
2k+2−rj

2k+2−i,r1,..., brj ,...,rt
= 0.

Therefore, rj = 2k + 2 − i for every j. In this case, Φ1 = ai
r1,...,rt

η2k+2−i + Φ2 and Φ2 does
not have the term η2k+2−i.

Case (b). If l2k+2−i < s2k+2−i, then let I = (j1, j2, . . . , jp) be the set in which j appears
sj − lj times for j 
= 2k + 2 − i and 2k + 2 − i appears s2k+2−i − l2k+2−i − 1 times. Then,
Φ1 = ai

r1,r2,...,rt
wI + Φ2, where Φ2 does not contain the term ur1ur2 · · · urt∂i.

To make this choice clear, let Mi denote the sequence

(1, 1, . . . , 1, 2, 2, . . . , 2, . . . , 2k + 1, 2k + 1), . . . , 2k + 1),

where each j appears sj times for j 
= 2k + 2− i, and 2k+ 2− i appears s2k+2−i − 1 times.
Notice that

w =
∑
Mi

uMi∂i and wMi = ∂i.

Let I be the complement to the subsequence (r1, r2, . . . , rt) in Mi.
Hence, a basis of g is given by the set

{ηi}2k+1
i=1 ∪ {wI | I is a subsequence of Mi for some i},

(3) This can be proved by noting the following important properties of g:

• Let I = (i1, i2, . . . , ir) and J = (j1, j2, . . . , jt). Consider

[wI , wJ ] = [[∂i1 , wJ ], wI′ ] + [∂i1 , [wI′ , wJ ]], where I ′ = (i2, . . . , im−r).

Note that, by definition, [∂ii , wJ ] = w bJ , where Ĵ = (i1, j1, j2, . . . , jt). Now using induction
on the length of I we see that

[wI , wJ ] ∈ Span{wI | I is a subsequence of Mi for some i}.

• As each ηi = usi
i ∂2k+2−i ∈ gsi−1 has a higher power of ui than any of the wI , we have

ηi /∈ [g−1, g]. Note that [hi, ηj ] = {0} for any i, j. Further,

[wI , ηi] = [[∂i1 , ηi], wI′ ] + [∂i1 , [wI′ , ηi]].
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By induction on the length of I, we see that [wI , ηi] ∈ Span{wI}. Thus, we have
ηi /∈ [g, g] for every i.

(4) Let g(1) = ⊕m
i=−1 g

(1)
i . Then g

(1)
i = gi for i /∈ {s1 − 1, s2 − 1, . . . , s2k − 1}. Let I be a

nontrivial ideal of g(1). Then taking commutators of a nonzero element of I with appropriate
∂i, we see that I ∩ g−1 
= 0. This implies that I ∩ g−1 = g−1. This in turn implies that
⊕m−1

i=−1 g
(1)
i ⊂ I. Lastly, w = [uk+1∂k+1, w] ∈ I.

(5) A basis of g
(1)
m−t, where 1 ≤ t ≤ m+ 1, is given by the set

{wI | I is a subsequence of Mi of length t for some i}.

Note that

w = us1−1
1 us2−1

2 · · · us2k+1−1
2k+1

(
2k+1∑
i=1

u1u2 · · · û2k+2−i · · · u2k+1∂i

)
.

Similar to the arguments for dimension in the case of 3.9, we see that in this case,

dim g(1) = 2N12N2 · · · 2N2k+122k − 1.

Corollary 3.19. All coordinates of N are critical in this case.

4. Superization: Conjectures and Several Theorems

Theorem 4.1. (1) Let g−1 = Q(a, b, c) = Span(∂1, . . . , ∂4), where p(∂i) ≡ i (mod 2), and
let g0 be oo

(1)
IΠ(1|2) or g0 = ooIΠ(1|2) 	 cooIΠ(1|2)(1),b realized by vector fields so that

∇+ = (a+ bc)u2∂1 + (1 + bc)u3∂2 + (a+ 1 + bc)u4∂3 + cu1∂4

∇− = bu4∂1 + u1∂2 + u2∂3 + u3∂4

H = a(u1∂1 + u3∂3) + (a+ 1)(u2∂2 + u4∂4).

Then g1 = 0 for any N unless a = 0. If a = 0, b 
= 0,c and N is large enough, then
sdim gk = 2|2 at least for k = 1, 2, 3, 4. (Probably for all k > 0.) Here are bases of gk for k
small:

For k = 1:

c(u1u2∂4 + bu2
2∂1) + (1 + bc)(u1u2∂4 + u2u3∂2 + u2u4∂3 + u3u4∂4 + bu2

4∂1),

cu2
2∂4 + (1 + bc)(u2u4∂2 + u2

4∂4),

c(u1u2∂2 + u1u4∂4 + u2
2∂3 + u2u3∂4 + bu2u4∂1) + (1 + bc)(u3u4∂2 + u2

4∂3),

c(u2
2∂2 + u2u4∂4) + (1 + bc)u2

4∂2.

bThese algebras are isomorphic since ooIΠ(1|2) = Span(oo
(1)
IΠ(1|2), 11|2).

cIf a = b = 0, the representation is reducible, so we ignore it.
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For k = 2:

c(u1u
2
2∂4 + bu3

2∂1) + (1 + bc)(u1u2u4∂2 + u1u
2
4∂4 + u2

2u3∂2 + u2
2u4∂3 + u2u3u4∂4

+ bu2u
2
4∂1 + (1 + bc)(u3u

2
4∂2 + u3

4∂3)),

cu3
2∂4 + (1 + bc)(u2

2u4∂2 + u2u
2
4∂4 + (1 + bc)u3

4∂2,

c(u1u
2
2∂2 + U1u2u4∂4 + u3

2∂3 + u2
2u3∂4 + bu2

2u4∂1)

+ (1 + bc)(u1u
2
4∂2 + u2u3u4∂2 + u2u

2
4∂3 + u3u

2
4∂4 + bu3

4∂1,

c(u3
2∂2 + u2

2u4∂4) + (1 + bc)(u2u
2
4∂2 + u3

4∂4).

If we set instead g−1 = Π(Q(a, b, c)), i.e., p(ui) ≡ i+ 1 (mod 2), then g1 = 0 for any N
unless a = 1. If a = 1, and b 
= 0, and N is large enough, then sdim gk = 2|2, at least, for
k = 1, 2, 3, 4.

(2) Let g−1 = Q(A,B,C) = Span(∂1, . . . , ∂4), where p(∂1) = p(∂2) = 0̄, p(∂3) = p(∂4) =
1̄, and let g0 be oo

(1)
II (1|2) or g0 = ooII(1|2) 	 cooII(1|2)(1) ,d realized by vector fields so that

E23 + E32 = A(u1∂1 + u2∂2) + (A+ 1)(u3∂3 + u4∂4) + u1∂2 + u3∂4,

E12 + E21 = Bu1∂3 + u2∂3 + (B + 1)u2∂4 + (A+BC + C)u3∂1 + (A+B)u3∂2

+Cu4∂1 + (A+BC + 1)u4∂2,

E13 + E31 = (B + 1)u1∂3 + u1∂4 + u2∂3 +Bu2∂4 + (A+BC)u3∂1

+ (A+B + C + 1)u3∂2 + Cu4∂1 + (A+BC + C + 1)u4∂2.

(4.1)

Then dim g1 = 0 unless A = C = 0, but in this case the representation is reducible.
(3) If g0 = ooIΠ(1|2), and g−1 is its identity module, then, for N = (n) with n > 1, the

prolong obtained, g∗,N = ⊕i≥−1 gi, is almost simple; that is, g(1)
∗,N is simple. If 1 ≤ k ≤ 2n−2,

then the following elements form a basis of gk,N :

u
(k+1)
1 ∂1, u

(k+1)
1 ∂3 + u

(k)
1 u2∂1, u

(k+1)
1 ∂2 + u

(k)
1 u3∂1,

u
(k)
1 u2∂2 + u

(k)
1 u3∂3 + u

(k−1)
1 u2u3∂1.

(4.2)

(4) If g0 = ooII(1|2), and g−1 is its identity module, then, for N = (n) with n > 1, the
prolong obtained, g∗,N = ⊕i≥−1 gi, is almost simple; that is, g(1)

∗,N is simple. If 1 ≤ k ≤ 2n−2,
then the following elements form a basis of gk,N :

u
(k+1)
1 ∂1, u

(k+1)
1 ∂2 + u

(k)
1 u2∂1, u

(k+1)
1 ∂3 + u

(k)
1 u3∂1,

u
(k)
1 u2∂3 + u

(k)
1 u3∂2 + u

(k−1)
1 u2u3∂1.

(4.3)

(5) If g0 = ooIΠ(1|2) and g−1 = Π(id) (i.e., the identity ooΠI(2|1)-module), then dim gk

grows with k. (It is an open problem to describe it.)

Remarks 4.2. (1) It is, perhaps, possible to make the expressions (4.1) look simpler by
choosing some other basis and parameters.

(2) The relations between A,B,C and a, b, c are very complicated. We cannot express one
set of parameters in terms of the other set.

dThese algebras are isomorphic since ooII(1|2) = Span(oo
(1)
II (1|2), 11|2).
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4.1. ooII(k0|k1). Here, B = Ik0 ⊕ Ik1

The Lie superalgebra ooII(k0|k1) has a structure close to that of the Lie algebra oI(k0 +k1).
They have similar bracket structures, but ooII(k0|k1) in addition has a square operation
on its odd elements. Regardless, the process of constructing the Cartan prolongation of
ooII(k0|k1) is similar to that of oI(k0 + k1) which was done in Sec. 3.4.

The algebra ooII(k0|k1) consists of symmetric (k0|k1)× (k0|k1)-matrices. Let g−1 be the
identity g0 = ooII(k0|k1)-module spanned by partial derivatives, where p(∂i) = 0̄ for i ≤ k0

and p(∂i) = 1̄ for i > k0, as g0 is embedded into vect(k0|k1)0.
If k1 = 0, then this study is identical to that of oI(k0). Therefore, we assume that

k1 
= 0.
Let k0 = 0 and k1 = 1. Then g = {∂1, u1∂1} is nilpotent.
Let k0 = 0 and k1 > 1. Then g is generated by {∂i, ηi}1≤i≤k1∪{w} where ηi = ui∂i, and

w =
∑

i u1 · · · ûi · · · uk1∂i. We have ηi /∈ g(1), but [η1, w] ∈ g(1). Note that g0 has no odd
vector field. Thus, g(1) is generated as a Lie superalgebra by the set {∂1, . . . , ∂k1} ∪ {w}.

We claim that w is not a square of an odd vector field. Let Φ =
∑

i ϕi∂i ∈ gr is such
that Φ2 = w. Then,

Φ2 =
∑
i,j

ϕi∂i(ϕj)∂j =
∑
i,j

ϕi∂j(ϕi)∂j .

Thus,
∑

i ϕi∂1(ϕi)∂1 = u2u3 · · · uk0uk0+1 · · · uk0+k1∂1. This is a contradiction as ∂i(ϕi) = 0.
Now, note that [g(1), w] = 0. Thus, w /∈ g(2). We now see that g(2) is simple with a basis

{wI | I � {1, . . . , k1}, I 
= ∅}. Hence, dim g(2) = 2k1 − 2.
F o r t h e r e s t o f t h i s s u b s e c t i o n w e a s s u m e t h a t k0k1 
= 0 .
Let k = k0 + k1 and si = 2Ni − 1 for i ≤ k0, and si = 1 for i > k0. Embedding g0 in

vect(k0;N |k1)0 we get:

g0 =


k∑

i,j=1

aj
iui∂j | aj

i ∈ K such that aj
i = ai

j for all i, j

 .

This implies that g = (g0, g−1)∗,N consists of all vector fields
∑

i ϕi∂i such that ∂i(ϕj) =
∂j(ϕi).

We now refer to the Subsec. 3.4.

Theorem 4.3. (1) We obtain the Cartan prolong as a Lie superalgebra g = (g−1, g0)∗,N =
g−1 ⊕ · · · ⊕ gm for m = (

∑
si) − 2, and gm = Kw, where

w =
k∑

i=1

us1
1 u

s2
2 · · · usi−1

i−1 u
si−1
i u

si+1

i+1 · · · usk
k ∂i = us1−1

1 us2−1
2 · · · usk−1

k

k∑
i=1

u1u2 · · · ûi · · · uk∂i.

Further, let ηi = usi
i ∂i ∈ gsi−1 for 1 ≤ i ≤ k.

For any sequence I = (i1, i2, . . . , it), where ij ∈ {1, 2, . . . , k}, let w( ) = w and wI =
adi1 adi2 · · · adit w. Then, a basis of g is given by the set {ηi}1≤i≤k ∪ {wI |wI 
= 0}.

(2) If k0 = k1 = 1, and N1 = 1, then g is solvable.
If k > 2, and Ni = 1 for all i such that 1 ≤ i ≤ k0, then the Lie superalgebras g, g(1) are

not simple. In this case, the Lie superalgebra g(2) = [g(1), g(1)] = ⊕m−1
i=−1 g

(2)
i is simple.
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As a Lie subsuperalgebra of vect(k0;N |k1) it is generated by the set {∂1, ∂2, . . . ,

∂k, w(1), . . . , w(k)}.
If Ni > 1 for some i, where 1 ≤ i ≤ k0, then g is simple and is generated by the set

{∂1, ∂2, . . . , ∂k, w}.
(3) When Ni = 1 for all i such that 1 ≤ i ≤ k0, then g(2) is simple, and dim g(2) =

2k + k − 3.
When Ni > 1 for some i such that 1 ≤ i ≤ k0, then dim g = 2N1+N2+···+Nk − 1 + k.

Proof. (1) The proof is similar to the theorem in 3.4.
(2) Let k0 = k1 = 1 and N1 = 1. Then g = {∂1, ∂2, u1∂1, u2∂2, u1∂2 + u2∂1} and is a

solvable Lie superalgebra.
Let Ni = 1 for all i such that 1 ≤ i ≤ k0. Note that ui∂i /∈ g(1), [ui∂i, w] = w ∈ g(1),

and (ui∂j + uj∂i)2 = ui∂i + uj∂j ∈ g(1).
As seen above, w is not a square of an odd vector field. Moreover, [g(1)

0 , w] = 0. Hence,
w /∈ g(2), whereas, [ui∂i + uj∂j , w(i)] = w(i) ∈ g(2). We thus see that g(2) is generated by the
set {∂1, . . . , ∂k, w(1), . . . , w(k)}.

Let Ni > 1 for some i such that 1 ≤ i ≤ k0. Let ti =
si + 1

2
. Then,

ηi = usi
i ∂i = (ut

i∂k0+1 + uti−1
i uk0+1∂i)2

is a square of an odd vector field. Note that we are using the fact that ( 2n − 1

2n−1 ) is odd for
n ≥ 1.

Thus ηi, and hence ui∂i, are generated by the set {∂1, . . . , ∂k, w} whenever Ni > 1.
Note that (ut∂r + ur∂t)2 = ut∂t + ur∂r for every pair t, r such that r ≤ k0 < t. This in

turn implies that every ur∂r for 1 ≤ r ≤ k are generated by the set {∂1, . . . , ∂k, w}. Hence,
this set generates all of g.

We now claim that g is simple. Any nontrivial ideal I of g intersects g−1 nontrivially, and
therefore g−1 ∩ I = g−1. Thus, I contains wI for I 
= (). This implies that ηi ∈ I whenever
Ni > 1. This in turn implies that ui∂i ∈ I whenever Ni > 1. Thus w = [w, ui∂i] ∈ I. This
implies that all the generators of g are in I.

(3) Let k > 2 and Ni = 1 for all i such that 1 ≤ i ≤ k0. The set

{wI | I � {1, . . . , k}, I 
= ∅} ∪ {ui∂i + uj∂j | i 
= j}

is a basis for g(2). Hence, the dimension is 2k − 2 + k − 1 = 2k + k − 3.
Let Ni > 1 for some i such that 1 ≤ i ≤ k0. The set

{wI | I � {1, . . . , k}} ∪ {ηi}1≤i≤k

is a basis for g. Hence, the dimension is 2N1+···+Nk − 1 + k.

Corollary 4.4. All coordinates of N are critical in this case.

Remark 4.5. When k1 is odd, w is not a square, as w is an odd vector field. When k0 
= 0,
k1 is even, and Ni > 1 for some i such that 1 ≤ i ≤ k0, then w is a square of an odd vector
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field. Without loss of generality, assume that N1 > 1. Then let

Φ = w(2,3,...,k0,k0+2,k0+3,...,k) + w( 1,...,1︸︷︷︸
s1−2 times

, 2,...,2︸︷︷︸
s2−1 times

,..., k0,...,k0︸ ︷︷ ︸
sk0

−1 times

,k0+1)

= us1−1
1 us2−2

2 · · · usk0
−2

k0

(
k0∑
i=1

u1 · · · ûi · · · uk0+1∂i + u1 · · · uk0∂k0+1

)

+u1

k∑
i=1,i�=k0

u1 · · · ûi · · · ûk0+1 · · · uk∂i

Then we can see that Φ is an odd vector field and Φ2 = w.

4.2. oo
(1)
II (k0|k1)

If k1 = 0, then this study is the same as that of the Cartan prolongation of o
(1)
I (k0), see

Sec. 3.2.
If k0 = 0, k1 
= 0, then the Lie superalgebra oo

(1)
II (k0|k1) = {[X,Y ] |X,Y ∈ ooII(k0|k1)},

consists of symmetric matrices with diagonal entries equal to zero. In this case, the Cartan
prolongation, g is generated as a Lie superalgebra by the set {w, ∂1, . . . , ∂k1} where w =∑k1

i=1 u1 · · · ûi · · · uk1∂i (see 3.2 for the case N = (1, 1, . . . , 1)). Note that this w is not a
square of an odd vector field as seen in Subsec. 4.1. Hence, g(1) is simple of dimension
2k1 − 2 (identical argument as in 3.2).

F o r t h e r e s t o f t h i s s u b s e c t i o n w e a s s u m e t h a t k0k1 
= 0 .
Then, oo

(1)
II (k0|k1) = {[X,Y ] |X,Y ∈ ooII(k0|k1)}⊕ {X2 |X ∈ ooII(k0|k1)1̄}. consists of

symmetric matrices of trace 0.
Let k = k0 + k1 and g0 = oo

(1)
II (k0|k1), and g = (g0, g1)∗,N = ⊕r≥−1gr.

Theorem 4.6. The Lie superalgebra g consists of all vector field
∑

i ϕi∂i such that∑
i ∂i(ϕi) = 0 and ∂i(ϕj) = ∂j(ϕi) for i 
= j.

(1) If k = 2, then g = g−1 ⊕ g0 is solvable.
(2) Let k > 2, and Ni = 1 for all 1 ≤ i ≤ k0. Then g = ⊕−1≤r≤k−2gr,

and gk−2 is one dimensional spanned by w =
∑

i u1u2 · · · ûi · · · uk∂i. Let wI denote
ad∂i1

ad∂i2
· · · ad∂ir

(w) for I = (i1, . . . , ir).
The Lie superalgebra g is not simple. The first derived algebra g(1) is simple, gener-

ated as a Lie superalgebra by the set {w(i), ∂i}1≤i≤k and of dimension 2k + k − 3.
The same result is obtained when k0k1 
= 0, and Ni = 1 for exactly one i, 1 ≤

i ≤ k0.

(3) Let k0 > 1 and k1 > 0, and Ni = ∞ for every i, 1 ≤ i ≤ k0.
For m ≥ k − 1, we have dim gm =

∑k−1
r=0( k − 1

r )(k0 − 1)�
m+2−r

2
�. For 0 < m < k − 1,

we have dim gm =
∑m

r=0(
k − 1

r )(k0 − 1)�
m+2−r

2
� + ( k

m + 2 ).

Proof. Let Φ ∈ gh for h ≥ 1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1,r2,...,rh+1

ai
r1,r2,...,rh+1

ur1ur2 · · · urh+1
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(earlier conventions apply). As [∂i,Φ] ∈ gh−1, we see that a1
r1,r2,...,rh,1 + a2

r1,r2,...,rh,2 + · · · +
ak

r1,r2,...,rh,k = 0, and ai
r1,r2,...,rh,i = aj

r1,r2,...,rh,j for i 
= j.

(1) If k = 2, then the conditions on ai
I imply that ai

j,j = 0 for any i, j. As ai
i,j = aj

i,i = 0,
we get g1 = 0. Hence the result.

(2) Let k > 2, and Ni = 1 for all i; that is, si = 1 for all i. The conditions on ai
I imply

that every ai
r1,...,rh,j,j = 0. Thus, we have gh = 0 for h > k − 2 and gk−2 = Kw.

We have seen in 4.1 that w is not a square of an odd vector field. As [g0, w] = 0 and w
cannot be square of a vector field, we see that w /∈ g(1). Let hi = u1∂1 +ui∂i for i > 1. Then,
hi = (u1∂i + ui∂1)2 ∈ g(1). As [hi, w] = 0, we have [hi, w(i)] = w(i) and [hi, w(1)] = w(1) for
i > 1. Thus, g(1) as a Lie superalgebra is generated by {w(i), ∂i}1≤i≤k. As in the case of

the Cartan prolongation of o
(1)
I (k) (see 3.2), we see that the set {wI | I � {1, 2, . . . , k}, I 
=

φ} ∪ {hi}2≤i≤k is a basis of g(1). Hence the dimension is 2k − 2 + (k − 1) = 2k + k − 3.
(3) Let k0 > 1 and k1 > 0, and Ni = ∞ for every i, 1 ≤ i ≤ k0.
We first present an example: Let k0 = 3 and k1 = 1 and consider Φ =

∑
i ϕi∂i ∈ g3

where each ϕi =
∑

r1,...,r4
ai

r1,...,r4
ur1 · · · ur4 , and the usual conventions apply. To find a basis

for g3, we note that

a1
1,1,1,1 = a2

1,1,1,2 + a3
1,1,1,3 + a4

1,1,1,4

= a1
1,1,2,2 + a1

1,1,3,3 + 0

= (a2
1,2,2,2 + a3

1,2,2,3) + (a2
1,2,3,3 + a3

1,3,3,3)

= (a1
2,2,2,2 + a1

2,2,3,3) + (a1
2,2,3,3 + a1

3,3,3,3).

Thus, we get four linearly independent vector fields determined by a1
1,1,1,1:

(u4
1 + u2

1u
2
2 + u4

2)∂1 + (u3
1u2 + u1u

3
2)∂2,

(u4
1 + u2

1u
2
2 + u2

2u
2
3)∂1 + (u3

1u2 + u1u2u
2
3)∂2 + (u1u

2
2u3)∂3,

(u4
1 + u2

1u
2
3 + u2

2u
2
3)∂1 + (u1u2u

2
3)∂2 + (u3

1u3 + u1u
2
2u3)∂3,

(u4
1 + u2

1u
2
3 + u4

3)∂1 + (u3
1u3 + u1u

3
3)∂3.

That is, we see that the coefficient a1
1,1,1,1 can be transformed by changing every pair

(1, 1) to a (2, 2) or (3, 3). Since there are 2 pairs of (1, 1) and a single 1 (a single 1 cannot
be transformed, so it does not contribute towards the count) in the description of a1

1,1,1,1,
there are 4 linearly independent vector fields. See figure below for a1

1,1,1,2:
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Thus, we get 4 linearly independent vector fields determined by a1
1,1,1,2, a

1
1,1,1,3, or a1

1,1,1,4.
There are 2 linearly independent vector fields determined by a1

1,1,2,3, a
1
1,1,2,4, a

1
1,1,3,4, or by

a1
1,2,3,4. Note that the vector fields corresponding to a2

2,2,2,2 or any other coefficient can be
obtained as a linear combination of the above. That is, g3 is 24 dimensional.

Let m ≥ 3. For any natural number t, denote by � t
2� the greatest natural number less

than or equal to ( t
2 ). For S ⊂ {2, 3, 4} of cardinality m + 2 − t, S = {j1, . . . , jm+2−t}, the

number of linearly independent vector fields in gm determined by a1
1, . . . , 1
| {z }

t−1times

, j1,...,jm+2−t
is 2�

t
2
�.

Note that a1
1, . . . , 1
| {z }

t−1times

, j1,...,jm+2−t
has t number of 1’s including the upper index.

Returning to the general case, let m ≥ k − 1. For S ⊂ {2, . . . , k}, S =
{j1, . . . , jm+2−t}, the number of linearly independent vector fields in gm determined by
a1

1, . . . , 1
| {z }

t−1times

, j1,...,jm+2−t
is (k0 − 1)�

t
2
�. Thus the number of linearly independent vector fields cor-

responding to all the subsets of {2, . . . , k} of cardinality r is ( k − 1
r )(k0 − 1)�

m+2−r
2

�. Hence,

the dimension of gm is
∑k−1

r=0( k − 1
r )(k0 − 1)�

m+2−r
2

�.
Now let 0 < m < k − 1. Those vector fields in gm determined by the coefficients

a1
1,j1,...,jm

correspond to subsets of {2, . . . , k} of cardinality at most m. In addition to these,
we need to count those vector fields determined by the coefficients ai

j1,...,jm+1
where all the

elements i, j1, . . . , jm+1 are distinct. Every such coefficient gives exactly one vector field; for
example, a1

2,3 = a2
1,3 = a3

1,2 corresponds to u2u3∂1 + u1u3∂2 + u1u2∂3. This count is ( k
m + 2 ).

Hence the result.

Remark 4.7. When k0 > 1, k1 > 0, Ni < ∞ for all i such that i ≤ k0 and Ni > 1, Nj > 1
for any i 
= j, i, j ≤ k0, then computing the dimension and checking for simplicity of g seems
to be a difficult problem. At this point we are unable to conclude anything for this case
especially when k0 > 2. Conjecturally, all coordinates of N are critical in this case.

4.3. c(oo
(1)
II (k0|k1))

If k1 = 0, then this study is the study of c(o(1)
I (k0)) (see Subsec. 3.3).

If k0 = 0, k1 
= 0, then c(oo(1)
II (0|k1)) consists of symmetric matrices such that all the

diagonal entries are equal. The Cartan prolongation is again similar to that of c(o(1)
I (k1))

(see Subsec. 3.3) with smin = 1. Here, g is generated, as a Lie superalgebra, by the set
{∂1, . . . , ∂k1 , w, η}, where η =

∑
i ui∂i, and w =

∑
i u1 · · · ûi · · · uk1∂i. Recall that w is not

square of an odd vector field. Note that g0 has no odd vector field.
(1) When k1 > 2 is odd, η is not a square of an odd vector field. Moreover, [η,w] = w ∈

g(1), and η /∈ g(1). Thus, g(1) is generated as a Lie superalgebra by the set {∂1, . . . , ∂k1 , w}.
But w /∈ g(2). Thus, a basis for g(2) is given by the set {wI | I � {1, . . . , k1}, I 
= ∅}. Hence,
g(2) is simple of dimension 2k1 − 2.

(2) When k1 > 2 is even, w, η /∈ g(1) as [g0, w] = 0 and w is not a square of an odd
vector field (likewise for η). In this case, g(1) is simple of dimension 2k1 − 2 for the same
reason as above.

(3) For k1 = 1, g = {∂1, u1∂1} is nilpotent. For k1 = 2, g = {∂1, ∂2, u1∂1 + u2∂2, u1∂2 +
u2∂1} is solvable.
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If k0k1 
= 0, then there are two cases to be considered:

Case 1: k0 + k1 is even. In this case, oo
(1)
II (k0|k1) contains the scalar matrices, and hence

c(oo(1)
II (k0|k1)) = oo

(1)
II (k0|k1), which has been studied in Subsec. 4.2.

Case 2: k0 + k1 is odd. In this case, we see that

c(oo(1)
II (k0|k1)) = oo

(1)
II (k0|k1) ⊕ K〈I〉 = ooII(k0|k1)

where I stands for the (k0|k1)-identity matrix. This case thus reduces to that studied in
Subsec. 4.1.

4.4. ooIΠ(k0|2k1). Here B = Ik0 ⊕ Π2k1

The Lie superalgebra g0 = ooIΠ(k0|2k1) consists of matrices


k0 k1 k1

k0 A Ct
2 Ct

1

k1 C1 D1 D2

k1 C2 D3 Dt
1

, where At = A,Dt
2 = D2,D

t
3 = D3.

If k1 = 0, then the study is the same as that of oI(k0) (see Subsec. 3.4).
Let g−1 be the identity g0-module spanned by partial derivatives as g0 is embedded into

vect(k0;N |2k1)0. Let si = 2Ni − 1 for i ≤ k0, and si = 1 for i > k0.
We then have:

∑
i,j a

j
iui∂j ∈ g0 for aj

i ∈ K, where ai
j = a

c(j)
c(i) , and where

c(r) =


r if r ≤ k0,

r + k1 if k0 + 1 ≤ r ≤ k0 + k1,

r − k1 if k0 + k1 + 1 ≤ r ≤ k0 + 2k1.

Theorem 4.8. (1) The Cartan prolong (g−1, g0)∗,N is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm,

where m = 2k1 − 2 +
∑k0

i=1 si. Further, gm = Kw, where

w = us1−1
1 us2−1

2 · · · usk0
−1

k0

(
k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · uk0+2k1∂i

)
.

(2) Let ηi = usi
i ∂c(i) ∈ gsi−1 and let Mi = (1, 1, . . . , 1, 2, 2, . . . , 2, . . .) be a sequence of

elements from {1, 2, . . . , k0 + 2k1} such that j appears sj times when j 
= c(i), and c(i)
appears sc(i) − 1 times.

For any subsequence I = (i1, i2, . . . , it) of some Mi, let w( ) = w and wI =
ad∂i1

ad∂i2
· · · ad∂it

w. Then, a basis for g is {ηi}k0+2k1
i=1 ∪ {wI |wI 
= 0}.

(3) For k0 = 0, k1 = 1, the Lie superalgebra g is solvable of dimension 5.
(4) For k0 = 0, k1 > 1, the Lie superalgebra g is not simple, but g(1) is simple of

dimension 22k1 − 2 with basis {wI | I � {1, . . . , 2k1}, I 
= ∅}.
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(5) Let k0k1 
= 0 and k = k0 + 2k1, and Ni = 1 for all i such that 1 ≤ i ≤ k0. Then the
Lie superalgebras g and g(1) are not simple.

The Lie superalgebra g(2) is simple of dimension 2k − 2 + 2k1; it is generated, as a Lie
superalgebra, by the set {∂1, . . . , ∂k, w(1), . . . , w(k)}.

(6) Let k0k1 
= 0 and k = k0 + 2k1, and Ni > 1 for some i such that 1 ≤ i ≤ k0. The the
Lie superalgebra g(1) is simple of dimension 2N1+···+Nk − 1 + 2k1; it is generated as a Lie
superalgebra by the set {w, ∂1, . . . , ∂k}.
Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before. We then have

ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i).

(2) The proof is similar to the proofs used for the study of Cartan prolong of oI(k); see
Subsec. 3.4.

(3) Let k0 = 0 and k1 = 1. Then g = {∂1, ∂2, w, η1, η2}, where w = u1∂1 + u2∂2,
η1 = u1∂2, and η2 = u2∂1. Further, g(1) = {∂1, ∂2, w}, and g(2) = {∂1, ∂2}. So g is solvable.

(4) Let k0 = 0 and k1 > 1. Here, w =
∑

i u1 · · · ûc(i) · · · u2k1∂i. We see that ηi = uc(i)∂i

cannot be obtained as from w via successive commutators with elements of g−1, as uc(i) is
not a factor of the coefficient of ∂i in w. As ηi ∈ g0, and g0 has no odd derivation, ηi cannot
be a square of an odd derivation. Thus ηi /∈ g(1).

We now claim that w /∈ g(1). Note that [ur∂r + uc(r)∂c(r), w] = 0. Hence, [ur∂t +
uc(t)∂c(r), w] = 0 for r 
= c(t). Likewise, [uc(r)∂r, w] = 0. Therefore, [g0, w] = 0, hence w
is not a commutator in g. It remains to be checked whether w is a square of an odd vector
field.

Let w = Φ2 for some odd derivation Φ =
∑

i ϕi∂i. As ηi is even, it is not a summand of
Φ. Thus ∂i(ϕc(i)) = 0 for every i. Now, Φ2 =

∑
i,j ϕi∂i(ϕj)∂j =

∑
i,j ϕi∂c(j)(ϕc(i))∂j .

Thus,
∑

i ϕi∂k1+1(ϕc(i)) = u1 · · · ûk1+1 · · · u2k1 . That is, ∂k1+1(
∑

i≤k1
ϕiϕc(i)) =

u1 · · · ûk1+1 · · · u2k1 . Hence,
∑

i≤k1
ϕiϕc(i) = u1 · · · u2k1 + f for some polynomial f such

that ∂1(f) = 0.
As ∂c(i)(ϕi) = 0 for every i, there is a j such that ∂c(j)(ϕc(j)), and ∂j(ϕj) are both

nonzero and ϕjϕc(j) = u1 · · · u2k1+ lower degree terms.
Now let ϕj = ujg + h and as ∂j(ϕj) = ∂c(j)(ϕc(j)), we have ϕc(j) = uc(j)g + ψ such that

deg(g) ≥ 1 and

∂j(g) = ∂c(j)(g) = ∂j(h) = ∂c(j)(ψ) = 0.

But ϕjϕc(j) = ujgψ + uc(j)gh + hψ which has lower degree than 2k1. Therefore, w /∈ g(1).
Hence the result.

(5) A basis for g is {ηi}i ∪ {wI | I � {1, . . . , k}}. Note that ηi = uc(i)∂i = (uc(i)∂1 +
u1∂i)2 ∈ g(1) for i > k0. But ηi /∈ g(1) for 1 ≤ i ≤ k0 as it cannot be obtained as through
commutators nor is it a square of an odd vector field.

Also, [u1η1, w] = w ∈ g(1). Thus, g(1) is generated by the set {w, ∂1, . . . , ∂k}. Using
the fact that ∂i(ϕi) = 0 for Φ =

∑
i ϕi∂i ∈ g(1) odd and i ≤ k0 and arguments as in the
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previous case gives w /∈ g(2). Moreover, the Lie superalgebra g(2) is simple generated by the
set {w(1), . . . , w(k), ∂1, . . . , ∂k}. A basis for g(2) is given by the set

{∂1, . . . , ∂k} ∪ {wI | I � {1, . . . , k}, I 
= ∅} ∪ {ηi}i>k0 .

Hence, dim g(2) = 2k − 2 + 2k1.
(6) Note that for j ≤ k0, and Nj = 1, we have seen that ηj cannot be obtained as a

commutator nor as a square of an odd vector field. We now show that for j ≤ k0 and Nj > 1,
again ηj /∈ g(1). As ηj has the highest degree of uj in its description, it cannot be the result
of a commutator. We are using the fact that [g0, ηj ] = 0, and [wI1 , wI2] ∈ Span {wJ}J .

Without loss of generality, assume that j = 1. Let there be an odd vector field
Φ =

∑
i ϕi∂i ∈ g such that Φ2 = η1 = us1

1 ∂1. Then we have
∑

i≤k0
ϕi∂1(ϕi) +

∂1(
∑

k0+1≤i≤k0+k1
ϕiϕc(i)) = us1

1 . If ϕi = 0 for every i ≤ k0, then us1
1 is in the image of ∂1,

which is not possible. Therefore, ϕi 
= 0 for some i ≤ k0, and ϕi∂1(ϕi) = us1
1 + other terms.

As ϕi is odd, there exists a j, j > k0 such that ϕi = ujf + g, where f is even, g is odd, and
∂j(f) = ∂j(g) = 0. Thus, ϕi∂1(ϕi) = ujf

2 + gf . As g is odd, there exists a t, t > k0 such
that g = utf1 + g1 where g1 is now odd. Continuing thus, we see that no term of ϕi∂1(ϕi)
is free from odd variables. In other words us1

1 cannot be a term of ϕi∂1(ϕi). This gives us
the necessary contradiction.

Thus g(1) is a proper ideal of g. Note that if Nj > 1 for some j ≤ k0, then uj∂j can be
obtained by successive commutators from w. Now, w = [uj∂j , w] ∈ g(1).

We now show that g(1) is simple. Let I be a nontrivial ideal of g Then we see that
I ∩ g−1 
= φ, which implies that I ∩ g−1 = g−1. Thus, wI ∈ I for I 
= ∅ and so w ∈ I.

For t > k0, ηt = uc(t)∂t = (uc(t)∂1 + u1∂t)2 ∈ I. Therefore, I = g.
A basis for g is {wI |wi 
= 0} ∪ {ηi}i>k0. Hence, dim g = 2N1+···+Nk − 1 + 2k1.

Corollary 4.9. All coordinates of N are critical in this case.

4.5. oo
(1)
IΠ(k0|2k1)

The Lie superalgebra

g0 = oo
(1)
IΠ(k0|2k1) = {[X,Y ] |X,Y ∈ ooIΠ(k0|2k1)} ⊕ {X2 |X ∈ ooIΠ(k0|2k1)1̄}

consists of matrices


k0 k1 k1

k0 A Ct
2 Ct

1

k1 C1 D1 D2

k1 C2 D3 Dt
1

, where At = A,Dt
2 = D2,D

t
3 = D3, diagonal entries of A are 0.

If k1 = 0, then this study is identical to that of o
(1)
I (k0) done in Subsec. 3.2.

In this subsection we assume that k1 
= 0.
Let g−1 be the identity g0-module spanned by partial derivatives as g0 is embedded into

vect(k0;N |2k1)0. We then have:
∑

i,j a
j
iui∂j ∈ g0 for aj

i ∈ K, where ai
j = a

c(j)
c(i) and ai

i = 0
for i ≤ k0; here c(r) is defined in Sec. 4.4.
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Theorem 4.10. (1) The Cartan prolong, (g−1, g0)∗,N , is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = k0 + 2k1 − 2.

Further, gm = Kw, where

w =

(
k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · uk0+2k1∂i

)
.

For any proper subset I = (i1, i2, . . . , it) of the set {1, 2, . . . , k0 + 2k1}, let w( ) = w and
wI = ad∂i1

ad∂i2
· · · ad∂it

w. Then, a basis for g is {wI}I�{1,2,...,k0+2k1}.
(2) For k0 = 0, k1 = 1, the Lie superalgebra g is solvable of dimension 5.
(3) For k0 = 0, k1 > 1, the Lie superalgebra g is not simple, but g(1) is simple with basis

{wI | I � {1, . . . , 2k1}, I 
= ∅}, and dim g(1) = 22k1 − 2.
(4) Let k0k1 
= 0, and k = k0 + 2k1. Then the Lie superalgebras g, and g(1) are not

simple. The Lie superalgebra g(2) is simple of dimension 2k − 2 + 2k1 and is generated as a
Lie superalgebra by the set {∂1, . . . , ∂k, w(1), . . . , w(k)}.
Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before.
We then have ai

r1,r2,...,rh
= a

c(rh)
r1,r2,...,rh−1,c(i), and ai

r1,r2,...,rh
= 0 for i ≤ k0 if i = rj for

some some j. Rest of the proof is similar to the proofs used for the study of Cartan prolong
of o

(1)
I (k); see Sec. 3.2.
(2) Identical proof as part (3) of Theorem 4.4.
(3) Identical proof as part (4) of Theorem 4.4.
(4) Identical proof as part (5) of Theorem 4.4. Note that the fact that Ni > 1 does not

affect the Cartan prolongation in this result.

Corollary 4.11. No critical coordinates of N in this case.

4.6. c(oo
(1)
IΠ(k0|2k1))

Here, we extend the Lie algebra oo
(1)
IΠ(k0|2k1) with a central element. Thus, the Lie super-

algebra g0 = c(oo(1)
IΠ(k0|2k1)) consists of matrices


k0 k1 k1

k0 A Ct
2 Ct

1

k1 C1 D1 D2

k1 C2 D3 Dt
1

, and At = A = (aij), aii = ajj, D
t
2 = D2, D

t
3 = D3.

If k1 = 0, then this study is identical to that of c(o(1)
I (k0)); see Subsec. 3.3. If k0 = 0, then

c(oo(1)
IΠ(0|2k1) 	 oo

(1)
IΠ(0|2k1)) which has been studied in Subsec. 4.5.

For the rest of this subsection we assume that k0k1 
= 0.
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Let g−1 be the identity g0-module spanned by partial derivatives as we embed g0 into
vect(k0;N |2k1)0. We then have:

∑
i,j a

j
iui∂j ∈ g0 for aj

i ∈ K, where ai
j = a

c(j)
c(i) for all i, and

where ai
i = aj

j for i, j ≤ k0. Again, c(r) is same as defined in Sec. 4.4.

Theorem 4.12. (1) The Cartan prolong, (g−1, g0)∗,N , is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = smin + k0 + 2k1 − 3.

Further, gm = Kw, where

w =
(∑

ur
)(

k0+2k1∑
i=1

u1u2 · · · ûc(i) · · · uk0+2k1∂i

)
;

here (
∑
ur) is the sum taken over all r = (r1, . . . , rk0) such that all ri are non-negative

and even, and r1 + · · ·+ rk0 = smin − 1. Let η = (
∑
ur) (u1∂1 + u2∂2 + · · · + uk0∂k0) , where

(
∑
ur) be the same as above. A basis of g is given by the set

{add1
∂1
. . . addk

∂k
w, | (d1, . . . , dk) ∈ Zk

≥0\{(smin, 1, 1, . . . , 1)}, d1 ≤ smin, dj ≤ 1 for j 
= 1}
∪ {η} ∪ {uc(i)∂i}k0+1≤i≤k

(2) Let smin = 1. If k0 is even, then w, η /∈ g(1), and g(1) is simple of dimension
2k − 2 + 2k1, generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}.

If k0 is odd, then η /∈ g(1), w /∈ g(2), and g(2) is simple of dimension 2k − 2 + 2k1,

generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}.
(3) Let smin 
= 1. The Lie superalgebra g is not simple.
If k0 is odd, then g(1) is simple, generated as a Lie superalgebra by the set {w,

∂1, . . . , ∂k}, and of dimension (smin + 1)2k − 1 + 2k1.
If k0 is even, then the Lie superalgebra g(1) is simple, generated by {w(1), . . . ,

w(k), ∂1, . . . , ∂k}, and of dimension (smin + 1)2k − 2 + 2k1.

Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh

and where we use the same conventions as before. We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i),

ai
r1,r2,...,rh

= 0 if c(i) = rj for i > k0 and some j, and where ai
i,r2,...,rh

= aj
j,r2,...,rh

for i, j ≤ k0.

Rest of the proof is similar to the proofs used for the study of Cartan prolong of c(o(1)
I (k));

see Sec. 3.3.
(2) Let smin = 1. Note that [η,w] = 0 if k0 is even, and [η,w] = w if k0 is odd. In either

case, note that square of an odd vector field in g0 is of the form uc(j)∂j for j > k0. Moreover,
η cannot be be obtained as a commutator. Hence η /∈ g(1). Thus, g(1) is generated as a Lie
superalgebra by the set {w, ∂1, . . . , ∂k} if k is odd, or by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}
if k is even. The result therefore follows.

(3) Let smin 
= 1. Then, an argument identical as in part (6) of Theorem 4.4 shows that
η is not a square of an odd vector field from g. Moreover, η /∈ [g, g] as seen in Subsec. 3.3.
Hence, η /∈ g(1).
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If k0 is odd, then [
∑

1≤i≤k ui∂i, w] = w ∈ g(1). Thus, g(1) is generated as a Lie super-
algebra by the set {w, ∂1, . . . , ∂k}, with basis

{add1
∂1
. . . addk

∂k
w, | (d1, . . . , dk) ∈ Zk

≥0\{(smin, 1, 1, . . . , 1)}, d1 ≤ smin, dj ≤ 1 for j 
= 1}
∪ {uc(i)∂i}k0+1≤i≤k.

Hence, g(1) is of dimension (smin + 1)2k − 1 + 2k1.
If k0 is even, then [

∑
1≤i≤k ui∂i, w] = 0. In fact, one can check that [g0, w] = 0, so

w /∈ [g, g]. It remains to be checked whether w is a square of an odd vector field from g. Let
Φ =

∑
i ϕi∂i ∈ g be an odd vector field such that Φ2 = w. Then∑

i≤k0

ϕi∂1(ϕi) +
∑

k0+1≤i≤k0+k1

∂1(ϕiϕc(i)) =
(∑

ur
)
u2 · · · uk,

the coefficient of ∂1 in w. As Φ ∈ g, we get ∂i(ϕi) = ∂j(ϕj), and ∂i(ϕj) = ∂j(ϕi) for i, j ≤ k0.
So, (using the fact that k0 is even), we get

∑
i≤k0

ϕi∂1ϕi =
∑

2≤i≤k0
∂i(ϕ1ϕi). Thus,

∑
2≤i≤k0

∂i(ϕ1ϕi) + ∂1

 ∑
k0+1≤i≤k0+k1

ϕiϕc(i)

 =
(∑

ur
)
u2 · · · uk.

Let (
∑
ur)u2 · · · uk be a term in ∂i(ϕ1ϕi) for some i ≤ k0.

Without loss of generality, let ∂2(ϕ1ϕ2) = (
∑
ur)u2 · · · uk+ other terms. This is impos-

sible if smin = s2. If s2 > smin then ϕ1ϕ2 = (
∑

0<2t≤smin+1 u
r(t)u2t

2 )u3 · · · uk+ other terms;
here, ur(t) stands for the sum taken over all r(t) = (r1(t), r3(t), . . . , rk0(t)) such that
every ri(t) is non-negative, even, and r1(t) + r3(t) + · · · + rk0(t) = smin + 1 − 2t, and
ur = ur1

1 u
r3
3 · · · urk0

k0
.

Now, (
∑

0<2t≤smin+1 u
r(t)u2t

2 ) is irreducible and hence is a factor of a term of ϕ1 or ϕ2,
which is not possible. Hence, w is not a square of an odd vector field.

On the other hand, (
∑
ur)u2 · · · uk cannot be a term of ∂1(ϕiϕc(i)) for i > k0, is not a

multiple of uiuc(i) as argued in part 4 of Theorem in Subsec. 4.4.
Thus w /∈ g(1). Hence, g(1) is generated as a Lie superalgebra by the set

{w(1), . . . , w(k), ∂1, . . . , ∂k}, with basis

{add1
∂1
. . . addk

∂k
w, | (d1, . . . , dk) ∈ Zk

≥0\{(0, . . . , 0), (smin, 1, . . . , 1)},
d1 ≤ smin, dj ≤ 1 for j 
= 1} ∪ {uc(i)∂i}k0+1≤i≤k.

Hence, g(1) is of dimension (smin + 1)2k − 2 + 2k1.

Corollary 4.13. The critical values of N in this case are of the form (n, n, . . . , n).

4.7. ooΠI(2k0|k1)

The Lie algebra g0 = ooΠI(2k0|k1) consists of matrices


k0 k0 k1

k0 A1 A2 B1

k0 A3 At
1 B2

k1 Bt
2 Bt

1 D

, where At
2 = A2, A

t
3 = A3, D

t = D.
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Let g−1 be the identity g0-module spanned by partial derivatives as g0 is embedded into
vect(2k0;N |k1)0. We then have:

∑
i,j a

j
iui∂j ∈ g0 for aj

i ∈ K, where ai
j = a

c(j)
c(i) , and where

c(r) =


r + k0 if r ≤ k0,

r − k0 if k0 + 1 ≤ r ≤ 2k0,

r if 2k0 + 1 ≤ r ≤ 2k0 + k1.

Let si = 2Ni − 1 for i ≤ 2k0, and si = 1 for i > 2k0.

Theorem 4.14. (1) The Cartan prolong, (g−1, g0)∗,N , is a graded Lie algebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = k1 − 2 +
2k0∑
i=1

si.

Further, gm = Kw, where

w = us1−1
1 us2−1

2 · · · us2k0
−1

2k0

(
2k0+k1∑

i=1

u1u2 · · · ûc(i) · · · u2k0+k1∂i

)
.

For every i, 1 ≤ i ≤ k, let ηi = usi
i ∂c(i) ∈ gsi−1 and let Mi = (1, 1, . . . , 1, 2, 2, . . . , 2, . . .) be

sequences of elements from {1, 2, . . . , 2k0 + k1} such that j appears sj times when j 
= c(i),
and c(i) appears sc(i) − 1 times. For any subsequence I = (i1, i2, . . . , it) of some Mi, let
w( ) = w and wI = ad∂i1

ad∂i2
· · · ad∂it

w. Then, a basis for g is {ηi}1≤i≤k ∪ {wI |wI 
= 0}.
(2) Let k1 = 0 and Ni = 1 for every i, 1 ≤ i ≤ 2k0. Let k0 = 1, then g is solvable. If

k0 > 1 then g(1) is simple, of dimension 22k0 − 2 and generated as a Lie algebra by the set
{w(1), . . . , w(k), ∂1, . . . , ∂k}.

Suppose k1 = 0 and Ni > 1 for some i, 1 ≤ i ≤ 2k0. In this case g(1) is simple of
dimension 2N1+···+Nk − 2.

(3) Suppose k0k1 
= 0. Then g(2) is simple of dimension 2N1+···+N2k0
+k1 − 2 + 2k0,

generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}.
Proof. (1) For h ≥ 1, let

Φ ∈ gh−1, where Φ =
∑

i

ϕi∂i,

and where ϕi =
∑

r1≤r2≤···≤rh
ai

r1,r2,...,rh
ur1ur2 · · · urh

, under the same conventions as before.

We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i).

Rest of the proof is similar to the proofs used for the study of Cartan prolong of oI(k);
see Sec. 3.4.

(2) Let k0 = 1, k1 = 0, N1 = 1. Then g = {∂1, ∂2, u1∂2, u2∂1, u1∂1 + u2∂2}. Further,
g(1) = {∂1, ∂2, u1∂1 + u2∂2} and g(2) = {∂1, ∂2} is abelian.

Let k0 > 1, k1 = 0, and Ni = 1 for every i such that 1 ≤ i ≤ 2k0. Then, note that
ηi = ui∂c(i) /∈ g(1). Moreover, [g0, w] = 0. Thus, g(1) is generated as a Lie algebra by the set
{w(1), . . . , w(k), ∂1, . . . , ∂k} and a basis for g(1) is given by the set {wI | I � {1, . . . , k}, I 
= φ}.
Hence the result.
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Suppose k1 = 0, and Ni > 1 for some i, 1 ≤ i ≤ 2k0. Again in this case we see that
ηj = u

sj

j ∂c(j) /∈ g(1) for every j, 1 ≤ j ≤ 2k0, and w /∈ g(1). Therefore, a basis for g(1) is given
by the set

{add1
∂1

· · · addk
∂k

(w) | (d1, . . . , dk) ∈ Zk
≥0\{(s1, . . . , sk), (0, . . . , 0)}}.

(3) Note that w = [η2k0+1, w] ∈ g(1), and for every i ≤ 2k0, we get ηi = (uti
i ∂2k0+1 +

uti−1
i u2k0+1∂c(i))2 ∈ g(1), where ti = 1

2 (si + 1). On the other hand, if i > 2k0, then ηi = ui∂i

cannot be obtained as a commutator, neither is it a square of an odd vector field from g0. So,
ηi /∈ g(1) for i > 2k0. Thus, g(1) is generated as a Lie superalgebra by the set {w, ∂1, . . . , ∂k}.

We now claim that w /∈ g(2). Note that [g(1)
0 , w] = 0, and this implies that w /∈ [g(1), g(1)].

It remains to be seen that w is not a square of an odd vector field from g(1).
If k1 is odd, then w is not a square of an odd vector field. So suppose that k1 > 1 is

even. Let Φ =
∑

i ϕi∂i be such that Φ2 = w. As Φ ∈ g, ∂i(ϕj) = ∂c(j)(ϕc(i)) for every pair
i, j; as Φ is odd, ϕi is odd for i ≤ 2k0, and for i > 2k0, ϕi is even, and ∂i(ϕi) = 0. Thus,∑

i≤k0

∂1(ϕiϕc(i)) +
∑

i>2k0

ϕi∂1(ϕi) = us1−1
1 us2

2 · · · us2k0
2k0

u2k0+1 · · · uk

(the coefficient of ∂1 in w). As ϕi does not have ui in its description for i > 2k0, we see that∑
i≤k0

∂1(ϕiϕc(i)) = us1−1
1 us2

2 · · · us2k0
2k0

u2k0+1 · · · uk + other terms.

Thus for some i such that i ≤ k0, we have

ϕiϕc(i) = us1
1 u

s2
2 · · · us2k0

2k0
u2k0+1 · · · uk + other terms.

Let ϕi =
∑

I uIfI and let ϕc(i) =
∑

I uIgI where uI denote an odd degree mono-
mial in the odd variables u2k0+1, . . . , uk, and fI , gI are polynomials in the even variables
u1, . . . , u2k0 . Thus, there exist indexing sequences I, J such that

uIuJfIgJ = us1
1 u

s2
2 · · · us2k0

2k0
u2k0+1 · · · uk + other terms.

As ∂i(ϕi) = ∂c(i)(ϕc(i)), we see that ∂i(fI) = ∂c(i)(gI) for every indexing sequence I.
So, if fI has the term αua1

1 · · · ua2k0
2k0

for some nonzero scalar α, then gI has the term

αua1
1 · · · uai−1

i · · · uc(i)+1
c(i) · · · ua2k0

2k0
(assuming without loss of generality that i < c(i)). Using

the combinatorial fact that ( 2n − 1
r ) is odd for any r, 0 ≤ r ≤ 2n − 1 and n ≥ 1, we see that

uJuIfJgI also has us1
1 u

s2
2 · · · us2k0

2k0
u2k0+1 · · · uk as a term. This implies that ϕiϕc(i) does not

have us1
1 u

s2
2 · · · us2k0

2k0
u2k0+1 · · · uk as a term. Hence w /∈ g(2).

Therefore, a basis for g(2) is given by the set

{add1
∂1

· · · addk
∂k

(w) | (d1, . . . , dk) ∈ Zk
≥0\{(0, . . . , 0), (s1, . . . , sk)}} ∪ {ηi}1≤i≤2k0 .

Simplicity is proven as in the previous cases.

Corollary 4.15. All coordinates of N are critical in this case.
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4.8. oo
(1)
ΠI(2k0|k1)

The Lie algebra g0 = oo
(1)
ΠI(2k0|k1) consists of matrices


k0 k0 k1

k0 A1 A2 B1

k0 A3 At
1 B2

k1 Bt
2 Bt

1 D

, where At
2 = A2, A

t
3 = A3,D

t = D,

the diagonal entries of D are all equal to 0.

The case of k0k1 = 0 has been studied in previous sections. So, assume for the rest of
this subsection that k0k1 
= 0. Let g−1 be the identity g0-module spanned by partial
derivatives as g0 is embedded into vect(2k0;N |k1)0. We then have:

∑
i,j a

j
iui∂j ∈ g0 for

aj
i ∈ K, where ai

j = a
c(j)
c(i) for all i, j, and ai

c(i) = 0 for i > 2k0, where c(r) is defined in
Sec. 4.7.

Theorem 4.16. (1) The Cartan prolong, (g−1, g0)∗,N , is a graded Lie algebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = 2k0 + k1 − 2.

Further, gm = Kw, where

w = us1−1
1 us2−1

2 · · · us2k0
−1

2k0

(
k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · uk0+2k1∂i

)
.

For i ≤ 2k0, let ηi = usi
i ∂c(i) ∈ gsi−1 and let Mi = (1, 1, . . . , 1, 2, 2, . . . 2, . . .) be sequences

of elements from {1, 2, . . . , 2k0 + k1} such that j appears sj times when j 
= c(i), and c(i)
appears sc(i) − 1 times. For any subsequence I = (i1, i2, . . . , it) of some Mi, let w( ) = w and
wI = ad∂i1

ad∂i2
· · · ad∂it

w.
Then, a basis for g is {ηi}2k0

i=1 ∪ {wI |wI 
= 0}.
(2) The Lie superalgebra g is not simple but g(1) is simple, of dimension 2N1+···+N2k0

+k1−
2 + 2k0, and is generated as a Lie superalgebra by the set

{w(1), . . . , w(k), ∂1, . . . , ∂k}.
Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before. We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i),

and ai
r1,r2,...,rh

= 0 for i > 2k0 if i = rj for some j. Rest of the proof is similar to the proofs

used for the study of Cartan prolong of o
(1)
I (k); see Sec. 3.2.

(2) Unlike in the case of ooΠI(2k0|k1), (Subsec. 4.7), in this case ui∂i /∈ g for i > 2k0.
We have also seen that w is not a square of an odd vector field. Hence, g(1) does not contain
w. We get g(1) is generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}.
Identical proof as in part (3) of Theorem 4.7 gives us the result.

Corollary 4.17. All coordinates of N are critical in this case.
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4.9. c(oo
(1)
ΠI(2k0|k1))

The Lie algebra g0 = c(oo(1)
IΠ(2k0|k1)) is an extension of the Lie algebra oo

(1)
IΠ by a central

element. Thus, g0 consists of matrices


k0 k0 k1

k0 A1 A2 B1

k0 A3 At
1 B2

k1 Bt
2 Bt

1 D

, where
At

2 = A2, A
t
3 = A3, D

t = D = (dij), where
dii = djj for any i, j.

The case k0k1 = 0 have been studied in previous subsections. So assume for this sub-
section that k0k1 
= 0. Let g−1 be the identity g0-module spanned by partial derivatives
as g0 is embedded into vect(2k0;N |k1)0. We then have

∑
i,j a

j
iui∂j ∈ g0 for aj

i ∈ K, where

ai
j = a

c(j)
c(i) for all i, j, and ai

i = aj
j for i, j > 2k0, where c(r) is defined in Subsec. 4.7.

Theorem 4.18. (1) The Cartan prolong, (g−1, g0)∗,N , is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm,

where m = 2k0 + k1 − 2. Further, gm = Kw, where

w = us1−1
1 us2−1

2 · · · us2k0
−1

2k0

(
k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · uk0+2k1∂i

)
.

For i ≤ 2k0, let ηi = usi
i ∂c(i) ∈ gsi−1 and let Mi = (1, 1, . . . , 1, 2, 2, . . . , 2, . . .) be sequences

of elements from {1, 2, . . . , 2k0 + k1} such that j appears sj times when j 
= c(i), and c(i)
appears sc(i) − 1 times. For any subsequence I = (i1, i2, . . . , it) of some Mi, let w( ) = w and
wI = ad∂i1

ad∂i2
· · · ad∂it

w.
Further, let η =

∑2k0+k1
i=2k0

ui∂i. Then, a basis for g is

{ηi}2k0+k1
i=1 ∪ {η} ∪ {wI |wI 
= 0}.

(2) Let k1 be odd. Then g, g(1) are not simple, but g(2) is simple, of dimen-
sion 2N1+···+N2k0

+k1 − 2 + 2k0, and generated as a Lie superalgebra by the set
{w(1), . . . , w(k), ∂1, . . . , ∂k}.

Let k1 be even. Then g is not simple, but g(1) is simple, of dimension 2N1+···+N2k0
+k1 −

2 + 2k0, and generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}.
Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before. We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i).

Further, the condition ai
i = aj

j for i, j > 2k0 does not affect the Cartan prolongs gj for j > 0
since ai

ri = ar
ii = 0 for i > 2k0. Rest of the proof is similar to the proofs used for the study

of Cartan prolong of o
(1)
I (k); see Sec. 3.2.

(2) When k1 is odd, we see that w = [η,w] ∈ g(1). But η /∈ g(1). Therefore, g(1) is
generated as a Lie superalgebra by the set {w, ∂1, . . . , ∂k}. Now proceeding as in Subsec. 4.7,
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we see that g(2) is generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k} and
hence the result.

When k1 is even, we get [w, g0] = 0, and w is not a square of an odd vector field.
Thus, here g(1) is generated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k} and
hence the result.

Corollary 4.19. All coordinates of N are critical in this case.

4.10. ooΠΠ(2k0|2k1)

The Lie algebra g0 = ooΠΠ(2k0|2k1) consists of matrices


k0 k0 k1 k1

k0 A1 A2 B1 B2

k0 A3 At
1 B3 B4

k1 Bt
4 Bt

2 D1 D2

k1 Bt
3 Bt

1 D3 Dt
1

, where At
2 = A2, A

t
3 = A3, D

t
2 = D, Dt

3 = D3.

The case k0k1 = 0 have been studied in the previous subsections. So assume for this
subsection that k0k1 
= 0. Let g−1 be the identity g0-module spanned by partial derivatives
as g0 is embedded into vect(2k0;N |2k1)0. We then have

∑
i,j a

j
iui∂j ∈ g0 for aj

i ∈ K, where

ai
j = a

c(j)
c(i)

, and where

c(r) =



r + k0 if r ≤ k0,

r − k0 if k0 + 1 ≤ r ≤ 2k0,

r + k1 if 2k0 + 1 ≤ r ≤ 2k0 + k1,

r − k1 if 2k0 + k1 < r.

Theorem 4.20. (1) The Cartan prolong (g−1, g0)∗,N is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = 2k1 − 2 +
2k0∑
i=1

si.

Further, gm = Kw, where

w = us1−1
1 us2−1

2 · · · us2k0
−1

2k0

(
2k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · u2k0+2k1∂i

)
.

For i ≤ k, we have ηi = usi
i ∂c(i) ∈ gsi−1 and let Mi = (1, 1, . . . , 1, 2, 2, . . . , 2, . . .) be sequences

of elements from {1, 2, . . . , 2k0 + 2k1} such that j appears sj times when j 
= c(i), and c(i)
appears sc(i) − 1 times. For any subsequence I = (i1, i2, . . . , it) of some Mi, let w( ) = w and
wI = ad∂i1

ad∂i2
· · · ad∂it

w. Then, a basis for g is

{ηi}1≤i≤2k0+2k1 ∪ {wI |wI 
= 0}.
(2) The Lie superalgebra g is not simple, but its derived algebra g(1) is simple, gen-

erated as a Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}, and of dimension
2N1+···+N2k0

+2k1 − 2.
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Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before. We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i).

Rest of the proof is similar to the proofs used for the study of Cartan prolong of oI(k); see
Sec. 3.4.

(2) We first prove that w, and ηi for every i, i ≤ k are not in g(1).
As [g0, w] = 0, we see that w /∈ [g, g]. Suppose an odd vector field Φ =

∑
i ϕi∂i is such

that Φ2 = w. Then using the fact that ∂i(ϕj) = ∂c(j)(ϕc(i))) we get

∂1

∑
i≤k0

ϕiϕc(i) +
∑

2k0+1≤i≤2k0+k1

ϕiϕc(i)

 = us1−1
1 us2

2 · · · us2k0
2k0

u2k0+1 · · · uk,

the coefficient of ∂k0+1. So∑
i≤k0

ϕiϕc(i) +
∑

2k0+1≤i≤2k0+k1

ϕiϕc(i) = us1−1
1 us2

2 · · · us2k0
2k0

u2k0+1 · · · uk + other terms.

This implies, ϕiϕc(i) = us1−1
1 us2

2 · · · us2k0
2k0

u2k0+1 · · · uk+ other terms. We now refer to the
proof of part (3) of Theorem 4.7, to claim that such a Φ does not exist.

For every i, observe that ηi cannot be obtained as a commutator. It remains to be
checked whether ηi is square of an odd vector field. Let Φ2 = ηi, where Φ =

∑
i ϕi∂i. Then

∂i

∑
j≤k0

ϕjϕc(j) +
∑

2k0+1≤j≤2k0+k1

ϕjϕc(j)

 = usi
i ,

the coefficient of ∂c(i). But usi
i is not in the image of ∂i. So ηi /∈ g(1).

We conclude that g(1) is generated as a Lie superalgebra by the set
{w(1), . . . , w(k), ∂1, . . . , ∂k}, and has a basis given by the set

{add1
∂1

· · · addk
∂k

(w) | (d1, . . . , dk) ∈ Zk
≥0\{(0, . . . , 0), (s1, . . . , sk)}}.

Hence the result.

Corollary 4.21. All coordinates of N are critical in this case.

4.11. oo
(1)
ΠΠ(2k0|2k1)

The Lie algebra g0 = oo
(1)
ΠΠ(2k0|2k1) consists of matrices


k0 k0 k1 k1

k0 A1 A2 B1 B2

k0 A3 At
1 B3 B4

k1 Bt
4 Bt

2 D1 D2

k1 Bt
3 Bt

1 D3 Dt
1

, where At
2 = A2, A

t
3 = A3, D

t
2 = D, Dt

3 = D3,

the diagonal entries of A2, A3,D2,D3 are 0.
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The case k0k1 = 0 have been studied in the previous subsections. So assume for this
subsection that k0k1 
= 0. Let g−1 be the identity g0-module spanned by partial derivatives
as g0 is embedded into vect(2k0;N |2k1)0. We then have∑

i,j

aj
iui∂j ∈ g0 for aj

i ∈ K, where ai
j = a

c(j)
c(i) and ai

c(i) = 0,

and where c(r) is defined in Sec. 4.10.

Theorem 4.22. (1) The Cartan prolong (g−1, g0)∗,N is a graded Lie superalgebra

g = (g−1, g0)∗,N = g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm, where m = 2k0 + 2k1 − 2.

Further, gm = Kw, where

w =

(
2k0+2k1∑

i=1

u1u2 · · · ûc(i) · · · u2k0+2k1∂i

)
.

For any proper subset I = (i1, i2, . . . , it) of the set {1, 2, . . . , 2k0 + 2k1}, let w( ) = w and
wI = ad∂i1

ad∂i2
· · · ad∂it

w. Then, a basis for g is {wI}I�{1,2,...,2k0+2k1}.
(2) The Lie superalgebra g is not simple, but g(1) is simple, generated as a Lie superal-

gebra by the set {∂i} ∪ {w(i)}, of dimension of 22k0+2k1 − 2.

Proof. (1) For h ≥ 1, let Φ ∈ gh−1. Write

Φ =
∑

i

ϕi∂i, where ϕi =
∑

r1≤r2≤···≤rh

ai
r1,r2,...,rh

ur1ur2 · · · urh
,

and where we use the same conventions as before. We then have ai
r1,r2,...,rh

= a
c(rh)
r1,r2,...,rh−1,c(i),

and ai
r1,r2,...,rh

= 0 if c(i) = rj for some j. The rest of the proof is similar to the proofs used

for the study of Cartan prolong of o
(1)
I (k); see Sec. 3.2.

(2) As seen in the previous section, we see that w /∈ g(1). And g(1) is generated as a
Lie superalgebra by the set {w(1), . . . , w(k), ∂1, . . . , ∂k}, and has a basis given by the set
{wI | I � {1, . . . , k}, I 
= φ}. Hence the result.

Corollary 4.23. No critical coordinates of N in this case.
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