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The discrete group generated by reflections of the sphere, or the Euclidean space, or hyperbolic
space are said to be Coxeter groups of, respectively, spherical, or Euclidean, or hyperbolic type. The
hyperbolic Coxeter groups are said to be (quasi-)Lannér if the tiles covering the space are of finite
volume and all (resp. some of them) are compact. For any Coxeter group stratified by the length
of its elements, the Poincaré series is the generating function of the cardinalities of sets of elements
of equal length. Around 1966, Solomon established that, for ANY Coxeter group, its Poincaré
series is a rational function with zeros somewhere on the unit circle centered at the origin, and
gave an implicit (recurrence) formula. For the spherical and Euclidean Coxeter groups, the explicit
expression of the Poincaré series is well-known. The explicit answer was known for any 3-generated
Coxeter group, and (with mistakes) for the Lannér groups. Here we give a lucid description of
the numerator of the Poincaré series of any Coxeter group, the explicit expression of the Poincaré
series for each Lannér and quasi-Lannér group, and review the scene. We give an interpretation
of some coefficients of the denominator of the growth function. The non-real poles behave as in
Eneström’s theorem (lie in a narrow annulus) though the coefficients of the denominators do not
satisfy theorem’s requirements.

Keywords: Hilbert-Poincaré series; Coxeter group.

1. Introduction

The Coxeter groups split into the three types: spherical, Euclidean, and hyperbolic. These
groups are discrete reflection groups acting on, respectively, the sphere, Euclidean space, and
Lobachevsky (or hyperbolic) space. If a hyperbolic group divides the space into simplexes
of finite volume, it is said to be of Lannér type if it acts cocompactly, and of quasi-Lannér
type otherwise. Vinberg suggested the term in honor of Lannér [40] who was the first, it
seems (see also [9]), to list all connected Lannér diagrams (i.e., Coxeter diagrams of Lannér
type groups); Shwartsman and Vinberg [57] listed all quasi-Lannér diagrams.
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Except for the spherical Coxeter groups I
(m)
2 (for m �= 3, 4, 6), H3, and H4, each spherical

(resp. Euclidean) Coxeter group serves as the Weyl group Wg(A) of simple finite dimensional
(resp. affine Kac–Moody) Lie algebra g(A), where A is a Cartan matrix. The hyperbolic
groups of (quasi-)Lannér type serve as the Weyl groups of what we suggest to call almost
affine Lie algebraa g(A); for the list of almost affine Lie algebras, see the arXiv:0906.1860
version of [11]. We assume that all Cartan and Coxeter matrices are indecomposable, unless
otherwise stated.

1.1. The three known facts and related problems

The growth functions of the Coxeter groups of spherical and Euclidean types were known.
In this paper we explicitly compute the Poincaré series of certain particular Coxeter groups
of hyperbolicb types.

Fact 1. Among the Coxeter groups G, the eigenvalues of the Coxeter trans-
formation of G lie on the unit circle C centered at the origin only for spherical
or Euclidean groups ([55]). For the Coxeter groups of spherical and Euclidean
types, the zeros of the Poincaré series Wg(A) are described in terms of the
above mentioned eigenvalues, or rather their exponents, see Table 2.

(1.1)

Our results show that for the (quasi-)Lannér groups (and, most probably for all hyper-
bolic Coxeter groups), the zeros of the growth functions (which, as we will show, are easy
to compute) have nothing to do with the eigenvalues of the Coxeter transformation (which,
moreover, are not easy to describe in these cases, see [55]).

Fact 2. The Poincaré series WG(t) is a rational function for ANY infinite
Coxeter group (G,S) with finite set of generators S. The zeros of WG(t) lie on
the unit circle C centered at the origin, but their precise values are known

only in the spherical and Euclidean cases. How to determine the precise
values of zeros in the other cases was unknown. The growth of the Coxeter
groups of hyperbolic type is exponential, so there is a pole outside C and this

is all that was known about the poles in general.

(1.2)

In [53, 54, 4], a somewhat implicit recurrence expression (3.1) for WG(t) is given.
From [53, 54, 4] nothing is clear about the z e r o s o f t h e d e n o m i n a t o r s. For
the Coxeter groups of other than spherical and Euclidean types, the eigenvalues of the
Coxeter transformations do not lie on C. We show that, nevertheless,

t h e z e r o s o f t h e P o i n c a r é s e r i e s a r e e a s y t o d e s c r i b e
i f t h e s e f u n c t i o n s a r e r e p r e s e n t e d i n a s p e c i a l —
v i r g i n — f o r m .

Serre [52] was, perhaps, the first to observe several patterns in the behavior and prop-
erties of the Poincaré series of the spherical Coxeter groups:

aThese Lie algebras are currently known under several lame names: “hyperbolic” (also applied to Lorentzian
Lie algebras which constitute a different set) as well as under a misleading name overextended (it is the
Dynkin diagrams that are extended twice, not the Lie algebras). The adjective “hyperbolic” meaningful in
the case of Coxeter groups (and helpful, unless we remember that ALL subgroups of O(p, 1) are hyperbolic,
while we are speaking now only about discrete ones) is ill advised in the case of these Lie algebras.
bThe groups of spherical and Euclidean types are often said to be of elliptic and parabolic types, respectively,
see [4, 57].
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(1) the Poincaré series are reciprocal;
(2) the value of the Poincaré series at 1 is equal to the inverse of the Euler characteristic

of the (geometric realization) of the respective Coxeter group.

In works by M. Davis et al. [18, 17] the whole Poincaré series, not only its value at a point,
is interpreted in terms of the weighted cohomology of Coxeter groups.

The initial goal of this note was to give an e x p l i c i t expression not only of the zeros
of these rational functions (and try to compare them with the eigenvalues of the Coxeter
transformations) but also of their poles (not spoken about in [53, 54, 4] at all) in the par-
ticular cases of the (quasi-)Lannér groups, i.e., Coxeter groups (G,S) with (quasi-)Lannér
Coxeter diagrams. These groups are special in the set of all Coxeter groups, being most
close, in a sense, to the Coxeter groups of spherical and Euclidean type: a given Coxeter
group is (quasi-)Lannér if its Coxeter diagram is connected, neither spherical nor Euclidean,
but any its connected proper subdiagram is spherical (resp. spherical or Euclidean).

Knowing a recurrence formula, the problem does not seem to be difficult ideologically
but how to be sure that the result is correct? Our own mistakes we made at first, and those
we found in the literature, make this question more serious than we thought at first.

For the case of Coxeter diagrams with 3 vertices, see the paper by Wagreich [59]. Wagre-
ich’s paper is very appealing; it also discusses several applications (e.g., due to J. Milnor
and M. Gromov) giving motivation for this type of activity and reasons to publish its results
in a physical journal. For applications of Poincaré series of the Coxeter groups of spherical
or Euclidean type in the theory of simple finite groups, see [53]. There are other types of
applications of the Poincaré series of the hyperbolic groups, see, e.g., [2, 26, 18].

For the Lannér diagrams with 4 and 5 vertices, the answers are known [60], and we used
them to double check our results. We found out that, for 5 vertices, 3 of 5 Worthington’s
answers are wrong. To check our results, we need the correct results of Worthington [60],
and so we reproduce them. References on Poincaré series of Coxeter groups include [12, 23,
22, 29, 45–47], still there is a room to say something reasonable.

It seemed that the denominators of the Poincaré series of Lannér groups do not admit
a nice description (and the situation with quasi-Lannér groups is even worse).

Fact 3. “With the exception of a single real pair of poles, the poles of the
Poincaré series of any compact hyperbolic (Lannér) group with 4 generators
lie on the unit circle C. This is not so for all 5-generator Lannér groups”
([9]).

(1.3)

Taking the above facts into account we see the following problems:

(1) Give reliable criteria for verification of the answers.
(2) Explicitly describe the poles of the Poincaré series of the 5-generator Lannér groups.
(3) Explicitly describe the poles of the Poincaré series of quasi-Lannér groups.
(4) For an infinite Coxeter group G, let e(WG), called the growth exponent, be the inverse

of the radius of convergence R(WG) of the Poincaré series WG(t). Compute e(WG),
cf. [22].
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1.1.1. Our results

We give an explicit form of the Hilbert–Poincaré series (a.k.a. growth functions) of the
Lannér groups with 5 generators and quasi-Lannér groups.

We offer reliable means for verifications of the correctness of the Poincaré series we list.
The notions and ideas we have introduced in order to ensure correctness of the answer (the
virgin and complete forms of the Hilbert–Poincaré series) have already been found useful
in the very lucid paper [38], where growth series of two other types of Coxeter groups are
explicitly computed (and the non-real poles of these series also behave as described in what
follows).

We give an interpretation of the highest and the second highest coefficients of the denom-
inator of the Poincaré series and derive from it that

• If the number of vertices of a given quasi-Lannér diagram is even, then the Euler char-
acteristic of the group vanishes.

• The difference of degrees of the numerator and denominator of the Poincaré series is
always ≤ 1 in the quasi-Lannér cases.

We have found out that the poles of the Poincaré series of the quasi-Lannér groups
behave rather nicely.

1.2. Towards a generalization of the Eneström theorem

1.2.1. Gal’s formulation

For recent studies of the poles of the Poincaré series of Coxeter groups, see Gal’s interest-
ing preprint [24] with preliminary results of an aborted research. Gal considered Coxeter
diagrams for which the nerve NG (see Subsec. 5.5) of the corresponding Coxeter group G

is a homology sphere.c

Gal wondered how many real poles can the Poincaré series of such a group have (he
notes that the degree of the denominator of the Poincaré series of any non-right-angled
Coxeter group may be however greater than the dimension of its nerve). If G is an affine
Coxeter group, then there is a unique real pole of order n at 1 [4]. If dimNG = n ≤ 3, then
there are exactly n positive real poles [47]. Moreover, in these two cases, all the non-real
poles lie on the unit circle.

Gal writes that usually (but does not explain what is the share of this “usually” in
the general picture and what are the exceptions), if dimNG ≥ 3, the non-real poles of the
Poincaré series fail to lie on the unit circle. Looking at the examples known to him Gal
made the following observation (he writes that he “tested a number of groups whose nerve
is a simplex or a product of simplexes” but, regrettably, did not specify the number and
gave only two illustrations which, actually, are L55 and QL102):

several poles lie “near” the real positive half-line and
the rest of the poles tend to lie “near” the unit circle.

(1.4)

We do not know how to quickly say if the nerve of G is a homologic sphere or not, but
the examples Gal gives made us wonder if not just two but ALL the cases we study satisfy
(1.4). Indeed, they are, with several corrections of Gal’s description.

cA homology sphere is an n-dimensional manifold having the same homology groups as Sn does.
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1.2.2. Quasi-Lannér case. General hyperbolic Coxeter groups

Having found the precise expressions of the Poincaré series and their poles we saw that
the distribution of poles, which could have been random, does resemble the pattern (1.4)
almost correctly described by Gal [24]. Let us forget for a moment the poles lying “near
the real positive half-line”; the remaining poles do lie in a thin annulus concentric with and
sometimes containing the unit circle.

Our results and Gal’s hints lead us to a result of G. Eneström [20]. His theorem (rediscov-
ered by Kakeya [35], see interesting reviews [25, 58] and references therein; Kakeya’s work
had some mistakes but, despite this, the statement is often referred to as Eneström–Kakeya
theorem) says

Theorem 1.1. Let p(t) = a0+a1t+ · · ·+antn be a polynomial with positive coefficients, set
m := min0≤i<n

ai
ai+1

, and M := max0≤i<n
ai

ai+1
. Then all the roots of p(t) lie in an annulus

with bounding circles of radius m and M concentric with the unit circle C centered at the
origin.

The coefficients of the denominators of the Poincaré series of the (quasi-)Lannér groups
do not satisfy the conditions of the Eneström theorem but the n o n - r e a l zeros of these
polynomials behave as if they do, or almost: all non-real roots lie in an annulus centered at
the origin (except that we do not know how to define the radii m and M of the bounding
circle from the coefficients and the annulus does not necessarily contain C).

It is natural, therefore, to disregard for a moment the real roots and try to find the
conditions the coefficients of the denominators of the Poincaré series of the (quasi-)Lannér
groups satisfy in order to derive a generalization of the Eneström theorem for polynomials
whose real coefficients can be of any sign or vanish.

At our request, V. Molotkov studied several simplest Lannér cases and saw that the poles
lying on C are hardly roots of unity (unlike the zeros of the numerators of the Poincaré series
of all Coxeter groups). He also observed that, in contradistinction with what is depicted
in Gal’s illustration for QL102, none of the non-real poles is lying “near” the real positive
half-line “parallel to it”. Instead

a l l n o n - r e a l r o o t s l i e i n a thin a n n u l u s c o n c e n t r i c
w i t h t h e u n i t c i r c l e C ; a l l r e a l p o l e s ( i f a n y ) l i e
n e a r 1 o r −1.

(1.5)

Molotkov’s results, more precise than Gal’s, inspired us to verify and sharpen Gal’s conjec-
ture (1.4) as formulated in (1.5); in most cases, NONE of the non-real roots lies on C. Bar few
exceptions for 4-vertex diagrams, the poles we found numerically are non-simple-looking (for
humans) algebraic numbers. Therefore we have summarized the answer by listing only the
real roots and the extremal values of the absolute values of the non-real roots, see Tables 14–
21. We conjectured that t h e n o n - r e a l p o l e s o f t h e P o i n c a r é s e r i e s o f
a n y C o x e t e r g r o u p (G,S) w i t h |S| < ∞ l i e i n a t h i n a n n u l u s: This
was the case with several of the Coxeter groups we inadvertently considered while making
typos in the input data. However, we tested the conjecture on the reflective arithmetic
Coxeter groups ([57], Table in Subsec. 2.1) and non-arithmetic Coxeter groups ([57],
Table in Subsec. 3.2) and found out that this conjecture is overoptimistic: M o s t the
non-real poles of the Poincaré series of these Coxeter groups lie in a thin annulus, but
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not all. Quite a number of works are devoted to applications of Eneström’s theorem and
its generalizations, but the results known to us do not look sufficiently constructive (see,
e.g., [1]).

Problem 1.2. What are the conditions on the coefficients of the real polynomial for its
non-real roots to lie in a thin annulus? How to describe the radii of the circles that bound
the annulus in terms of the coefficients of the polynomial?

The methods of this paper were applied in [38] to several new types of Coxeter groups.

1.3. Discussion: Infinite Coxeter groups

We say that a subgroup GJ of the Coxeter group (G,S) is special (cf. [5, p. 26]) if it is
generated by a subset J ⊂ S.d

We conclude from the results of the paper that amount and interrelation of infinite
special subgroups in the given infinite Coxeter group is very essential and closely related
to predicting coefficients of the Poincaré series. This motivated us to divide the set of all
infinite Coxeter groups as follows.

1.3.1. k-terminal Coxeter groups

We say that an infinite Coxeter group G is k-terminal if the length of any chain of its
infinite special subgroups ordered by inclusion is ≤ k and at least one chain is of length k.
Examples:

{0-terminal Coxeter groups} = {affine Coxeter groups} ∪ {Lannér Coxeter groups}
{1-terminal Coxeter groups} = {quasi-Lannér Coxeter groups}

∪ {Coxeter groups with all special subgroups finite,

affine or Lannér}
(1.6)

Let G be any k-terminal Coxeter group and P(G) the poset of all infinite special sub-
groups of G. Let l(E) be the level of an element E ∈ P(G) defined so that l(G) = 0, l(E) = 1
for any maximal infinite special subgroup, and so on. Denote by Infm the number of infinite
special subgroups of level m in the poset P(G).

1.3.2. Subsets In
i of infinite Coxeter groups

Set

IF := {finite Coxeter groups},
I0
1 := {affine Coxeter groups},

I0
2 := {Lannér Coxeter groups}, I0 = I0

1 ∪ I0
2 ,

dIn some works such a group is called parabolic, but in other works the parabolic group means that wGJw−1

for some w ∈ G, where GJ is the subgroup generated by J ⊂ S. Besides, the term parabolic group is already
occupied in the Lie group theory. On top of this, instead of saying Coxeter groups of spherical and Euclidean
type some say elliptic and parabolic type, respectively, so the term is overused, although in this context it
rhymes with hyperbolic.
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I1
1 := {quasi-Lannér Coxeter groups}

:= {G | every proper special subgroup of G′ ⊂ G is a group from IF ∪ I0
1 , and there

exists G′ ⊂ G such that G′ ∈ I0
1},

I1
2 := {G | every proper special subgroup G′ ⊂ G is a group from IF ∪ I0, and there

exists G′ ⊂ G such that G′ ∈ I0
2}, I1 = I1

1 ∪ I1
2 .

Let us introduce by induction subsets In
1 , In

2 and In as follows:

In
1 :=

{
G | every proper special subgroup G′ ⊂ G is a group from IF ∪

(
n−2⋃
i=0

Ii

)
∪ In−1

1 ,

and there exists G′ ⊂ G such that G′ ∈ In−1
1

}
,

In
2 :=

{
G | every proper special subgroup G′ ⊂ G is a group from IF ∪

(
n−1⋃
i=0

Ii

)
,

and there exists G′ ⊂ G such that G′ ∈ In−1
2

}
, In = In

1 ∪ In
2 .

Proposition 1.3. For n ≥ 0, we have

(1) the set In consists of n-terminal Coxeter groups,
(2) In

1 ∩ In
2 = ∅.

The proposition is easy to prove by induction.

1.3.3. Classification problem

As the next natural step in the study of infinite Coxeter groups, it seems to us important to
describe the set I1

2 , the next after quasi-Lannér Coxeter groups in hierarchy of the k-terminal
Coxeter groups.

2. Precise Setting of the Problems

2.1. Generating functions

Generating functions of graded objects were introduced and studied by Hilbert and Poincaré
at more or less the same time. Leaving touchy priority questions aside, Wikipedia informs us:

“A Hilbert–Poincaré series, named after David Hilbert and Henri Poincaré, is
an adaptation of the notion of dimension to the context of graded algebraic
structures (where the dimension of the entire structure is often infinite). It is
a formal power series in one indeterminate, say t, where the coefficient of tn

gives the dimension (or rank) of the sub-structure of elements homogeneous
of degree n.”

(2.1)

Observe that in the above definition certain restrictions are taken for granted: the dimen-
sion of each homogeneous component must be finite, and only non-negative components
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are usually nonzero; “graded” is only assumed to be by means of Z; for Zk-graded objects
(under similar restrictions: The support of the degrees with non-empty components lies
in the cone with non-negative coordinates and each component is finite), we get series in
several indeterminates, as in [42, 18] and Table 2.

In the particular case of Coxeter groups stratified by the length of their elements, the
term “Hilbert–Poincaré series” is often replaced lately by the growth function. We use the
terminology of the classics, and in a particular case of Coxeter groups of (quasi-)Lannér
type is the object of our study.

2.2. Coxeter groups

A Coxeter system to be a pair (G,S) consisting of a group G and a set of generators S ⊂ G

subject to relations

(st)ms,t = 1, where ms,s = 1, ms,t = mt,s ≥ 2 for s �= t in S. (2.2)

If no relation occurs for a pair s, t, then it is assumed that ms,t = ∞. If this presentation
G is a Coxeter group. The symmetric matrix M = (ms,t)s,t∈S is called a Coxeter matrix.

The presentation of every finitely generated Coxeter group can be illustrated by an undi-
rected labeled graph, called Coxeter diagram, whose vertices correspond to the generators
S of G and edges are as follows. If ms,t = 2 then no edge joins s and t. If ms,t = 3, then
an edge joins s and t. The edge between the vertices corresponding to s, t ∈ S is endowed
with label ms,t if ms,t > 3.

The Poincaré series WG,S(t) of a group G relative to a finite generating set S is briefly
denoted WG(t) and defined as follows. For any g ∈ G, define the length l(g) to be the
minimum length of all words in S representing g �= 1 and l(1) = 0. Then

WG(t) :=
∑
g∈G

tl(g). (2.3)

Remarks 2.1. (1) The Coxeter diagrams, so graphic for Weyl groups of finite dimensional
and Kac–Moody Lie algebras, are utterly useless if the Coxeter matrix is not sparse, as is
the case of Lorentzian Lie algebras considered by Borcherds, and Gritsenko and Nikulin,
see [27], or in the cases considered in Subsec. 3.3. In this note, we deal with the cases
where graphs are helpful, but the reader should realize that actually we deal with Coxeter
matrices.

(2) Other notation used (less convenient, we think, if there are many cases of multiple
edges): The edge between nodes s and t is often depicted as a multiple one of multiplicity
ms,t − 2, unless ms,t = ∞; for ms,t = ∞, the edge is usually depicted thick.

For the Lie algebra g(A) with Cartan matrix A normalized, as usual, so that Aii = 2,
and with non-positive integer off-diagonal elements, the Coxeter matrix M = (mij)ij∈S is
given by the conditions

AijAji 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞ (2.4)
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We do not reproduce the list of spherical (resp. Euclidean) Coxeter diagrams (see [56]):
They are easily obtained from the well-known Dynkin graphs and their Cartan matrices,
see [4], (resp. from their extended versions, see [34, 55]).

2.3. Exponents

Let G be a finite group generated by reflections ri, where i = 1, . . . , n, in the Euclidean
space or, equivalently, on the sphere. (For example, the Weyl group G = Gg of a simple
Lie algebra g naturally acts in the root space of g.) Let C :=

∏
ri be the product of all

generators (in any order; all these products are conjugate, see [55]). For the Weyl groups
of simple finite dimensional and affine Kac–Moody Lie algebras, the eigenvalues of C are
of the form ωmi , where ω = e2πi/h and where h = 1 + max mi is the Coxeter number —
the order of C ([13, 44, 55]). The numbers mi are called the exponents of the corresponding
Coxeter group, see [14, Table 2], and our Table 1.

Here is an excerpt from [14, p. 765] regarding exponents (at places in our own words):

“Most of the applications of C are related with h. We consider the character-
istic roots

ωm1 , . . . , ωmn

of C and the exponents are certain integers which may be taken to lie between
0 and h. They are computed by a trigonometrical formula involving the periods
[i.e., orders] mij of the products of pairs of generators. (The product of two
reflections is simply a rotation.)
The point of interest is that the same integers occur in a different connection.
It turns out that the order of the group is

(ml + 1)(m2 + 1) · · · (mn + 1),

and that these factors mi+1 are the degrees of n basic invariant forms [William
Burnside, Theory of Groups of Finite Order, Cambridge, 1911; Chapter XVII].
Moreover, when every mij is equal to 2, 3, 4 or 6, so that the group is crystal-
lographic, there is a corresponding continuous group G, and the Betti numbers
of the group manifold are the coefficients in the Poincaré polynomial (of the
manifold of the Lie group G)

(1 + t2ml+1)(1 + t2m2+1) · · · (1 + t2mn+1).”

(2.5)

2.4. The Hilbert–Poincaré series (a.k.a. growth functions) of

the Coxeter groups

Following Solomon, Bourbaki [4] gives an explicit expression of the Poincaré series PWg (t)
for the Weyl group Wg of simple finite dimensional Lie algebra g in terms of exponents:

PWg (t) =
∏ 1 − tmi+1

1 − t
. (2.6)

This formula is applicable not only to the Weyl groups of the simple finite dimensional Lie
algebras, but to other groups of spherical type, see Table 2.
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Table 1. The exponents, Coxeter number, and the maximal length of the elements in the
spherical Coxeter groups with connected Coxeter diagram.

Coxeter Lie Exponents Maximal length Coxeter
group algebra mi l(w0) =

P
mi number h

An sl(n + 1) 1, 2, 3, . . . , n
n(n + 1)

2
n + 1

Bn o(2n) for n ≥ 2 1, 3, . . . , 2n − 1 n2 2n

Cn sp(2n) for n ≥ 2 1, 3, . . . , 2n − 1 n2 2n
Dn o(2n + 1) 1, 3, . . . , 2n − 3; n − 1 n(n − 1) 2(n − 1)
G2 g2 1, 5 6 6
F4 f4 1, 5, 7, 11 24 12
E6 e6 1, 4, 5, 7, 8, 11 36 12
E7 e7 1, 5, 7, 9, 11, 13, 17 63 18
E8 e8 1, 7, 11, 13, 17, 19, 23, 29 120 30

I
(m)
2 for m > 6 — 1, m − 1 m m

or m = 5
H3 — 1, 5, 9 15 10
H4 — 1, 11, 19, 29 60 30

Note: The groups I
(m)
2 are the non-crystallographic dihedral groups for m = 5 and m > 6.

For m = 3, 4, and 6, respectively, we have the crystallographic dihedral group as follows:

A2 = I
(3)
2 , B2 = C2 = I

(4)
2 , G2 = I

(6)
2 .

The generalization of (2.6) to affine Weyl groups is due to Bott [3]; see also Reiner’s
notes [49] with an exposition of the proof of Bott’s result due to Steinberg [54]. Bott keeps
writing about the loop groups or loop algebras (i.e., algebras of the form g̃ := g⊗C[u−1, u],
where g is any simple finite dimensional Lie algebra), but in reality he only considers the
Weyl groups of the Lie algebras of these loop groups. Since the exponents are defined up
to dualization of the root system, the Poincaré series for the “twisted” affine Kac–Moody
algebras are covered by Bott’s result. The answer is given by the formula

PWg̃
(t) =

∏ 1 − tmi+1

(1 − t)(1 − tmi)
= PWg (t)

∏ 1
1 − tmi

. (2.7)

Let us now try to perform the next step — consider the Weyl groups of almost affine Lie
algebras.

2.5. Digression: (Quasi-)Lannér groups are the Weyl groups

of almost affine Lie algebras

There are several (intersecting but distinct) sets of Lie algebras whose elements are often
called “hyperbolic” Lie algebras. We would like to carefully distinguish between these sets so
need an appropriate name for each. We say that a submatrix of a square matrix is principal if
it is obtained by striking out a row and column that intersect on the main diagonal. We say
that Lie algebra with Cartan matrix whose entries belong to the ground field is almost affine
if it is not finite dimensional or affine, and its subalgebra corresponding to any principal
submatrix of the Cartan matrix is the sum of finite dimensional or affine Lie algebras.

Z. Kobayashi and J. Morita classified the almost affine Lie algebras with indecomposable
symmetrizable Cartan matrix of size > 2 [39]. Later, Li Wang Lai [41] obtained a complete
answer (for Cartan matrices of size > 2): there are 238 almost affine Lie algebras; 142
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of these algebras have a symmetrizable Cartan matrix. Later Saçlioğlu [51] rediscovered
the result of Kobayashi and Morita (with few omissions); his paper is devoted to physical
applications and is very interesting.

In this paper we derive explicit formulas for the Poincaré series of the groups most close
in a sense to the Weyl groups of simple finite dimensional Lie algebras. In the literature,
in similar studies, the authors write sometimes that they are studying the Lie algebras or
even the Lie groups having these Lie algebras, whereas they are only studying the Weyl
groups of these Lie algebras. This subtlety is sometimes important: In particular, to list
all the groups we are dealing with (Lannér and quasi-Lannér) is much easier than to list
the Lie algebras whose Weyl groups they are. These are almost affine (a.k.a hyperbolic)
Lie algebras; their complete list was unknown when the description of the growth functions
of their Weyl groups has begun (and the classification of these Lie algebras is not needed
in this particular study of their Weyl groups). There are several stages of generalization of
simple finite dimensional Lie algebras (which all possess very particular Cartan matrices)
to the Lie algebras with more-or-less arbitrary Cartan matrix. We intend to generalize the
results on the growth functions known for the Weyl groups of simple finite dimensional and
affine Kac–Moody Lie algebras to the case of Weyl groups of almost affine Lie algebras.
These Lie algebras became of acute interest lately in connection with “cosmic billiards”; for
details and further references, see [30], [7]. The Poincaré series of the Weyl groups of almost
affine Lie algebras are invariants of these Lie algebras that can be used further, see [59]
and references therein. The set of almost affine Lie algebras has a non-empty intersection
with the (different) set of Lorentzian Lie algebras, sometimes also called “hyperbolic”. For
applications of Lorentzian Lie algebras, see [48], [27]. For one of these applications Borcherds
was awarded with a Fields medal.

3. The Poincaré Series (Known Facts)

3.1. The Solomon-Steinberg recursion (3.1)

For any finite set X, let ε(X) = (−1)card(X). Let WX(t) be the Poincaré series (a polynomial
or series) of the Coxeter group GX whose Coxeter graph is X. If card GD < ∞, let M be
the maximal length of the elements of GD (there is only one element of maximal length).

Ex. 26 to §1 of Ch. 4 [4] claims that f o r a n y C o x e t e r g r a p h D, w e h a v e
(this formula is obviously due to Solomon [53] (although in particular cases of finite Weyl
groups this may have been established earlier by Chevalley, see §3.15 in [32]); Steinberg [54],
Theorem 1.25 gave a simpler proof; for an exposition of Steinberg’s proof, see also [42], where
there are considered multiparameter series t a k i n g i n t o a c c o u n t d i f f e r e n c e
i n l e n g t h o f r o o t se); here X is any completef subgraph of D:

∑
X⊂D

ε(X)
WX(t)

=


tM

WD(t)
if card GD < ∞,

0 otherwise.
(3.1)

In this expression, the summand corresponding to the empty subgraph is equal to 1.

eTherefore, for this task, we need not just Coxeter graphs (i.e., Coxeter matrices) but the Dynkin diagrams
(Cartan matrices), and hence the classification of almost affine (a.k.a. hyperbolic) Lie algebras due to [41, 51];
for the list of such diagrams/matrices, see also [11].
fRecall that a subgraph is complete if each of its nodes is connected to every other of its nodes.
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Recall that the rational (non-polynomial) function P (t) is said to be reciprocal if
P (t−1) = P (t); if P (t−1) = −P (t) the rational function P (t) is often said to be anti-
reciprocal.

The polynomial function P (t) is said to be reciprocal (resp. anti-reciprocal) if

P (t) = tMP (t−1), (resp. P (t) = −tMP (t−1)), where M = deg P .

The (anti-)reciprocal function is said to be ±-reciprocal.
The recurrence (3.1) and ±-reciprocity of WX(t) if |GX | < ∞ imply the following

sharpening of (3.1) due to Steinberg [54]: If card GD = ∞, then

1
WD(t−1)

=
∑

X⊂D|cardGX<∞

ε(X)
WX(t)

. (3.2)

To begin the induction, recall the following facts:

(0) If the Coxeter graph X is the disjoint union of its connected components Xi, then
WX(t) =

∏
WXi(t). Hereafter it is advisable to use standard simplified notation: For

any n ∈ N ∪ {∞}, set

[n] :=

1 + t + · · · + tn−1 for n < ∞,

1 + t + · · · =
1

1 − t
for n = ∞.

(3.3)

(1) P∅(t) = 1 and P∗(t) = 1 + t = [2] (that is, for the graph consisting of 1 vertex and 0
edges).

(2) If X has two vertices joined by m − 2 edges, then

WX(t) =


(1 + t)(1 − tm+2)

1 − t
= [2][m + 1] if 3 ≤ m < ∞ (for I

(m)
2 ),

1 + t

1 − t
= [2][∞] if m = ∞ (for I

(∞)
2 ).

(3.4)

(3) The Poincaré series of the 3-generator Coxeter group Gp,q,r with diagram L3 or QL3
(if |Gp,q,r| < ∞, then 1

p + 1
q + 1

r > 1):

WGp,q,r(t) =
[2][p][q][r]

[2][p][q][r] − 3[p][q][r] + [p][q] + [p][r] + [q][r]

×
{

(tM + 1) if |Gp,q,r| < ∞,

1 otherwise.
(3.5)

The Coxeter graphs are as follows:

L3: Each diagrams on 3 vertices is a triangle with edges labeled by p, q, r such that
2 ≤ p, q, r < ∞ and 1

p + 1
q + 1

r < 1. One (only one) of the labels p, q, r may be equal
to 2, and then the graph is not, actually, a triangle.

QL3: The graphs look as those for L3 but any of the labels p, q, r may be (and at least
one is) equal to ∞.

We summarize the results needed to explicitly compute (3.2) in Table 2.
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Table 2. The Poincaré series of the spherical Coxeter groups with connected Coxeter diagram.

Coxeter group Its Poincaré series

An [2] · · · [n + 1]

Bn [2] · · · [2n]

Dn [2] · · · [2n − 2][n]

G2 [2][6]

F4 [2][6][8][12]

E6 [2][5][6][8][9][12]

E7 [2][6][8][10][12][14][18]

E8 [2][8][12][14][18][20][24][30]

I
(m)
2 for 5 ≤ m ≤ ∞ [2][m]

H3 [2][6][10]

H4 [2][12][20][30]

Coxeter group Multiparameter Poincaré series (u := t1t2)

I
(m)
2 for 6 ≤ m = 2k ≤ ∞ (1 + t1)(1 + t2)

8>><
>>:

1 − um

1 − u
if m < ∞

1

1 − u
if m = ∞

F4

0
@ Y

j=1,2

(1 + tj)(1 + tj + t2j )(1 + utj)

1
A

3Y
i=1

(1 + ui)

Bn (t2 corr. to the short root)

n−1Y
i=0

(1 + ti1t2)(1 + t1 + · · · + ti1)

Cn (t2 corr. to the long root)
n−1Y
i=0

(1 + ti1t2)(1 + t1 + · · · + ti1)

3.2. Lannér and quasi-Lannér diagrams on > 3 vertices

In the literature we saw, these diagrams are seldom identified (the only exception known
to us is an interesting paper [33] with too complicatedg names for them), so we simply
number them for convenience. The first to list these diagrams was, it seems, Lannér [40],
see also [15].

For the Lannér diagrams and the corresponding Poincaré series, see Tables 3 and 4.
For the quasi-Lannér diagrams and the corresponding growth functions, see Tables 5–12.

3.2.1. Worthington’s results

For the Lannér groups with 4 generators, Worthington computed their Poincaré series, and
we confirm them in Table 3. Worthington computed the Poincaré series of the quasi-Lannér
groups with 5 generators, but in 3 of 5 cases his answers are wrong.

gIn addition to overcomplicated proper names, called Witt symbols, there are given in [33] also Coxeter
symbols that less vaguely encode some of the Coxeter graphs but cannot be used as short names, either, and
are not clearly defined for an arbitrary diagram in either [13] or [33] (try to reconstruct the rules for, e.g.,
DP 3, M3 or N4).
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Table 3. The Lannér diagrams on 4 vertices and Poincaré series.

Label Diagram degrees Poincaré series χ = 0 in all cases

L41
[2][6][10]

t15 − t14 − t11 + t4 + t − 1
(11, 11)

=
[2][6][5′]

t11 − 2t10 + t9 − t7 + 2t6 − 2t5 + t4 − t2 + 2t − 1

L42 The numerator is [4][6][10]

The denominator is t17 − t16 + t15 − 2t14 + t13 − 2t12 + t11 − t10

(15, 15)
+ t9 − t8 + t7 − t6 + 2t5 − t4 + 2t3 − t2 + t − 1

Can be reduced to the numerator: [4][10][3′] and denominator:

t15 − 2t14 + 2t13 − 2t12 + t11 − t10 + t9 − t8 + t7 − t6

+ t5 − t4 + 2t3 − 2t2 + 2t − 1

L43
[2][6][10]

t15 − t14 − t12 − t9 + t8 − t7 + t6 + t3 + t − 1
(13, 13)

=
[2][10](1 + t3)

t13 − 2t12 + t11 − t9 + t8 − t7 + t6 − t5 + t4 − t2 + 2t − 1

L44 The numerator is [4][6][10]

The denominator is t17 − t16 + t15 − 2t14 + t13 − 3t12 + 2t11

(11, 11) − 3t10 + 3t9 − 3t8 + 3t7 − 2t6 + 3t5 − t4 + 2t3 − t2 + t − 1

Can be reduced to
[4][3′][5′]

t11 − 3t10 + 4t9 − 4t8 + 3t7 − 2t6 + 2t5 − 3t4 + 4t3 − 4t2 + 3t − 1

L45
[2][4][6]

t9 − t8 − t7 + t2 + t − 1
=

[2][4][3′]
t7 − 2t6 + 2t4 − 2t3 + 2t − 1

(7, 7)

L46
[4][6][10]

t17 − t16 − t14 − t13 − t12 − t11 + t6 + t5 + t4 + t3 + t − 1

(17, 17)

(11, 11) Can be reduced to:
[4][3′][5′]

t11 − 3t10 + 3t9 − t8 − 2t7 + 4t6 − 4t5 + 2t4 + t3 − 3t2 + 3t − 1

L47
[2][4][6]

t9 − t8 − t7 − t6 + t3 + t2 + t − 1

(9, 9)

(7, 7) Can be reduced to:
[2][4][3′]

t7 − 2t6 + t4 − t3 + 2t − 1

L48
[2][6][10]

t15 − t14 − t13 − t12 − t11 − t10 + t5 + t4 + t3 + t2 + t − 1

(15, 15)

(9, 9) Can be reduced to:
[2][3′][5′]

t9 − 3t8 + 2t7 + t6 − 3t5 + 3t4 − t3 − 2t2 + 3t − 1

L49
[4][6][10]

t17 − t16 − 2t14 − t13 − 2t12 − t10 + t9 − t8 + t7 + 2t5 + t4 + 2t3 + t − 1

(17, 17)

(11, 11) Can be reduced to:
[4][3′][5′]

t11 − 3t10 + 3t9 − 2t8 + 2t6 − 2t5 + 2t3 − 3t2 + 3t − 1
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Poincaré Series of Quasi-Lannér Groups 183

Table 4. The Lannér diagrams on 5 vertices and Poincaré series.

L51 The numerator is [2][12][20][30]

χ = 1/14400 The denominator is t60 − t59 − t53 + t52 − t51 + t50 − t49 + t46 − t45 + t44

deg = (60, 60) − 2t43 + 2t42 − t41 + t40 − t39 + t38 − t37 + 2t36 − 2t35 + 2t34 − 2t33

+ 2t32 − t31 + t30 − t29 + 2t28 − 2t27 + 2t26 − 2t25 + 2t24 − t23 + t22

− t21 + t20 − t19 + 2t18 − 2t17 + t16 − t15 + t14 − t11 + t10 − t9

+ t8 − t7 − t + 1

L52 The numerator is [2][8][12][20][30]

χ = 17/28880 The denominator is t67 − t64 − t62 − 2t60 − t59 − 2t58 − 2t56 − 2t54 + t53

deg = (67, 67) − t52 + 2t51 − t50 + 2t49 + 3t47 + 3t45 + t44 + 4t43 + 2t42 + 4t41 + 2t40

+ 4t39 + 3t38 + 4t37 + 3t36 + 4t35 + 4t34 + 4t33 + 4t32 + 3t31 + 4t30

+ 3t29 + 4t28 + 2t27 + 4t26 + 2t25 + 4t24 + t23 + 3t22 + 3t20 + 2t18

− t17 + 2t16 − t15 + t14 − 2t13 − 2t11 − 2t9 − t8 − 2t7 − t5 − t3 + 1

Can be reduced to numerator: [2][12][20][30][4′ ]

t64 − t63 − t61 + 2t60 − 2t59 + t58 − 3t57 + 3t56 − 3t55 + 3t54 − 5t53 + 5t52

(64, 64) − 5t51 + 6t50 − 7t49 + 8t48 − 8t47 + 9t46 − 9t45 + 11t44 − 11t43 + 12t42

− 11t41 + 14t40 − 13t39 + 14t38 − 13t37 + 16t36 − 14t35 + 15t34 − 14t33

+ 17t32 − 14t31 + 15t30 − 14t29 + 16t28 − 13t27 + 14t26 − 13t25 + 14t24

− 11t23 + 12t22 − 11t21 + 11t20 − 9t19 + 9t18 − 8t17 + 8t16 − 7t15 + 6t14

− 5t13 + 5t12 − 5t11 + 3t10 − 3t9 + 3t8 − 3t7 + t6 − 2t5 + 2t4 − t3 − t + 1

L53 The numerator is [2][12][20][30]

χ = 13/7200
The denominator is t60 − t59 − t57 − t53 − t51 + 2t50 − 2t49 + 2t48 − 2t47

deg = (60, 60)
+ 2t46 + 2t44 − 2t43 + 2t42 − 2t41 + 6t40 − 3t39 + 4t38 − 3t37 + 4t36

+ 4t34 − 3t33 + 4t32 − 3t31 + 8t30 − 3t29 + 4t28 − 3t27 + 4t26 + 4t24

− 3t23 + 4t22 − 3t21 + 6t20 − 2t19 + 2t18 − 2t17 + 2t16 + 2t14 − 2t13

+ 2t12 − 2t11 + 2t10 − t9 − t7 − t3 − t + 1

L54 The numerator is [2][12][20][30]

The denominator is t60 − t59 − t57 + t56 − t55 − t53 + t52 − t51 − t49 + 2t48

χ = 17/14400 − t47 + t46 − t45 + 2t44 − t43 + t42 − t41 + 3t40 − t39 + 2t38 − t37 + 3t36

deg = (60, 60) − t35 + 2t34 − t33 + 3t32 − t31 + 3t30 − t29 + 3t28 − t27 + 2t26 − t25

+ 3t24 − t23 + 2t22 − t21 + 3t20 − t19 + t18 − t17 + 2t16 − t15 + t14 − t13

+ 2t12 + t11 − t9 + t8 − t7 − t5 + t4 − t3 − t + 1

L55 The numerator is [2][5][6][8][12]

χ = 11/5760
The denominator is t28 − t26 − t25 − t24 − 2t23 − 2t22 − t21 + t20 + t19

deg = (28, 28)
+ 2t18 + 2t17 + 3t16 + 2t15 + 3t14 + 2t13 + 3t12 + 2t11 + 2t10 + t9 + t8

− t7 − 2t6 − 2t5 − t4 − t3 − t2 + 1
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Table 5. The quasi-Lannér diagrams on 4 vertices and Poincaré series, none of them reciprocal.

Label Diagram degrees Poincaré series χ = 0 in all cases Inf.gr. = bn + 1

QL41
[2][4][6]

t8 − t4 − t + 1
1

(9, 8)

QL42
[2][4][6]

t8 + t6 − t5 − t3 − t + 1
1

(9, 8)

QL43
[2][6][10]

t14 + t12 − t5 − t3 − t + 1
1

(15, 14)

QL44
[2]2[6]

t7 + t6 − t5 − t2 − t + 1
2

(7, 7)

QL45
[2][6]

t6 − t4 + t2 − 2t + 1
2

(6, 6)

QL46
[2][4][6]

t8 − t3 − t + 1
1

(9, 8)

QL47
[2]2[4]

t5 + t4 − t3 − t2 − t + 1
2

(5, 5)

QL48
[2][4][6]

t8 + t6 − t5 + t4 − 2t3 − t + 1 1

(9, 8)

(7, 6) Can be reduced to:
[2][4][3′ ]

t6 − t5 + t4 − t3 + t2 − 2t + 1

3.3. Two interesting (and correct although strange) — but useless

for us — formulas

Floyd and Plotnick [23] cite the following statement they attribute to Parry. The first
displayed equation on p. 524 of [23] gives the following presentation of a Coxeter group G:

G = 〈g1, . . . , gd | g2
i , (gigi+1)ai〉. (3.6)

Obviously i runs 1 through d and — although this was not mentioned (sapienti sat) — the
relation between gd and gd+1 should be understood as a relation between gd and g1. Since
nothing is mentioned, there are no relations between gi and gj for i �= j ± 1 (and gd and gj

for j �= d − 1 or 1), i.e., there are lots of relations of the form (gigj)∞ = 1. Then (as usual,
the hatted factor should be ignored, i.e., set to be equal to 1)

WG(t) =
[2][a1] · · · [an]

(t + 1 − n)[a1] · · · [an] +
∑

[a1] · · · [̂ai] · · · [an]
. (3.7)
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Table 6. The quasi-Lannér diagrams on 4 vertices and Poincaré series, none of them reciprocal.

Label Diagram Poincaré series χ = 0 in all cases Inf.gr. = bn + 1

QL49
[2]2[4]

2t5 + t4 − 2t3 − t2 − t + 1
3

(5, 5)

QL410
[4][6]

t8 + t6 − t5 − t3 + t2 − 2t + 1
2

(8, 8)

QL411
[2][4][6]

t9 + t8 + t7 + t6 − t5 − t4 − t3 − t2 − t + 1
2

(9, 9)

QL412
[2][6][10]

t15 + t14 + t13 + t12 + t11 − 2t5 − t4 − t3 − t2 − t + 1
2

(15, 15) Can be reduced to:
[2][6][5′ ]

t11 − 2t + 1

QL413
[2][6]

3t6 − 2t5 − 2t + 1
4

(6, 6)

QL414
[2][4][6]

t8 + t7 − t3 − t2 − t + 1
1

(9, 8) Can be reduced to:
[2][4][3′ ]

t6 − t4 + t3 − 2t + 1

QL415
[2][4][6]

(t9 + t8 + t7 − 2t3 − t2 − t + 1
2

(9, 9) Can be reduced to:
[2][4][3′ ]

t7 − 2t + 1

QL416
[2][4]

3t4 − 2t3 − 2t + 1
4

(4, 4)

QL417
[3][4]

t4 − t3 + t2 − 2t + 1
1

(5, 4)

QL418 − [2][4][6]

t8 + t6 − t4 − t2 − t + 1
1

(9, 8)
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Table 6. (Continued)

Label Diagram Poincaré series χ = 0 in all cases Inf.gr. = bn + 1

QL419
[2][6][10]

t14 + t12 + t11 − t5 − t4 − t2 − t + 1
1

(15, 14) Can be reduced to:
[2][6][5′ ]

t10 − t9 + t8 − t6 + t5 − t4 + t3 − 2t + 1

QL420
[2][6]

2t6 − t5 − t4 + t3 − 2t + 1
3

(6, 6)

QL421
[3][4]

t5 − 2t + 1 2
(5, 5)

QL422
[2][3]

3t3 − 2t2 − 2t + 1 4
(3, 3)

In 1991, Floyd submitted a paper [22] in which the following condition of applicability
of formula (3.7) is added to the conditions given in [23]: The set a1, . . . , an is said to be
unacceptable if (a1, . . . , an) = (2, 2, 2, 2) for n = 4 or 1

a1
+ 1

a2
+ 1

a3
≥ 1 for n = 3. For all

other — a c c e p t a b l e — sets of labels, the following formula is offered in place of (3.7):

WG(t) =
[2][a1] · · · [an]

[2][a1] · · · [an] − t
∑

[a1] · · · [ai − 1] · · · [an]
. (3.8)

The MAIN applicability condition of (3.7) and (3.8) mentioned in [23, 22] is, however, that

the group G should act on the 2-dimensional hyperbolic space. (3.9)

The mysterious (how to verify it for an abstractly given group?) condition (3.9) is applicable
to the (quasi-)Lannér graphs only in certain cases of three vertices, so it is of no interest to
us. We have included the remarkable — they are symmetric in the ai which is astounding —
formulas (3.7) and (3.8) in this paper for completeness of the picture.

3.4. The multiparameter case

Macdonald [42] describes the passage to the multiparameter case with his usual clarity:
For any Coxeter group (G,S), let Si for a set of indices I, be the equivalence classes of

the relation “s is conjugate to s′ in G ” between elements of s, s ∈ S.

The subsets Si can be read off the Coxeter diagram of the group (G,S) by
“reduction modulo 2”: if we delete from the diagram all bonds bearing the even
label or ∞, then the connected components of the resulting graph correspond
to the Si.

(3.10)
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Table 7. The quasi-Lannér diagrams on 5 vertices and Poincaré series, none of them reciprocal.

Label Diagram χ, degrees Poincaré series Inf.gr. = bn + 1

QL51 The numerator is [2][6][8][12]

χ = −1/1152 The denominator is t23 + t19 − t18 − t16 + t15 − 2t14

(24, 23) + t13 − 2t12 + t11 − 2t10 + 2t9 − 2t8 + t7 − t6 1

+2t5 − t4 + t3 + t − 1

QL52 The numerator is [2][6][8][12]

The denominator is t23 + t20 − t17 − t15 − t13 − t12

χ = −1/576 − t11 − t8 + t5 + t3 + t − 1 1
(24, 23)

QL53 The numerator is [2][4][5][6][8]

χ = −1/1920
The denominator is t19 + t18 + t17 + t16 − t14 − t13

− 2t12 − 2t11 − 2t10 − t9 − t8 + t7 + t6 1

(20, 19) +2t5 + t4 + t3 − 1

QL54 The numerator is [2][4][6][8]

χ = −1/384
The denominator is t16 + t15 − t12 − 2t10 + t9 − 3t8

(16, 16) + t7 − 2t6 + 2t5 − t4 + 2t3 + t − 1 2

QL55 The numerator is [2][4]2[6]

χ = −1/192

The denominator is

(12, 12)

2t12 + t11 − 4t8 − t7 − 3t6 + 2t5 − t4 + 3t3 + t − 1 3

QL56 The numerator is [2][6][8][12]

χ = −1/144

The denominator is t23 + t22 + t20 − t17 − 2t16

(24, 23)

− t15 − t14 − t13 − 3t12 − t11 − t10 − 3t8 + t5 1

+ t3 + t2 + t − 1

QL57 The numerator is [2][4]2[5][6]

χ = −1/960

The denominator is t15 + t14 + t13 + t12 − t11 − 2t10 1

(16, 15)

− 2t9 − 3t8 − t7 + t5 + 2t4 + t3 + t2 − 1
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Table 7. (Continued)

Label Diagram χ, degrees Poincaré series Inf.gr. = bn + 1

QL58 The numerator is [2][4][6][8]

χ = −1/192

The denominator is t16 + t15 − t11 − t10 − t9 2

(16, 16)

− 2t8 − t7 + t3 + t2 + t − 1

QL59 The numerator is [2][4]2 [6]

χ = −1/192

The denominator is 2t12 + t11 − t10 + t9 − 3t8 − 2t7 3

(12, 12)

− t6 − 2t5 + t3 + 2t2 + t − 1

Table 8. The quasi-Lannér diagrams on 6 vertices and Poincaré series.

Label Diagram degrees Poincaré series χ = 0 in all cases Inf.gr. = bn + 1

QL61 The numerator is [2]2[6][8][12]

(25, 25) The denominator is t25 + t24 − t23 − t22 − t19

− t18 + 2t16 − t15 − t14 + t13 + t12 − t11 + t10 2

+ t7 + t6 − 2t5 + t3 − t2 − t + 1

QL62 The numerator is [2][6][8][10][12]

(33, 32) The denominator is t32 − t26 − t23 − t22 − t19 + t18 1

+ t16 + t14 + t12 − t5 − t + 1

QL63 The numerator is [2]2[6][8][12]

(25, 25) The denominator is t25 + t24 − t23 − t22 − t19 2

− t18 + 2t16 − t15 − t14 + 2t12 − t11 + 2t8 − t5

+ t4 − t2 − t + 1

QL64 The numerator is [2]2[6][8][12]

(25, 25)

The denominator is 2t25 + t24 − 2t23 − t22 − 2t19 3

− t18 + 3t16 − 2t15 − t14 + 3t12 − 2t11

+ t10 + 2t8 + t6 − 2t5 + t4 − t2 − t + 1

QL65 The numerator is [2][4][6][8][10]

(25, 24)

The denominator is t24 − t20 − t18 − t15 + t12 + t10 1

+ t8 − t3 − t + 1

(23, 22) Can be reduced to numerator: [2][4][8][10][3′ ]
t22 − t21 + t19 − 2t18 + t17 − t15 + t14 1

− t13 + t11 − t9 + 2t8 − t7 + t5 − t4 + t2 − 2t + 1
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Poincaré Series of Quasi-Lannér Groups 189

Table 8. (Continued)

Label Diagram degrees Poincaré series χ = 0 in all cases Inf.gr. = bn + 1

QL66 The numerator is [2]2[4][6][8]

(17, 17)

The denominator is 2t17 + t16 − 2t15 − 2t14 − t13 3

− t11 + 3t8 + t6 + t4 − t3 − t2 − t + 1

QL67 The numerator is [2]2[4][6][8]

(17, 16)

The denominator is t16 − t14 − t12 + t8 − t7 + 2t5 + t4 1

− t3 − t2 − t + 1

QL68 The numerator is [2]2[4][6][8]

(17, 17)

The denominator is 3t17 + t16 − 3t15 − 3t14 − t13 4

+ t12 − 2t11 + 4t8 − t7 + 2t6 + 2t4 − 2t3 − t2 − t + 1

QL69 The numerator is [2]2[4]2[6]

(13, 13)

The denominator is 4t13 + t12 − 4t11 − 6t10 − 3t9 + 3t8

+ 5t6 + 2t5 + 3t4 − 4t3 − t2 − t + 1

(11, 11) Can be reduced to numerator: [2]2[4]2[3′]
4t11 − 3t10 − 5t9 + 2t8 + t6 − t5 + 5t4 − 2t3 − 2t + 1 5

QL610 The numerator is [2][5][6][8]

(17, 16)

The denominator is t16 − t15 − t11 + t9 − t8 1

+ t7 + t3 − 2t + 1

QL611 The numerator is [2][6][8][10][12]

(33, 33)

The denominator is t33 + t32 + t31 − t28 − 2t26 − t25

− t24 − 3t23 − 3t22 − t21 − t20 − 2t19 + t18 + 2t16

+ t15 + 2t14 + t13 + 3t12 + t11 + t10 + t9 + t8

− t5 − t2 − t + 1

(29, 29) Can be reduced to numerator: [2][6][8][12][5′ ]
t29 − t26 + t23 − 2t22 − 2t19 + t18 − t15 2

+ t14 + 2t12 − t11 + 2t8 − t6 + t3 − 2t + 1

QL612 The numerator is [2][6][8][12]

(24, 24)

The denominator is 5t24 − 4t23 − 2t21 + 3t20 − 6t19 + 3t18

− 6t17 + 7t16 − 4t15 + 2t14 − 6t13 + 8t12 − 4t11
6

+ 2t10 − 2t9 + 5t8 − 2t7 + 3t6 − 2t5 + t4 − 2t + 1
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Table 9. The quasi-Lannér diagrams on 7 vertices and Poincaré series.

Label Diagram, degrees Poincaré series Inf.gr. = bn + 1

QL71 The numerator is [2][4][6][8][9][10][12]

(44, 43)

The denominator is t43 + t42 + t41 + t40 − t37 − t36

− 2t35 − 3t34 − 3t33 − 3t32 − 3t31 − 2t30 − t29 + t28 1

+ 2t27 + 3t26 + 4t25 + 4t24 + 5t23 + 5t22 + 4t21 + 2t20

+ t19 − t18 − t17 − 3t16 − 3t15 − 4t14 − 3t13 − 3t12

− t11 − t10 + t9 + t7 + t6 + t5 + t4 + t3 − 1

QL72 The numerator is [2]2[6][8][9][10][12]

(42, 41)

The denominator is t41 + t40 − t35 − t34 − t33

− 2t32 − 2t31 − 2t30 − t29 − t28 + 2t26 + 2t25 + t24 1

+ 2t23 + 3t22 + 4t21 + 3t20 + t19 − t15 − 2t14 − 2t13

− 2t12 − 2t11 − t10 + t4 + t3 + t2 − 1

QL73 The numerator is [2]2[6][7][8][9][10][12]

(48, 47)

The denominator is t47 + 2t46 + 2t45 + 2t44 + 2t43

+ 2t42 + t41 − 2t40 − 4t39 − 6t38 − 9t37 − 11t36

− 12t35 − 13t34 − 11t33 − 7t32 − 3t31 + t30 + 6t29 1

+ 12t28 + 18t27 + 21t26 + 22t25 + 21t24 + 19t23

+ 17t22 + 13t21 + 6t20 − 5t18 − 8t17 − 10t16 − 12t15

− 12t14 − 10t13 − 9t12 − 6t11 − 2t10 + t8 + 2t7

+ 2t6 + 2t5 + 2t4 + 2t3 + t2 − t − 1

Let t = (ti)i∈I be a family of indeterminates. For each s ∈ S, define

ts := ti for s ∈ Si. (3.11)

Let w = si1 · · · sil be a reduced decomposition of any w ∈ G, i.e., representation of w as the
product of the least number of generators. Then the monomial

tw := tsi1
· · · tsil

(3.12)

does not depend on the choice of reduced decomposition. Then, clearly,

W (t) :=
∑
w∈G

tw. (3.13)

Let li(w) be the i-length of w, i.e., the number of the generators in the reduced decompo-
sition of w belonging to Si. Then

tw :=
∏
i∈I

t
li(w)
i . (3.14)
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With these definitions, the formula (3.1) is still true with t instead of t. For the necessary
changes, see Table 2: For the Coxeter groups of spherical type, |I| ≤ 2 and |I| = 2 only in
the three cases.

Observe several subtleties:

(1) Clearly, the Coxeter diagram D is not sufficient to describe the multiparameter Poincaré
series: We have to distinguish between short and long roots if |D| > 2, so we have to
distinguish between the Bn and Cn cases.

Table 10. The quasi-Lannér diagrams on 8 vertices and Poincaré series.

Label Diagram degrees Poincaré series χ = 0 in all cases

QL81 The numerator is [4][6][8][10][12][14][18]

The denominator is t64 + t62 − t58 − 2t56 − 3t54 + t53 − 3t52 + t51

(65, 64) − 3t50 + 2t49 − 2t48 + 3t47 − 2t46 + 4t45 − t44 + 4t43

+4t41 + t40 + 3t39 + t38 + 2t37 + t36 − t33 + t32

− 3t31 + t30 − 5t29 + 2t28 − 7t27 + 3t26 − 7t25 + 4t24

The number of infinite − 7t23 + 4t22 − 6t21 + 5t20 − 5t19 + 5t18 − 4t17 + 6t16

special subgroups: 1 − 3t15 + 5t14 − 2t13 + 4t12 − 2t11 + 3t10 − 2t9 + 2t8

− 2t7 + t6 − 2t5 + t4 − 2t3 + t2 − t + 1

Can be reduced to numerator: [4][6][8][12][18][5′ ][7′]

(55, 54) denominator: t54 − 2t53 + 2t52 − 2t51 + t50 + t49 − 3t48 + 5t47 − 7t46

+7t45 − 6t44 + 5t43 − 3t42 + 2t40 − 2t39 + 2t38 − t37 − 2t36

+5t35 − 6t34 + 7t33 − 6t32 + 3t31 − 3t29 + 6t28 − 7t27 + 6t26

− 5t25 + 3t24 − t22 − t21 + 2t20 − 4t19 + 8t18 − 11t17 + 12t16

− 12t15 + 10t14 − 7t13 + 4t12 − t11 − t10 + 2t9 − t8 − t7

+3t6 − 5t5 + 6t4 − 5t3 + 4t2 − 3t + 1

QL82 The numerator is [4][6][8][10][12][14][18]

The denominator is t64 + t62 − t58 − 2t56 − 3t54 + t53 − 4t52 + 2t51

(65, 64) − 5t50 + 4t49 − 5t48 + 6t47 − 5t46 + 8t45 − 5t44 + 9t43

− 4t42 + 9t41 − 3t40 + 8t39 − 2t38 + 5t37 − t36 + 2t35

− t33 + 2t32 − 5t31 + 4t30 − 9t29 + 5t28 − 12t27 + 7t26

The number of infinite − 13t25 + 9t24 − 13t23 + 10t22 − 13t21 + 11t20 − 11t19 + 11t18

special subgroups: 1 − 10t17 + 11t16 − 8t15 + 10t14 − 6t13 + 8t12 − 5t11 + 6t10

− 4t9 + 4t8 − 3t7 + 2t6 − 3t5 + t4 − 2t3 + t2 − t + 1

Can be reduced to numerator: [4][6][8][10][12][7′ ][9′]

(51, 50) denominator: t50 − 2t49 + 2t48 − 2t47 + t46 − t44 + 3t43 − 5t42 + 7t41

− 9t40 + 10t39 − 11t38 + 11t37 − 10t36 + 10t35 − 9t34 + 8t33 − 7t32

+6t31 − 6t30 + 6t29 − 5t28 + 4t27 − 2t26 + 2t24 − 6t23 + 10t22

− 13t21 + 15t20 − 16t19 + 17t18 − 18t17 + 17t16 − 16t15 + 14t14

− 12t13 + 12t12 − 11t11 + 10t10 − 10t9 + 9t8 − 9t7 + 9t6

− 7t5 + 6t4 − 5t3 + 4t2 − 3t + 1
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Table 10. (Continued)

Label Diagram degrees Poincaré series χ = 0 in all cases

QL83 The numerator is [2][6][8][10][12][14][18]

The denominator is t62 − t56 − t54 − t52 − t50 − t49 + t48 − t47

(63, 62) + t46 + t44 + 2t42 + t40 + 2t39 + t37 + 2t36 − t34

The number of infinite + 2t33 − 2t32 − t29 − 2t28 + t27 − 2t26 − 2t25 + t24

special subgroups: 1 − 2t23 − t22 − 2t19 + 3t18 − t17 + t15 + t14 + t12 + t11

− t10 + 2t9 − t8 − t4 − t + 1

QL84 The numerator is [4][6][8][10][12][14][18]

The denominator is t64 + t62 − t58 − t57 − 2t56 − t55 − 3t54

(65, 64) − t53 − 3t52 − t51 − t50 − t49 + 2t48 + 3t46 + 2t45 + 5t44

+ 4t43 + 6t42 + 4t41 + 6t40 + 5t39 + 5t38 + 5t37 + 3t36

The number of infinite + 3t35 + t33 − 2t32 − t31 − 3t30 − 3t29 − 5t28 − 5t27 − 6t26

special subgroups: 1 − 6t25 − 5t24 − 4t23 − 4t22 − 3t21 − 2t20 − 3t19 − 2t17 + 3t16

+ 3t14 + 2t13 + t12 + 2t11 + t10 + 2t9 + 2t7 − t6 − t4 − t3 − t + 1

Can be reduced to numerator: [4][6][8][10][12][14][9′ ]
(57, 56) denominator: t56 − t55 + t54 − t53 − t50 − t48 + 2t47 − 3t46

+ 3t45 − 3t44 + 2t43 − t41 + 3t40 − 3t39 + 5t38 − 4t37

+ 6t36 − 4t35 + 4t34 − 2t33 + t32 + 2t31 − 3t30 + 5t29

− 6t28 + 6t27 − 7t26 + 5t25 − 5t24 + 2t23 − 3t21 + 3t20

− 6t19 + 5t18 − 7t17 + 6t16 − 4t15 + 2t14 + t13 − 2t12

+ 2t11 − 3t10 + 3t9 − 2t8 + 3t7 − t6 + t5 − t3 + t2 − 2t + 1

(2) Although the Lie algebras with non-symmetrizable Cartan matrices do have the Weyl
group defined by Eq. (2.4), Macdonald’s rule (3.10) is only applicable to the root systems
described by symmetrizable Cartan matrices: Otherwise the notion of short/long root
is not well-defined.

Although Macdonald’s paper is devoted to all Coxeter groups of spherical and Euclidean
cases, he evaded computing the multiparameter Poincaré series for the Weyl groups of
the twisted loop Lie algebras leaving this as “an easy task for the reader”, having indeed
explained all the needed steps. This was, perhaps, a joke: all one should do is to renumber
the indeterminates in accordance with Table 2 minding the above subtlety (1). Macdonald
missed (or left as a trivial exercise?) the case of A

(1)
1 (the answer for which coincides with

that for A
(2)
2 , see Table 13).

Unless the authors of [18], where the multiparameter growth functions are applied,
or somebody else, will ask us to do the job, we intend to imitate the behavior of
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Prof. Macdonald, and redirect the reader: For the classification of Li and Saçlioğlu, see
more accessible list in [11]; the code is available at [10] and how to proceed with the code is
described in the last section of this work. The task is now routine while to list the results
will double the length of the tables.

Table 11. The quasi-Lannér diagrams on 9 vertices and Poincaré series.

Label Diagram degrees Poincaré series

QL91 The numerator is [2][12][14][16][18][20][24][30]

The denominator is t127 − t117 + t116 − 2t115 + t114 − 3t113

(128, 127) +2t112 − 4t111 − 12t103 + 3t110 − 6t109 + 6t108

− 8t107 + 7t106 − 10t105 + 11t104 + 13t102 − 15t101

+18t100 − 17t99 + 21t98 − 21t97 + 26t96 − 23t95

The number of infinite +29t94 − 26t93 + 33t92 − 28t91 + 35t90 − 31t89

special subgroups: 1 +38t88 − 32t87 + 38t86 − 33t85 + 38t84 − 33t83

+36t82 − 32t81 + 32t80 − 30t79 + 28t78 − 26t77

+22t76 − 22t75 + 14t74 − 16t73 + 6t72 − 9t71

− 3t70 − t69 − 13t68 + 7t67 − 22t66 + 17t65

− 32t64 + 26t63 − 40t62 + 35t61 − 49t60 + 44t59

− 55t58 + 52t57 − 62t56 + 59t55 − 65t54 + 65t53

− 69t52 + 69t51 − 69t50 + 72t49 − 72t48 + 73t47

− 68t46 + 73t45 − 68t44 + 71t43 − 63t42 + 68t41

− 61t40 + 63t39 − 55t38 + 59t37 − 52t36 + 53t35

− 45t34 + 47t33 − 42t32 + 40t31 − 35t30 + 35t29

− 32t28 + 29t27 − 26t26 + 24t25 − 23t24 + 19t23

− 18t22 + 15t21 − 15t20 + 12t19 − 11t18 + 9t17

− 10t16 + 7t15 − 6t14 + 5t13 − 5t12 + 4t11 − 3t10

+3t9 − 3t8 + 2t7 − t6 + t5 − t4 + t3 + t − 1

QL92 The numerator is [2][8][12][14][18][20][24][30]

The denominator is t119 − t111 − t109 + t108 − 2t107 − 2t105

(120, 119) + t104 − 2t103 + t102 − 3t101 + 2t100 − 2t99 + 2t98 − 2t97

+3t96 − 2t95 + 2t94 + 4t92 + 2t90 + t89 + 3t88 + 3t87 + 2t86

+3t85 + t84 + 5t83 − t82 + 6t81 − 2t80 + 6t79 − 5t78 + 8t77

The number of infinite − 5t76 + 7t75 − 8t74 + 7t73 − 10t72 + 8t71 − 10t70 + 6t69

special subgroups: 1 − 12t68 + 6t67 − 12t66 + 5t65 − 12t64 + 3t63 − 12t62 + 3t61

− 11t60 + t59 − 9t58 − 8t56 − 4t54 − 2t53 − 4t52 − 2t51

− 2t49 − 3t47 + 3t46 − 2t45 + 4t44 − 2t43 + 6t42 − 2t41

+4t40 − t39 + 7t38 − t37 + 4t36 + 6t34 + 3t32 + 3t30

+ t29 + t28 + t27 + t26 + t25 − 2t24 + t23 + t21

− 3t20 + t19 − t18 + t17 − 3t16 + t15 − 2t14 + t13

− 2t12 + t11 − t10 + t9 − 2t8 + t7 + t5 − t4 + t3 + t − 1
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Table 11. (Continued)

Label Diagram degrees Poincaré series

QL93 The numerator is [2][8][12][14][18][20][24][30]

The denominator is t119 − t111 − t107 − t105 − t103 + t102

(120, 119) − 2t101 + t100 − t99 + t98 − 2t97 + 3t96 − 3t95 + 2t94

− t93 + 3t92 − 3t91 + 5t90 − 3t89 + 3t88 − t87

+5t86 − 5t85 + 6t84 − 2t83 + 3t82 − 2t81 + 6t80

The number of infinite − 6t79 + 5t78 − t77 + 2t76 − 4t75 + 6t74 − 5t73

special subgroups: 1 + t72 + t70 − 5t69 + 3t68 − 2t67 − 3t66 + t65

− 4t63 − t62 + 2t61 − 6t60 + t59 − t58 − t57

− 5t56 + 7t55 − 7t54 + 2t53 − 2t52 + 4t51 − 8t50

+9t49 − 6t48 + 3t47 − 3t46 + 8t45 − 9t44 + 9t43

− 4t42 + 4t41 − 5t40 + 10t39 − 8t38 + 7t37 − 3t36

+5t35 − 6t34 + 9t33 − 6t32 + 4t31 − 3t30 + 5t29

− 6t28 + 6t27 − 4t26 + 2t25 − 3t24 + 4t23 − 5t22

+3t21 − 2t20 + t19 − 3t18 + 3t17 − 3t16 + t15

− t14 + t13 − 2t12 + 2t11 − t10 + t7 − t6 + t5 + t − 1

QL94 The numerator is [2][8][12][14][18][20][24][30]

The denominator is t120 + t119 − t115 + t114 − t113 − t112

− 2t111 − 2t109 − 3t107 − t106 − 2t105 + t104 − 3t103

(120, 120)
+2t102 − 2t101 + 2t100 + 6t98 − t97 + 6t96 + t95 + 9t94

+3t93 + 11t92 + 3t91 + 12t90 + 5t89 + 12t88 + 6t87

The number of infinite +14t86 + 4t85 + 11t84 + 6t83 + 11t82 + 3t81 + 6t80

special subgroups: 2 +5t78 + t77 − 2t76 − 5t75 − 5t74 − 7t73 − 13t72

− 8t71 − 16t70 − 14t69 − 22t68 − 14t67 − 26t66 − 15t65

− 31t64 − 19t63 − 31t62 − 16t61 − 36t60 − 17t59 − 33t58

− 16t57 − 33t56 − 9t55 − 31t54 − 10t53 − 27t52 − 5t51

− 23t50 + t49 − 22t48 + t47 − 12t46 + 7t45 − 12t44

+11t43 − 6t42 + 10t41 − 3t40 + 15t39 − t38 + 15t37

+2t36 + 14t35 + 4t34 + 16t33 + t32 + 12t31 + 4t30

+11t29 + 3t28 + 10t27 + t26 + 6t25 + t24 + 5t23

− t22 + 4t21 − t20 + t19 − t18 + t17 − 3t16 − 2t14

− t13 − t12 − t10 − t9 − t8 + t2 + t − 1

4. The Euler Characteristic (from [16], [5])

4.1. The geometric realization of the simplicial complex

A simplicial complex with vertex set V is a collection ∆ of finite subsets of V (called
simplexes) such that every singleton {v} is a simplex and every subset of a simplex A is a
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simplex (called a face of A), [5, Ch. I, App.]. The cardinality r of A is called the rank of
A, and r − 1 is called the dimension of A. We include the empty set as a simplex; it has
rank 0 and dimension −1. A subcomplex of ∆ is a subset ∆′ which contains, for each of its
elements A, all the faces of A, thus ∆′ is a simplicial complex in its own right, with vertex
set equal to some subset of V. Note that A is a poset, ordered by the face relation.

The geometric realization |∆| of ∆ is a topological space partitioned into (open) sim-
plexes A, one for each non-empty A ∈ ∆. This topological space is constructed as follows:
We start with an abstract real vector space with V as a basis. Let |A| be the interior of
the simplex in V spanned by the vertices of A, i.e., |A| consists of the linear combinations

Table 12. The quasi-Lannér diagrams on 10 vertices and Poincaré series.

Label Diagram degrees Poincaré series χ = 0 in all cases

QL101 The numerator is [2]2[12][14][16][18][20][24][30]

The denominator is t128 − t126 − t116 + t105 − t103 + t102

(129, 128) + t101 − t98 + t97 + 2t96 − t95 − t94 + t93 − t86

+ t84 − t83 − 2t82 + t81 − 2t77 + t75 − t74

− t71 + t69 − t67 + t66 + t63 − t62 + 2t60

The number of infinite − t59 + 2t57 − t55 + t54 + t51 − t50 + 2t48

special subgroups: 1 − t47 − t46 + t45 − t43 + t39 − t38 − 2t37

+ t36 − t32 + t30 − t28 − t27 + t26 + t24

− t22 + t21 − t19 + t18 + t13 − t11 − t10

+t9 + t8 − t7 + t3 − t2 − t + 1

QL102 The numerator is [2]2[12][14][16][18][20][24][30]

The denominator is t129 + t128 − t127 − t126 − t122 + t121

(129, 129) + t120 − t119 − 2t118 + t117 − t116 − 2t114 + 2t113 + t111

− 4t110 + 4t109 − t108 + t107 − 4t106 + 7t105 − 2t104

The number of infinite +3t103 − 5t102 + 8t101 − 4t100 + 5t99 − 8t98 + 10t97

special subgroups: 2 − 2t96 + 5t95 − 11t94 + 12t93 − 7t92 + 6t91 − 10t90

+11t89 − 7t88 + 6t87 − 13t86 + 11t85 − 6t84 + 3t83

− 15t82 + 11t81 − 4t80 + 2t79 − 11t78 + 6t77 − 4t76

− 9t74 + 5t73 + 2t72 − 5t71 − 5t70 + 3t69 + 5t68

− 8t67 + t66 − 2t65 + 11t64 − 9t63 + 4t62 − 5t61

+15t60 − 13t59 + 9t58 − 7t57 + 18t56 − 15t55 + 13t54

− 10t53 + 18t52 − 15t51 + 12t50 − 12t49 + 22t48 − 17t47

+12t46 − 11t45 + 18t44 − 17t43 + 11t42 − 12t41 + 17t40

− 14t39 + 9t38 − 12t37 + 14t36 − 13t35 + 7t34 − 9t33

+11t32 − 11t31 + 6t30 − 7t29 + 8t28 − 8t27 + 4t26

− 6t25 + 7t24 − 5t23 + 3t22 − 3t21 + 4t20 − 4t19

+2t18 − 2t17 + 4t16 − 2t15 + t14 − t13 + 2t12

− t11 − t9 + 2t8 − t7 + t4 − t2 − t + 1
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Table 12. (Continued)

Label Diagram degrees Poincaré series χ = 0 in all cases

QL103 The numerator is [2]2[12][14][16][18][20][24][30]

The denominator is 2t129 + t128 − 2t127 − t126 − 2t122 + 2t121

(129, 129) + 2t120 − 2t119 − 3t118 + t117 − t116 − 3t114 + 3t113

+ 2t111 − 6t110 + 5t109 − t108 + 2t107 − 7t106 + 12t105

− 3t104 + 5t103 − 10t102 + 13t101 − 6t100 + 10t99 − 16t98

The number of infinite + 18t97 − 5t96 + 10t95 − 21t94 + 23t93 − 14t92 + 12t91

special subgroups: 3 − 22t90 + 24t89 − 14t88 + 14t87 − 29t86 + 23t85 − 13t84

+ 10t83 − 31t82 + 26t81 − 13t80 + 8t79 − 24t78 + 16t77

− 10t76 + 5t75 − 22t74 + 14t73 + t72 − 5t71 − 13t70 + 9t69

+ 7t68 − 13t67 − t65 + 19t64 − 17t63 + 6t62 − 9t61

+ 30t60 − 27t59 + 16t58 − 13t57 + 36t56 − 33t55 + 26t54

− 21t53 + 37t52 − 34t51 + 26t50 − 24t49 + 44t48 − 38t47

+ 26t46 − 24t45 + 38t44 − 37t43 + 25t42 − 24t41 + 34t40

− 31t39 + 21t38 − 24t37 + 29t36 − 28t35 + 16t34 − 17t33

+ 22t32 − 22t31 + 13t30 − 14t29 + 16t28 − 17t27 + 9t26

− 9t25 + 13t24 − 11t23 + 5t22 − 5t21 + 8t20 − 8t19

+ 4t18 − 3t17 + 6t16 − 4t15 + 2t14 − t13 + 3t12

− 3t11 + 3t8 − 2t7 + t4 − t2 − t + 1

∑
v∈A λvv with λv > 0 for all v ∈ A and

∑
v∈A λv = 1. We then set

|∆| =
⋃

A∈∆

|A|.

4.2. Cells and chambers

Let V be the space of a geometric realization of the Coxeter group (G,S), and dimV = n.
Let H = {H1, . . . ,Hk} be an arbitrary finite set of hyperplanes in V . The hyperplanes Hi

cut V into polyhedral pieces by means of reflections si := sHi that generate G. For each
i = 1, . . . , k, where k = card(S), let fi : V → R be a nonzero homogeneous linear function
that singles out Hi by the equation fi = 0. The function fi is uniquely determined by Hi,
up to a nonzero factor.

(1) A cell in V with respect to H is a non-empty set A obtained by choosing, for each i,
the half-space fi > 0 or fi < 0 or the hyperplane fi = 0.

(2) The cells defined by taking only the fi corresponding to half-spaces are called chambers.
Essentially, the chambers can be described as the cells of maximal dimension. Sometimes
what we defined here as chambers are called cells in the literature.

(3) Chambers are the connected components of the complement

V

∖
k⋃

i=0

Hi. (4.1)
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Table 13. The multiparameter Poincaré series of affine Coxeter groups.

Affine Coxeter group Extended Dynkin diagram Poincaré series

B
(1)
n

1 − tn1
(1 − t1)n

0
@

n−1Y
i=1

(1 − t2i
1 )

1
A

n−1Y
i=0

1 − ti1t2

1 − tn−1+i
1 t2

C
(1)
n

n−1Y
i=0

(1 − ti+1
1 )(1 + ti1t2)(1 + ti1t3)

(1 − t1)(1 − tn−1+i
1 t2t3)

F
(1)
4

(1 + t1t22)(1 + (t1t2)
2)(1 + (t1t2)

3)

(1 − t31t2)(1 − t41t32)(1 − t51t32)(1 − t61t52)

×
3Y

i=1

(1 − ti+1
1 )(1 + ti1t2)(1 − ti2)

(1 − t1)(1 − t2)

G
(1)
2

(1 + t1)(1 + t1 + t21)(1 + t2)(1 + t1t2 + (t1t2)
2)

(1 − t21t2)(1 − t31t22)

A
(1)
1 , A

(2)
2

(1 + t1)(1 + t2)

1 − t1t2

A
(2)
2n , n > 1

n−1Y
i=0

(1 − ti+1
2 )(1 + ti2t3)(1 + ti2t1)

(1 − t2)(1 − tn−1+i
2 t3t1)

A
(2)
2n−1, n > 2

1 − tn2
(1 − t2)n

0
@

n−1Y
i=1

(1 − t2i
2 )

1
A

n−1Y
i=0

1 − ti2t1

1 − tn−1+i
2 t1

D
(2)
n+1, n > 1

n−1Y
i=0

(1 − ti+1
3 )(1 + ti3t2)(1 + ti3t1)

(1 − t3)(1 − tn−1+i
3 t2t1)

E
(2)
6

(1 + t2t21)(1 + (t1t2)
2)(1 + (t1t2)

3)

(1 − t32t1)(1 − t42t31)(1 − t52t31)(1 − t62t51)

×
3Y

i=1

(1 − ti+1
2 )(1 + ti2t1)(1 − ti1)

(1 − t1)(1 − t2)

D
(3)
4

(1 + t2)(1 + t2 + t22)(1 + t1)(1 + t1t2 + (t1t2)
2)

(1 − t22t1)(1 − t32t12)

(4) Let C be the simplicial cone in V defined by the inequalities

fi ≥ 0 for i = 1, 2, . . . , n. (4.2)

It is called the fundamental chamber.
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Fig. 1. Here dimV = 2 and k = 3. The three lines divide the plane into 13 cells (6 open sectors, 6 open rays,
and the cell consisting of the origin.

4.3. The Coxeter complex

A cell B is said to be a face of A if its description is obtained from that of A by replacing
several inequalities by equalities. In this case, we write

B ≤ A (4.3)

and this relation is said to be face relation. We have

A =
⋃

B≤A

B,

and

B ≤ A ⇔ B ⊆ A. (4.4)

Let Σ be the poset consisting of the open cells, ordered by the face relation. By (4.4) Σ
is isomorphic to the set of closed cells, see [5, Ch. I].

4.3.1. The simplicial complex Σ(G,S)

Let (G,S) be a Coxeter group. Consider the subcomplex Σ≤C consisting of the faces of C.
With every face A ≤ C, we associate its stabilizer GA = {w ∈ G | wA = A}. By a theorem
in [5, Ch. I, §5F], GA is generated by a subset A ⊂ S.

There is a function Φ from Σ≤C to the set of special subgroups of G; this Φ is a bijection
([5, Ch. I, §5H]):

Σ≤C ≈ (special subgroups of (G,S))op, (4.5)
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Fig. 2. Illustration of the isomorphism (4.5) for n = 3.

where “op” indicates that we are using the opposite of the usual order on the set of special
subgroups.

The G-action can be used to extend the isomorphism (4.5) to an isomorphism of the
whole poset Σ with the set of special cosets in G, i.e., the cosets wG′ of special subgroups.

Theorem. ([5, Ch. I, §5H]) There is a poset isomorphism

Σ ≈ (special cosets of (G,S))op (4.6)

compatible with the G-action on the special cosets by left-translation.

The Theorem allows one to introduce geometry into abstract group theory. Let G be a
group, possibly infinite, generated by a subset S consisting of elements of order 2. Define,
a special coset to be a coset w〈S′〉 with w ∈ G and S′ ⊂ S. Now define Σ = Σ(G,S) to be
the poset of special cosets, ordered by the opposite of the inclusion relation: B ≤ A in Σ if
and only if B ⊃ A as subsets of G, in which case we say that B is a face of A.

Following Tits, Σ is called the Coxeter complex associated to (G,S), it is also called
the “apartment associated to (G,S)”, see [6].

4.4. The Euler characteristic

For any finite simplicial complex, the Euler characteristic is defined as the alternating sum

χ = k0 − k1 + k2 − k3 + · · · ,

where kn denotes the number of cells of dimension n in the complex.
For any topological space, we can define the nth Betti number bn as the rank of the n-th

singular homology group. The Euler characteristic is then equal to the alternating sum

χ = b0 − b1 + b2 − b3 + · · · .

This quantity is well-defined if the Betti numbers are all finite and if they are zero beyond
a certain index n0.



November 22, 2010 8:41 WSPC/1402-9251 259-JNMP 00084

200 M. Chapovalov, D. Leites & R. Stekolshchik

5. The Poincaré Series of the Lannér and Quasi-Lannér Groups
(New Results)

Having computed something different from Worthington’s results, we realized that means
of verification are badly needed. Besides, later we obtained a bit different picture describing
distribution of poles than the one Gal gave for QL102. But our goal was not to refute (or
verify) somebody’s results but to say something new. At first, we could only say something
negative (“there is no reciprocity”, “not all non-real poles lie on the unit circle C centered
at the origin”, etc.), which was not appealing. Fortunately, we managed to observe several
patterns that one can formulate in a positive way:

(1) If the number of vertices of a given quasi-Lannér diagram is even, the Euler character-
istic vanishes.

(2) The difference of degrees of the numerator and denominator of the Poincaré series is
always ≤ 1 in the quasi-Lannér cases.

(3) The virgin formh of the Poincaré series is equal to its reduced form in the
quasi-Lannér cases bar the following exceptions: QL48, QL412, QL414, QL415, QL419,

QL65, QL69, QL611, QL81, QL82, QL84.

In what follows we give a priori proofs of these and several other patterns.

5.1. Reciprocity for the Lannér diagrams

Lemma 5.1 (On reciprocity). Let a polynomial S(t) be factorized as follows:

S(t) = U(t)V (t),

and let U(t) be anti-reciprocal. Then

S(t) is anti-reciprocal if and only if V (t) is reciprocal,

S(t) is reciprocal if and only if V (t) is anti-reciprocal.

Since t − 1 is an anti-reciprocal polynomial, this rather obvious lemma helps us to
understand that denominators of Poincaré series of all Lannér diagrams on 4 vertices are
anti-reciprocal, see Table 3.

Proposition 5.2. (1) Let (G,S) be the Coxeter system, such that all special subgroups
of G are finite. If card S is even, the Poincaré series W (t) is anti-reciprocal. If card S

is odd, the Poincaré series W (t) is reciprocal.
(2) The Poincaré series W (t) of the Lannér groups on 4 vertices are anti-reciprocal, and

the Poincaré series W (t) of the Lannér groups on 5 vertices are reciprocal.

Proof. (1) By (3.1) and (3.2) we have

− ε(D)
WD(t)

=
∑

X�D

ε(X)
WX(t)

,
1

WD(t−1)
=

∑
|GX |<∞

ε(X)
WX(t)

. (5.1)

hThe virgin form is defined in Subsec. 5.2.1; the reduced form of the rational growth function is its repre-
sentation as an irreducible fraction.
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Since all special subgroups are finite, then the right-hand sides in both equations coin-
cide. Thus, if |S| is even (resp. odd), then −ε(D) is negative (resp. positive) and the
Poincaré series is anti-reciprocal (resp. reciprocal).

(2) Note, that in the case of Lannér groups,

the set of all finite special subgroups coincides with the set of all
special subgroups.

(5.2)

Then the statement desired follows from heading (1).

Conjecture 5.3. For the Coxeter groups, the (anti)reciprocity never holds, bar the cases
listed in Proposition 5.2.

5.2. When does the Euler characteristics vanish?

Proposition 5.4. The Euler characteristics χ(G) of the group G vanishes (equivalently,
the denominator of the Poincaré series has the root t = 1) in the following cases:

(1) For any affine Coxeter group.
(2) For any infinite (non-affine) Coxeter group (G,S) with |S| even. (Of course, this case

includes (quasi-)Lannér groups whose Coxeter diagrams have even number of vertices.)

Proof. (1) Follows from (2.7).
(2) By (5.1), we have

− ε(D)
WD(t)

=
1

WD(t−1)
.

Substituting t = 1 for card D even, we see that

− 1
WD(1)

=
1

WD(1)
, i.e.,

1
WD(1)

= 0.

For illustration of this fact, see Tables 5, 6 and 8.

5.2.1. The virgin form of the numerator

The numerator of WD(t) is equal to the denominator of the sum
∑

X�D
ε(X)

WX(t) . By (2.6),
for the finite Coxeter group WX with exponents

m1,m2, . . . ,mk,

the Poincaré series WX is a polynomial of the form

[m1 + 1][m2 + 1] · · · [mk + 1]. (5.3)

The least common multiple

Virg(D) := LCM
X�D such that |GX |<∞

WX(t) (5.4)

is said to be the virgin form of the numerator of WD(t).

Lemma 5.5. The Poincaré series WD(t) can be expressed as a rational fraction whose
numerator is Virg(D).
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Proof. The statement is obvious if all special subgroups GX are finite: then the numerator
of WD(t) is equal to the denominator of the sum

∑
X�D

ε(X)
WX(t) and all denominators of

its summands are polynomials of the form (3.3). The general case is done by induction
on |X|.

Corollary 5.6. Let ε(X)
WX(t) be expressed as an irreducible fraction. Then the LCM of all

denominators in the sum
∑

X�D
ε(X)

WX(t) is equal to Virg(D).

Proof. Indeed, if |GX | = ∞, then the denominator of the irreducible fraction ε(X)
WX(t) divides

Virg(X) and Virg(X) divides Virg(D). If |GX | < ∞, then WX(t) divides Virg(D) by
definition. Hence, the LCM of denominators divides Virg(D).

Implication in the opposite direction: divisibility of the LCM of denominators by Virg(D)
is obvious.

If |GX | < ∞, then WX(t) is of the form (3.3). We would like to represent Virg(D) in the
same form, but this is not always possible: if m and n are not relatively prime, then [m] and
[n] are not relatively prime. On the other hand, each polynomial [n] can be represented as
the product of irreducible over Q cyclotomic polynomials Φi(t), where i = 2, 3, . . . , namely

[n] =
∏

i|n, i>1

Φi(t). (5.5)

THEREFORE, IT IS NATURAL TO COMPUTE Virg(D) IN THE
FORM OF THE PRODUCT OF THE Φi(t).

It is convenient to introduce one more notation:

[n′] := 1 + tn; observe that [n][n′] = [2n]. (5.6)

5.3. Degrees of the denominators

In this section, we define the polynomials P,Q,R, S by setting:

W (t) :=
R(t)
S(t)

and W (t−1) :=
P (t)
Q(t)

. (5.7)

Proposition 5.7. For any Coxeter group, we have

(1) deg P = deg Q;
(2) deg S < deg R if and only if t | Q(t).

Proof. (1) According to the Solomon formula (2.6), for any finite Coxeter group, every
cyclotomic polynomial-factor of W (t−1) turns into the fraction

1 + t + · · · + tn−1

tn−1
.

For any affine Coxeter group, Proposition follows from (2.7). For any infinite Coxeter
group, we use the Steinberg formula (3.2). Recall that 1 in the numerator above is
the summand corresponding to the empty set in (3.2). This summand contributes the
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maximal degree equal to the degree of the denominator of W (t−1). Therefore, deg P =
deg Q.

(2) Note that t | Q(t) (i.e., t divides Q(t)) if and only if a0 = 0, where a0 is the constant term
of Q(t), which becomes the highest coefficient of S(t) under the substitution t �→ t−1.
Thus, the condition t | Q(t) is equivalent to deg S < deg R.

Proposition 5.8. (1) For the function ε(X) = (−1)|X|, we have

(a)
∑

∅⊆X⊆D

ε(X) = 0, (b)
∑

∅⊆X⊆D

ε(X) |X| = 0. (5.8)

(2) We have:

1
W (t−1)|t=0

=
∑

X⊂D||GX |<∞
ε(X). (5.9)

(3) If f(t) is the product of k factors [ni], then f ′(0) = k.

f(t) =
k∏

i=1

[ni] ⇒ f ′(0) = k. (5.10)

(4) If |X| < ∞, then

W ′
X(t)|t=0 = |X|. (5.11)

Proof. (1) Formula (5.8(a)) holds since

∑
∅⊆X⊆D

ε(X) =
n∑

k=0

(−1)k
(

n

k

)
= (1 − 1)n = 0,

and formula (5.8(b)) is true since

∑
∅⊆X⊆D

ε(X)|X| =
n∑

k=0

(−1)k
(

n

k

)
k = −n

n∑
k=0

(−1)k−1

(
n − 1
k − 1

)
= −n(1 − 1)n = 0.

(2) By the Steinberg formula (3.2) for 1
W (t−1)

, every summand of (3.2) is of the form

ui(Z) =
ε(Z)

[n1][n2] · · · [nk]
. (5.12)

Since [ni]|t=0 = 1, we have ui(Z) = ε(Z).
(3) Eq. (5.10) holds since

f ′(t) =
k∑

i=1

[ni]′
k∏

j=1;j 	=i

[ni], and f ′(0) =
k∑

i=1

[ni]′ |t=0=
k∑

i=1

1 = k.

(4) Since the number of factors [ni] in the Poincaré series of any finite Coxeter group is
equal to the number of its generators, i.e., to the number of vertices |X|, then (5.11)
follows from (5.10).
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Proposition 5.9. (1) The following relation holds:

1
W (t−1)

∣∣∣∣
t=0

= (−1)|D|+1 −
∑

|GX |=∞
(−1)|X|. (5.13)

(2) For degrees of the numerator and denominator of W (t), we have:

deg S < deg R if and only if
∑

|GX |=∞
ε(X) =

∑
|GX |=∞

(−1)|X| = (−1)|D|+1. (5.14)

(3) We have: (
1

W (t−1)

)′∣∣∣∣
t=0

=
∑

|GX |=∞
(−1)|X||X| + (−1)|D||D|. (5.15)

Proof. (1) Follows from the fact that the sum in (5.9) differs from (5.8(a)) by summands
associated with the infinite special subgroups and the subset X = D.

(2) According to Proposition 5.7 the condition deg S < deg R is equivalent to Q(t) = 0, or,
in other words, to

1
W (t−1)

∣∣∣∣
t=0

= 0.

Then the statement follows from (5.13).
(3) Since

1
W (t−1)

=
∑

|GX |<∞

ε(X)
WX(t)

,

we have (
1

W (t−1)

)′
= −

∑
|GX |<∞

W ′
X(t)ε(X)

(WX(t))2
.

For any finite Coxeter group, we have WX(t)|t=0 = 1. By (5.11) W ′
X(t)|t=0 = |X|, and

we see that (
1

W (t−1)

)′∣∣∣∣
t=0

= −
∑

|GX |<∞
ε(X)|X|.

According to (5.8(b)) we have:(
1

W (t−1)

)′∣∣∣∣
t=0

=
∑

|GX |=∞
ε(X)|X| + ε(D)|D|,

and (5.15) holds.
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Corollary 5.10. For the quasi-Lannér diagrams, we have deg S < deg R only in the
following cases:

QL41, QL42, QL43, QL46, QL48, QL414, QL417, QL418, QL419;
QL51, QL52, QL53, QL56, QL57;
QL65, QL67, QL610;
QL71, QL72, QL73;
QL81, QL82, QL83, QL84;
QL91, QL92, QL93;
QL101.

(5.16)

Proof. Indeed, only in these cases there is a single infinite special subgroup in the
given quasi-Lannér Coxeter group.

For diagrams on 4 vertices, this subgroup is associated with X, such that |X| = 3.
Further, |D| + 1 = 5, and (−1)|X| = (−1)|D|+1 = −1. Then, the statement follows from
(5.14). The cases of > 4 vertices are absolutely analogous.

5.4. The coefficients bn and bn−1 of the denominator

Let bn (resp. bn−1) be the coefficient corresponding the degree n (resp. n−1) of the denomi-
nator of Poincaré series W (t). Consider

1
W (t−1)

=
Q(t)
P (t)

, where Q(t) =
n∑

i=0

ait
i, P (t) =

m∏
i=1

[ni]. (5.17)

We have:

a0 = bn, a1 = bn−1. (5.18)

Now, we will prove two theorems predicting values of coefficients bn and bn−1 of the denom-
inator. It is clear that the other coefficients bi of the denominator can be predicted in the
same way. Note that calculations of bn and bn−1 are closely connected with the poset of infi-
nite special subgroups in G. The following theorem is devoted to the coefficient bn. Actually,
the conclusion (5.14) is a particular case of this theorem.

A l l P o i n c a r é s e r i e s i n t h e t a b l e s a r e n o r m a l i z e d s o t h a t
bn = 1.

Theorem 5.11. (1) For the coefficient bn of the highest term of the denominator S(t) of
W (t), we have

bn = (−1)|D|+1 −
∑

|GX |=∞
(−1)|X|. (5.19)

(2) For any 0-terminal Coxeter group, in particular, for any Lannér group, we have

bn = (−1)|D|+1, (5.20)

see Tables 3 and 4.
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(3) For any 1-terminal Coxeter group G, in particular, for any quasi-Lannér group, we have

bn = (−1)|D|(Inf − 1), Inf = bn + 1, (5.21)

where Inf is the number of infinite special subgroups in G, see Tables 5–12.
(4) For any k-terminal Coxeter group G, we have

bn = (−1)|D|+1
m∑

i=0

(−1)mInfm, (5.22)

Proof. (1) Recall that by (5.7) P (t) (resp. Q(t)) is the numerator (resp. denominator) of
W (t−1). The case P (t) = 0 is considered in Theorem 5.9. Now, let P (t) �= 0. Since

Q(t) =
k∏

i=1

[ni],

we have Q(0) = 1. Thus,

1
W (t−1)

∣∣∣∣
t=0

= P (0) = a0 �= 0,

where a0 is the constant term of the denominator P (t) of W (t−1). Substitution t �→ t−1

turns a0 into bn, the coefficient of the highest term of the denominator R(t) of W (t).
(2) For Lannér groups (and also 0-terminal) the term

∑
|GX |=∞(−1)|X| in (5.19) vanishes.

(3) For quasi-Lannér (and 1-terminal) groups we have |D| = |X| + 1, where X is the
subdiagram corresponding any infinite subgroups, and (5.21) holds.

5.4.1. The [n]-complete and reduced forms of the Poincaré series

The following theorem is devoted to predicting the coefficient bn−1 of the denominator of
the Poincaré series. The calculation of bn−1 is based on the parameter m of the numerator
meaning the number of factors like [ni] in the numerator. However, the numerator which
we consider is not mandatory irreducible. If it contains a divisor of some [ni], we multiply
the numerator and denominator to get only factors like [ni]. This non-irreducible form of
the the Poincaré series is said to be the [n]-complete form. Thus, our prediction is related
to the numerator of the [n]-complete form. Note that

(1) For the quasi-Lannér Coxeter groups, there are only two cases, namely QL81 and QL82,
with two [n]-incomplete factors. In the cases QL48, QL412, QL414, QL415, QL419, QL65,
QL69, QL611, QL84, there is only one [n]-incomplete factor. In the remaining cases the
[n]-complete form and reduced form coincide.

(2) The following fact holds: after reduction of the [n]-complete form of the Poincaré series
for Lannér and quasi-Lannér groups the number of factors m is not changed. None of
the factors [ni] is completely reduced.

(3) The difference of degrees of the numerator and denominator degR − deg S does
not change under reduction. This fact allows us to calculate deg R − deg S for the
[n]-complete form and to apply it to the reduced form.
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Poincaré Series of Quasi-Lannér Groups 207

Theorem 5.12. Let m be the number of factors [ni] in the [n]-complete form as (5.17).
Then

bn−1 − mbn =
∑

|GX |=∞
(−1)|X||X| + (−1)|D||D|. (5.23)

Proof. Since (
1

W (t−1)

)′∣∣∣∣
t=0

=
f ′(t)g(t) − f(t)g′(t)

(g(t))2

∣∣∣∣
t=0

, and g(0) = 1,

and by (5.10) g′(0) = m, we have(
1

W (t−1)

)′∣∣∣∣
t=0

= f ′(0) − f(0)g′(0) = a1 − ma0.

By (5.18), (
1

W (t−1)

)′∣∣∣∣
t=0

= bn−1 − mbn.

Then Eq. (5.23) follows from (5.15).

Corollary 5.13. For any Lannér group we have:

bn = −1, bn−1 = 1 for L4i, 1 ≤ i ≤ 9,
bn = 1, bn−1 = −1 for L5i, i = 1, 3, 4,
bn = 1, bn−1 = 0 for L5i, i = 2, 5.

(5.24)

Remark. Equation (5.24) holds for the [n]-complete form, and does not hold for the
reduced form, see Tables 3 and 4. All Poincaré series in Tables 3 and 4 are normalized
so that bn = 1.

Proof. Since Lannér groups does not contain infinite subgroups, i.e., Inf = 0, then bn =
(−1)|D|+1, see (5.20).

For |D| = 4, the number of factors m = 3. In this case, by (5.23) we have

bn−1 = mbn + (−1)|D||D| = 3(−1) + 4 = 1.

For |D| = 5, the number of factors m = 4 (except for L52 and L55). In this case, by
(5.23) we have

bn−1 = mbn + (−1)|D||D| = 4 − 5 = 1.

For |D| = 5, cases L52 and L55, the number of factors m = 5. In this case, by (5.23) we
have

bn−1 = mbn + (−1)|D||D| = 5 − 5 = 0.

Corollary 5.14. (1) For any Coxeter group with a single infinite subgroup, we have:

bn = 0, and bn−1 �= 0. (5.25)

In this case, deg R − deg S = 1.
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(2) For any quasi-Lannér group (and also for any 1-terminal Coxeter group), the difference
of degrees of the numerator and denominator of the Poincaré series is deg R−deg S ≤ 1.

Proof. (1) According to (5.23), and since Inf = 1, we have

bn−1 − mbn = (−1)|X||X| + (−1)|D||D|,

where |X| = |D| − 1, i.e.,

bn−1 − mbn = (−1)|X|(|X| − |X| + 1|) = (−1)|X|,

From (5.21) we have bn = 0, and therefore bn−1 = (−1)|X|, so (5.25) holds.
(2) Let bn = 0. Since in the case of 1-terminal Coxeter group |X| + 1 = |D| for all infinite

subgroups X ⊂ D, all summands (−1)|X| in (5.19) have the same sign. Since bn = 0,
there exists only one infinite special subgroup, and by (1) we have deg R−deg S = 1.

Conjecture 5.15. For ANY infinite Coxeter group, deg R − deg S ≤ 1.

Corollary 5.16. Any infinite Coxeter group having exactly two infinite special subgroups
is 1-terminal or 2-terminal.

(1) For any 1-terminal Coxeter group with exactly two infinite special subgroups, we have:

bn = (−1)|D|, and bn−1 = (−1)|D|(m + 2 − |D|). (5.26)

(2) The quasi-Lannér groups with exactly two infinite special subgroups are as follows:

(a) For |D| = 4, m = 3, we have bn = 1, bn−1 = 1, (see cases QL44, QL47, QL411,

QL412).
(b) For |D| = 4,m = 2, we have bn = 1, bn−1 = 0, (see cases QL45, QL410, QL421).
(c) For |D| = 5,m = 4, we have bn = −1, bn−1 = −1, (see case QL58).
(d) For |D| = 6,m = 5, we have bn = 1, bn−1 = 1, (see cases QL61, QL63, QL611).
(e) For |D| = 9,m = 8, we have bn = −1, bn−1 = −1, (see case QL94).
(f) For |D| = 10,m = 9, we have bn = 1, bn−1 = 1, (see case QL102).

(3) For any 2-terminal Coxeter group with exactly two infinite special subgroups, we have

bn = (−1)|D|+1, and bn−1 = (−1)|D|+1(m + 1 − |D|). (5.27)

Proof. Follows from (5.19) and (5.23).

5.5. Nerves and geometric realization of the group

From [12, p. 374]: The nerve of (G,S), denoted by N , is the poset of subsets X ⊂ S for
which the group GX := (G,X) is finite. The poset is ordered with respect inclusion. The
proper nerve of (G,S) is the poset N>∅ consisting of the nonempty subsets X ⊂ S such
that GX is finite.

Clearly, N>∅ is a simplicial complex. More precisely, it is isomorphic to the poset of
simplices of a simplicial complex with vertex set S. (For more facts and explanations, see
Subsec. 4.3.)
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For any finite poset K, let χ(K) denote the Euler characteristic of its geometric real-
ization (see Subsecs. 4.1 and 4.4). The following formula due to Serre [52] connects the
Poincaré series of a given Coxeter group and its Euler characteristic:

1
W (1)

= χ(G) (The Serre Formula). (5.28)

6. The Code to Compute the Poincaré Series and Means of Control

To compute the Poincaré series, we used the Mathematica-based code subg due to D. Chapo-
valov [10] and double-checked with a code due to R. Stekolshchik.

6.1. Code subg

We rewrite the expression (3.1) in the following form

WD(t) =
−ε(D)∑

X�D
ε(X)

WX(t)

. (6.1)

This formula enables one to express the Poincaré series WD(t) in terms of the finite groups
listed in Table 1. The corresponding recursion was automatically generated by the code
subg. The format and notation (improving Coxeter symbols) are designed so that each step
can be easily verified by a human, and, on the other hand, these intermediate results can
be copied to Mathematica in order to derive the final answer.

6.2. Poles

Having found the Poincaré series we determined their poles by means of Mathematica and
Molotkov verified our findings with the help of the code pari, see [50].

Table 14. The real poles and the extremal absolute values of the non-real poles of the
Poincaré series. Lannér cases.

L51 L52 L53 L54 L55

0.833415

0.94166

1.06195

1.19988

m = 0.97149

M = 1.02935

0.720106

0.898971

1.11238

1.38868

m = 0.96401

M = 1.03734

0.659358

0.875566

1.14212

1.51663

m = 0.93176

M = 1.07324

yes, correct:

no

real

roots

m = 0.94718

M = 1.05577

0.61621

0.85384

1.17118

1.62282

m = 0.89454

M = 1.11788

Table 15. The real poles and the extremal absolute values of the non-real poles of the Poincaré series.
Quasi-Lannér cases (the trivial pole 1 is not indicated).

QL41 QL42 QL43 QL44 QL45

0.771327

m = 0.950357

M = 1.103357

m = 1

M = 1.210606

0.639025

m = 0.960217

M = 1.142917

−1.61803

0.618034

m = M = 1

0.667961

m = 0.910638

M = 1.343628
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Table 15. (Continued)

QL46 QL47 QL48 QL49 QL410

0.708134

m = 0.957686

M = 1.146305

−1.61803

0.618034

m = M = 1

0.636883

m = 1.099895

M = 1.139254

−1.33552

0.552965

m = M = 0.822833

0.561856

m = 0.909844

M = 1.287859

QL411 QL412 QL413 QL414 QL415

−1.29065

0.51879

m = 1

M = 1.222085

−1.11231

0.500245

m = 1.032895

M = 1.107983

0.492432

m = 0.902209

M = 0.911924

0.551753

m = 1.076010

M = 1.251157

−1.19004

0.504138

m = 1.103491

M = 1.169974

QL416 QL417 QL418 QL419

0.469396

m = M = 0.842693

0.682328

m = M = 1.210606

0.588985

m = 0.962999

M = 1.231827

0.552531

m = 0.986410

M = 1.243136

QL420 QL421 QL422

0.537613

m = 0.942397

M = 1.023332

−1.29065

0.51879

m = M = 1.222085

−0.767592

0.434259

m = 0.94718

M = 1.05577

Table 16. The real poles and the extremal absolute values of the non-real poles of
the Poincaré series. Quasi-Lannér cases.

QL51 QL52 QL53 QL54 QL55

0.698956

0.891273

1.09813

m = 0.957885

M = 1.154830

−1.236

−1.05414

0.654741

0.872516

1.12047

m = 0.914538

M = 1.161598

0.72899

0.903396

1.08431

m = 0.948289

M = 1.150045

−1.62934

0.627864

0.862852

1.12033

m = 0.915917

M = 1.131353

−1.46751

0.579431

0.842435

1.1368

m = 0.849730

M = 1.074701

QL56 QL57 QL58 QL59

0.537456

0.820844

1.18562

m = 0.903486

M = 1.344774

0.662566

0.876238

1.11333

m = 0.947039

M = 1.119572

−1.16298

0.55887

0.831791

1.15607

m = 0.920577

M = 1.106633

−1.38639

0.491695

0.800368

1.18595

m = 0.864826

M = 1.082570
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Table 17. The real poles and the extremal absolute values of the non-real poles of the Poincaré series.
Quasi-Lannér cases (the trivial pole 1 is not indicated).

QL61 QL62 QL63 QL64 QL65 QL66

−1.41222

0.741226

0.864041

m = 0.947515

M = 1.137513

0.801198

0.896819

1.07859

m = 0.966866

M = 1.130358

m = 0.9459183

M = 1.136787

−1.35548

0.667522

0.822211

1.13349

m = 0.940570

M = 1.068224

0.744209

0.8651

1.10943

m = 0.961618

M = 1.147472

−1.30069

0.634641

0.802625

1.15397

m = 0.915468

M = 1.051409

QL67 QL68 QL69 QL610 QL611 QL612

0.702245

0.840655

1.13578

m = 0.881099

M = 1.177095

−1.28976

0.59287

0.777193

1.17396

m = 0.897402

M = 0.981604

−1.25535

0.542596

0.744994

1.20423

m = 0.747308

M = 0.932831

0.657119

0.814442

1.1665

m = 0.993132

M = 1.106255

−1.06958

0.604368

0.784304

1.17725

m = 0.907820

M = 1.237682

0.533802

0.742603

1.19555

m = 0.889811

M = 1.010751

Table 18. The real poles and the extremal absolute values of
the non-real poles of the Poincaré series. Quasi-Lannér cases.

QL71 QL72 QL73

0.755431

0.847161

0.94682

1.0582

1.11047

m = 0.943848

M = 1.145506

0.726032

0.827211

0.939344

1.06657

1.13199

m = 0.937174

M = 1.141785

0.656509

0.780576

0.92162

1.08703

1.18705

m = 0.892428

M = 1.160250

Table 19. The real poles and the extremal absolute values of the non-real poles
of the Poincaré series. Quasi-Lannér cases (the trivial pole 1 is not indicated).

QL81 QL82 QL83 QL84

−1.25799

−1.04243

0.763804

0.837519

0.915858

m = 0.939234

M = 1.100237

−1.29534

−1.0366

0.741982

0.821394

0.907002

m = 0.921189

M = 1.114182

0.77866

0.84753

0.92114

m = 0.932965

M = 1.134982

0.657583

0.760101

0.873128

m = 0.926349

M = 1.171854
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Table 20. The real poles and the extremal absolute values of the
non-real poles of the Poincaré series. Quasi-Lannér cases.

QL91 QL92 QL93 QL94

−1.28534

−1.02229

0.770075

0.831719

0.896113

0.964269

1.03702

m = 0.935688

M = 1.108580

−1.23784

−1.0607

0.753304

0.818656

0.88767

0.96124

1.04029

0.913000

1.121820

−1.19828

−1.01676

0.826149

0.873169

0.922226

0.973477

1.02722

m = 0.958697

M = 1.093674

−1.03174

0.659124

0.746793

0.841212

0.944445

1.05875

m = 0.878261

M = 1.347490

Table 21. The real poles and the extremal absolute values of the
non-real poles of the Poincaré series. Quasi-Lannér cases (the
trivial pole 1 is not indicated).

QL101 QL102 QL103

−1.14077

−1.008

0.878674

0.907888

0.93783

0.968518

1.03182

m = 0.968106

M = 1.068399

−1.01583

0.774744

0.827863

0.882622

0.939841

1.06238

m = 0.932746

M = 1.342964

−1.014947

0.7615867

0.8172635

0.8751652

0.9359320

1.0662355

m = 0.933795

M = 1.219335
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[51] C. Saçlioğlu, Dynkin diagrams for hyperbolic Kac–Moody algebras, J. Phys. A: Math. Gen. 22

(1989) 3753–3769.
[52] J. P. Serre, Cohomologie des Groupes Discrets. (French) Prospects in Mathematics, in Proc.

Sympos., Princeton University, Princeton, N.J., 1970, Ann. of Math. Studies, No. 70 (Princeton
University Press, Princeton, N.J., 1971), pp. 77–169.

[53] L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966) 376–393.
[54] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs Amer. Math. Soc. 80 (1968)

1–108; also available in Collected papers. Amer. Math. Soc. (1997).
[55] R. Stekolshchik, Notes on Coxeter Transformations and the McKay Correspondence (Springer,

Berlin, 2008).
[56] E. B. Vinberg, Discrete linear groups that are generated by reflections. (Russian) Izv. Akad.

Nauk SSSR Ser. Mat. 35 (1971) 1072–1112. English translation in: Math. USSR Izvestia 35
(1971) 1083–1119.

[57] E. B. Vinberg and O. V. Shvartsman, Discrete groups of motions in spaces of constant curvature,
Itogi Nauki i Tekhniki Sovr. Prob. Mat. 29 (1988) 147–259. (Russian) English translation:
Geometry, II, Encyclopaedia Math. Sci. 29 (Springer, Berlin, 1993), pp. 139–248.



November 22, 2010 8:41 WSPC/1402-9251 259-JNMP 00084
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