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Here the theory of finite-dimensional supermanifolds is generalized in two directions.

First, we introduce infinite-dimensional supermanifolds “locally isomorphic” to arbitrary
Banach (or, more generally, locally convex) superspaces. This is achieved by considering supermani-
folds as functors (equipped with some additional structure) from the category of finite-dimensional
Grassmann superalgebras into the category of the corresponding smooth manifolds (Banach or
locally convex).

Selected examples: flag supermanifolds of Banach superspaces as well as unitary supergroups
of Hilbert superspaces.

Second, we define “generalized” supermanifolds, “locally isomorphic” to Zg-graded Banach (or,
more generally, locally convex) spaces. These generalized supermanifolds are referred to in what
follows (super)k-manifolds, or colored manifolds). The corresponding superfields (i.e., morphisms
into “coordinate ring”) describing, hopefully, particles with more general statistics than Bose +
Fermi, turn out to have, in general, an infinite number of components.

Keywords: Infinite-dimensional supermanifolds; Topos theory; glutosers.

0. Introduction

This paper is the second edition, corrected and updated, of the ICTP preprint IC/84/183
(Miramare-Trieste, 1984), containing the summary of results obtained by me during 1982
1984. The new Secs. 10 and 11 are added. Section 10 contains some results, not included in
the original preprint, as well as proofs of some crucial statements from Secs. 1-9. And, for
reader’s convenience, some definitions and results from set theory, Grothendieck pretopolo-
gies and glutos theory [19] are gathered together in the Sec. 11.

0.1.

One of the purposes of this paper is to extend the theory of finite-dimensional super-
manifolds (defined in [2], detailed presentations in [4-6] (see as well their predecessor in
algebraic geometry — superschemes [1])) in order to include infinite-dimensional superma-
nifolds “locally isomorphic”, in a sense, to arbitrary Banach (or, more generally, locally
convex) superspaces.
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The other purpose is to construct “super®manifolds”, related to Z’g—graded commu-
tative algebras in the same manner as ordinary supermanifolds are related to ordinary
(i.e., Zo-graded-commutative) algebras. In particular, we want to have the correspondence
(“super” Lie functor):

. SLi .
Lie superfgroups — Lie superfalgebras.

0.2.

An obvious obstruction we are faced with trying to define infinite-dimensional supermani-
folds is that the language of topological spaces with sheaves of superalgebras of superfields
on them is inadequate. Hence, in order to extend the theory of finite-dimensional superma-
nifolds we have to, simultaneously, reformulate it.

This aim is achieved here by considering, say, Banach supermanifolds (the category of
which is denoted further as SMan) as functors (equipped with some additional structure)
from the category Gr of finite-dimensional Grassmann superalgebras into the category Man
of smooth Banach manifolds, whereas supersmooth morphisms of Banach supermanifolds
are defined as functor morphisms preserving this structure.

The corresponding structure admits a simple characterization in terms of linear alge-
bra and topology in the functor category Man®*. Namely, Banach supermanifolds can be
defined locally (as Banach superdomains) as open subfunctors of some “linear supermani-
folds” constructed from Banach superspaces (Secs. 2 and 3), whereas supersmooth mor-
phisms of Banach superdomains are just the functor morphisms whose “weak derivative”
morphism is a family of linear morphisms (in the sense of Subsec. 1.3).

Globally, supermanifolds can be defined as functors on the category Man®* rigged with

some supersmooth atlas of Banach superdomains (Sec. 4).

The arising forgetful functor SMan N, Man®*

can be interpreted as a “geometriza-
tion” of the Yoneda point functor for supermanifolds composed with the functor of “restric-

tion to the finite-dimensional superpoints” (see Subsec. 8.1).

0.3.

The category Man of Banach manifolds imbeds into the category SMan of Banach super-
manifolds through a generalization of Berezin’s “Grassmann analytic continuation” [3] (see
Subsec. 4.2). The whole functorial approach to supermanifolds developed here was crystal-
lized from this pioneering (but rarely cited) work of Berezin, though Berezin himself had
never used functorial language. The natural isomorphism of the full subcategory SMang, of
locally finite-dimensional supermanifolds with the category of supermanifolds in the sense
of [2], [4-6] is established in Subsec. 4.7.

0.4.

In Sec. 5-Sec. 7 we develop the theory of Banach supermanifolds along such standard
lines as vector bundles (Sec. 5), inverse function theorem and related topics (Sec. 6), and
Lie supergroups (Sec. 7). From my point of view, the main result here, shedding some
additional light on the nature and metaphysics of supermanifolds, is Theorem 4.4.1 and its
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Corollary 4.4.2 that state that

Banach superalgebras (of any given type) “are” algebras (of the same type) in the category
SMan and vice versa, i.e., the corresponding categories are naturally equivalent.

We illustrate our general definitions with examples of Banach supermanifolds and
Banach Lie supergroups such as flag supermanifolds (Subsec. 4.6) and unitary supergroups
of Hilbert superspaces (Subsec. 7.1).

0.5.

In Sec. 8, for any Banach supermanifold M, its supergroup of superdiffeomorphisms S/DEf(M)
is constructed. Being the group object of the topos Set®T, the supergroup ﬁf(M) is not,
generally speaking, a Lie supergroup. Also, for any vector bundle € in the category SMan,
we define the functor f(é’) of its “supersections” which is, in fact an “R-module” object of
the topos Set®".

I believe that f(E) will play an important role in the theory of infinite-dimensional
representations of Lie supergroups due to the fact that actions of Lie supergroups on the
vector bundle € induce linear actions on the functor f(&)

0.6.

In Sec. 9, the definition of the category SMan is iterated to produce the category S¥Man
of “(super)*manifolds”, which can be defined recursively as functors (equipped with some
additional structure) of the functor category (S*~'Man)G* or, equivalently, as functors of
the functor category ManST".

The main result here is Theorem 9.2.1 stating that the category of Zé—graded Banach
superalgebras of any type is equivalent to the category of “ordinary” algebras of the same
type in the category S*Man. A large part of elementary differential geometry (inverse
function theorem, Lie theory, etc.) literally generalizes to S*Man.

0.7.

To conclude with, observe that one can as well superize the theory of locally convex and tame
Fréchet smooth manifolds [21] defining locally convex (resp. tame Frechet) supermanifolds.

0.8. Notations and conventions

In this paper N denotes the set of all non-negative integers and Zs denotes the field Z/27.

Throughout the paper Set, Top, Man, VBun denote the category of sets, topological
spaces, smooth Banach manifolds and smooth real Banach vector bundles, respectively; Gr
denotes the full subcategory of the category of finite-dimensional real Grassmann superalge-
bras containing for any ¢ € N exactly one Grassmann superalgebra A; with ¢ odd generators
(in particular, Ay = R); for any n € N denote by Gr™ the full subcategory of Gr consisting
of all Grassmann superalgebras with not more than n independent odd generators.

The variables A, A’, and so on will run over the set of objects of the category Gr (the
sole exception being Sec. 9, where it is permitted for A to run over “generalized” Grassmann
superalgebras).

The category of D-valued functors defined on the category € is denoted DC; the class of
objects of the category D is denoted by |D|, whereas the set of morphisms from an object
X € |D| into an object Y € |D| will be denoted, as a rule, by D[X,Y] or, simply, [X,Y].
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If a category D has a terminal object, the latter will be denoted p and all the morphisms
of type p — X will be called points of the object X.

All vector spaces and superspaces are considered over the field K =R or K = C.

&, denotes the permutation group on the set {1,...,n}. .

For any i € Z, 7 denotes the element i(mod 2) € Zs; set (—1)° =1 and (—1)! = —1.

1. Linear Algebra in Categories

This section deals with such things as algebras, superalgebras, multilinear morphisms, and
so on, in categories with finite products.

Throughout the section D will be a fixed category with finite products.

The most compact way to define an algebraic structure of some type T (e.g., group,
algebra, superalgebra) on an object X belonging to D is to use the Yoneda embedding

D I Set™ (see, e.g., [7]). In what follows, D will be identified with its image in the
functor category Set™’. The fact that H, respects products permits one to define a structure
of type T on an object X point-wise, reducing it to the case D = Set (see Sec. 11 of [7]).

1.1. Rings in categories

For example, an object R of D together with arrows R x R =, R, Rx R — R and
p —— R (recall that p is the terminal object in D) is said to be a (commutative) ring
with unity in the category D if, for any object Y € Ob D, the triple (R(Y),.y,+y) is a
(commutative) ring and ey (p) is the unity of this ring.

Then, for any arrow f: Y’ — Y, the map R(f): R(Y) — R(Y’) is automatically a
morphism of rings, because +, . and e are functor morphisms. Recall that we have identified
the object R with the functor H,.(R) = Hg, and the arrows e, + and . with the respective
functor morphisms e = {ey }y¢|p|, + = {+v}yemp and « = {y }y¢p)-

Hereafter and to the end of Sec. 1 R is a fixed commutative ring with unity in the
category D.

1.2. R-modules

An object V of D together with an arrow RxV 2, V is said to be an R-module if, for any
Y € |D|, the pair (V(Y), py) is an R(Y)-module. In this case, for any arrow f: Y’ — Y,
the arrow V(f): V(Y) — V(Y”’) is a morphism of modules (with a change of base rings).
In other words, V(f) is a morphism of Abelian groups such that the diagram

RY) x V(v) 2YD poyny vy
V() o V()

is commutative.

All modules over commutative rings with unity in the category Set are supposed to be
unital.

Given two R-modules V and V', a functor morphism f: V — V' is a morphism of
modules if, for any Y € |D|, the map fy: V(Y) — V/(Y) is a morphism of modules.
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The category Modgr(D) of R-modules in the category D is an additive category; in
particular, it has direct sums and the zero object.

The category Modg(Top) coincides, obviously, with the category of topological vector
spaces over the field K, whereas the category Modg(Man) is the category of Banach spaces
over K.

1.3. Multilinear morphisms

Let V4,...,V,,V be R-modules, and Z an object of D. An arrow f: Zx Vi x---xV, — V
is said to be a Z-family of R-n-linear arrows if, for any Y € |D|, the map

fr: Z) x Vi(Y) % -+ x Vo (V) — V(Y)

is a Z(Y)-family of R(Y) — n-linear maps, i.e., if, for any z € Z(Y), the partial map
fy(z,-,..., ) sending Vi(Y) x --- x V,(Y) into V(Y) is R(Y)-linear.

The set of all Z-families of R-n-linear arrows of Vj x --- x V,, into V will be denoted
L% (Z; Vi, ...,V V). It is canonically equipped with the structure of an Abelian group®

(f+ )y =fr+ fy

In particular, an arrow f: Vi x -+ x V,, — V is R-n-linear if it is a p-family of R-
n-linear arrows for the terminal object p. The corresponding Abelian group of R-n-linear
arrows will be denoted by L4 (Vi, ..., Vy; V) or, simply, Lr(Vi,...,Vy; V).

Note that the correspondence f — po(Idg x f), where f belongs to Lg(Vi,...,V,; V)
and p: R x V — V is the R-module structure of V', defines the natural isomorphism

Lr(Vi,...,Vu;V) = Lgr(R,Vi,...,Vp; V) (1.3.1)

of Abelian groups.

1.4. R-algebras
1.4.1.

An R-module A, together with an R-bilinear arrow A x A 2, A, is said to be an R-algebra;
the R-algebra A is said to be (anti)commutative (resp. associative, or Lie, or Jordan)
if, for any Y € |D|, the R(Y)-algebra (A(Y), uy) is (anti)commutative (resp. associative,
and so on).

If A is an associative (or Lie) R-algebra, then a pair (V, A x V -5 V) is said to be a
left A-module if V' is an R-module and p is an R-bilinear arrow such that for any Y € |D|
the pair (V(Y), py) is a left A(Y)-module. Morphisms of R-algebras and of left modules
are defined in an obvious way.

#And even with the structure of an R(Z)-module, where by definition, for r: Z — Rand f: Z x V] x -+ X
Vi — V, the arrow rf is defined as the composition

7"f:Z><V1><~~~><Vn(r’—f>)R><V;>V7

or (cf. Definition (1.5.11) below)

rf(z,v1,...,0n) =7(2) . f(z,01,...,0n).



380 V. Molotkov

1.4.2.

We leave it to the reader to define the general notion of an R-algebra of type ¥ as a sequence
Vi,...,V, of R-modules (“ground objects”) equipped with a sequence fi,..., fi,... of R-
multilinear arrows defined on them (“ground operations”), satisfying some set of “laws” or
“relations” of type g = 0, where ¢ is an R-multilinear arrow constructed in a finite num-
ber of steps from the ground operations by means of compositions like ho(hy X -+ X hyy,)
with R-multilinear h,hq,...,h,,, addition of multilinear arrows, as well as compositions
of R-multilinear arrows with canonical isomorphisms of the type V x V' Z V' x V and
(Vx V) x V"~V x (V' x V") arising from the commutativity and associativity of
products.

The number n of ground objects, the “spectrum” of ground operations as well as
“laws”— all depend on the type €. Morphisms of algebras of type ¥ can be defined as
families of R-linear arrows sending every ground object of one algebra into the corresponding
ground object of another algebra and commuting with every ground operation.

The category of R-algebras of type ¥ in the category D will be denoted T (D).

1.4.3. Example

Let the type ¥ be “left modules over Lie algebras”. Then there are two ground objects,
A and V', two ground operations,

AxAS A and AxV -5V,

and three “laws”: a threelinear Jacobi identity and a bilinear anticommutativity law for u,
as well as a threelinear identity stating that V' is a left A-module.

The Jacobi identity, for example, can be expressed, up to a canonical isomorphism of
associativity of products, as

Zuo(IdAxu)oazo,

where the sum runs over “even” permutation isomorphisms A x A x A < A x A x A
arising from the commutativity of products.

1.4.4. Remark

Another, more invariant and consistent (but more involved at the same time), way to define
R-algebras of type ¥ is, following some ideas of Lowvere [9] (see also [7]), to define “type”
¥ as an additive strict monoidal category with some additional structures and to define
R-algebras of type T in the category D as functors (respecting all of the structures involved)
from the category ¥ into the “category of R-multilinear arrows” of the category D.

Here we assume a more naive point of view on “universal multilinear algebra” in cate-
gories, and hope to present constructions a la Lowvere elsewhere.

For the reader unsatisfied with “do-it-yourself” prescriptions in the “definition” of
R-algebras of the type ¥, observe that for all practical purposes of this paper the vari-
able ¥ of type may be assumed to run over the following finite set: “modules”, “algebras”,
“commutative (resp. associative, resp. Lie) algebras” and “modules over associative (resp.
Lie) algebras”.
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1.5. Internal functors of multilinear morphisms

Let n € N. The functor
L% (Modg(D)°)" x Modg(D) — Modg(D)
such that there exists the functor isomorphism
Lr(W,L%(Vi,. .., Vs V) 25 LYW, VA, Vi V) (1.5.1)

will be called an inner L’%-functor. Of course, the functors L% do not necessarily exist
(except the trivial case n = 0, when LY = Id.

Let, for a given n, the functor L% exist. Setting W = L%(V1,...,V,; V) in Eq. (1.5.1)
we define the R-(n + 1)-linear evaluation morphism

evy: Lp(Vi,...,.Vp; V) x Voo x V,, — V (1.5.2)

as follows: ev,, := pn(IdL%(th,Vn;V)). The Yoneda lemma (see, e.g., [7]) implies that for
any f € LrR(W,L%(Vi,...,Vp; V)) the identity

pn(f) =evpo(f xIdy, x -+ x Idy,) (1.5.3)

holds.
The right-hand side of (1.5.3) is defined when f is an arbitrary arrow with codomain
L'y (Vi, ..., Vy; V) thus generating (thanks to R-multilinearity of ev,) the maps

LR (Wi, W LBV, o Vi V) 225 L (W, L Vs V) (1.5.4)
and
2, L3V, Vi V)] 25 LY (Z3 VA, Vi V) (1.5.5)

which, obviously, are natural on all the arguments.

The functor L' will be said to be algebraically coherent if the functor morphisms
mpPn are isomorphisms for all m; it is coherent if, in addition, p, is an isomorphism.

The category D will be said to have (algebraically) coherent L pz-functors if, for
any n € N there exists the functor L7 which is (algebraically) coherent.

If D has algebraically coherent Lp-functors, one can easily construct the functor
isomorphisms

LWy, Wt L(Vi, o Vs V) 228 LM, Vi V) (1.5.6)

“Internalizing” the isomorphisms (1.5.4).
Moreover, one can define in this case the R-bilinear internal composition morphism

comp: Lr(V', V") x Lr(V,V') — Lr(V,V") (1.5.7)

as the inverse image with respect to op; of the morphism

Id><ev1

Lr(V' V") x Lr(V, V) x V Z5 Lr(V, V") x V! E5 v, (1.5.8)
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Setting V =V’ = V" in (1.5.7), we can verify that the multiplication
comp: Lr(V,V)? — Lr(V,V)
turns LOr(V, V) into an associative algebra with unity
R -5 Lg(V,V) (1.5.9)
defined as the image of Idy by the isomorphism
Lr(V,V) =5 Lg(R,V;V) 25 Lp(R, Lr(V,V)). (1.5.10)

The reader can verify that the existence of algebraically coherent L},-functors implies
the existence of algebraically coherent L7%-functors for any n € N.

Let now D has coherent L g-functors. Taking Z = p (the terminal object in D) in (1.5.5)
we obtain the canonical isomorphism which permits us to identify the Abelian group of
points of L%(V1,...,Vy; V) with the Abelian group L (Vi, ...,V V).

Let us reinterpret the functor morphism p,, defined by (1.5.5) in terms of R-modules in
the functor category D := Set®’. To this end, we equip the set L'3(Z;V1,...,V,; V) of all
Z-families of R-n-linear morphisms

Vix---xV,—V

with the structure of an R(Z)-module by defining the multiplication of a morphism f: Z x
Vi x -+ x V,, — V belonging to L'y(Z; Vi,...,V,; V) by a morphism r: Z — R in R(Z)
by means of the Yoneda embedding D — D as follows:

(rf)y(z,v1,...,0n) =1y (2) fy(z,v1,...,0,), forany ze Z(Y), v; € Vi(Y). (1.5.11)

Then the functor E%(Vl, ..., Vu; V) in the functor category D defined by the equation

~

LRV, .., Vi V) Z) = LR(Z; Vi, .., Vi V) (1.5.12)

turns, actually, into an R-module in the functor category D.
If, for a given n, there exists in D the functor L', the morphisms p,, defined by (1.5.5)
turn out to be R(Z)-linear, producing together (when Z runs over D) a morphism

L0 (Viy oo Vs V) 25 BV, L Vi V) (1.5.13)

of R-modules in D.

The existence of coherent Lp-functors in D implies, therefore, that R-modules
L't (V1, ..., Vi V) are representable functors.

The converse is not true as follows from Example 3 below.

Examples. (1) In the category Man of smooth Banach manifolds, there exist coherent Lk-
functors: L (Vi, ...,V V) is Lg(Vi, ..., V3 V) equipped with the topology of uniform
convergence on bounded sets (see [10]).

(2) In the category of Banach manifolds of class C° (i.e., continuous), there exist alge-
braically coherent Lg-functors, defined as in Example (1), which are not coherent.
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(3) For every functor category € := Set® and every sequence Vi,...,V,, V in @, the R-

~

module L% (Vi,...,V,; V) in €= SETéO, defined by (1.5.12), is representable by the

o~

functor in € obtained by restriction of the argument Z in (1.5.12) to the subcategory
C of C.

Nevertheless, the category SetGr!" gives an example of a topos with no internal L-
functors, except the trivial one, L%, if one takes, say, R to be the constant ring R(A) =R
(recall (see Subsec. 0.8) that the category Gr® is the full subcategory of Gr, containing
just 2 objects: R and Ay).

1.6. Tensor product

The category D will be said to have tensor products over R if, for any R-modules
Vi,...,V,, there exists an R-module V] ®p --- ®r V,, and a natural isomorphism

Lr(Vi ®p - @r Vi W) — LA(V1, ..., Vi W). (1.6.1)

In close analogy with construction of functor isomorphisms ,,p, of the preceding section we
can define the functor morphisms

LeEVi®g - @r Vi, Vatt, o s Varms W) — Lr(VA, ..o, Vips W). (1.6.2)

The category D will be said to have coherent tensor products over the ring R if all
of the morphisms (1.6.2) are isomorphisms.

If D has coherent tensor products over R, then canonical isomorphisms (1.3.1) generate
natural in V isomorphisms

A
RorVEVEVerR (1.6.3)
and the tensor product can (and will) be chosen in such a way that Ay = py = Idy for any

R-module V.

Examples. (1) The category Man has coherent tensor products over the field K (comple-
tion of the algebraic tensor product with respect to the projective topology; see, e.g.,
[10]).

(2) For every category €, the corresponding category € of Set-valued functors has coherent
tensor products over any ring R in € which can be defined pointwise:

(V@r V) (X) = V(X) ®rx) V'(X). (1.6.4)

Note that the Yoneda embedding C — @ does not respect, in general, tensor products
(a counterexample: € = Man and R = R).

1.7. R-supermodules

An R-supermodule is an R-module V' in the category D together with a fixed direct sum
decomposition

V=V®&iV (i:=1mod 2) € Zs). (1.7.1)

The submodule gV (resp. V) is the even (resp. odd) submodule of V.
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The morphisms of R-supermodules are defined as morphisms of the underlying
R-modules respecting the corresponding direct sum decompositions.

Denote by SModpg(D) the category of R-supermodules in the category D.

Note that the category SModgr(D) can be also defined as the category Tpr(D) of
R-algebras of multilinear type ¥ (see Subsec. 1.4), where the type ¥ is determined by
a pair of unary R-linear operations P and P; subject to the laws:

P}=P), P}=P, PyoP =P oP=0, Py +P =1Id.

In other words, Py and P, are commuting projection operators which decompose the identity
operator.

If, in the ring R(p) of points of the ring object R, the element 2: =1+ 1 is invertible,
the definition above can be simplified. In this case, the projection operators Py and P; can
be replaced by a single operator P, the parity operator, subject to the only law

P? =1d;
and the operators Py and P; can be expressed in terms of P as follows:
Py=2"YId+P) and P, =2"'(Id-P).

This trivial observation implies, in particular, that, say, vector superspaces over the field
form a Birkhoff variety (see, e.g., [22] for a definition). In particular, a K-vector superspace
V =5V @1V is free (with respect to the forgetful functor to Set) if and only if the vector
spaces gV and 1V are isomorphic.

Let Vi,...,V, be R-supermodules. The fact that the functor L't(Z;...;.) respects
(finite) direct sums permits one to canonically equip L'3(Z; Vi, ..., V,; V) with the structure
of an R(Z)-supermodule as follows:

ARZV, Vs V) = @D LR(Zia Vi, e, Vi V). (1.7.2)
S eite=T

In particular, V(Z) = Lr(Z;V) is an R(Z)-supermodule if V' is an R-supermodule.

Algebraically coherent L p-functors and/or coherent tensor products, if they exist, com-
mute with finite direct sums. This permits us to define the structure of R-supermodules on
LEVi,..., Vi3 V) and Vi ®R --- ®r V,, by means of direct sum decompositions similar to
(1.7.2).

Observe that the set of morphisms of an R-supermodule V into an R-supermodule V' is
naturally isomorphic to gL(V, V') and the natural isomorphisms (1.5.1) and (1.6.1) are actu-
ally morphisms of R(p)-supermodules. Therefore, the R-supermodule V} @p---®prV,, (resp.
L%(Vi,...,Vy; V) represents (resp. corepresents) the corresponding functor of even mul-
tilinear morphisms. In particular, the canonical evaluation as well as internal composition
morphisms defined by Egs. (1.5.2) and (1.5.7), respectively, are even multilinear morphisms
of R-supermodules.

1.8. The change of parity functor
Define the change of parity functor

IT: SMOdR(fD) — SMOdR(fD) (1.8.1)
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by setting
(V) =1..V; 1I(f) = f. (1.8.2)
The fact that every (even) R-multilinear morphism f: V4 x -+ x V,, — V “is” at the
same time an (even) R-multilinear morphism f: Vi x --- x IIV,, — IIV permits one to

construct the natural isomorphism
Lr(Vi,..., Vi V) — LR(WV1, ..., 11V, IIV) (1.8.3)

using the isomorphisms (1.5.1).

1.9. R-superalgebras

Let Vi,...,V, be R-supermodules and &,, the permutation group on the set {1,...,n}.
On the union

U L?%(Vab R Van; V)

0'66n
the “graded” right &,,-action can be defined so that
(f : Oj)Y(U1> ce avn) = Z (_1)EEIfY(U1a L B RRUC R 7Un) (191)
e,e'€lo

for any transposition o; := (j,j + 1). Here again f = {fy}yep is identified with the
corresponding natural transformation of functors through the Yoneda embedding, v; are
arbitrary elements of the R(Y)-supermodule V;(Y), whereas gv; (resp. 1v;) denotes the even
(resp. odd) part of the element v; (i.e., v; = gv; + 1v;; v; € [V (Y)).

An R-n-linear morphism f belonging to an R(p)-supermodule

Ly (V3 V) =L%(V,...,V; V)

is said to be supersymmetric if it is invariant with respect to the above &,,-action. Denote
by Sym's(V; V') the set of all supersymmetric morphisms of V™ into V'; it is, actually, an
R(p)-supermodule of L'y(V, ..., V;V’).

Replacing now in the definition of R-algebras of type ¥ the ground objects by R-super-
modules, the ground operations by even multilinear morphisms and replacing in every “law”
g = 0 every composition f oo of an R-multilinear morphism f with canonical isomorphism
o of commutativity of products by its “Zs-graded” counterpart f.o defined by Eq. (1.9.1),
we arrive at the definition of R-superalgebras of the type ¥ in the category D. The
corresponding category will be denoted STr(D).

Observe that, for any type T, there exists a type ' such that the category STr(D) of
R-superalgebras of type T is naturally equivalent to the category (D) of R-algebras of
type ¥'.

To see this, just add projections Py and P; (see Subsec. 1.7) to the ground operations
of T to get ground operations of ¥’. Then observe, that the “graded” action (1.9.1) above
can be expressed in terms of non-graded one and projections Py and P;. Thus,

any “graded” multilinear law of ¥ can be expressed as a non-graded one, if one adds
operations Py and Py to ¥.
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The set of laws of T’ is just the set of laws of ¥, rewritten in terms of ground operations
of T, Py, P, and non-graded actions of permutation groups on multilinear morphisms.

1.10. Z’;-graded superalgebras

To define Z’g—graded supermodules, we have simply to replace the direct sum decompo-
sition (1.7.1) with the decomposition

V= @EEZIQCEV'
Given Z’f—graded R-supermodules Vi, ..., V,,V, the modules
LEVi,..., Vi V), Le(Vi,...,V,; V) and Vi ®g--- QrV,

can be canonically turned into Z5-graded supermodules just as in Subsec. 1.7 for the case
k=1

In order to define Z5-graded superalgebras of a type T, we also need to introduce
the Zg-graded action of the permutation groups on R-multilinear morphisms. This is done
by replacing Zy by Z§ in the counterpart of Eq. (1.9.1) and defining the factor (—1)==’ for
e=(e1,...,ex) and &' = (¢],...,€}) to be

1.11. Linear algebra in functor categories

Let D = €% be a functor category. R-(super)algebras of a given type ¥ in the category
D = €% can be reduced to (super)algebras of the same type ¥ in the category € just in the
same way as algebras in arbitrary category are reduced to algebras in Set by means of the
Yoneda embedding. For example, an R-algebra A of a type ¥ in D = e defines for any
Y € |C| the R(Y)-algebra A(Y) of type T in C; besides, for any f : Y — Y’ the morphism
A(f) : A(Y) — A(Y') is a morphism of an R(Y)-module into an R(Y”')-module.

2. Superrepresentable Modules in Functor Categories

In this section we introduce some classes of “vector spaces” in the functor categories Set®CT,
Top®" and Man®". These “vector spaces” play a crucial part in the theory of supermani-
folds. All the definitions and results are given here for the case of the category Set®T, but
can be literally applied to the categories Top®* and Man®" as well.

In the functor category Set®”, define the functor R as follows:

R(A) :=p(A@rR) =gA, R(p)(N) = p(N), (2.1.1)

where ¢: A — A’ is a morphism of Grassmann superalgebras and \ € jA.

The ring structures on each gA generate the structure of a commutative ring with unity
on R.

Let now V be a real vector superspace (= R-supermodule in Set). Define the functor V'
as follows:

V(M) =5Aer V)= P AGrV, V(p) = porldylpy, (2.1.2)
e€lo
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for ¢: A — A’. The canonical gA-module structures on each V(A) turn the functor V into
an R-module.
At last, let

fVix---xV, —V
be an even R-n-linear map of vector superspaces. Define the functor morphism

f:

Vix - xV,—V
such that every component
Far Vi(A) x - x Vi (A) — V(A)
of f is the gA-n-linear map uniquely determined by the equations
A ®@v1, . A @) = Ay, AL ® f(U1, ., ) (2.1.3)

for any \; ® v; € V;(A).
The functor morphism f is R-n-linear.
If V is a complex vector superspace, then V turns out to be a C-module, where the ring

@(A) = @A@C = ()AC

is the complexification of the ring gA; if f is C-n-linear, then f is C-n-linear.
The main properties of the correspondence

V—V f—f
are summarized in the following proposition.

Proposition 2.1.1. Let Vi,...,V,,V be vector superspaces over the field K. Then
(a) The map

Lk (Vi, .., Vs V) 5 Lg (V... Vs V)

is an isomorphism of K-modules (taking into account that the set K(p) of points of K
coincides with K);

(b) If g1,...,9n are K-multilinear maps such that for any i the codomain of g; is Vi, then,
for any

felg(V,. ..., Vs V)

the identity

fo(gla"'agn):fo(glw"’gn)

felg(V,..., Vs V)
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and o € &, then the identity

fo=Ffoo

holds, where f.o is the “graded” action of o on f and foo is the ordinary composition
(in SetCT) of f with the permutation isomorphism o.

Corollary 2.1.2. The correspondence
ViV, f—f
defines a fully faithful functor
SModxk (Set) — Modk(Set®")

respecting finite direct sums; more generally, it generates, for any type T of multilinear
algebraic structure, the fully faithful functor

STk (Set) — Tk (SetEr).

A K-module (or, more generally, K-algebra of some type ) V in the functor category
Set®T is said to be superrepresentable if it is isomorphic to V for some K-supermodule
(resp. K-superalgebra of the type ) V in Set.

In Set®", there exist, of course, K-modules which are not superrepresentable. For exam-
ple, if V' is a vector superspace over K such that gV # 0, then the K-module le, defined
as

Vnil(A) — (j(Anﬂ@]K)a
where A™! is the ideal of nilpotents of the Grassmann algebra A, is not superrepresentable.
Note that for any A the identity

V(A) =gV e V™) (2.1.4)

holds.
In conclusion, observe that

Gr Gr

a K-module in Top“" or in Man

sentable when considered as a K-module in Se

is superrepresentable exactly if it is superrepre-
tCr.

3. Banach Superdomains
3.1. Topology on the functor category Top®*

Let ¥ and F be functors in Top®*. The functor F' is said to be a subfunctor of ¥ if for
any A € |Gr| the topological space F'(A) is the topological subspace of the topological space
F(A) and, moreover, the family {F"(A) C F(A)}a¢|qr| forms a functor morphism (denoted
further as ¥ C ¥).

The subfunctor F of the functor F is said to be open if every F'(A) is open in F(A).



Infinite-Dimensional and Colored Supermanifolds 389

Given two open subfunctors ¥ and F”’ of the functor F, one can define the open
subfunctor ¥ NF” of F pointwise as follows:

(F N F")(A) = F(A) N F"(A).

Similarly, given a family {F,} of open subfunctors of F, one can define the open
subfunctor UF, of F by the setting

(Urfa)(A) = Urfa(A)'

Observe that the initial functor () is an open subfunctor of every functor F in Top®™.

The topologies just defined on functors in Top®" incorporate to produce some
Grothendieck pretopology (see, e.g., [7]) on the functor category Top©*.

Namely, a functor morphism is said to be open if it can be represented as

g 1, g g,

where & L5 F is an isomorphism and F is an open subfunctor of F. A family {U, —% F}
of functor morphisms is said to be an open covering of the functor F if each u, is an
open morphism and, moreover, if for any A € |Gr| the family {uqa(Ua(A))} of sets is an
open covering (in the usual sense) of the topological space F(A).

It is elementary to verify that the class of open coverings defined here is indeed a
(Grothendieck) pretopology on the category Top®T.

Note that the obvious forgetful functor Man®* induces some pretopology
on the category Man®": a family {Uq Loy F} of morphisms in Man®" is an open covering
of the functor F if and only if it is an open covering of F considered as the family of
morphisms in Top®*.

Hereafter the categories Top®™ and Man®" are supposed to be equipped with the
pretopologies defined above.

N TopGr

To give an example of open subfunctors, consider an arbitrary functor F in Top®*.
Let U be an open subset in F: = F(R) (the base of the functor JF) and, for any A, let
exn: A — R be the only morphism of Grassmann superalgebras. The family {F(ep)~1(U) C
F(A)}aecr defines an open subfunctor F which will be denoted F|y .

It turns out that if the functor F is locally isomorphic to locally convex superrepre-
sentable module, then all its open subfunctors are of this type.

In more detail, a K-module V in Top®" is said to be locally convex (resp. Banach, or
Fréchet, and so on) K-module if for any A the topological vector space V(A) is locally con-
vex (resp. Banach, or Fréchet, and so on). An open subfunctor of a superrepresentable locally
convex (resp. Banach, and so on) K-module is said to be locally convex (resp. Banach,
and so on) superdomain, real or complex depending on whether K =R or K = C.

The functor F will be said to be locally isomorphic to locally convex superdomain
if there exists an open covering {U, — F} of F such that each U, is a locally convex
superdomain.

Proposition 3.1.1. If a functor F in Top®* is locally isomorphic to locally convex

superdomain, then every open subfunctor ¥’ of the functor F coincides with the functor
fﬂri/, where F' is the base of the functor J7.
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3.2. Supersmooth morphisms of Banach superdomains

In what follows, V, V', W, etc. will denote (Banach) superrepresentable modules.
Given two real Banach superdomains V|;; and V'|¢, the functor morphism f: V| —
V| is said to be supersmooth if, for any A, the map

far Vo (A) — Ve (A)
is smooth and, moreover, for any u € V| (A), the derivative map
Dfa(u): V(A) — V'(A)

is gA-linear.
The latter condition is equivalent, in turn, to the following one: the “weak superderiva-
tive” morphism DY f: V|y x V — V' defined by the formula

(DY f)a(u,v) = Dfa(u).v  for any u € V|y(A) and v € V(A)

is a V|y-family of R-linear morphisms.

It is obvious that a composition of supersmooth morphisms is supersmooth again, hence
Banach superdomains and supersmooth morphisms between them define a category, which
will be called the category of supersmooth Banach superdomains and will be denoted
SReg.

Given a Banach superdomain U = V|y, every open subfunctor U of U (equal by
Proposition 3.1.1 to some superdomain V|y» with U’ being open in U) will be called an
open subsuperdomain of U. The inclusion morphism U C U is, obviously, supersmooth.
Hence, one can define the pretopology on the category SReg, induced by that on the
category Man®" along the obvious forgetful functor

SReg X, Man®". (3.2.1)

Hereafter the category SReg will be assumed to be equipped with this induced pretopology.

Remark 3.2.1. It is quite obvious now how one can define the category of real superana-
lytic superdomains.

As to the complex analytic case, there arise two obvious possibilities, namely, to use
complex Banach superdomains in the functor category Top®™, or to use instead from the
very beginning the category Gre of complex finite-dimensional Grassmann superalgebras
and copy preceding constructions for the functor category Top®¢ instead of Top©T.

It follows from Proposition 2.1.1 for K = C, that the two arising categories of complex
superanalytic superdomains are equivalent.

In this paper, we will restrict ourselves with the supersmooth case only, but most of the
results of this work (if not all) are valid, with obvious changes, for the K-superanalytic case
as well.

3.3. The structure of supersmooth morphisms

Here is a characterization of supersmooth morphisms which, being rather technical, turns
out to be, nevertheless, a very useful tool in various proofs and constructions.
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Let f: V|y — V'|; be a natural transformation of Banach superdomains. The family
{fi}ien is said to be the skeleton of f if the following conditions are satisfied:

() fo=fr:U —U"and f; : U — gL*(;V; V") for i > 1 are smooth maps such that for
any u € U the R-linear map f;(u) is supersymmetric in the sense of Subsec. 1.9; here
1V is considered as purely odd Banach superspace;

(ii) for any Grassmann superalgebra A and any u € U, Ay € @Vnﬂ(A) and \; € 1Vnﬂ(A),
the identity

falu+2o+2) =3 ﬁm () AT (3.3.1)

holds. In the latter expression u + Ag + A1 is considered as an element of the Banach
domain V|7(A) in accord with the canonical decompositions (2.1.4) and

V) = V() @ 7). (3.3.2)

We identify D f,,,(u) with an element of gL**™(5V* {V™: V') via the canonical isomor-
phism of the type (1.5.4), and the R-multilinear morphism D f,,(u) in Top®¥ is defined by
Eq. (2.1.3). This shows that the sum in (3.3.1) is actually finite (for the Grassmann algebra
A; with ¢ odd generators only terms with 2k + m < ¢ can be nonzero).

Proposition 3.3.1. (a) A skeleton of f, if it exists, is uniquely determined.
(b) Every family { fi}ien of smooth maps, such that fo : U — U’ and f; : U — gL' (7V; V')
for i > 1 is supersymmetric, is the skeleton of some functor morphism f.

Now, Proposition (2.1.1) permits one to prove the following important result.
Theorem 3.3.2. The following conditions on a functor morphism
fiVlg — Vi

Gr

of Banach superdomains in Top™" are equivalent:

(i) f is supersmooth,;
(ii) each component fo of f is smooth and the derivative

Dfa(x) : V(A) — V/(A)

is gA-linear for any x of the form x = V(ip)(u), where tn: R — A is the initial
morphism of Grassmann superalgebras and v € U;
(iii) f has a skeleton.

For a number of applications, it is important to know the expression of the skeleton
{(gof)i}ien of the composition go f of supersmooth morphisms g and f in terms of skele-
tons of g and f. A bit of combinatorics produces the following result.

Proposition 3.3.3. Let f : V|y — Vg and g : V'|gr — V"|gn be supersmooth mor-
phisms of Banach superdomains with skeletons { fi}ien and {g;}ien, respectively. The skele-
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ton {(go f)itien of the composition go f is determined by the expression

(02 00(0) = & oS- { Pamtot)e (% fosti) x ¥ g )}

for any u € U, where the sum runs overl, m, a; even and (3; odd such that ) c;+) 5; =n
and S is the supersymmetrization of R-n-linear maps defined as

1
S-h:HZh-a, (3.3.3)
UEGn

the action h - o being defined by Eq. (1.9.1).

In what follows, the supersmooth morphism f of Banach superdomains will be identified
either with the family {fa}ac|qr| of its components or with its skeleton {f;}ien depending
on the circumstances.

Remark 3.3.1. The skeleton { f;}ien of a supersmooth morphism f = {fa }a¢|gr| encodes
in itself the naturalness properties of the family {fA}r¢|gr|, permitting one to give a direct
(i.e., without functors) description of Banach superdomains and supermanifolds as N-graded
manifolds (objects of the category ManN) equipped with some structure.

From this point of view, Theorem 3.3.2 gives an explicit description of the forgetful
functor

N’ : SReg 5 Man® <> Man", (3.3.4)

where C*(F): = {F(Ai) bien and C*(f): = {fa, }ien.

One can prolong the “path of conceptual simplification” 3.3.4 adding to its end one more
functor, namely, the functor Man" AL Man which sends a family {M;};en into [[;cn M.
This permits one to visualize supermanifolds and their morphisms as ordinary manifolds
and smooth maps between them writing

U=JJu) and f=]J fa-
1€N €N
Note that the functor || does not respects products. This implies, e.g., that Lie supergroups
(groups of the category SMan) are not groups at all (considered in Set).

Remark 3.3.2. Theorem 3.3.2 together with Proposition 3.3.3 permits one as well to
give an equivalent “abstract” definition of superdomains doing without both functors and
Grassmann algebras. Namely, one can define Banach superdomains as pairs (U C §V,1V),
where U is an open domain in a Banach space 5V and 1V is some Banach space; morphisms
here are “abstract skeletons” {f};eny and the composition of morphisms is then to be defined
by Eq. (3.3.3).

This definition was used in [11] in order to extend to Banach supermanifolds of results
of Batchelor [12] and Palamodov [13] on the structure of finite-dimensional supermanifolds.

3.4. The categories SReg(™

Beside the category SReg of supersmooth Banach supermanifolds one can as well construct
a family of categories, “approximating”, in a sense, the category SReg.
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Namely, denote by Gr™ the full subcategory of the category Gr, consisting of all
Grassmann algebras with not more than m generators. In the functor category TopGr(m),

we can define the ring @(m), superrepresentable @(m)

-modules, topology and superdomains
in close analogy with the preceding case, with obvious changes.

For example, the skeleton of a supersmooth morphism f is now a family { f;}i<p,, satis-
fying the corresponding conditions.

The corresponding category of supersmooth superdomains will be denoted SReg(m), its
objects are said to be m-cut superdomains or, simply, m-superdomains. We will write
sometimes SReg(OO) instead of SReg in order to unify notations.

Note that the counterparts of all of the results of this section, in particular,
Theorem 3.3.2 remain valid for the category SReg(m) with arbitrary m, though head-
ing (a) of Proposition 2.1.1 fails: the map f +— f is bijective only for n-linear morphisms
with n < m.

For any 0 < m <n < oo, there exist obvious functors

7T

: SReg(™ — SReg(™
: {fl}lﬁn = {fz}zgm

n
m
™,
(described in terms of skeletons), induced by the inclusion functor Gr™ — Gr(™,

Obviously, the category SReg!”) is naturally equivalent to (and will be identified with)
the category Reg of smooth Banach domains, whereas Theorem 3.3.2 and Proposition 3.3.3
imply that the category SReg(l) is naturally equivalent to the category VBuny of smooth
trivial vector bundles over Banach domains (to a given 1-superdomain V|8), there corre-
sponds the vector bundle U x ;V — V).

The same Theorem 3.3.2 and Proposition 3.3.3 imply, moreover, the existence of the
functors

0 : Reg® — SReg™
f(f,0,0,...)

and
L SReg!) — SReg(™
(fo, f1) — (fo, f1,0,...)

for m > 1 (described above in terms of skeletons). The functor ¢}, is faithful, whereas ¢
fully faithful and left adjoint to the functor m".
In particular, the following result is valid.

0

m 18

Proposition 3.4.1. The category Reg of smooth domains in Banach spaces can be identi-
fied (via the functor 10)) with the full subcategory of SReg(m) and, for any m-superdomain

Vv, the canonical monomorphism
L2 (U) — Vy,

m

defined componentwise as the inclusion

A UXgVeghcUxg(VeA),
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is the component of the natural transformation 12, o 7" — Idsreg defined by the adjunction
described above.

Here is taken into account that 7*(V|y) = V|y(R) = U.

One can observe that the correspondence sending a smooth map U 4, U’ of Banach
domains to the smooth map ¢ (f)a, defined by the “Taylor expansion” (3.3.1) with the
skeleton (f,0,0,...), is just the infinite-dimensional counterpart of Berezin’s “Grassmann
analytic continuation” [3].

Note in conclusion that m-supermanifolds with finite m (glued of m-superdomains) play
an important part in construction of invariants of Banach supermanifolds [11], being the
counterparts (on the functor’s language) of “m-th infinitesimal neighborhoods” of super-
manifolds exploited in Palamodov’s paper [13].

4. Banach Supermanifolds
4.1. The definition of the category SMan

We can define now Banach supermanifolds by means of atlases on functors of the category
ManS" (see the general definition of atlases in Subsec. 11.4).

Let F be a functor in Man®*. An open covering A = {Uq LN F}aca of the functor F
is said to be a (supersmooth) atlas on ¥ if every U, is a Banach superdomain and for
any «, 3 € A the pullback diagram

U —2=Ug

wal liﬁ (4.1.1)
U, —2 > F

can be chosen in such a way that U,z are Banach superdomains and the pullback projections
Tq, Mg are supersmooth.

Two atlases A and A’ on F are said to be equivalent if A|JA’ is an atlas as well; this
defines an equivalence relation on the class of atlases on F.

A Banach supermanifold is a functor M in Man®" together with an equivalence class
of atlases on it (see the definition of equivalence classes in Subsec. 11.1); elements of any
atlas from the corresponding equivalence class are said to be charts of the supermanifold
M. We will not distinguish in notations between a supermanifold and its underlying functor.

Let M and M’ be Banach supermanlfolds A functor morphlsm f: M — M will be said

to be supersmooth if for any charts U — M and W M of M and M, respectively,
the pullback diagram

u H u/ 77/ u/
M/
l (4.1.2)
U— M L

can be chosen so that U],y U be a Banach superdomain and the pullback projections
7w and 7’ be supersmooth.
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Composition of two supersmooth morphisms is again supersmooth, which permits one
to define correctly the category SMan of Banach supermanifolds. The set of morphisms
of a supermanifold M into a supermanifold M’ will be denoted SC*> (M, M’).

Let M be a Banach supermanifold and let M’ be an open subfunctor of M. There exists
the only structure of a supermanifold on the functor M’ such that the inclusion M’ C M is
a supersmooth morphism.

The functor M’ equipped with this structure is said to be an open subsupermanifold
of M. Note that in accordance with Proposition 3.1.1 any open subsupermanifold M’ of
the supermanifold M is of the form M|y for some open subset U of the base manifold
M: =M(R) of M.

Inclusions of open supermanifolds generate in a standard way (cf. Subsec. 3.1) some pre-
topology on the category SMan. This pretopology is induced by the canonical pretopology
on the category Man®" along the forgetful functor

SMan — ManS" (4.1.3)

extending the functor (3.2.1) and denoted by the same letter (the category SReg is, of
course, assumed to be imbedded into SMan by means of rigging every superdomain U
with the trivial atlas Idy(). The category SMan will be assumed to be equipped with the
pretopology just defined.

Remark 4.1.1. In the definition of supermanifolds one can use as well the forgetful functor

SReg M, SetST instead of the functor (3.2.1). The definition of atlases on Set-valued
functors and supersmooth morphisms follow closely those given above for Man-valued
functors, with some obvious changes caused by the fact that the pretopology on SReg is
not induced by that on Set®* (where open coverings are defined as families {U, LN Flaca
such that for any A the family {Ug(A) 23 F(A)}aeca is an epi family of monos).

These changes are as follows: we demand that pullback projections 7, and 7g in the
pullback (4.1), as well as projection 7 in the pullback (4.1), are open, considered as mor-
phisms of SReg. As a result, we obtain the category SMan’ of supermanifolds as Set-valued
functors on Gr with atlases on them.

It turns out that the functor SMan — SMan’, generated by the forgetful functor
Man®" — Set®", is not only a natural equivalence of categories but even an isomorph-
ism of them, permitting us to identify these two categories.

In practice, both categories SMan and SMan’ will be used, depending on circum-
stances: whereas general definitions look simpler taken “modulo manifolds”, some concrete
supermanifolds (e.g., superGrassmannians) arise naturally first as Set-valued functors.

4.2. The categories SMan(™

One can define the categories SMan™ of m-supermanifolds starting from the categories
SReg(m) and repeating almost literally the definitions of the preceding subsection. Addi-
tionally, each category SMan(™ will be equipped with the pretopology induced by the
pretopology on the category Man®r"" along the forgetful functor

SMan (™ N<—m>) ManGrm) .
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If D and D’ are categories with pretopologies on them, a functor F': D — D’ is said
to be continuous if it respects open coverings and pullbacks of open (belonging to some
open covering) morphisms. For example, the forgetful functor N (m) above, as well as the
functors 77, 12 and 1} defined in Subsec. 3.4 are continuous.

Proposition 4.2.1. (a) The category SMan(® of 0-supermanifolds is continuously natu-

rally equivalent to the category Man of Banach manifolds;

(b) the category SMan(! of 1-supermanifolds is naturally equivalent to the category VBun
of smooth Banach real vector bundles (continuously, if one equips VBun with the pre-
topology generated by open inclusions of vector subbundles);

(c) the functors 7", 0 and il , defined in Subsec. 3.4, have continuous extensions (denoted

by the same letters)

7" : SMan™ — SMan(™

3=

: Man — SMan(", (4.2.1)
: VBun — SMan"

L

L

3= 3°

such that 1, is fully faithful and left adjoint to 70> whereas 1}, is the faithful functor,
such that " o L}n ~ IdvBun-

In particular, for any supermanifold M, there exists the canonical monomorphism
ti(M) < M being the component of the natural transformation :2, o7 — Idsman
described above.

4.3. Products of supermanifolds

Let M and M’ be supermanifolds with atlases {Uq ta, M}aea and {Uj R M'}gep on M
and M, respectively. The family

{ua x Uj

ta ><i’6

M x M’}
(a,8)EAXB

is an atlas on the functor M x M’ turning it into a supermanifold such that the corre-
sponding projections are supersmooth. This is, in fact, the product of the supermanifolds
M and M.

Let p be a Banach superdomain isomorphic to a Banach superdomain V for some
purely odd (i.e., such that ;V = 0) Banach superspace V. Such p will be called a
superpoint.

It follows from Proposition 3.3.1 and the definition of superrepresentable modules (see
Eq. (2.2)) that every Banach superdomain U is isomorphic to a product 12 (U) x p of
“ordinary” manifold (?_(U) and some superpoint p.

A supermanifold will be called simple if it is isomorphic to a product 12 (M) x p for
some Banach manifold M and some superpoint p.

PIn particular, for any manifold M and superpoint p (see the definition below) there exists the only super-
smooth morphism 2 (M) — p.
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4.4. Linear algebra in the category of supermanifolds
Let
fVix--xV,—V

be an even K-n-linear map of Banach superspaces. Then, obviously, the K-n-linear functor
morphism f: Vi x--- x V,, — V is supersmooth. Hence, we have, due to Corollary 2.1.2,
the fully faithful functor

STk (Man) — Tz(SMan) (4.4.1)

for any multilinear type of algebraic structure.

Theorem 4.4.1. The functor
SModg(Man) — Modg(SMan) (4.4.2)

is a natural equivalence of categories.

Corollary 4.4.2. For any multilinear type T of algebraic structure, the functor (4.4.2)
establishes a natural equivalence of the category of K-superalgebras of type ¥ in Man with
the category of K-algebras of the same type T in SMan.

Corollary 4.4.3. In the category SMan, there exist coherent tensor product over K as well
as coherent internal Ly-functors (for the definition, see Subsecs. 1.5 and 1.6).

We will choose the functors L and @ in such a way that for any Banach superspaces
Vi,...,V,, V the identities

L2V, Vi V) = LE(VA, .., Vs V) and Vi@ Vo =V @k Va (4.4.3)

hold.
One can easily deduce that for any superrepresentable R-modules &, V and any A from
Gr there exists a natural (in €, V and A) isomorphism

L(&,V)(A) ~ Li(p(A); & V) (4.4.4)

where p: SPointg, — Gr° is the natural equivalence of the full subcategory SPointg,, of
SMan consisting of finite-dimensional superpoints with the category dual to the category
Gr of Grassmann algebras.

Note that, generally speaking, the dinatural® (on A) morphism

La(V, V) (A) 25 LA (V(A); V(M) (4.4.5)
defined by the equations
oA MA@ YN @) = NA® f(v) (4.4.6)

—= =/

for any A® f € Lg(V;V )(A) and N ® v € V(A), is not an isomorphism.
Similarly, (V1 ®@g V2)(A) is not isomorphic, in general, to V3 (A) @4 Va(A).

“See the definition on p. 218 of [8]. The prefix “di” here is an abbreviation of diagonal.
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The image of the change of parity functor II along the natural isomorphism (4.4.2) also
plays an important role. We set

II: Modg(SMan) — Modg(SMan)
and choose II so that
OV)=1I(V) and TI(f) =TII(f). (4.4.7)
Finally, choose and fix, for any type ¥ of multilinear algebraic structure, a functor
S: Tx(SMan) — STk(Man) (4.4.8)

quasiinverse to the functor (4.4.1).
It seems that there is no canonical choice of this “superization” functor S.

4.5. Linear algebra in SMan(™

The counterpart of Theorem 4.4.1 also holds for the category SMan(m), where 1 < m < oo,
but Corollaries 4.4.2 and 4.4.3 fail to be true for these cases.

Nevertheless, if a multilinear type ¥ of algebraic structure is such that all its ground
operations and laws are not more than m-linear, then the category of K-superalgebras of
type T in Man is naturally equivalent to the category of K-algebras of the same type in
SMan(™. For example:

Proposition 4.5.1. Let m > 3. Then the category of Banach Lie superalgebras (resp.
modules over Lie superalgebras) over K is naturally equivalent to the category of Lie algebras
(resp. modules over Lie algebras) over K in the category SMan(™.

4.6. Example: GrassManiansd and flag supermanifolds

Here we construct the supermanifold Fl,, (V) of flags of any given length n for any R-module
V in the category SMan (the complex case can be similarly treated).

The definition of Fl,,(V) considered as a set-valued functor is, essentially, that given by
Yu. Manin [14] in the context of algebraic supergeometry for the finite-dimensional case. As
to the supersmooth structure on F1,,(V), here we use a superized and “analytically continued
with respect to n” version of “coordinate free” atlases for ordinary Grassmannians (see, e.g.,
[15]). This makes things look a bit more transparent.

A Banach A-supermodule F will be called free if it is isomorphic to a A-supermodule
A ®pr V for some real Banach superspace V.

A Banach A-subsupermodule E’ of E is said to be direct if there exists a Banach
A-supermodule E” such that £ ~ E' @ E".

Proposition 4.6.1. Let V be a real Banach superspace and E a free direct A-subsuper-
module of A g V. Then for any morphism p: A — A of Grassmann superalgebras the
N -subsupermodule of N'QgrV generated by the real subsuperspace Im(e®@1Idy )(E) of N @rV
is free and direct.

dInstead of long and cumbrous “super-Grassmannian”, we suggest a term that hints to Manin’s contribution,
see [14].
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This implies that, for a given R-module V and any positive integer n the functor F1,(V)
in SetS* such that F1,(V)(A) is the set of all sequences

E1CE2"'CEn+1:V(A)

of A-supermodules, where F; is a free direct A-subsupermodule of F;;; for any i < n, is
well defined.
Define now in a canonical way some supersmooth structure on the functor Fl, (V).

Consider first the case of a Grassmannian F1;(V'), where V' is some Banach superspace.

Let E' and E” be A-supermodules. Denoting the set (and, actually, the jA-module) of
morphisms of E’ into E” by Homp(E', E”), define the morphism of jA-modules (setting
E'=A®@V' and E" =A@ V")

In: g(A @ Lg(V', V")) — Homp (A @ V', A V") (4.6.1)
by means of the equation
INOA® HN@v)=NA® f(v). (4.6.2)
The morphism [, is, actually, an isomorphism. Moreover, the graph of any
feHompy(A V' A V")

is a free direct A-subsupermodule of A® (V'@ V")~ A @ V'@ A ® V". Hence, taking the
composition of the map Iy with the map f +— graph(f) we obtain as a result a function

ovivea: Lg(V5 V) (A) — FL(V @ V')(A). (4.6.3)

Proposition 4.6.2. (a) Let V' and V" be subsuperspaces of a real Banach superspace V,
such that V- =V' @& V". Then the family {@V’,V”,A}Ae|Gr| defines a functor morphism

oviyn : Lg(Vi V") — FL (V) (4.6.4)

(b) The family {py: vn}yvigvi—v is a supersmooth atlas on the functor Fly (V).

Consider now the functor F1,, (V') for arbitrary n € N.
Define first, for any A and any decomposition V = V' @ V", the map

vt Lg(V5 V) (A) x FL_1(V)(A) — FL,(V)(A)
as a map which sends any pair (f,Ey C --- C E,,—1 C V/(A)) to the flag
E\C---CE, {CE,CV(\),

where E,, = @y y» a(f) and E] is the inverse image of E; with respect to the restriction
7|g: En — V'(A) of the canonical projection 7: V(A) — V/(A).
As A runs over Gr, the maps 4,0’{},"/,,’ A determine a functor morphism

Gy Lg(V V") x Fly 1 (V) — FL,(V) (4.6.5)
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Finally, define recurrently canonical charts on Fl,(V) as all functor morphisms of the
form ¢7, v (Id ®p), where V' & V" =V and ¢ is any canonical chart on Fl,_1(V'), assum-

ing, of course, that canonical charts on F1; (V') are just ¢y yr.

Proposition 4.6.3. Canonical charts form a supersmooth atlas on the functor Fl, (V).

If V is an arbitrary R-module, then there exists, due to Theorem 4.4.1, an isomorphism
J:V — V for some real Banach superspace V. This isomorphism induces, obviously, an
isomorphism J': Fl,(V) — F1,(V) for any positive integer n.

Define a supersmooth structure on F1,(V) as the image of the supersmooth structure

on Fl,(V) defined above. This structure does not depend, actually, on the choice of an
isomorphism J.

4.7. A relation with supermanifolds as ringed spaces

Define an R-superalgebra R in the category SMan as the functor
R(A): =A, R(p): =¢ for A 5 A, (4.7.1)

with an R-superalgebra structure on it generated by gA-superalgebra structure on every A
when A runs in Gr.

The reader can verify that 9, considered as an R-algebra in SMan, is isomorphic to
the R-algebra C*, where the real superalgebra C* coincides with C as an R-algebra but is
not trivial as a superspace: gC° = R and 1C° = iR.

The R-superalgebra 9 is commutative.® It, rather than R itself, plays the role of
coordinate ring for supermanifolds.

Let M be a supermanifold. In accordance with Sec. 1, the set SC*°(M): = SC>(M, R)
is canonically equipped with the structure of commutative superalgebra over SC*(M, R).
Moreover, it is obvious that for any r € R the functor morphism f,: M — R is super-
smooth. The corresponding embedding R < SC*°(M) canonically equips the set SC>(M)
with the structure of an R-superalgebra.

Example 4.7.1. Let U C R?™ be a finite-dimensional superdomain. Set

xi:ulelﬂ%sﬁ fori=1,...,n;
Qj:uﬂﬂuR0|1<—>9% forj=1,...,m,

where 7; (resp. m,+;) is the canonical projection of R®™ onto the even (resp. odd) coordinate
axis RO (resp. RO1). Then

SC®(U) ~ C(z1,. .., 20) @ AO1,. .., 0m), (4.7.2)

where C®(x1,...,2,) ~ C>®(U) and A(fy,...,0,,) is the Grassmann superalgebra with
generators 01,...,0,,.
Let M be a supermanifold. The correspondence U — SC*(M]|y), where U runs over

all open subsets in the base manifold M of M, defines a sheaf of R-superalgebras on M.

®The superalgebra C* is not supercommutative.
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Denote the corresponding sheaved space Sh(M). Any morphism f: M — M’ of Banach
supermanifolds induces, in an obvious manner, a morphism Sh(f): Sh(M) — Sh(M’) of
spaces sheaved with R-superalgebras. This defines the functor Sh from the category SMan
to the category of topological spaces sheaved with R-superalgebras.

A Banach supermanifold M is locally finite-dimensional if there exists an atlas
{Valu, — M}aeca on M such that every Banach superspace V,, is finite-dimensional.

Let SMang, be the full subcategory of SMan whose objects are just locally finite-
dimensional supermanifolds.

Proposition 4.7.1. The functor Sh establishes a natural equivalence of the category
SMang, with the category of supermanifolds in the sense of [2], [4]-[6] (i.e. as ringed
spaces).

Global sections of the structure sheaf Sh(M) are called by physicists (scalar) super-
fields on the supermanifold M. Due to Proposition 4.7.1 the commutative superalgebra of
superfields can be identified with the superalgebra SC® (M), so the elements of the super-
algebra SC*°(M) itself will be sometimes called superfields on M, in accord with traditions
of physicists.

4.8. Supermanifolds as variable A-supermanifolds

Here I clarify some relations between the supermanifolds as defined in [1, 2] and vari-
ous types of “supermanifolds over finite-dimensional Grassmann algebras” that appeared
later [16-18].

In what follows, the category of supermanifolds defined in [2] via structure sheafs of
R-superalgebras will be identified with the category SMang, by means of the functor Sh
defined in Subsec. 4.7.

For any A € |Gr|, denote the category of G*°-manifolds over A ([17]) by A-RMan;
the category of H-supermanifolds [16, 17] of M. Batchelor by A-BMan; the category of
Jadczyk—Pilch-manifolds (shortly, JP-manifolds [18]) over A by A-JPMan.

We have the following inclusions of categories

A-BMan C A-RMan C A-JPMan. (4.8.1)

Note that the category A-JPMan does not coincide, in general, with the category
A-JPMan (for example, gA-linearity of derivative maps imposes no restrictions at all in
the case of A = Ay).

One can see immediately from the definition of the Jadczyk-Pilch supersmoothness
(= C*-smoothness + gA-linearity of derivatives), that “evaluation at point A” (M — M(A),
f — fa) defines for any A € |Gr| a functor

wa: SMang, — A-JPMan. (4.8.2)

The functor 7y is, for any A (except A = Ay = R), neither full nor faithful.
When A runs over Gr, we obtain, therefore, for any supermanifold M (resp. for any
morphism f of supermanifolds) some “object section” A — M(A) (resp. some “morphism
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section” f+— fp) of the “bundle”

[T A-I7PMan — [Gr],
AeGr

which permits us to consider supermanifolds as “variable” JP-manifolds depending on a
discrete parameter A.

Now we can formulate the relation between the category of locally finite-dimensional
supermanifolds and the category of JP-manifolds in the following tautological motto:
supermanifolds (and their morphisms) are just the sections of the “bundle”

[ A-7PMan — |Gr|,
AeGr

which are “analytic” (functorial) on the discrete parameter A.
Moreover, Theorem 3.3.2 implies that every functorial in A section of the bundle
[Hrcgr A-JPMan — |Gr| belongs, in fact, to the subbundle

H A-BMan — |Gr|.
AeGr

Note that the category Ar-BMan contains the category &Mty of M. Batchelor [16]
as a full subcategory and is naturally equivalent to our category SManﬁn(L) of locally
finite-dimensional L-supermanifolds.

In particular, for any L' > L, there is defined the “projection” functor (see
Proposition 4.2.1)

7711::/: Ar-BMan — Aj-BMan,

and locally finite-dimensional supermanifolds can be characterized in terms of projective
limits as

SMang, ~ Proj liin{AL-BMan}, (4.8.3)

in addition to M. Batchelor’s characterization of them as inductive limits of her categories
GMy.

To conclude with, the author hopes the reader could see now, that pretentious decla-
rations of A. Rogers stating that her definition of G*°-supermanifolds “embraces” that of
supermanifolds [17], is exactly as reasonable as, say, the statement that the “definition of
complex numbers embraces that of analytic functions”.

For an additional critics of B. DeWitt’s and A. Rogers approaches to supermanifolds
see [38].

5. Vector Bundles in the Category of Supermanifolds
5.1. The definition

A triple (M x 'V, M, 7¢) is a trivial real vector bundle in the category SMan or, simply,
trivial super vector bundle if M is a supermanifold (called the base of the given super
vector bundle), V is an R-supermodule and 7y¢: M x V — M is a canonical projection
morphism. We will often write simply M x V instead of the triple (M x V, M, myy).
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A morphism of a trivial super vector bundle M x V into a trivial super vector bun-
dle M/ x V' is a pair (f: M xV —M xV g: M — M) such that mypof = gomy
and myro f: M x V — V' is an M-family of R-linear morphisms (see Subsec. 1.3 for the
definition).

Open super vector subbundles and the corresponding pretopology on the category of
trivial super vector bundles are defined in an obvious way.

We also have an obvious forgetful functor sending trivial super vector bundles into the
functor category VBun®*. This functor permits one to define the category SVBun of
(Banach) super vector bundles by means of atlases on functors in VBun®" just in the
same way as we have defined supermanifolds, with obvious changes (for the abstract theory
of gluing, atlases, etc. see the author’s paper [19] or Subsec. 11.3 below).

In particular, there is defined a canonical forgetful functor

NyvBun: SVBun — VBun®". (5.1.1)

Additionally, there is defined the functor SVBun — SMan sending any super vector
bundle & " M to its base M.

Note that due to Corollary 4.4.3 super vector bundles can be constructed
by means of cocycles, i.e., families of morphisms of supermanifolds of the form
{0ap: No " Ng — Lg(V,V)}a gea, where {N, — M}aea is an open covering of the super-
manifold M by open subsupermanifolds and the family {6,5}q sca satisfies the cocycle
conditions

Oaptsa = 1, 9a5¢95797a =1. (5.1.2)

The products in the left hand side of Eq. (5.1.2) are defined just because Lg(V,V) is
an R-algebra (see Sec. 1). Actually, the corresponding “functions” 6,5 “take values” in the
Lie supergroup (group in the category SMan) GLz(V) defined in Subsec. 7.1 below.

5.2. Inverse images

Let & 5 M be a super vector bundle with base M and let f: M/ — M be a morphism
of supermanifolds. In the category VBun®", define a functor f*& pointwise as f*&(A) =
fXE(A). The functor f*€ can be canonically equipped with the structure of super vector
bundle in such a way that it becomes an inverse image of the super vector bundle € along
the morphism f with all the usual properties of inverse images.

The bundle f*& — M’ is, actually, the pullback projection of the pullback of & — M
along f.

In particular, if p — M is a point of M, define the fiber &, of the super vector bundle
€ at point z as follows: €, : = z*&; the fiber €, is canonically equipped with the structure
of an R-module. If, moreover, f: & — €&’ is a morphism of super vector bundles, then there

is defined, due to the properties of inverse images, the canonical morphism f,: &, — E’f .

5.3. The tangent functor and superderivative morphisms

For every supermanifold M, we define the functor TM in VBun®" pointwise, as follows:
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where T is the ordinary tangent functor in Man. If f: M — M’ is a supermanifold
morphism, define the functor morphism

Tf:TM — TM
as
(Tf)a = Tfa.
This determines a functor
T: SMan — VBun®"
which actually lifts to the functor (denoted here by the same letter 7)
J: SMan — SVBun (5.3.1)

along the forgetful functor (5.1.1).

The functor (5.3.1) will be called the tangent functor.

If p = M is a point of M and M 1, M’ is some morphism of supermanifolds, we will

write T, M instead of (TM), and T, f instead of (Tf),.
Given a Banach superdomain V|, one can identify the tangent bundle T(V|;;) with the
trivial super vector bundle V| x V. If V| R |y is a supersmooth morphism of Banach

superdomains, then the morphism 7y o Tf: V| x V — V' is just the weak superderivative
morphism DY f, defined in Subsec. 3.2 as

(D f)alu,v) = Dfa(u).v.
In accordance with Corollary 4.4.3, there exists the unique morphism
Df: Vg — Lg(V,V)
(the superderivative morphism of f) such that
DYf =evo(Df x Idy).

Superderivative morphisms possess many of the properties of ordinary derivatives. We
leave it as an exercise to the reader to formulate, say, the chain rule (using the morphism
comp of Subsec. 1.5) reflecting the functorial property of 7.

5.4. Vector bundles in the categories SMan (™

One can define the category SVBun™ of vector bundles in the category SMan™ of
m~supermanifolds with finite m, repeating literally the corresponding definitions of the

case m = 00; one can define as well the functor SMan™ L, SVBun(™,

Note, nevertheless, that generally speaking, vector bundles in SMan(™ (with finite m #
0) cannot be constructed by means of cocycles. Additionally, unlike the tangent morphism
Tf, the superderivative morphism Df for a morphism f in SMan™ with finite m % 0,

can be uniquely determined only as morphism in SMan(" 1.
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5.5. Vector functors

The definition and the main properties of vector functors for the category SMan are similar
to those for “non-super” case (see, e.g., [15]).

In particular, for given super vector bundles & and & over the same base M, we can
define the super vector bundles € @ & and L(E, &) in such a way that locally (for trivial
super vector bundles)

MxV)eMxV)=Mx (Ve V)
and
LM XV, M x V) =M x Lg(V,V').
Set
£ = L(E, R,

where Vy¢ denotes the trivial super vector bundle M x V — M.
Observe that whereas the functors of evaluation at point A commute with E®E’ (i.e., (ED
EN(A) = E(A) ® E'(A)), this is not the case for L(E, E").

5.6. Change of parity functor for super vector bundles

The natural extension
II: SVBun — SVBun

of the change of parity functor II: Modg(SMan) — Modz(SMan) defined in Subsec. 4.4
is very important.

To define the functor II for trivial super vector bundles, note first that the natural
isomorphism

La(V; V') & Lo(TTV, TIV)) (5.6.1)
extends, as a consequence of Corollary 4.4.3, to the natural isomorphism
La(M; V; V') & LV TIV; TIVY), (5.6.2)

which sends an M-family of R-linear morphisms f: M x V — V' to an M-family of R-linear
morphisms

()<

If: M x IV Lg(V; V) x IV — Lg(TIV;TIV) x TV —=>T7y"  (5.6.3)
where p; is defined in Subsec. 1.5 (see Eq. (1.5.5)).

If now M x V is a trivial super vector bundle over M, set TI(M x V) = M x IIV.

We can also define the action of II on morphisms of trivial super vector bundles using
the isomorphisms (5.6.2) as well as the fact that the set of all morphisms (f, g) of a trivial
super vector bundle M x V into a trivial super vector bundle M’ x V' over a fixed morphism
f: M — M of bases is in an obvious one-to-one correspondence with the set Ly (M; V; V).
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Indeed, the action II thus defined, is an extension of the functor II of Subsec. 4.4 to the
category of trivial super vector bundles; this extension is, obviously, a continuous functor.
This permits us to automatically construct the functor desired

II: SVBun — SVBun (5.6.4)

by means of “completion of functors by continuity”, a procedure described in [19] or Sub-
sec. 11.3 below.

5.7. The functor R Qg -
Let V be an R-module. Define the R-module Vi to be

Vr: =R Or v, (5.7.1)

where R is the “coordinate ring” defined in Subsec. 4.7. If, further, f: V — V' is a mor-
phism of R-modules, define the morphism fpx: Voz — Vi to be for = Idxr®f.

The correspondence V — Vg and f — f is, actually, a functor, and there exists an
obvious functor isomorphism

Vr ~ VoIV (5.7.2)

(as R-modules).

o I . . . = . .
Moreover, if V' — V is an isomorphism of R-modules, it generates for any A an isomor-
phism

— 1
A®gV ~Vgr(A) = Vx(A), (5.7.3)

permitting one to equip Vi with the structure of an R-module. This structure does not
depend, actually, on the choice of an isomorphism I, and for any morphism f of R-modules
the morphism fi turns out to be a morphism of R-modules.

We have thus defined the functor R ® - as the functor from the category of R-modules
to the category of R-modules.

The functor R ® - is, actually, a covariant supersmooth vector functor, so that one can
extend it to the whole category of super vector bundles.

Bearing in mind the canonical isomorphism (5.7.2), one can as well simply define Eg as

Ex: = EBIIE, (5.7.4)

for any super vector bundle &.

Moreover, for any super vector bundle &, the super vector bundle Eg; can be canonically
equipped with the structure of a bundle of ?R-modules (to define the latter, just replace
R by R in the definition of super vector bundles). Details are left to the reader.

5.8. Extended sections of super vector bundles

Let &€ — M be a super vector bundle. A morphism s: M — & of supermanifolds is a
section of a super vector bundle € if mos = Idy. Denote the set of sections of € by I'(€).
Sections of the bundle Eg will be called extended sections of £ and we will write I'yz(€)
instead of I'(Ex).
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The extended sections of the tangent bundle TM of a supermanifold M are said to
be vector (super)fields on M; extended sections of (TM)* will be called differential
1-forms (or covector (super)fields) on M.

Let M x V — M be a trivial super vector bundle and s € T'(M x V) be its section.
One can see that s = (Idyg, 8'), where s’ = myo s, is the principal part of the section s. The
correspondence s — s’ gives a bijection

L(M x V) — SC>®(M, V). (5.8.1)

If, additionally, V is an PR-module, then the bijection (5.8.1) permits one to equip the set
of sections I'(M x V) of the bundle of $i-modules M x V with the structure of an SC*(M)-
module.

More generally, if € —— M is an arbitrary bundle of S&-modules, the set T'(€) of sections
of €& can be naturally equipped with the structure of an SC*>(M)-module in such a way

that for any atlas {€, —= E}aea (with all &, being trivial bundles of M-modules) all

induced maps I'(€) —2 T'(€,) are morphisms of modules over commutative associative R-
superalgebras with unity.

5.9. The differential of a superfield

If V|7 is a Banach superdomain, we can identify its tangent bundle T(V|;) with the trivial
super vector bundle V| x V and cotangent bundle T(V|y)* with the trivial super vector
bundle V| x Lg(V,R).

Let now f: V|y — R be a superfield on V|y.

Observe that the obvious natural isomorphism Lg(V;IIV’) ~ TILR(V, V') of R-super-
modules generates the natural isomorphism

Lg(V; V) = Lg(V, V)% (5.9.1)

of R-modules and define the differential df of a superfield f as the covector field on V|
with principal part (df)" defined as the composition

Vo 2L £e(V,R) ~ Le(V,Roy) = L(V,B)m. (5.9.2)

Let now M be an arbitrary supermanifold and let A = {U, la, M}aeca be an atlas of M.

Clearly, A generates an atlas {(TUqa)* ;% —= (TM)*m}aca on (TM)*n. Let f: M — R be
a superfield on M. Then there exists a unique covector field df on M such that (df)ocis =
i, od(f oiq) for any o € A. The covector field d f thus defined does not depend on the choice
of an atlas A.

5.10. Action of vector fields on superfields and the Lie bracket

Let first V|iy be a Banach superdomain, f: V| — R a superfield on V| and € a vector field
on V| with principal part £’: V| — R. Define the superfield £ - f on V|7 as a composition

(Id,¢") (D" fm

§- [V

where (D" f)n is the extension of the weak superderivative DVf: V|y x V. — R by
R-linearity.

Vlu x Vo

R, (5.10.1)
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Note that £ - f can be also expressed in terms of df and the evaluation morphism ev:

d /7 !’ _ v _
DS | f(eV, R)o % Vot 22 Ry ~ . (5.10.1')

§-f: Vv
Observe also that the definition (5.10.1) is not only simpler then (5.10.1") but can be also
used for the case of locally convex supermanifolds as well, when cotangent bundles do not
exist in general.

Let now M be an arbitrary supermanifold, f a superfield on M and £ a vector field on
M. Then there exists a unique superfield £ - f on M such that for any chart U — M on M
the identity (£ f)|lu = &|u - f|U holds.

For any vector field £ on M, the map f +— &£ - f is a superderivation of the R-superalgebra
SC>(M).

If & and & are two vector fields on M, then there exists the only vector field [£1, &) on
M such that for any superfield f on M, the identity

&l f=&- (G- = D, ()58 (& f) (5.10.2)

€1,620€2L2

holds.
The real superspace I';y(TM) of vector fields on M, equipped with the operation [, ] is
a real Lie superalgebra.

6. Immersions, Submersions, Subsupermanifolds, and so on
6.1. Definitions

We call any morphism of supermanifolds of the form
Id xzx
MM X p—=Mx M

(resp. of the form M x M 25 M) a standard embedding (resp. a standard
projection).

A morphism f: M — M of supermanifolds is an immersion (resp. a submersion or
a local isomorphism) if there exists a family of pullbacks

U Lo,
ial li’a (acA) (6.1.1)
Ma—f>M/

such that {U, L, M}aea is an open covering of M, every i,, is an open morphism and every
fa is a standard embedding (resp. a standard projection or an isomorphism); morphism f
is an embedding if there exists a family of pullbacks

lia (a€A) (6.1.2)
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such that for any o € A the morphism i, is open, the family {f~*(U,) — M}aca is an
open covering of M and every f, is a standard embedding.

A supermanifold M is a subsupermanifold of a supermanifold M’ if M is a set-valued
subfunctor of the functor M’ and, moreover, the inclusion morphism M C M’ is an embed-
ding (which implies that it is supersmooth).

6.2. Morphisms criteria modulo manifolds

Proposition 6.2.1. (a) If a morphism f of supermanifolds is an immersion (resp.
submersion, local isomorphism, embedding), then for any A the morphism fa of Banach
manifolds is an immersion (resp. submersion, local isomorphism, embedding).

(b) If a morphism f of supermanifolds is such that the morphism fa, of manifolds is an
immersion (resp. submersion, local isomorphism, isomorphism, embedding), then f is
an immersion (resp. submersion, local isomorphism, isomorphism, embedding).

Corollary 6.2.2. A morphism f: M — M of supermanifolds is an isomorphism if and
only if the morphism w°(f): m7°(M) — w°(M') of vector bundles (see Subsec. 4.2) is an
isomorphism.

6.3. D:ifferential criteria for morphisms

Let h: N — M be a morphism of supermanifolds. An open subsupermanifold U of M is
said to be an open neighborhood of the morphism A if & lifts to U along the inclusion
morphism U C M.

A morphism f: M — M is said to be an immersion (resp. a submersion, a local
isomorphism) in a neighborhood of the morphism 5 if there exists an open neigh-
borhood U C M of h such that the morphism fly: U — M’ is an immersion (resp. a
submersion, a local isomorphism).

Proposition 6.3.1. (Inverse function theorem). A morphism f: M — M of supermani-
folds is a local isomorphism in some neighborhood of a point p —— M if and only if the
morphism T, f: T, M — ‘TfomM’ is an isomorphism of R-modules.

To formulate the corresponding results for immersions and submersions, we need a notion
of direct morphisms of modules.

Let V be an R-module and V' be some its R-submodule. The submodule V' is said to be
direct if there exists an R-module V" and an isomorphism V' & V" ~ V of R-modules.

More generally, a morphism g: V' — V of R-modules is direct if it is isomorphic (as
an object of the category of R-modules over V) to the inclusion of some direct submodule
of V.

Proposition 6.3.2. A morphism f: M — M’ of supermanifolds is an immersion in a
neighborhood of a point p —— M if and only if the morphism Tpf: TuM — TroaM is
direct.

The morphism f: M — M is a submersion in a neighborhood of x if and only if T, f
is an epimorphism andKer T f is a direct submodule of the R-module T, M.
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In conclusion of this section we will formulate a useful criterion, permitting one to
see whether a smooth subfunctor (to be defined shortly) N of a supermanifold M is a
subsupermanifold of M. We say that a functor N in Man®" is a smooth subfunctor of
the functor M in Man®" if, for any A, the manifold N(A) is a submanifold of the manifold
M(A) and the family of inclusions {N(A) C M(A)}pc|ge| is a functor morphism.

Theorem 6.3.3. Let N be a smooth subfunctor of a supermanifold M. If, for any point
p — N of N, the functor T,N is a superrepresentable submodule of the R-module T,M,
then there exists on the functor N the structure of a subsupermanifold of M. (Here, of
course, the tangent “bundle” TN and its “fiber” TN for any functor N in Man®* are
defined pointwise.)

6.4. Superregular equivalence relations and factor supermanifolds

Let M be a supermanifold and R C M x M be an equivalence relation on M (i.e., for any
A € Gr the subset M(A) of the set M(A) x M(A) is an equivalence relation on M(A). Define
the functor M/R in Top®"* pointwise as follows:

(M/R)(A) := M(A)/R(A). (6.4.1)

The set {mp : M — (M/R)(A)}ae|gr|s Where each 7y is the canonical projection, form,
clearly, a functor morphism 7 : M — M/R (in Top®?).

The relation R will be called superregular if on the functor M/R there exists the
structure of a supermanifold such that the morphism 7 : M — M/R is a submersion. If this
is the case, the supermanifold M/R will be called the factor-supermanifold of M w.r.t.
the equivalence relation R.

The relation R will be called regular if for any A € Gr the relation R(A) is regular
(see p. 5.9.5 of [15] for the definition).

If R is regular, then the functor morphism 7 : M — M/R lifts to the functor category
Man®". Because, due to the definition of regular equivalence relations, for any A € Gr on
the topological space M(A)/R(A) there exists the only structure of a manifold such that
the canonical map mp : M(A) — M(A)/R(A) is a submersion.

Any superregular equivalence relation R is clearly regular.

Inverse is not true as shows the following example. Let M = V for some Banach
superspace V. Let for any A € Gr the morphism ma is just the canonical projection
V(A) — V(R) = gV. The corresponding equivalence relation is clearly regular. But it
is not superregular, because the functor V/R is the constant functor (V/R)(A) = oV,
which is not a supermanifold.

The next proposition is the generalization of Proposition 5.9.5 of [15] to the case of
supermanifolds.

Proposition 6.4.1. An equivalence relation R on the supermanifold M is superreqular if
and only if the following conditions are satisfied:

(i) R C M x M is a subsupermanifold of M x M;
(ii) The composition projection morphism R C M x M ™ M is a submersion.
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7. Lie Supergroups
7.1. Definition and examples
A group (object) in the category SMan will be called a Lie supergroup.

Example 7.1.1. Let A be an associative K-algebra with unity in SMan. Define A* as
A*: = Al 4+, where A" is the Lie group of invertible elements of the Banach algebra A.
Then, for any A, the manifold A*(A) is a Lie group and the Lie group structures on all
A*(A) generate the structure of Lie supergroup on A*.

In particular, if V is a K-module in SMan, then Lz(V;V) is an associative K-algebra
with unity in SMan (see Subsec. 1.5 and Corollary 4.4.3). The Lie supergroup Lg(V;V)*
will be denoted GLz(V).

Let G be a Lie supergroup and let H be a subsupermanifold of G such that for any A the
manifold H(A) is a subgroup of §(A) (and, hence, a Lie subgroup of the Lie group G(A)).
The structures of Lie groups on H(A) produce, when A runs over Gr, the structure of a Lie
supergroup on H; the supermanifold H equipped with this structure of a Lie supergroup is
called a Lie subsupergroup of the Lie supergroup §G.

One can obtain a variety of examples of Lie subsupergroups considering involutions in
associative algebras with unity in the category SMan.

Let A be an associative K-algebra with unity in SMan. An R-linear morphism I: A —
A is an involution in A if I? = Id4 and, moreover, if I is an antiautomorphism of the
algebra A, i.e., if for any A and any a,b € A(A) the unity Ix(a-b) = Ix(b) - Ip(a) holds.!

Proposition 7.1.1. Let I: A — A be an involution in an associative K-algebra A with
unity in SMan. For any A, define

Hr(A) C A*(A) = {a € A*(A) | Ip(a) - a = 1}.

The family {31 (A)}ac|gr| generates a subfunctor Hy in A*. The subfunctor Hj is a sub-
supermanifold of A* and, moreover, a Lie subsupergroup of the Lie supergroup A*.

Example 7.1.2. Hilbert superspaces and unitary Lie supergroups. Let V be a
complex Banach space and (-,-): V x V — C be an even (continuous) non-degenerate
superhermitean form on V, i.e., (-,-) is C-linear on the second argument and, moreover,
the identity

(wy)= Y () (y, ox) (2,yeV) (7.1.1)

e,e' €7

holds (which implies that (-,-) is C-semilinear on the first argument).
Note that the fact that (-,-) is even implies that (5V,7V) = 0. The non-degeneracy

of (-,-) means that continuous C-semilinear even map V' Loy = Lc(V,C), defined as
Ix(y): = (x,y), is injective.

In what follows, we assume that [ is surjective as well, and hence, an isomorphism
of Banach R-superspaces, due to Banach. The pair (V,(-,-)) is called a pseudo Hilbert
superspace in this case.

fIf A =4, then I = T , where I'(a-b) = 25,5/622(_1){;6/]/(51)) - I'(.ra). Clearly, every such I’ determines
an involution.
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Define the superhermitean conjugation {: Lc(V,V) — Lc(V, V) by setting

(Alz,y) = > (=) (cx, 2Ay) (z,y € V; A€ Le(V;V)) (7.1.2)

e,e'€lo

(respecting traditions, we write A instead of (A)). The map t is well defined and is
continuous just because I above is an isomorphism.

The morphism T: L(V,V) — L(V, V) is an involution in the algebra Lx(V, V). The
Lie subsupergroup ﬂﬁ of the Lie supergroup §L(V') is said to be a pseudounitary super-
group of the pseudo Hilbert space (V (-,-)); it will be denoted U(V (-, -)).

Note that the forms (-,-)| v and i(-,-)|;v are Hermitean forms on 5V and 1V, respec-
tively. If these two forms are sign-definite, then the pair (V, (-,-)) (or, simply, V) will be
called a Hilbert superspace, whereas the corresponding Lie supergroup U(V, (-, -)) will
be called the unitary supergroup of the Hilbert superspace V.

In this case V is indeed a Hilbert space, i.e., there exists a non-degenerate Hermitean
positive definite form (-,-) g generating the topology of V.

In fact, (v,v"Yg = e(gv,gv’) + €'i(jv,1v"), where €,/ = £1 does not depend on v
and v'.

In the general case, when the forms (-,-)|;1 and i(:,-)|;1 are not definite, the topology
of V' need not to be that of a Hilbert space.®

A counterexample is given by any Banach space V of the form V = E* @ F, where E is
any reflective complex Banach space, which is not Hilbert and has a closed real form (or,
what is the same, a continuous complex conjugation operation e ~— €).* Then the form (-, -)

on V defined by ((f,e),(f',€')) = f'(€) + f(¢/) turns V into a pseudo Hilbert space.

7.2. Lie theory

Let G be a Lie supergroup and p — G its unity. For any A € |Gr|, the Banach space
(TeG)(A) = TeG(A) is, at the same time, the Lie algebra L(G(A)) of the Lie group G(A),
see [20]. The structures of Lie algebras on (7.5)(A) generate, as A runs over Gr, the
structure of a Lie algebra in the category SMan on the fiber 7.3 of the tangent bundle
TG of the Lie supergroup G. The R-module 7.5 equipped with this structure is the Lie
algebra (in the category SMan) of the Lie supergroup §; this Lie algebra will be
denoted L(G).

The function L extends, in an obvious way, to a functor (called the Lie functor) from
the category of Lie supergroups to the category of Lie algebras (over R); composing the
Lie functor L with the superization functor S of Subsec. 4.4 (see (4.4.8)) we will obtain the
functor

SoL: Lie supergroups — Banach real Lie superalgebras. (7.2.1)

The Lie superalgebra SL(9) is the Lie superalgebra of a Lie supergroup §.

&Contrary to what was wrongly stated in the first version of this work.

b7 failed to find in manuals on topological vector spaces either an example of a complex locally convex space
without a closed real form or a statement that each complex locally convex (or, at least, Banach) space has
such real form.
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7.3. Exponential morphism

Define now for any Lie supergroup § the exponential morphism
expg: L(§) — G (7.3.1)

pointwise: (expg)a = eXpg(A)- This is a functor morphism due to functoriality properties of
exponential maps in ordinary Lie theory.

Proposition 7.3.1. The exponential morphism expg is supersmooth; it is a local isomor-
phism on some open neighborhood of the origin (0: p — 1(9)) of the Lie algebra L(G).

7.4. The structure of Lie supergroups

Let G be a Lie supergroup. For any A let Ng(A) be the kernel of the morphism G(A) 5e) g

of Lie groups, where A —— R is the terminal morphism of R-superalgebras. Obviously, the
Lie group §(A) is a semidirect product

G(A) = G x Ng(A). (7.4.1)

Observe that Ng(A) is a nilpotent Lie group.

Consider now the canonical R-module decomposition L(G) = L(G), & L(G),, where
L(9), ~ (—ﬁ) is the “ordinary” Lie algebra and L(§), is the superpoint corresponding to
the odd part of the Lie superalgebra SL(G).

Due to Proposition 7.3.1 the exponential morphism expg isomorphically maps the super-

point L(§), onto some superpoint pg C G (in fact, pg(A) C Ng(A) for any A).

Let, for any A, the map 12 (G)(A) x pg(A) A, G(A) be the restriction of the multipli-
cation in the Lie group G(A), i.e., Ir(g,7) = g -z (the functor /%, of — in Berezin terms —
“Grassmann analytic continuation” is defined in Subsec. 4.2).

Proposition 7.4.1. The family {IA}Ae|Gr\ determines a supersmooth isomorphism
I:2.(9) xpg — G (7.4.2)

of supermanifolds.
In particular, every Lie supergroup is a simple supermanifold.

7.5. Inverse Lie theorem modulo manifolds

Proposition 7.5.1. Let g be a Lie superalgebra and G a Lie group such that L(G) = 5g.
Further, let there exist a linear smooth action of G on the Banach space 1@ such that the
corresponding infinitesimal action of the Lie algebra g on the space 1g coincides with the
adjoint action (determined by the Lie bracket in g).

Then there ezists the unique (up to an isomorphism) Lie supergroup G such that its Lie
superalgebra SL(G) coincides with g and the Lie group G coincides with G.

7.6. Linear representations of Lie supergroups

Let V be a K-module and §G a Lie supergroup. An action p: §xV — V of G on V is called
a K-linear representation of § (or a §-module over K) if p is a G-family of K-linear
morphisms.
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As a trivial consequence of Corollary 4.4.3 we see that the canonical representation of
the Lie supergroup GLg(V) on V (i.e., the restriction of the evaluation morphism evy) is
universal among all linear actions of Lie supergroups on the K-module V.

In particular, K-linear representations of a Lie supergroup G in V are in one-to-one
correspondence with the set of all morphisms of G into GLx(V).

7.7. Groups in SMan(™

Groups in the category SMan™ will be called m-Lie supergroups. The following propo-
sition permits one to reduce Lie supergroups and their representations to m-Lie supergroups
and their representations if m > 1.

Proposition 7.7.1. Let m > 3. The functor n5y (defined in Subsec. 4.2) generates an
equivalence of the category of Lie supergroups with the category of m-Lie supergroups. For
a given Lie supergroup G, the category of linear representations of G is equivalent to the
category of linear representations of the m-Lie supergroup ©5o(G).

7.8. Quotient supergroups of Lie supergroups

Let G be a Lie supergroup and H be some its Lie subsupergroup. Define the functor §/H
pointwise as follows: G/H(A): = G(A)/H(A); canonical projections G(A) =2 G(A)/H(A)
aggregate to form a functor morphism § —— G/X.

Proposition 7.8.1. There exists a unique structure of a supermanifold on the functor G/H
such that the morphism m is a submersion.

The functor §G/H equipped with the structure of a supermanifold mentioned in
Proposition 7.8.1 will be called a quotient supermanifold of § modulo H.

A Lie subsupergroup H of the Lie supergroup § is said to be normal if, for any A, the
Lie subgroup H(A) of the Lie group §(A) is normal.

Proposition 7.8.2. If H is a normal Lie subsupergroup of the Lie supergroup G, then G/H
is a Lie supergroup with respect to the multiplication G/H x G/H — G/H defined pointwise.

This Lie supergroup is said to be the quotient supergroup of § modulo K.

8. Supergroups of Superdiffeomorphisms

In this section supergroups of superdiffeomorphisms of supermanifolds will be constructed.
They are the counterparts of groups of diffeomorphisms in the standard theory of Banach
manifolds.

These supergroups exist as group objects in the functor category Set®*. The latter
topos seems to play the same role in the supermanifold theory as the topos Set plays in the
manifold theory: it is the “environment” for various types of objects, which naturally arise
in the supermanifold theory but not always can “live” inside the supermanifold category
itself (example: orbits of supersmooth actions of Lie supergroups [5]).
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8.1. The geometrized Yoneda functor

In this subsection the natural forgetful functor SMan N, Man®* will be interpreted as

tSManO

a “geometrization” of Yoneda functor SMan B Se composed with the functor

SetSMan® __, GeSPointan® of pegtriction to superpoints.

Here SPointg, C SMan is the full subcategory of the category SMan consisting of
finite-dimensional superpoints. It is obvious from Theorem 3.3.2 that the category SPointg,
is naturally equivalent to the category Gr°, dual to the category of Grassmann algebras.

Proposition 8.1.1. The functor
SMan % SetSMan® ., SetSPointin® ~ getGr
s naturally equivalent to the forgetful functor
N': SMan % Man®" — SetG*

This proposition gives the interpretation desired.
Moreover, by choosing and fixing a contravariant functor

p: Gr° — SPointg, (8.1.1)

establishing a natural equivalence of categories, we obtain the following important

Corollary 8.1.2. For every supermanifold M and any Grassmann algebra A, there exists
an isomorphism of sets

M(A) = SC™(p(A), M) (8.1.2)

natural both in M and A.

8.2. Functors of supermorphisms and of supersections

Let M and M’ be Banach supermanifolds. Define the Set-valued functor SC™ (M, M) on
the category of Grassmann superalgebras as follows:

SC™ (M, M) (A): = SC>®(p(A) x M, M). (8.2.1)

The functor S/EOO(M,M’ ) will be referred to as the functor of supermorphisms of the
supermanifold M into the supermanifold M’.
Observe that there exists an obvious natural isomorphism

SCT(M,M): = SC™ (M, M')(R) ~ SC® (M, M). (8.2.2)

For a finite-dimensional superpoint p, := p(A,) and any supermanifold M, define
a supermanifold [p,, M| of morphisms of p, into M to be [pn, M](A): = M(A ®
SC*®(pn)) = M(A ® Ay,). Then we have as well the natural isomorphism

SC™ (M, M) (A) = SC®(M, [p(A), M']), (8.2.1)

which means that [p,,, M] is indeed a “partial” internal functor of morphisms defined on the
full subcategory SPointg,,° x SMan of the category SMan® x SMan.
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Let now & — M be a super vector bundle over the base supermanifold M. Define the
Set-valued functor I'(€) of supersections of the super vector bundle € as follows:

T(&)(A): =T(r}8), (8.2.3)
where my: p(A) x M — M is the canonical projection. We see that

L(€): =T(&)(R) ~T(&). (8.2.4)

Note that the composition of sections with the canonical pullback projection 73,6 — &

gives for any A a canonical monomorphism T'(&)(A) — S/EOO(J\/[, €)(A); the family of all
such monomorphisms produces a canonical functor monomorphism

L&) — SC™ (M, &). (8.2.5)

To visualize the functor f(c‘l), consider the case of the trivial super vector bundle M x
V — M. In this case, obviously, there exists a natural isomorphism

T(M x V) ~SC™T (M, V). (8.2.6)
Equip now the R-module Vgz with the structure of an R-supermodule setting
0o(Vm) =V; (V) = 1IV. (8.2.7)
Then SC* (M, Viz) becomes an R-superspace.
Proposition 8.2.1. There exists an isomorphism of functors
SC™ (M, V) ~ SC® (M, Voy) (8.2.8)

natural in M and 'V, turning S/EOO(M, V) into a superrepresentable R-module in SetCr.
More generally, for any super wvector bundle & in SMan there exists a natural
isomorphism

L&) ~T(En). (8.2.8')

8.3. Morphisms of composition and of evaluation

In this subsection it will be more convenient to work directly with the category SPointg,
instead of equivalent to it category Gr°. The variable p runs here over the set of objects in
the category SPointg,.

Let M and M’ be Banach supermanifolds. Define the evaluation morphism

ev: SCT (M, M) x M — M/ (8.3.1)

as follows: for any morphism f: p x M — M’ and any superpoint z: p — M let evy(f, z)
be the composition

W) s MLy (8.3.2)

eVP(fJ LU) ip

A more human notation for evy(f,x) is just usual fx or f(x).
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Let M, M’ and M” be supermanifolds. Define the functor morphism
Tate / " S / S "

comp: SO (W, M) x SC™° (M, M) — ST~ (M, M) (8.3.3)

of composition as follows. For any f: p x M — M and f': p x M — M” let comp,(f, f')
(or, more humanly, just f' o f) be the composition arrow

flof: po%po’ —M". (8.3.4)
Proposition 8.3.1. The morphism comp is an associative composition on the functor
—~ 00
SC (M, M).
The point

e: p— SC™ (M, M) (8.3.5)

defined as ep(p) = m: p X M — M, is the identity of this composition.

8.4. The supergroup of superdiffeomorphisms

Let M be a supermanifold. For any ! A, define the set Slef(M)(A) as the subset of all
invertible elements of the monoid SC (M, M)(A) (with the composition comp, defined in
the preceding section).

Proposition 8.4.1. The family {S/Dﬁf(M)(A)}AG‘GA forms a subfunctor S/DFE(M) in
S/COO(M,M’); this subfunctor coincides with the subfunctor

where ST)FE(M) is naturally isomorphic to the set SDiff(M) of all superdiffeomorphisms
(isomorphisms in SMan) of M.

Moreover, the group structures on all S/DFT(M) (A) produce the structure of a supergroup
(group object in SetST) on the functor ST)FE(M)

The supergroup S/DFf(M) is the supergroup of superdiffeomorphisms of the super-
manifold M. This supergroup possesses the following universality property.

Proposition 8.4.2. Let p: G x M — M be a (supersmooth) action of a Lie supergroup
G on a supermanifold M. Then there exists a unique morphism p of supergroups in the
category SetC*

5: G — SDiff(M) (8.4.1)

such that the diagram

SDIff(M) x M

V p \ (8.4.2)

GxM M
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is commutative. The morphism p is determined as follows: for any morphism g: p(A) — §
the morphism pa(g) is the composition arrow

Pa(g): PA) x M L5 G M —> v, (8.4.3)
Proposition 8.4.2 permits one, in particular, to define the induced linear action of a
Lie group G on the functor of superfields S/EOO(M,%) of M, if G acts on M (use for
the purpose the universal action S/DEf(M) X S/EOO(M, R) — S/EOO(M, R) arising from the
composition morphism comp).
More generally, one can also define linear actions of Lie supergroups on functors of
supersections of super vector bundles (when the corresponding supergroup acts on a super
vector bundle).

8.5. Remarks on locally convex supermanifolds

One can define the category of locally convex, or Fréchet, or tame Fréchet super-
manifolds, replacing simply the category Man®* by the category of functors on Gr with
values in the category of smooth locally convex, resp. Frechet, or tame Frechet manifolds.
(For the corresponding theory of smooth manifolds based on the notion of weak derivative
map, see [21].)

Then one can, on the one hand, to generalize the Nash—Moser inverse function theorem
to the case of tame Frechet supermanifolds; on the other hand, one can equip the functors
S/EOO(M,M’ ) and T'(& = M) with structures of tame Fréchet supermanifolds in case of
compact base manifold M.

The details will be considered elsewhere. [This promise given 26 years ago was never
realized. I've found no time since then neither to prove the superization of Nash—Moser the-
orem nor to equip the above mentioned functors with structures of Fréchet supermanifolds|.

9. Colored Supermanifolds

In this section we will construct the “iterated” category S¥Man of Zé—supermanifolds such
that algebras (of any multilinear type ¥) in this category correspond to Zé—graded Banach
superalgebras of the corresponding type.

One could construct the category S¥Man recurrently, considering Zé—supermanifolds as
functors in the functor category (S*¥~!'Man)®*. Instead, we will do it more directly, using

the functor category Man®r>**Gr,

9.1. Z’z’“-graded Grassmann superalgebras

Denote by S¥T (D) the category of Z5-graded R-superalgebras of a multilinear type T in
a category D (see Subsec. 1.10).
Let

ij: Ly — 25 e+ (0,...,0,¢,0,...,0) (9.1.1)

be the j-th canonical injection of Zs-module Z5 into the direct sum Zé. For any commutative
ring with unity R in a category D with finite products and for any multilinear type ¥ of
algebraic structure, it generates a functor

I;: STR(D) — SFTR(D) (9.1.2)



Infinite-Dimensional and Colored Supermanifolds 419

from the category of R-superalgebras of type ¥ in D to the category of Z5-graded
R-superalgebras of the same type ¥ in D.

In particular, I; sends supercommutative superalgebras into Z’f—graded—commutative
superalgebras.

Given a map ¢: Z’f — N, denote by A a free real commutative Zé—graded superalgebra
with exactly () free generators of parity € for any ¢ € Zé . The superalgebra A, with ¢
determined from equalities

g (]:1,,]€)

e = {7 Y (9.1.3)

will be denoted A, . 5, and called Grassmann Z’;-superalgebra.
Let A1 and Ay be real Z’f—graded superalgebras. The tensor product A; ® A5 of Zé—graded
supermodules equipped with the multiplication operation

(a1 @ ag) - (b1 @bg) = Y (1) a1 cby ® craz - b, (9.1.4)

e’ €Lk

is called the tensor product of Z’f-graded superalgebras A; and As. One can easily
verify that for any Z’f—graded Grassmann superalgebra A, ., the identity

holds.

It is obvious that A, ., as an algebra (forgetting the “super” structure) is the ordi-
nary tensor product of Grassmann algebras (not of superalgebras!) which coincides in this
particular case with the “super” product with multiplication (9.1.4).

Denote by Gr®* the full subcategory of the category of associative Zk-graded superal-
gebras with unity consisting of all Z5-graded Grassmann superalgebras.

Observe that the functor

I: Gr* — Gr®* (9.1.6)

determined by the family of isomorphisms (9.1.5) is, in fact, an isomorphism of categories,
because all Z’g—graded superalgebras A, ., are free.

For our purposes it will be more convenient to use directly the category Gr®* instead
of isomorphic to it category Gr*.

9.2. Z’Z“-supermanifolds

Now we can literally repeat definitions and constructions of preceding sections for the
functor category ManS™" in place of the category Man®*.

First of all, if V is a Zk-graded K-module (in Top, Man or Set), we define the ring
K and the K-module V in the corresponding functor category (TopGr®k, ManS™" or
SetGr®k) just by Egs. (2.1.1) and (2.1.2), where A runs now over Gr®*, and f for an even
K-multilinear map f can be similarly defined.

The K-algebras of some type ¥ in the corresponding functor category which are isomor-
phic to V' for some ZA-graded superalgebra V of the type ¥ (in Top, Man or Set) will be
again called superrepresentable.
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Define Banach Z5-superdomain as an open subfunctor of a superrepresentable R-
module in TopGr®k (or in ManGr®k). Every Banach Zlg-superdomain in 'V, is again of the
form V| for some open set U in V: = V(R).

The definitions of supersmooth morphisms and of Z’f—supermanifolds literally copy the
corresponding definitions for the ordinary case (k = 1).

Denoting by S¥Man the category of Banach Z’;—supermanifolds, we can formulate the
following generalization of Corollary 4.4.2:

Theorem 9.2.1. The category S*Tx(Man) of Z5-graded K-superalgebras of any type T

in Man is naturally equivalent to the category ‘ZK(SkMan) of K-algebras of type T in
S¥Man.

The theory of Z’g—supermanifolds can be developed further along the same lines as the
theory of “ordinary” supermanifolds (with the possible exception of the integration theory:
I do not know yet what is the Berezinean for the case k > 1).

Namely, we can define vector bundles in the category S¥Man, tangent functor T and
Lie functor, as well as the exponential morphism, following literally the corresponding defi-
nitions of the case k = 1. In particular, the inverse function theorem is valid in the category
S*Man as well.

9.3. Example

In conclusion, here is an example showing that it is not easy (if at all possible) to
re-formulate the theory of finite-dimensional Z5-supermanifolds (for & > 2) in terms of
spaces with sheaves of Z5-graded commutative superalgebras on them.

Define a Zk-graded commutative superalgebra $®(¥) in S¥Man (“coordinate ring”)
as follows: (M*))(A) = _A. For a ZE-supermanifold M, the Z5-graded R-superalgebra
SC®(M): = S*Man(M,9R*¥)) will be called the superalgebra of superfields of the
Z&-supermanifold M.

Let us describe the structure of this superalgebra in a simple case where £k = 2 and
the supermanifold M is a finite-dimensional Z%—superpoint, ie., M =V, where DimV =
{n;j € N}, jez, is such that ngg = 0.

It follows from the counterpart of Theorem 3.3.2 (which generalizes to the case of arbi-
trary k) that in this case there exists an isomorphism

SCP(V) ~ Apyyng; @ R[[z1,. .., 20y;]], (9.3.1)
of Z3-graded superalgebras, where R[[z1, ... , Tn:;]], considered as an algebra, is simply the
algebra of formal power series in variables x1, ..., ;-

Note that if U = U x p is a finite-dimensional Z3-superdomain such that U is an “ordi-
nary” domain (i.e., dimensions of U in “directions” (1,0), (0,1) and (1,1) are zero) and p is
a finite-dimensional superpoint, then, generally speaking, SC*°(U) % SC>®(U) @r SC*(p).

10. Appendix: Some Comments and Proofs
10.1. Supermanifolds of class C™

Let r be an integer or half-integer. Define the category SReg" of superdomains of class
SC" as follows.
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Objects of this category are all (2r + 1)-cut superdomains, i.e., they belong to
Gr(2'r+1)
Man .

Morphisms are functor morphisms, determined by their skeletons just as in SC*® case.
But the set of skeletons is much bigger. Let f: V|y — V’|; be a functor morphism of
Banach (2r + 1)-cut superdomains. A family of maps {f;}i<2r+1 is said to be the skeleton
of f of class SC™ if the following conditions are satisfied:

() fo=fr:U — U and f; : U — L%;V; V') for i > 1 are continuous maps such that
for any u € U the R-linear map f;(u) is supersymmetric.
(ii) f, is of class Cl"t1/2=7/2 where [2] is the integer part of z;

Condition (ii) guarantees that Eq. (3.3.1) makes sense, determining really some functor
morphism. It guarantees as well that the composition of such functor morphism again has
a skeleton of class SC”. In other words, functor morphisms of class SC" form a category.

In fact the condition (ii) was obtained by looking for the weakest differentiability con-
ditions imposed on skeletons which guarantee that both Eq. (3.3.1) makes sense and com-
position of morphism is of same smoothness class. There are other categories in case of
half-integer r satisfying these conditions as well as to correspondence principle. The num-
ber of these categories is [r]. The category, morphisms of which have skeletons satisfying (ii),
is the biggest one (i.e., contains more morphisms).

The category SMan” of supermanifolds of class SC" is obtained just as in SC*°
case via charts and atlases.

There are evident functors:

7 SMan” — SMan™ (n > m).

These functors are not faithful, but evidently for any fixed supermanifold M with finite odd
dimension the corresponding map of morphisms is injective for all big enough m.

It is as well rather evident that the category SMan® of supermanifolds of class SC? is
naturally equivalent to the category of continuous vector bundles.

10.2. Smooth morphisms between superdomains,
which are not supersmooth

Let U and W be Banach superdomains. Let fy : U — U be smooth and let f; : U —
LH(V, V') is for any i an arbitrary smooth map such that for any u € U the map f;(u) is
supersymmetric. One easily checks that the maps

falm+X) = folw) + ) F A" (10.2.1)

define together some smooth morphism f: U — U.

Though smooth morphisms (10.2.1) were discovered 25 years ago, I proved only recently
that morphisms (10.2.1) exhaust all smooth morphisms. And the similar statement is true
for all morphisms, not necessarily smooth or even continuous: any functor morphism f :
U — W has a “generalized skeleton” {f;};cn, where f; can be arbitrary maps.

I did not prove this 25 years ago not because it was difficult to prove, but because it
did not even come to my mind that this may be true: I believed that the set of general
morphisms between superrepresentable functors is somehow undescribable.
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(c) To compare supersmooth maps with smooth ones, rewrite (10.2.1) in terms of
even/odd parts of A as follows:

Fale+ 20+ 20) = fol@) + 3 T AT (10.22)

where fi, is the restriction of f*+™ on V¥ x V™.
Now it is clear that a smooth map f with the generalized skeleton { fi,} is supersmooth
iff the generalized skeleton satisfies conditions:

fkm = Dkfm

for some family {f,,} of smooth maps (i.e., “ordinary” skeleton of the supersmooth map).

10.3. Atlases on factor supermanifolds

The crucial role in the proof of Proposition 6.4.1 plays the construction of an atlas on a
factor supermanifold. We describe here this construction, omitting the standard proofs.

Let R € M x M be an equivalence relation on a supermanifold M and 7 : M — M/R
the canonical projection onto the corresponding factor functor, such that

(i) R C M x M is a subsupermanifold of M x M;
(ii) The composition projection morphism R C M x M ZL M is a submersion.

Then it follows from (ii)—(i) that there exists an open covering {U; x V; — R};cs such
that for any i € I the pullback of the composition U; x V; — R — M along its image
in M (which is an open subfunctor of M isomorphic to U;) is equivalent to the standard
projection U; x V; — U;. The easy proof of the next proposition is omitted.

Proposition 10.3.1. Let for any i € I a point p; : p — V; is chosen (all V; are supposed
to be non-empty) and the map j; is the composition map

X IdUiXpi
Ji:UmUxp —— U; X V.

The family
{ui:UiLUiXW%RLMLM/R}iGI

is an atlas on the functor M/R turning this functor (together with the functor morphism
) into factor supermanifold of the manifold M.

10.4. Interpretation of higher points of SDiff

10.4.1. Interpretation of higher points as ordinary points in any category C with
finite products

Let € be a category with finite products. In particular, € has a final object p (for any object
X in € there exists the only morphism X — p). The set of points of an object X is, by
definition, the set C[p, X]| of all morphisms from p to X. Similarly, for an object p of C the
set C[p, X| of morphisms from p to X is called the set of p-points of X (in this subsection
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p is any object of €, not a superpoint!). The set C[p, X| of p-points of X has the following
interpretation.
Define the functor p* : € — C/p as follows:

p* (X)) =mp:px X —p forany X (10.4.1)

and for any ¢ : X — X’ define p*(¢) as the commutative diagram

pxX———px X'.
\ / (10.4.2)

Here the category C/p is the category of arrows over p, i.e., bundles over p in “geometrical”
terms. So p*(X) can be interpreted as the t¢rivial bundle over p with fiber X and p*(yp) is a
morphism of trivial bundles over p.

Note now that the trivial bundle p*(p) = Id, : p — p is the final object of the category
C/p: for any bundle f : X — p there is clearly the only morphism

x— 1 P
XAv
p

from f: X — p to p*(p). This is a particular case of the more general easily established

Proposition 10.4.1. The functor p* respects all finite products. In particular,

pHX X Y) & pt(X) xp p*(Y).

Of course, products in € go into pullbacks (or fibered products by another terminology)
over p in C/p, which are products in the category of bundles over p.

Remark 10.4.1. The immediate consequence of Proposition 10.4.1 is that the functor
p* translates any algebraic object in the category € into an algebraic object of the same
type in the category of bundles over p. For example, if R is a ring in C, then the bundle
p*(R) =p x R—p is a ring in C/p. If, moreover, V is a left R-module, then p*(V) =
pxV — pis a left p*(R)-module.

In particular, trivial vector bundles with base p can be interpreted from this point of
view just as modules over the ring object p*(R) =p x R.

By the way, the same “algebraic” interpretation holds for general locally trivial vector
bundles: the action of the ring p x R — p on a locally trivial vector bundle V — p can
be glued out of actions of rings p, X R — p, on trivial vector bundles p, x V, where
{Uq : pa XV —> V }4ea is some open covering of V by trivial vector bundles agreeing on
intersections. “Agreeing on intersections” means that all pullbacks V3 of u, and ug can
be chosen in such a way that V,g = pos x V is a trivial vector bundle and both pullback
projections of V,g are morphisms of vector bundles. In other words, the family {u,} is an
atlas on V. Compare this definition of locally trivial bundles both with an “ordinary” one
and with the definition of an atlas on a (super)manifold.
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Now the promised interpretation:
Proposition 10.4.2. The map

(Idp,z
gip X p—— e X
P

)
1& % (10.4.3)

is the bijection between p-points of X and ordinary points of p*(X):

p

Clp, X] =~ C/plp™(p),p" (X)].

On the other hand, points of the bundle p*(X) is the same thing as its global sections due
to (10.4.3).

Proof. Clearly the map sending a section (i.e., point) s : p — p x X to the p-point
Txos:p — X is inverse to the map (10.4.2). O

Remark 10.4.2. The interpretation of p-points as points given here is borrowed, essen-
tially from Johnstone’s book “Topos theory” (Academic Press, 1977), Ch. 1, Subsec. 1.4.
Especially Theorem 1.42 (Lawvere-Tierney), and the end of Subsec. 1.4. I only transformed
Theorem 1.42 to its weaker form equivalent to Propositions 10.4.1 and 10.4.2, which, as a
compensation, is valid for a much wider class of categories: the original theorem of Lawvere—
Tierney is valid for toposes only, whereas the interpretation of p-points as points is valid in
any category with finite products.

Note that in the Johnstone’s book points of X are called its global elements.

In topos theory the Lawvere-Tierney theorem serves as a basis for construction of so
called Bénabou—Mitchel formal language (Ch. 5, Subsec. 5.4 of “Topos theory”), permitting
one to automatically translate set-theoretical constructions and proofs to the context of an
arbitrary topos.

I will not try to construct some weaker form of Bénabou language based on
Propositions 10.4.1 and 10.4.2, permitting one to automatically superize classical construc-
tions of differential geometry.

Nevertheless, in the Subsec. 10.8 below I will construct “manually” the induced action
on the functor of global sections f(V) of a supergroup § acting on some super vector bundle
V using Proposition 10.4.2. This manual construction may serve as an archetype of other
similar superizations (e.g., induced representations of supergroups).

10.4.2. Interpretation of @OO(M,M’)
Proposition 10.4.3. The map

FipxM—M — fl=(mpf)ipxM—pxM (10.4.4)
establishes the natural equivalence

SC™ (M, M) (p) ~ SMan/p[p* (M), p* (M))]. (10.4.5)
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Proof. The diagram

is commutative, so f’ is really a morphism of bundles over the superpoint p. The inverse
map is clearly

flopxM—pxM — f=mpof:ipxM—M (10.4.6)

The interpretation established in Proposition 10.4.3 makes trivial the proof of
Proposition 8.3.1 about properties of the morphism comp: the natural equivalence (10.4.5)
sends compy to an ordinary composition of morphisms in the category of bundles over the
superpoint p.

This natural interpretation was not included in the ICTP preprint, because I found it
soon after the preprint was already published. ]

10.5. Natural isomorphisms SC®(U,R) ~ O(U) and its generalization

Section 4.7 deals with translation from the functor language to the language of structure
sheaves, but may be, it is not quite clear from there how exactly the isomorphism (4.7.2)
is obtained. Below some explanations are given.

Clearly, the skeleton {fi}ien of a supersmooth map f : V'|y — V is the same thing
as the map f': U — Sym(;V’,V) such that the composition of f’ with any projection
is smooth (an infinite product of Banach spaces is not, generally speaking, Banach, so
we cannot declare f’ itself to be smooth. Though we can define smooth maps of Banach
domains into products of Banach spaces by the above requirement that all projections be
smooth).

In other words, one has for any finite-dimensional superdomains U = V'|;; and V

SC>®(U, V) ~ C°°(U, Sym(; V', V)). (10.5.1)

My first guess was, that global sections of O(U) are to coincide, just as in classical (non-
super) case, with SC*°(U, R). But the isomorphism (10.5.1) implies immediately:

SC*(U,R) ~ C* (U, Z Alti(lv’,R)> ~ C®(U) ® gAm ~ 5O(U), (10.5.2)
where m is the odd dimension of U.
So, the classical definition is wrong. To obtain the odd part of O(U) one is clearly to

add to R something both 1-dimensional and odd, i.e., IIR. Then we will have, instead
of (10.5.2):

SC®(U,RGIIR) ~ C>® (U, > Aw'(iv',R)> @ C> (U, > Alti(iV’,R)>
i even i odd

~ C(U) ® gy & CX(U) @ 1Ay = C(U) @ Ay = O(W),  (10.5.3)

because C*°(U, -) respects products.
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The isomorphism (10.5.3) is almost OK: it reproduces O(U) as a superspace. To restore
the structure of a commutative superalgebra on O(U) one is to equip the (1|1)-dimensional
superspace R @ IIR with the structure of an algebra. So arose (somehow ad hoc) the super-
commutative “coordinate ring” R (see Subsec. 4.7 for details).

The similar situation is when one considers general V in place of R: to make SC*®(U, V)
an SC* (U, R)-module one is to tensor V with R.

The next step in accord with “functor ideology” is to convert the superspace SC*® (U, V)
into a functor of A. The only natural way to do this is to “overline” it to get SC*™(U, V).
And now the question arises: what is the meaning of this functor? Of course, the question
is rhetorical one: it is clear that it must be the functor of supersmooth morphisms. But
to take SC*°(U, V) as the definition of this functor is not good: the definition must be
general, whereas it seems to be not easy to extend the functor SC*®(U, V) to the case of
general super vector bundles € in place of V (the extension from a superdomain U to a
supermanifold M’ is easy, via calculations with colimits in the next Subsec. 10.6).

The general definition of Sec. 9 in my preprint was found a bit later. When I found it I
was unaware that the definition of internal Hom-functor in toposes of presheaves Set®” is
almost literary the same (see, e.g., Subsec. 1.1 of “Topos theory”), so that @OO(M’,M)
is just the subfunctor of this internal Hom-functor consisting of all supersmooth
morphisms.

10.6. Proof of the natural isomorphism §6°°(M, V) = SC°(M, V)

The isomorphism S/(\]OO(M V) ~ SC*(M, Vin) is one of the two statements of Sec. 9 which
cannot be proved by purely categorical means. The other one is the statement that the
supergroup SDiff (M) coincides with the subfunctor SC™ (M, M)[spige(ar)- The proof of the
latter statement uses the fact that any local isomorphism f in SMan zs an isomorphism if
the morphism f of base manifolds is an isomorphism.

One can deduce this from Corollary 6.2.2 proving that local isomorphism of vector bun-
dles which is an isomorphism on bases of vector bundles is an isomorphism; the statement
above follows as well from the fact that the category of local isomorphisms over M coin-
cides with the category of local homeomorphisms over M (sheaves on topological space M),
deduced from glutos theory — see [19] or Subsec. 11.3 below).

OK. Let us return to the promised proof.

Let first M = U = V/|¢y be a superdomain. Given superspaces V' and V' denote

Sym(V',V H Sym‘(V',V
>0

the space of even supersymmetric maps of V' to V.

As is stated in Subsec. 10.4 the sceleton {f;}ien of a supersmooth map f : V'|y — V
is the same thing as the map f': U — Sym(;V’, V') such that the composition of f’ with
any projection is smooth.

Let the superpoint p is (0|m)-dimensional, i.e., p(A) = R™ ® 1A, so p corresponds to
the Grassmann algebra A, with m generators.

Then clearly p x V| ~ R™ & V/|i7, where R™ is a purely odd superspace.
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Now we have:

Sym(R™ @V, V) = [[Sym'®R™ @1V, V) = [JAW(R™ & 1V',;V)

7

I Af@®™) Al GV, 7,5V)
k+k'=i
®HAlt V)EPiA®R™) ®HA1tk V', 15V)
:()Am@HAltk Vv, @ 1Am ®HAltk V/’1+k )
k
= 5Am Q) Sym(; V', V) P 1Am Q) Sym(;V/, TIV)).

Here Alt®(V, V') means the set of alternating (skew-symmetric) continuous maps from the
topological vector space V to the topological vector space V'; A¥(R™) := Alt*(R™,R);

AR™) := @ A*R™) & Ay
Thus one can identify the set of all sceletons = C*°(U, Sym(R™ & ;V’, V) with the set

oAm ® C(U, Sym(1V', V) @ 1An, ® C°(U, Sym(; V', IIV))
~ gAm ® SCP(U, V) & 1Ap, @ SC®(U,ITIV).

Defining the structure of a superspace (in SMan!) on the superrepresentable module Vg :=
V @IV by

one can deduce from the latter isomorphism:
SC U V) (Am) ~ o(Am ® SC®U,V & TIV)) = SC(U, Ver) (Ar).

The desired isomorphism is proved for the case, where M is a superdomain.
Now let M be a general supermanifold with an atlas A = {uq : Uy — M}aca. Let Uyp
for any o, 3 be a pullback in SMan of u, and ug. Let A(A) be the diagram

Uq

(o, B € A),

where 7, and g are pullback projections. In other words, A(A) is the glueing data defined
by an atlas A (see [19] or Subsec. 11.3 below).

The pretopology on SMan is subcanonical, which means in simple terms that any
supermanifold M is a colimit of the diagram A(A) defined by any open covering A of M.
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So we have:
SC™(M, V) ~ SC” (colim A(A), V) ~ lim A(SC™ (Ug, V))
~ lim A(SC*®(Uq, Vr)) = SC®(colim A(A), Vir) ~ SC®(M, V).

Here the 4™ ~ follows from the fact that in any category € the functor €[-, X] respects
colimits (or, ‘rather sends them to limits of sets); the 2" ~ follows from the fact that
the functor SCOO(-, .} is the subfunctor of the internal Hom-functor in the topos Set®*
(in another terminology the category SMan is enriched in SetGr).

Direct proof of the 2 ~ is pointwise: §6°°(', )(A) reduces, by definition, for any A to
ordinary Hom-functor SC>(pp X -,-), where py is the superpoint corresponding to A. O

10.7. The proof of the natural isomorphism f‘(S) ~T'(En)

This is an isomorphism (8.2.8") from the new version of my preprint. It was not included
in the original version, because I had no proof of it at the time when I wrote the preprint.
Though the proof is simple (it uses nothing more than the natural isomorphism (8.2.8)
proved in Subsec. 10.6 above, and general categorical properties of (co)limits), I found it
only later.

Reproduce first the definitions of open super vector subbundles and of open coverings
of super vector bundles. These definitions were not given explicitly in Subsec. 5.1 but left
as a trivial exercise for the reader.

Let m : &€ — M be a super vector bundle and & C & be an open subfunctor of
& which is, simultaneously, a super vector subbundle of &, i.e., & = &y for some open
subsupermanifold U of M. Such super vector subbundles will be called open.

A family {e, : €, — E}aca of morphisms of super vector bundles will be called an
open covering of & if any e, is isomorphic to the inclusion morphism &/, C € of an open
super vector subbundle of € and the family {e, : €, — E}4ca considered as the family of
morphisms of supermanifolds is an open covering of the supermanifold €.

The latter definition defines a pretopology on the category of super vector bundles. And
the fact that the category of supermanifolds is a glutos implies that the category of super
vector bundles is a glutos as well.

In fact, the only things we need to prove the natural isomorphism f(&) ~ I'(Ex) are the
following ones:

(1) For any super vector bundle & there exist a trivialization, i.e., an open covering
{ea 1 Ea — E}aeca of € such that every &, is a trivial super vector bundle. Our super
vector bundles are locally trivial by definition.

(2) Let A = {eq : E¢ — E}aca be an open covering of €. Let £, for any «, [ be a pullback
(in the category of super vector bundles) of e, and eg. Let A(A) be the diagram

€a

(o, B € A),
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where 7, and 7g are pullback projections. In other words, A(A) is the glueing data
defined by an open covering A (see [19]).

The pretopology on VBun is subcanonical, which means in simple terms that any vector
superbundle € is a colimit of the diagram A(A) defined by any open covering A of €. (cf.
with the corresponding statement for supermanifolds in Subsec. 10.3).

Note that for any open covering A = {ey:Eq — E}aca of € the family Ap =
{eam 1 Eamt — Em}aca is an open covering of Egx, i.e., one has the natural isomorphism
89Q ~ colim A(.Ag)q)

Let now the open covering A be a trivialization of the vector superbundle €, i.e., for any
a € A the super vector bundle &, is of the form M, x V, — M, for some supermanifold
M, and superrepresentable module V.

Then we have:

[(€) ~ T(colim A(A)) ~ lim (T'(€4)) = lim ([(Ma x Va))

~ lim SC™ (Mg, Vo) & lim SC® (M, V) ~ lim SC®(Ma, Voan)

~ lim T (Mg X Vag) ~ I'(colim A(Eqm)) = T'(Ex).

The second = on line 2 is proved in Subsec. 10.3; the third one follows from the fact that
tensoring with finite-dimensional spaces respects both limits and colimits (the functor ¥ at
any A reduces to tensoring with A which is finite-dimensional); at last, the second ~ on
line 1 (commutation of T with colimits), reduces, for any point A to the commutation of T’
(with no hat) with colimits. The latter fact is easily proved.

Note that for typographical reasons I used shorthands like lim (f(Ea)) instead of limit
of the diagram

[(Eq)
T(ra)
['(Eas) (a, B € A).
f;;a)\A
['(Ep)

May be it would be better to use shorthand like I'(A(A)) for diagrams of this and similar
sort. Anyway, I hope the proof is understandable with shorthands used here. ]

10.8. Actions of supergroups on the functor of global sections

Let M be a supermanifold and G be a supergroup (group in the category Set®T). Call an
action G x M — M of § on M superpointwise supersmooth if for any superpoint
g :p — G the composition morphism

px M2 6 o vy
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is supersmooth. Clearly, for any M the supergroup ﬁf(M) acts superpointwise smoothly
on M. The Proposition 8&2\ can be extended to all groups acting on M superpointwise
smoothly: the supergroup SDiff (M) is universal among all these groups.

Let 7 : € — M be a bundle over M (it can be a super vector bundle, but in what
follows this is not important, so 7 can be any object of SMan/M).

Let the supergroup G acts on the bundle € superpointwise supersmoothly, i.e., there are
given superpointwise supersmooth actions § x M — M and § x & — & which agree in
the sense that the diagram

Gx&——=¢
Ingﬂl \jﬂ'
GxM——=M

is commutative.
We would like to construct from this action of G on the bundle € an action of G on the
functor I'(€) of global sections of &, superizing the classical definition:

gs(z) == g(s(gtx)). (10.8.1)

The latter action makes sense as well for ordinary sections s : M — & of the bundle €&,
because (10.8.1) can be rewritten for a point g : p — G as a composition:

-1

gs =M =M —">¢ "= (10.8.2)

The fact that gs defined by the diagram (10.8.2) is really a section of & follows from the
commutativity of the following diagram:

s g

M M e e
A
M—= .

So we have defined the action of § on ordinary sections of €. Now recall (see Remark 1 in
Subsec. 10.4.1 above) that p*(G) is a group in SetS* /p for any superpoint p and this group
acts on the bundle p*(£) — p*(M) “over p”. So one can apply the definition (10.8.2) to
this action. Recall as well, that points g of p*(9) is the same thing as p-superpoints of § by
Proposition 3. And sections of the bundle p*(€) — p*(M) clearly correspond to “higher”
sections of &, i.e., to elements of ['(&)(p).

One is to prove of course, that actions G(p) x ['(€)(p) — T'(€)(p) so constructed agree,
i.e., really produce some functor morphism § x I'(€) — I'(€). To check the commutativity
of corresponding squares is elementary, though boring exercise.

11. Appendix: Sets, Pretropologies, DG-Glutoses

For the reader’s convenience here are reproduced some definitions and results of my
paper [19].
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11.1. Sets and classes

Here are reproduced some little known constructions of the theory of sets and classes by
A. Morse [23]! necessary for definitions of both big categories (e.g., the category Set of all
sets or the category Top of all topological spaces), and big categories with some structure
on them (e.g., sites).

There exists as well another approach to “big” categories (see, e.g., [7] or [8]). In this
approach there are really no “big” categories, because the category theory is based on ZF
theory of sets, whose terms are sets and there are no classes at all. One extra axiom is
added to ZF instead, which states the existence of at least one universal set U, i.e., such
set, that the application of main set-theoretic operations (union, intersection, power set
etc.) to an element of U produces as the result again an element of U and, besides, there
exists an infinite set belonging to U. In this theory classes are modeled by subsets of U,
and big categories — by tuples of subsets of U, satisfying the corresponding relations. This
approach permits one to model “superbig” categories like the category of all big categories
and functors between them. But such objects are not encountered in practice of mathe-
maticians whose preoccupation region lies far away from general category theory. Besides,
the “relativization” of big categories with respect to some universal set U (e.g., replacing
of the category Man of all manifolds by the category Many of manifolds belonging to U)
looks rather artificial and not very aesthetic.

That’s why here the Morse theory [23] of sets and classee is used as the base for all our
constructions. This theory is known for wide audience mainly from its popular presentation
in the book “General Topology” of G. M. Kelley [24]. As to the Morse’s book itself, it is
often cited, but there are only a few mathematicians who really has read it! because it is
based on an original symbiosis of logic and mathematics presenting a hardly surmountable
psychological barrier for peoples accustomed to the classical paradigm, which separates
terms (objects) and relations (statements about these objects). Within Morse theory terms
and relations are one and the same thing. For example, due to Morse any false statement,
e.g., x # x or 1 = 0 is, simultaneously, the empty set (), which is presented in the standard
approach by the term {x | x # x}.k

IA stronger version of Bernays-Godel-von Neumann theory (BGN). The latter is an extension of Zermelo—
Fraenkel (ZF) set theory via “materialization” of propositions of ZF by converting them to terms. At that
the term {z | P(x)} “materializing” a proposition P is interpreted as the class of all sets such that the
statement P is true for them. The resulting theory is equal in strength to ZF theory.

The theory equivalent to the Morse theory can be obtained from BGN, if, roughly speaking, one permits
in statements of BGN quantifiers running over all classes and not over sets only. This theory is strictly
stronger than ZF, because one can easily prove in it the consistency of ZF.

IThis concerns even some specialists in set theory. For example, A. Mostowsky states on p. 13 of his book [25]
that in Morse theory “there are no means to speak about functions whose values are classes” and uses some
cumbersome construction in order to “speak (indirectly) about finite sequences of classes without extending
the language of [Morse theory]”. This indicates clearly that he has not read the book of Morse, though cites
it. Because in this book is described very simple and transparent construction of the family of (proper)
classes indexed by an arbitrary proper class, and not only by finite set.

KT am not quite sure in an adequate presentation of the essence of Morse’s paradigm, because I myself over-
came the above mentioned barrier making a “tunnel junction” (as physicists would say) from the Introduction
of the book to its last chapters, where the axiomatics and constructions of Morse’s theory are presented in
a very clear way admitting the immediate interpretation in the frame of the standard paradigm.
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Unfortunately, in the popular book of Kelley are lacking some constructions of Morse,
absolutely necessary for the definition of big categories and functors between them inside
the Morse theory. Not to speak about structures on such categories. As a result definitions
of such categories in some popular textbooks based on set theory “with classes” are illusory.

The problem is that in these textbooks categories (including big ones) are “defined”
by phrases like: “A category € consists of a class Obe of objects and a class More of
morphisms, satisfying conditions...” or “a category is a class of “maps” M together with
a subclass C € M x M and a function ¢ : C — M...”.! Readers of such a textbook may
pose a natural question: what the words “and” and “together with” mean in the contexts
of above phrases? l.e., what is a category € as a class? The authors of these textbooks
give no answer to this question, may be they just have not thinking about this question
themselves. The immediate thought coming to the mind is to define C as an ordered triple
€ := (Obg, More, comp), where comp is a map of some subclass C' of the class More x More
into the class More. But the definition of ordered pairs, triples, etc. in Kelley’s book is
mechanically taken from ZF theory. This is the Kuratowski pair:

(A, B)x == {{A},{A, B}}. (11.1.1)

It is clear that (A, B)x = {0} if both classes A and B are not sets, and the singleton and
the unordered pair are defined as in ZF: {A} := {a | © = A} and {A,B} :={z | z =
A or x = B}. That is why it is not suitable for coding a pair of classes in a single class
without loss of information. And the same is true for ordered triples etc.

At the same time in the book of Morse a simple definition is given™

(A, B)ar == ({0} x A)U ({1} x B), (11.1.2)

satisfying the characteristic property of ordered pairs: for any classes A, B, A’ and B’ the
equality (A, B)yr = (A, B') s is true if and only if A= A" and B = B’.
The definition of Morse is not the only possible. For example, the “hybrid” definition

(A,B)kx if A and B are sets

11.1.3
(A,B)y  otherwise ( )

(A, B) = {

satisfies as well to the characteristic property of pairs. It satisfies, besides, to the following

“correspondence principle”: the fact that the definition of a pair of sets does not changed

(it is a Kuratowski pair) implies that the definitions of the product A x B of classes A and

B as well as of relation (i.e., of a class consisting of pairs of sets) remain unchanged. That

is why here is assumed the definition (11.1.3), though for coding of a pair of classes in a

single one is suitable any definition guaranteeing the characteristic property of pairs.
Triples and any finite tuples of classes can be defined standardly via pairs:

(Al,Ag,...,An) = (Al,(AQ,...,An)). (1114)

Isee e.g., p. 14 of [29] and p. 5 of [30]; in “definitions” from textbooks [31, 32] the problem of lacking of the
real definition of a category as a class satisfying certain conditions is concealed a bit more.

"MRediscovered several times later by another authors not reading clearly the book of Morse. For example,
by Herrlich and Strecker in [33] and Zakharov in [34].
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This recursive scheme of definitions (one definition for any concrete n = 3,4,...) permits
one to encode any finite number of classes inside a single class. This scheme of definitions is
quite sufficient for “legalizing” of such notions as “big” categories, functors between them
ete.

Excercise. Translate pseudo definitions of category and functor given in any of text-
books [29-32] into correct ones, using the scheme of definitions (11.1.4).

In fact Morse gave a construction in his book, permitting one to encode without loss
of information any number of proper classes in a single one. This is a generalization of the
standard definition of ZF for a family of sets.

We will give here instead of the original definition of Morse a “hybrid” definition, coin-
ciding with the standard one in a particular case of a family of sets.

A relation F' (i.e., a class consisting of ordered pairs of sets) is called a family of classes
indexed by a class [, if for any i € I the class F|; := {z | (i,z) € F'} consists of just one
element or is a proper class and if (¢,2) € F implies that ¢ € I. The class

Fi:{x if F|; ={z}

(11.1.5)
F|; otherwise.

is called the value of a family F' on an element ¢ € I.

The standard notation for a family F' indexed by a class I is {F;}icr.

In these notations the characteristic property of indexed families (encoding without loss
of information) can be expressed as follows: any two families {F;}icr and {F]}icp are equal
if and only if, when I = 1" and for any i € I the equality F; = F] is valid.

Of course, this theorem of uniqueness has to be supplemented by the scheme of theorems
of existence. Let F{i, x,... } be an arbitrary statement of set theory.

For any class I there exists the family {F;}ier such that F; = {x | F{i,x,... }} for any
iel.

This family will be denoted {z | F{i,z,... } }ier.

The difference between the family {x | F{i,z,... }}icr and the class {z | i € I and
F{i,z,...}} can be seen in the next example. If one takes as F{i,z,...} the statement
“r # 27, then, clearly, {z | i € [ and x # x} = (. At the same time {x | © # z}icr =
{(i,0) | i € I}.

Note that the interpretation of a family F' = {F;};c; as a function with the domain
Dom(F) := I and the range Ran(F) := {F; | i € I} becomes inadequate, if F; is a proper
class for at least one ¢ € I. The reason for this: the universe of Morse theory does not contain
a class containing a proper class as an element. Nevertheless, on the level of intuition one
can consider any family of proper classes as some “virtual superclass” parametrized by some
class of indices. At that families F' = {F;}ic; and F' = {F/},cp parametrize one and the
same virtual superclass, if there exist maps ¢ : I — I’ and ¢/ : I’ — I such that F; = F], for
any ¢ € [ and F = F; for any i € I'’."

"It seems that one can extend the theory of Morse without its strengthening (following the similar way on
which BGN theory of sets and classes was obtained from ZF theory of sets), adding to the theory terms
“materializing” virtual superclasses parametrized by families of classes or even arbitrary statements of Morse
theory. We will not dwell on it — families of classes are quite sufficient for all our purposes.
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We need as well a modification of standard definitions of equivalence classes and factor
sets in such a way that they will become suitable for the case of equivalence relations on
proper classes (for example the class of all smooth atlases on some set).

Let E C X x X be an equivalence relation on a class X, i.e., E is symmetric, transitive
and reflexive. If one defines the equivalence class of an element x € X with respect to the
relation F as a subclass eqp(x) of the class X, consisting of all elements equivalent to z
(this is the standard definition), then the following problem will arise. If at least one of
classes eqp(x) is not a set, then, clearly, the class containing all equivalence classes does
not exists! How can we define the factor class X/E and the canonical factorization map
X — X/FE in this case (in case where all of the classes eqz(x) are sets (e.g., when defining
factor (super)groups, we will use the standard definition for factor sets)?

The way out is given by the choice axiom for classes (which is assumed to be present).
One of its forms states, that any class X can be well ordered.° This axiom, clearly, implies
that for any equivalence relation E C X X X on a class X there exists a subclass S C X
(a section of the relation E), intersecting any subclass of equivalent elements eqp(x) exactly
in one point. Choose some (no matter which) section S of the relation E and replace non-
existent in the general case superclassP of all classes eqp(x) by the class S, calling it the
factor class of the class X with respect to the equivalence relation £. And the only element
of the intersection eqz(z) NS will be called the equivalence class of the element x € X
with respect to the relation £.9 We will use standard notations X/FE for a factor class S
and [z]g (or just [z], when the relation E is clear from the context) for the equivalence class
x FE. In this definition it is quite unimportant, which section .S were chosen,” only the next
characteristic property is important: x is equivalent to y with respect to the relation E if

and only if [x] = [y]-

°i.e., there exists such linear order on this class that any subclass of the class X has the minimal (with
respect to this order) element.

PThe class {eqp(z) | z € X} exists always, but it contains only sets belonging to this superclass, so that it
may turn out to be empty.

9This is, essentially, the definition of Bourbaki [36]. Though Bourbaki’s set theory does not contain proper
classes, nevertheless, in the mathematics based on this theory “big” equivalence relations appear implicitly,
not as terms of the theory, but as “relations non-collectivisant”. An example of such relation is is “an atlas A
on a set X is equivalent to an atlas A’ in the book [15]. And in order to define a smooth manifold as “a set
equipped with an equivalence class of atlases”, one has to give a correct definition of equivalence classes for
all similar situations. It is an interesting fact, that S. Lang (one of mathematicians of the Bourbaki group)
in the series of books on infinite-dimensional differential geometry has reproduced the definition of smooth
manifold as a set equipped with an equivalence class of atlases, but nowhere gives neither the definition,
nor an explanation, what this “equivalence class” means. The citation of the definition in [36] are not given
as well, so that a too meticulous reader of his books is forced to look for the solution of this rebus himself
(and not too meticulous (i.e., the majority of readers), will swallow such a definition without going deeply
in its meaning). But set theory is taught on first grades of most colleges and universities (excepting, may
be, Ecole Normale Supérieure, Paris) not by Bourbaki’s book, but by some other, more readable, sources,
to find the solution to this rebus is not that easy.

"In Bourbaki’s set theory the unique choice is possible because the axiom of choice is “implanted” into
this theory as the Hilbert “quantifier” 7, translating any statement P{x,...} of the theory into the term
Tz (P{x,...}) such that the statement P is true if one substitutes this term instead of z, if it is true for at
least one term. There is known nothing more about this term. Except the case where axioms of set theory
imply the existence of the only object x such that P{z,...} is true. In this case 7(P{x,...}) is just this
only object. For example, 7 (Vy(y ¢ x)) is the empty set.
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11.2. Grothendieck pretopologies

Let € be a category. A set® of arrows from C with one and the same target X is called
a cone in C (over an object X). A cone C over X is called pullbackable if for any
arrow f 1Y — X and any arrow u : U — X from C there exists an inverse image
ffu: ffU — Y of u along f, i.e., there exists a pullback

ffU—U

f*ul f lu

Y —X.

Let C' be a pullbackable cone X, and f : ¥ — X be an arbitrary arrow with target
X. Choosing for any arrow u : U — X of C' some arrow f*u we obtain a cone over Y,
called an inverse image of C along f and denoted as f*C. Note that the cone f*C
is not determined uniquelly, but only up to the equivalence (cones C' and C’ over Y are
equivalent if any arrow of C' is isomorphic as the object of the category €/Y to some
arrow of C’ and vice versa).

A (Grothendieck) pretopology on the category C is a family T = {Tx } x¢|e such
that for any X € C the class Tx consists of pullbackable cones over X (called coverings
of X)) and the following conditions are satisfied:

(PT1) For any object X of the category € the cone {1x : X — X} belongs to Tx.
(PT2) For any cone C € Tx and any arrow f : Y — X the cone f*C belongs to Ty.

(PT3) If C is a covering of X and for any arrow u : U — X of C there is given a covering
C, € Ty, than the cone, consisting of all composition arrows V — U - X, such that u € C
and v € (), is a covering of X.

Arrows of C, belonging to some covering of T are called open arrows of T, and the class
of all open arrows of T will be denoted O or just O when it will be clear from the context
what pretopology is meant.

This definition differs from standard definitions (see, e.g., [7]): coverings are defined here
as subsets of arrows, whereas in standard definitions they are defined as indexed families of
arrows. To feel the difference consider pretopologies on the category C, containing the only
object 1 and the only arrow Id; : 1 — 1. There exists the only cone C' = {Id;} in € and
the singleton {C'} is clearly the only pretopology on C. At the same time indexed families
of arrows of € (i.e., maps from arbitrary sets to the set of arrows of €) form a proper class,
i.e., this class is not a set.

It would be not that easy to define, say, the intersection of a family of pretopologies
in terms of coverings as “indexed” cones. Nevertheless, concrete pretopologies on some
category will be often described just by indexed cones. To get the pretopology from this
description one is to replace every indexed cone C' = {u; : U; — X}ier by the cone
Ran(C) = {u; |i € I}.

SWe have excluded proper classes from the definition of a cone, otherwise the definition of a pretopology as
some class of cones would become incorrect.
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It is useful for our purposes to add one more axiom to the definition of a pretopology:

(PT4) If C is an open cone over X (i.e., any arrow of C' is an open arrow), such that there
exists a covering C’ € Tx finer than C, then C is a covering of X.

Here, by definition, a cone C” is finer than a cone C' if for any arrow v’ : U' — X of ¢’
there exist an arrow v : U — X of C' and an arrow ¢ : U’ — U such that v’ = iu.

Note that the conditions (PT1) and (PT2) imply that the class O of open arrows of
the pretopology T forms a subcategory of a category €. In particular, the composition of
open arrows is open.

Remark. For any pretopology T on € and any X,Y € |C| the intersection Tx and Ty is
clearly empty, if X # Y. This means that one can reformulate the definition of a pretopology
in terms of the class (J{Tx } x¢|e of all coverings of the pretopology T, because the family
of classes {Tx } x¢|e is uniquely determined from the union class. We will use in practise,
where it will be more convenient (for example in next two paragraphs) just this alternative
definition without mentioning this explicitly.

Pretopologies on a category C form a closure system, i.e., for any class T of pullback-
able cones in € there exists the minimal pretopology T (the closure of T the pretopology
generated by the class T), containing T as a subclass.

More generally, for any family {7;};c; of classes of pullbackable cones in € (where the
index class I is not necessary a set) there exists the smallest pretopology sup, 7}, containing
any class T; as a subclass, as well as the biggest pretopology inf; T;, contained in any of the
pretopologies T';.

A pair € = (€, Te) consisting of a category € and a pretopology T on it is called a site.
In accord with common practice we will often not distinguish in notations the site € from
the underlying category C, when the meaning of € can be uniquely determined from the
context.

A functor F : € — € between two sites will be called continuous, if it sends coverings
of Te into coverings of T and respects pullbacks of open arrows along any arrows of the
site C. The latter means that the functor F' sends any pullback diagram

ffU——=U

4

Y —X

in € with an open arrow u into a pullback diagram in €'.

The functor F' reflects open arrows, if for any arrow f of C the fact that F(f) is
an open arrow of €' implies that the arrow f is open; F' reflects coverings, if for any
open cone C' in C the fact that F'(C) := {F(u) |u € C} is a covering in the pretopology of
¢’ implies that C is a covering in the pretopology of €. The pretopology of € is induced
the functor F' if F' is continuous and reflects both open arrows and open coverings. This
pretopology is unique if exists at all.

From this definition one easily obtains the following criterion of existence of induced
pretopology.

Proposition 11.2.1. Let F': € — € be a functor from a category C to a site C'. On € there
exists the pretopology induced by the functor F if and only if for any arrows v : U — X
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and Y — Xof C such that the arrow Fu is open, there exists an inverse image f*u and
F(f*u) = F(f)*F(u). Coverings of this pretopology are any cones {u; : Uy — X |i € I} in
C such that {Fu; : FU; — FX |i € I} is a covering in C'.

Example. Let € = (C,T) be a site. For any object X of the site € on the full subcategory
Og/X of the category C/X, whose objects are all open arrows U — X there exists the
pretopology induced by the forgetful functor O3/ X — €. The category O+ /X is, by default,
considered equipped just with this pretopology.

11.3. DG-glutoses

Here is presented part of results of the paper [19], concerning the procedure of completion
of sites whose objects are playing the role of “local models” (e.g., Reg or SReg) to the
sites containing all objects “locally isomorphic” to objects of original category (Man or
SMan). Here only the case of sites typical for differential (super)geometry is considered.
In this case the completion of sites of local models is possible via the generalization of the
construction of charts and atlases in the “ordinary” differential geometry.

A pretopology T on a category € is called subcanonical, if for any covering {u : U, —
X | w € C} the canonical arrow

colim {Uu<—UuHUU—>UU|u,vEC} — X
X

is an isomorphism."
A site € = (C,T) will be called a DG-preglutos,” if the following conditions are satis-
fied:

(G1) The pretopology T is subcanonical,
(G2) Any open arrow u € Og is monomorphic;

(G3) For any object X € |C| the class of open subobjects of X (i.e., subobjects representable
by open arrows) is representable by a set. In other words, any skeleton of the category Og/X
(the existence of which follows from the axiom of choice for classes) is a set.

(G4) For any open cone C = {u: U, — X |u € C'} there exists

C, := colim {Uw—UuHUv — Uy |u,v ec}
X

“Whereas on the category C /X there is, generally speaking, no induced pretopology.

"This condition is equivalent to the condition that any set-valued contravariant representable functor on €
is a sheaf in the pretopology 7. Or even to the more compact condition that the functor Id° : €° — € is a
sheaf in this pretopology.

YThe prefix DG hints that sites with pretopologies satisfying conditions (G1)—(G4) are typical for the
differential (super)geometry.
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and the canonical arrow Cy — X is open. Non-formally speaking, the union of any set of
open subobjects of X exists and is open.¥

Before to give the definition of sites which are completions of DG-preglutoses one is to
formalize the notion of gluing of a family of objects along open subobjects.

For any set I define the category I',I whose objects are all non-empty finite subsets of
I, and the only morphisms are morphisms of inclusion of subsets. For any natural num-
ber n define I',,I as the full subcategory I',,I consisting of all object containing not more
than n elements. For contravariant functors U : I',,I° — € we will write Uj,...;, instead of
U({i1, ... ix}).

Let € be a DG-preglutos. A contravariant functor U : I'91° — C is called a gluing
functor or a gluon, if it pulls through the subcategory of open arrows and there exists a
continuation of U to a functor U’ : I'3I° — € respecting pullbacks in I'3I°.*

In fact, any square in any category I',I° is both pullback and pushout just because
I',,I° is a partially ordered set, i.e., between any two objects there exists not more than one
arrow. One can check that any gluon U continues to a functor U, : I',I° — € respecting
pullbacks. Such a continuation is clearly unique, up to the functor isomorphism.

We will often identify in what follows a gluon U : I'9]° — € with the family of arrows
{Ui = Uij = Uj}ijer-

Now we can formulate the necessary definition. A DG-preglutos € is called a DG-
glutos” if it satisfies the following condition:

(G5) Any gluon U = {U; < U;; — U;}; jer has a colimit U,, the canonical colimit cone
{U; — U, |i € I} is a covering of € and for any i, j the square

Ui/Uij\Uj
N,

(11.3.1)

is a pullback.
The condition (G5) implies that the pretopology of a DG-glutos is completely deter-
mined by its open arrows:

Proposition 11.3.1. An open cone C = {U; — X |i € I} in a glutos C is a covering if
and only if it is effectively epimorphic, i.e., when C is a colimit cone of the gluon

U= {U; U [[U; = Uj}ijer. (11.3.2)
X

WThe condition (G4) excludes from DG-preglutoses the category of affine schemes with the pretopology
generated by Zarisski topologies on all affine schemes. One can prove, however, that for any site with a
pretopology satisfying conditions (G1)—(G3) there exists the universal completion to a DG-preglutos.
*This condition is the generalization of the cocycle condition, used in differential geometry for gluing man-
ifolds from a family of “local models”.

YIn [19] these sites were called nearly SG-glutoses.
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The next theorem states that for any DG-preglutos there exist a universal completion
to a DG-glutos.

Theorem 11.3.2. For any DG-preglutos C there exists a DG-glutos € and a continuous
functor Je : € — € such that for any continuous functor F' : € — D to a DG-glutros D
there exists the only, up to a functor isomorphism, continuous functor F' : € — D such that
the functor F' o Je is isomorphic to F'. The functor Je is fully faithful. The DG-glutos C is
uniquely determined up to a continuous natural equivalence.

The DG-glutos e (resp. the functor Je) are called the universal completion (resp. the
universal functor) for the DG-preglutos C.

Examples of universal completions: Reg C Man, SReg C SMan.

If € and D are DG-preglutoses and F': € — D is a continuous functor, denote F:C—D
the continuous functor such that F o Je ~ Jp o F (this functor exists in accord with
Theorem 11.3.2).

Proposition 11.3.3. If FF: € — D and G : D — C are continuous functors between DG-
preglutoses such that the functor F' is left adjoint to the functor G, then the functor F is
left adjoint to the functor G.

Exactness properties of universal functors are summed up in the following theorem.

Theorem 11.3.4. (a) For any DG-preglutos C the universal functor Je : € — e respects
all limits existing in C;

(b) If C is a category with finite products, resp. pullbacks, resp. finite limits, then so is é;

(c) Let F': € — D be a continuous functor between DG-preglutoses and in the DG-preglutos
C there exist all finite products, resp. all pullbacks, resp. all finite limits, which are
respected by the functor F. Then the functor F:€—D respects finite products, resp.
pullbacks, resp. finite limaits.

The next theorem characterizes universal completion functors of DG-preglutoses to
DG-glutoses.

Theorem 11.3.5. Let C be a DG-preglutos, D be a DG-glutos and J : € — D be a contin-
uous functor. Then the following conditions are equivalent:

(a) J is a universal functor for C;

(b) The functor J is fully faithful, the pretopology of C is induced by the functor J and for
any object D € |D| there exist a covering {u : J(U,) — D|u € C} of the object D by
“objects of C”.

The following proposition describes sufficient conditions of existence of pullbacks in
glutoses. It states that a pullback in glutoses exists if it exists locally.

Proposition 11.3.6. Let f : X — Z and g: Y — Z be arrows in a glutos C such that for
some coverings {X; — X}ier, {Y; — Y}ies and {Zy, — Z}irex there exists, for any i € 1,
J€J and k € K, the pullback P := X, sz Yyj, where, by definition, X, == X; [, Z
and Yy; == Zi [, Y;. Then there exists the pullback P = X [[,Y of f and g.
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Moreover, for any i € I,j € J and k € K there exists the only arrow Py; — P such
that the diagram of pullbacks

Pilkj
|
|
|
Xik ! %)
1 ! l (11.3.3)
XZ»\‘ P /YJ

N

remains commutative. The family {Pir; — Plicrjesker of these arrows is a covering of
the pullback P.

This proposition is used very often. For example, in the proof of existence of inverse
images of super vector bundles along arbitrary morphisms to the base supermanifold of the
bundle; or in the proof of Proposition 6.4.1.

At last, give here the generalization of the well known fact, that for any topological space
X the subcategory of Top/X consisting of all local homeomorphisms ¥ — X is naturally
equivalent to the category of sheaves of sets on X. But we need first to generalize the notion
of local homeomorphism to the case of arbitrary sites. An arrow f :Y — X of a site C is
called locally open if there exists a covering {u : U, — Y |u € C} of the object Y, such
that for any arrow u € C' of this covering the arrow fu is open. The composition of locally
open arrows is, clearly, locally open. Denote LO¢ the category of all locally open arrows of
the site C.

Theorem 11.3.7. For any object X of a DG-glutos C the category LOe/X of locally open
arrows over X s a Grothendieck topos. This topos is naturally equivalent to the category
Sh(O¢e/X) of sheaves of sets on the site Oc/X of open arrows over X.

Remark. The category Oe/X is just a partially preordered class. The skeleton of this
category is a special kind of partially ordered set. It is so called Heiting algebra — something
average between the lattice and the Boolean algebra (interested readers can see the exact
definition in Subsec. 5.1 of the book [26]).

11.4. Charts and atlases

The Theorem 11.3.2 has one essential drawback: it is a typical theorem of existence, giving
no indication how one can complete a concrete DG-preglutos € to a universal DG-glutos e.
Here will be given explicit constructions of é, using suitable continuous functors J : € — D
from € to some DG-glutos D. There are not too much conditions to be imposed on J
in order that it will be “suitable”: it must be both faithful and reflecting coverings (see
the definition above). Any continuous functor, satisfying to both of these conditions will
be called admitting atlases. For sites C typical for differential geometry (e.g., Reg) one
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can take as such a functor the forgetful functor € — Set (where the category Set is
supposed to be equipped with the pretopology, whose coverings are all epimorphic families
of monomorphisms) or € — Top. For site of differential supergeometry (SReg etc.) one
can choose any of three forgetful functors € — Set®”, € — Top®" or € — Man®".

So, let us suppose that the functor J : € — D admits atlases and D is a DG-glutos. Let
X be an object of D. A covering of X of the kind A = {JU; * X |i € I} will be called an
J-atlas on X, if for any 4, j € I the pullback JU; [[y JU; admits a representation

Ju';
JUs; —= JU;
Ju;l luj (11.4.1)
JU; —— X

such that the arrows u and u; are open arrows of C. Any arrow u; belonging to the J-atlas
A is called a chart of this atlas.

Remark. The fact that the functor J admits atlases implies that if open arrows v : U — V'
and v/ : U' — V of € are such that Ju and Ju’ represent one and the same open subobject
of the object JV, then the arrows u and v’ represent one and the same subobject of the
object V (i.e., there exist the isomorphism i : U — U’ such that u = ).

In particular, the open arrows u) and u; in the definition of an atlas given above (see the
pullback (11.4)) are unique (up to an isomorphism), defining thus some gluing functor in C
such that, non-formally speaking, the object X is the “colimit of this functor in the site D”.

Two atlases A and A" on X will be called compatible (denoted A ~ A’), if the cone
AU A’ is an atlas on X as well. The relation A ~ A’ is an equivalence relation on the class
of all atlases on X. The equivalence class of an atlas A will be denoted [A]. Recall, that an
equivalence class is defined in Subsec. 11.1 in such a way, that it is always a set, even in the
case, where the class eq(A) formed by all atlases equivalent to the atlas A is a proper class
(this situation is typical for infinite-dimensional differential geometry).

Let A= {JU; ® X |i €I} be an atlas on X and B = {JV;, Y |k € K} be an atlas
on Y. Call an arrow f : X — Y A-B-admissible if for any chart u; of the atlas A and any
chart v of the atlas B the inverse image of v, along fu; has a representation

Jfik

JWi JVi
Jwikl lvk (11.4.2)
Ju; e x Loy

such that w;; is an open arrow in C.

Proposition 11.4.1. If an arrow f : X — Y of the glutos D A-B-admissible for some
atlases A and B then f is as well A’-B’-admissible for any atlases A’ ~ A and B’ ~ B;
moreover, if an arrow g : Y — Z is B-C-admissible for some atlas C' on Z then the
composition gf is A-C'-admissible.
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This proposition guarantees the correctness of the following definitions and
constructions.

Define the category C; as follows. Objects of the category C; are any pairs (X, [A])
consisting of an object X of the DG-glutos D and an equivalence class of some atlas A on
it. Arrows of the category C; are all triples ((X, [A]), f, (Y, [B])), such that A is an atlas on
X, Bisanatlason Y and f: X — Y is an A-B-admissible arrow. We will, of course, write
in unambiguous contexts just f instead of the whole triple.

There are the evident functors Je: € — C; (X — (JX,[{J1dx}])) and J" : €; — D
(forgetting of atlases).

The functor Je is, clearly, faithful. Moreover, it possesses some additional good prop-
erties. To formulate them one has to give some definitions. For any functor U : § — D
and any object X of the category D the class Stry(X) := U~ !(Idx) is a subcategory of
the category 8. Its object are called U-structures on an object X. If the functor U is
faithful, this category is just some partially preordered class, i.e., there exist not more than
one arrow in Stry(X) between any two U-structures on X. A faithful functor U : § — D is
called a structure functor (over D), if for any isomorphism f : X — X’ of the category
D and any U-structure S on X there exists the only lifting of f to S, i.e., an arrow
fs: 8 — 5" of 8 such that U(fs) = f. This implies that for any object X of the category
D the category Stry(X) is a partially ordered class and any isomorphism f : X — X’ of
the category D generates (via liftings) the only isomorphism f, : Stry(X) — Stry(X') of
the corresponding categories of structures. The correspondence f +— f, is functorial, i.e.,
(f'f)x = fLf« for any isomorphisms f : X — X’ and f': X’ — X”. In particular, for any
object X of the category D the group Aut(X) of automorphisms of X acts on the category
Stry(X). Any orbit of this action consists of U-structures on X pairwise isomorphic to each
other (as objects of the category §8), whereas the factor class Stry (X)/Aut(X) of all orbits
describes all possible equivalence classes of U-structures on X. The concrete description of
this factor class (i.e., the classification of all U-structures on X) may turn out to be either
senseless (due to its unmanageability) or very difficult.

An example of the first case: the description of all Banach smooth structures on the set
R includes (though not exhausts) equivalence classes of any smooth manifolds with finite
and countable atlas {U; — R|i € I}, where any region U; is an arbitrary region in an
arbitrary Banach space of continuum cardinality (for example, R or the Banach space of
all countable sequences with finite norm [P). In fact, the cardinality of atlases may be even
continuum.

An example of the second case: The description of the infinite number of pairwise non
isomorphic smooth structures on the topological space R* given by Donaldson (see in [27]),
for which he got the Fields prize.

After these general remarks about functors of structure let us return to our concrete
functor J'.

Proposition 11.4.2. The functor J' is a functor of structure on D.

The existence of liftings of isomorphisms follows from the fact that if {u; : JU; — X |i €
I} is a J-atlas on X and f: X — X’ is an isomorphism, then {fu; : JU; — X'|i € I} is
a J-atlas on X'. The uniqueness of liftings is guaranteed by our definition (following the
classical definition for the case of manifolds) of objects of the category C; as pairs (X, [A])
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consisting of an object and an equivalence class of atlases on it, instead of defining these
objects just as pairs (X, A).”

There exists as well the natural pretopology on the category Cj, making continuous
both Je and .J'. This pretopology is defined as follows.

Call a monomorphic arrow f : X — Y between objects (X, [A]) and (Y,[B]) of the
category C; J-open, if all of the arrows f;; in the diagram (11.4.2) above are open arrows
of € (which implies that f is an open arrow in D).

Define, at last, the desired pretopology T on C;: its coverings are all cones C' in € such
that any arrow of C' is J-open and .J'C is a covering in D. This pretopology turns €, into
a site, such that the functors Je and J’ become continuous. Besides, the equality J = J'Je
is valid by construction.

We formulate at last the theorem giving the construction of universal DG-glutoses via
charts and atlases.

Theorem 11.4.3. Let C be a DG-preglutros, D be be a DG-glutos and J : C — D be a
continuous functor admitting atlases (i.e., faithful and reflecting coverings). Then the site
Cy constructed above is a DG-glutos and the functor Je : € — Cy is a universal functor

for C.

The proof of this theorem is rather long and boring, but reduces to a straightforward
check of numerous conditions via diagram search.

We will only describe here briefly the construction of “lifting” of a continuous functor
F : C — & from a DG-preglutos € to a DG-glutos € to a continuous functor F’ : €; — €&.
Though this construction is not used directly anywhere in the text, it lies in the ground
of many ordinary differential geometrical constructions, for example, the construction of
the tangent functors 7' : Man — VBun or 7 : SMan — SVBun. Besides, it gives an
illustration of a typical usage of axioms (G1)—(G5) of glutoses.

Define first the functor F’ on objects. If (X, [A]) is an object of €y, then it follows from
the definition of atlases above (see the diagram 11.4.1 and the Remark after it), that the atlas

[A] = {u; : JU; — X |i € I} defines some gluing functor U = {U; & Uij et Ujli,jel}
in the category C. The continuity of the functor F' implies that the functor FU is a gluing
functor in €. The colimit (F'U), of this functor in € exists, because € is a DG-glutos. Due
to the same reason the colimit cone {FU; — (FU)e |7 € I} is a covering (FU),. Define the
object F'((X,[A4])) as follows:

FI(X,[A]) := (FU).. (11.4.3)

Let A= {JU; 5 X |i € I} be an atlas on X, B = {JV, % Y |k € K} be an atlas on
Y and f: X — Y be an A-B-admissible arrow in D. Commutative diagrams (11.4.2) in
the category D, expressing the A-B-admissibility of the arrow f can be “lifted” along the

“In the book [28] (Sec. 3 of Chapter 2) the generalization of this trick is used to prove that any faithful

functor U' : 8’ — D can be presented as a composition S’ Lsgb D, such that the functor I is a natural
equivalence between 8’ and 8 and the functor U is the functor of structure on D. At that the category 8§ and
the functor of structure U are defined up to an isomorphism, and not just up to a natural equivalence.
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functor J' to commutative diagrams

Je fik

JeWiyp —————— JeVi
Jewikl l”k (11.4.4)
U ~ f ~
JeU; X Y

in the category C;. Here X = (X,[A]), Y = (Y,[A]) and short notations are used for
the corresponding arrows: f instead of ((X,[A]), f, (Y, [B])), etc. One can prove that these
diagrams are pullbacks as well, just as the original diagrams (11.4.2).

If there exists a functor F’ such that F'Je &~ F, then applying it to diagrams (11.4.2),
we will get the squares

FWi, Gl FV,

Fwi,cl | lk (11.4.5)

FU,——~p'X =~ F'Y

Jew;k

The fact that the cone {JeW;, — JeU; et )?\z € I,k € K} is a covering of X by
the axiom (PT3) of pretopologies implies that the same cone is an atlas on X which is
equivalent to the atlas [A]. Then it follows from the definition (11.4.3), that the cone
{FWi i FU; % F'X|i € I,k € K} is a covering of F’X. This means that if there
exist an arrow F”’f making commutative all of diagrams (11.4.5), then this arrow is unique,
because it is “glued” out of arrows FWj ko Bl pry (i.e., from restrictions of F’f on
FWi;). To prove the existence of F'f one needs to check only that arrows vy o F'f;; agree

on intersections” FW, [ g FWigr, ie., that the diagram

FWi

/ \UkoFfik

FW’Lk HF’)‘Z FWi’k’ /X F/i} (1146)

\ /)k’ o F firyr

FWig

is commutative. This check is omitted here. But an inquisitive reader, trained in the art of
drawing of complicated 3D diagrams, can try to do this check himself.
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