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Over algebraically closed fields of characteristic 2, the analogs of the orthogonal, symplectic, Hamil-
tonian, Poisson, and contact Lie superalgebras are described. The number of non-isomorphic types,
and several properties of these algebras are unexpected, for example, interpretation in terms of
exterior differential forms preserved is not applicable to one of these types. The divided powers of
differential forms and related (co)homology are introduced.
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1. Introduction

1.1. Setting

In this paper I consider several problems with seemingly obvious or well-known answers
which in reality are different. Take, e.g., the following statements:

“Physicists and mathematicians mostly deal with symmetries embodied by
real or complex Lie (super)algebras. Among these algebras, the simple ones
are of prime interest, for mathematicians as well.”

Sometimes other ground fields and other types of Lie (super)algebras are no less natural. For
example, Witten suggested to consider all p-adic fields for a precise description of physical
reality. In this paper the ground field K is an (algebraically closed) one of characteristic 2.

The spinor and oscillator representations of Lie algebras (to say nothing about superal-
gebras) are most natural to interpret in terms of quantization of the Poisson Lie superalge-
bras, see [20]. In the process we need not so much simple Lie (super)algebras, but rather Lie
(super)algebras of nontrivial central extensions of orthogonal and symplectic Lie algebras.
The Lie (super)algebras of outer derivations also naturally appear.
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The complete description of deformations of the Poisson bracket is needed to define the
spinor and oscillator representations. These representationsa turned out to be the most vital
ingredients in dealing with other infinite-dimensional Lie (super)algebras. Same applies to
the deformations of the anti-bracket (tackled in [20]).

In this paper I describe the main Lie (super)algebras to be quantized (deformed) over
the fields of characteristic 2.

Lie superalgebras first appeared (under the incorrect name “graded Lie algebras”: Lie
superalgebras are not Lie algebras, graded or not) in 1930s, in topology, in cohomology
theories — the language of topological field theories. Lie superalgebras appeared there over
finite fields, and although the (co)homology were mainly considered in these questions over
the 2-element field Z/2 of residues modulo 2, no definition of Lie superalgebras over Z/2
was given until recently.

Although the Lie (super)algebras appearing in topology are solvable, it was recently
discovered that at least some of them are subalgebras of certain simple Lie superalgebras,
cf. [15] and references therein.

Lie (super)algebras over fields of positive characteristic, a.k.a. modular Lie (super)
algebras, drew new attention with the advent of quantum groups Uq(g) (even over C) whose
representations resemble, if q is a primitive root of unity, representations of simple finite-
dimensional modular Lie algebras.

The bilinear forms over fields of characteristic 2 were actively studied in 1930s by Albert
and Arf but they were abandoned since then although such forms naturally appear recently
in topological problems of the theory of real manifolds, for example, in singularity theory:
As related to “symplectic analogs of Weyl groups” and related bilinear forms over Z/2, cf.
[9]. To consider corresponding analogs of the Calogero model, see [10, 11, 13], is a tempting
open problem.

Symmetric bilinear forms over Z/2 recently appeared in Lando’s description of Vasiliev
invariants [14].

It is therefore important, not only interesting, to investigate possible equivalences of
bilinear forms, classify bilinear forms up to a reasonable equivalence (there are several non-
obvious versions of such equivalences, and to select “reasonable” among them is one of the
problems) and describe the Lie algebras that preserve the most interesting of such forms.
These classifications over Z/2 are complicated to perform, so we work here over algebraically
closed fields.

Mathematicians tackled the classification problem of simple finite dimensional modular
Lie algebras. The Kostrikin–Shafarevich conjecture (it describes the case of algebraically
closed fields of characteristic p > 7), generalized to embrace p > 3, was recently proved
[27, 2]. For a super version of the KSh-conjecture formulated together with a non-super
version for p = 3 and 2, see [22].

We consider the two levels: linear algebra and differential geometry. On both levels we
encounter surprising results. For details of the proofs, see [16].

aBerezin [3] was the first to describe them for infinite dimensional orthogonal and symplectic Lie algebras; all
discoveries of 1970s-80s on spinor and oscillator representations of Kac–Moody, Virasoro and other infinite
dimensional Lie (super)algebras are based on Berezin’s result; for details, see Neretin’s works [25, 26].
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1.2. Main results

It is shown that whereas all non-degenerate symmetric bilinear forms on any odd-
dimensional space over a perfect field are equivalent, there are two (for p = 2) equiva-
lence classes on even dimensional spaces; the Lie algebras that preserve these forms and
the derived of these Lie algebras are non-isomorphic. Similarly, there are three types of
ortho-orthogonal Lie superalgebras.

All these Lie (super)algebras have nontrivial Cartan prolongs, so we have four types of
Hamiltonian Lie superalgebras — prolongs of oo, and four more types — prolongs of their
first derived algebras oo(1); and one more type is prolong of the second derived algebras oo(2).

However, in presence of odd indeterminates, another stratification of the ortho-
orthogonal Lie superalgebras is more reasonable: With regard of the traces on them; we
should accordingly treat their Cartan prolongs.

Our hΠ(2n;N ) := (id, oΠ(2n))∗,N and their derived algebras are not isomorphic to Lin’s
ones [24], at least, as graded Lie algebras, and hence, are “new”: Ironically they are anal-
ogous to prolongs of split forms of o for p �= 2, but nobody noticed (at, least, nobody had
published) that the split and non-split forms of o are non-isomorphic (if p = 2), although
at the level of (finite) groups this was known.

In the super setting, we introduce the divided powers of differential forms. This helps us
to interpret several of the series of Hamiltonian Lie superalgebras as preserving an analog
of symplectic form, but two of the series of Hamiltonian Lie (super)algebras defy such an
interpretation; they cannot be realized as preserving an exterior 2-form; we realize them
as preserving a tensor is a non-exterior 2-form.

The antibracket superalgebras and their quotients modulo center — analogs of Lie super-
algebras Leites introduced in [17] — prolongs of pe; and prolongs of pe(1) (observe that,
unlike the case where p �= 2, we have pe(1) �� spe for p = 2) are also described.

Contact Lie superalgebras are described in terms of generating functions and as gen-
eralized Cartan prolongs. Lin’s description of contact Lie algebras with many continuous
parameters [23] is refuted.

For oI and ooIΠ, the prolongs of the trivial central extension of their derived algebras
exist, but at the moment I cannot describe them lucidly and succinctly.

From our description of the contact Lie (super)algebras we see that, in characteristic 2,
the non-degenerate (symplectic) 2-forms are sometimes replaced — quite unexpectedly —
by degenerate ones. Moreover, the contact algebra is not the universal ambient Lie algebra
with the given negative part, as is the case for p �= 2.

1.3. Notation

We use the following notations for matrices, sometimes skipping the index:

Πn =


Π2k := antidiag2(1k, 1k) =

(
0 1k

1k 0

)
if n = 2k,

Π2k+1 := antidiag3(1k, 1, 1k) =

 0 0 1k

0 1 0

1k 0 0

 if n = 2k + 1,

Sn = antidiagn(1, . . . , 1), Z2k = diagk(Π2, . . . ,Π2).

(1.1)

Let parity be also denoted by Π since p denotes the characteristic of the ground field.
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We identify a given bilinear form with its Gram matrix (in a fixed basis). Let oI(n), oΠ(n)
and oS(n) be Lie algebras that preserve bilinear forms 1n,Πn and Sn, respectively.

Different normal forms of symmetric bilinear forms are used: In some problems, the
form 1n is used; in other problems (usually, mathematical ones) the forms Πn and Sn are
more preferable (so that the corresponding orthogonal Lie algebra has a Cartan subalgebra
consisting of diagonal matrices).

Let Πk | k := Π2k, but considered as a supermatrix in the standard format k | k. Any
square matrix is said to be zero-diagonal if it has only zeros on the main diagonal; let
ZD(n) be the space (Lie algebra if p = 2) of symmetric zero-diagonal n×n-matrices.
For any Lie algebra g and p �= 2, its derived algebras are defined to be

g(0) := g, g(1) := [g, g], g(i+1) = [g(i), g(i)].

2. What the Lie Superalgebra in Characteristic 2 is

Let us give a naive definition of a Lie superalgebra for p = 2. (For a scientific one, as a
Lie algebra in the category of supervarieties, needed, for example, for a rigorous study and
interpretation of odd parameters of deformations, see [20, 21].) We define a Lie superalgebra
as a superspace g = g0̄ ⊕ g1̄ such that the even part g0̄ is a Lie algebra, the odd part g1̄ is
a g0̄-module (made into the two-sided one by symmetry; more exactly, by anti-symmetry,
but if p = 2, it is the same) and on g1̄ a squaring (roughly speaking, the halved bracket) is
defined as a map

x �→ x2 such that (ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and

(x + y)2 − x2 − y2 is a bilinear form on g1̄ with values in g0̄. (2.1)

(We use a minus sign, so the definition also works for p �= 2.) The origin of this operation
is as follows: If char K �= 2, then for any Lie superalgebra g and any odd element x ∈ g1̄,
the universal enveloping algebra U(g) contains the element x2, which is equal to the even
element 1

2 [x, x] ∈ g0̄. It is desirable to keep this operation for the case of p = 2, but, since
it cannot be defined in the same way, we define it separately, and then define the bracket
of odd elements to be (this equation is valid for p �= 2 as well):

[x, y] := (x + y)2 − x2 − y2. (2.2)

We also assume, as usual, that

if x, y ∈ g0̄, then [x, y] is the bracket on the Lie algebra;
if x ∈ g0̄ and y ∈ g1̄, then [x, y] := lx(y) = −[y, x] = −rx(y), where l and r are the left and
right g0̄-actions on g1̄, respectively.

The Jacobi identity involving two or three odd elements has now the following form:

[x2, y] = [x, [x, y]] for any x ∈ g1̄, y ∈ g. (2.3)

If K �= Z/2, we can replace the condition (2.3) on two odd elements by a simpler one:

[x, x2] = 0 for any x ∈ g1̄. (2.4)
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Because of the squaring, the definition of derived Lie superalgebras should be modified.
For any Lie superalgebra g, set g(0) := g and (for i ≥ 0)

g(i+1) := [g(i), g(i)] + Span{g2 | g ∈ g
(i)
1̄
}. (2.5)

An even linear map r : g → gl(V ) is said to be a representation of the Lie superalgebra
g in the module V if

r([x, y]) = [r(x), r(y)] for any x, y ∈ g;

r(x2) = (r(x))2 for any x ∈ g1̄.
(2.6)

2.1. Examples: Lie superalgebras preserving non-degenerate forms

We say ([16]) that two bilinear forms B and B′ on a superspace V are equivalent if there is
an even non-degenerate linear map M : V → V such that

B′(x, y) = B(Mx,My) for all x, y ∈ V. (2.7)

We fix some basis in V and identify a bilinear form with its Gram matrix in this basis; let
us also identify any linear operator on V with its matrix. Then two bilinear forms (rather
supermatrices) are equivalent if there is an even invertible matrix M such that

B′ = MBMT , where T is for transposition. (2.8)

A bilinear form B on V is said to be symmetric if B(v,w) = B(w, v) for any v,w ∈ V ;
it is anti-symmetric if B(v, v) = 0 for any v ∈ V .

A linear map F is said to preserve a bilinear form B, if

B(Fx, y) + (−1)Π(x)Π(F )B(x, Fy) = 0 for all x, y ∈ V.

All linear maps preserving a given bilinear form constitute a Lie sub(super)algebra autB(V )
of gl(V ) (denoted autB(n) ⊂ gl(n) in matrix realization).

Let us consider the case of purely even space V of dimension n over a field of char-
acteristic p �= 2. If p �= 2, every nonzero form B can be uniquely represented as the sum
of a symmetric and an anti-symmetric form and it is possible to consider automorphisms
and equivalence classes of each summand separately. If the ground field is perfect (i.e., such
that every element of K has a square rootb), then there is just one equivalence class of
non-degenerate symmetric even forms, and the corresponding Lie algebra autB(V ) is called
orthogonal and denoted oB(n) (or just o(n)). Non-degenerate anti-symmetric forms over V

exist only if n is even; in this case, there is also just one equivalence class of non-degenerate
anti-symmetric even forms; the corresponding Lie algebra autB(n) is called symplectic and
denoted spB(2k) (or just sp(2k)). Both algebras o(n) and sp(2k) are simple.

If p = 2, then, instead of a unique representation of a given form as a sum of an anti-
symmetric and symmetric forms, we have a subspace of symmetric forms and the quotient
space of non-symmetric forms; in particular, it is not immediately clear how to classify non-
symmetric forms. Instead of orthogonal and symplectic Lie algebras we have two different

bSince a2 − b2 = (a − b)2 if p = 2, it follows that no element can have two distinct square roots.
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types of orthogonal Lie algebras (see Theorem 2.1). Either the derived algebras of these
algebras or their quotient modulo center are simple if n is large enough, so the canonical
expressions of the forms B are needed as a step towards classification of simple Lie algebras
in characteristic 2 which is an open problem, and as a step towards a version of this problem
for Lie superalgebras, even more open.

In [16], I showed that with respect to the above natural equivalence of forms (2.8), every
even symmetric non-degenerate form on a superspace of dimension n0̄ |n1̄ over a perfect
field of characteristic 2 is equivalent to a form of the shape (here: i = 0̄ or 1̄ and each ni

may equal to 0)

B =
(

B0̄ 0

0 B1̄

)
, where Bi =

{
1ni if ni is odd;

either 1ni or Πni if ni is even.

In other words, the bilinear forms with matrices 1n and Πn are equivalent if n is odd and
non-equivalent if n is even. The Lie superalgebra preserving B — by analogy with the
orthosymplectic Lie superalgebras osp in characteristic 0 we call it ortho-orthogonal and
denote ooB(n0̄ |n1̄) — is spanned by the supermatrices which in the standard format are of
the form (

A0̄ B0̄CT B−1
1̄

C A1̄

)
,

where A0̄ ∈ oB0̄
(n0̄), A1̄ ∈ oB1̄

(n1̄), and

C is arbitrary n1̄ × n0̄ matrix.

Since, as is easy to see,

ooΠI(n0̄ |n1̄) � ooIΠ(n1̄ |n0̄),

we do not have to consider the Lie superalgebra ooΠI(n0̄ |n1̄) separately unless we study
Cartan prolongations where the difference between these two incarnations of one algebra
is vital: For a linear superspace V of superdimension n0̄ | 2k1̄, the prolong (V, oo

(1)
IΠ(V ))∗

is finite-dimensional, but the prolong (Π(V ), oo(1)
IΠ(V ))∗ � (Π(V ), oo(1)

ΠI(Π(V )))∗ is infinite-
dimensional. (Structurally, the latter prolong is the closest p = 2 analog of the Lie super-
algebra of Hamiltonian vector fields (there is a one-to-one correspondence between their
bases and almost identical presentations) while the former one, (V, oo

(1)
IΠ(V ))∗, is analogous

to the automorphism algebra of the straightforward (but physically less meaningful than
super Minkowski spaces) super analog of the Riemann geometry.) The difference between
(V, ooIΠ(V ))∗ and (Π(V ), ooIΠ(V ))∗ � (Π(V ), ooΠI(Π(V )))∗ is not so drastic.

For an odd symmetric bilinear form B on a superspace of dimension (n0̄ |n1̄) over a
field of characteristic 2 to be non-degenerate, we need n0̄ = n1̄, and every such form B is
equivalent to Πk | k, where k = n0̄ = n1̄. This form is preserved by linear transformations
with supermatrices in the standard format of the shape(

A C

D AT

)
, where A ∈ gl(k), C and D are symmetric k × k matrices. (2.9)

As over C or R, the Lie superalgebra of linear maps preserving B will be referred to as
periplectic, as A. Weil suggested; it is denoted peB(k) or just pe(k). Note, though, that even
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the superdimensions of autB(k) for p = 2 and p = 0 differ both in the case of even and odd
form B.

The fact that two bilinear forms are inequivalent does

not, generally, imply that the Lie (super)algebras that

preserve them are not isomorphic. (2.10)

In [16], I proved that for the non-degenerate symmetric forms, this implication (2.10)
is, however, true (except for ooIΠ � ooΠI), and therefore we have several types of non-
isomorphic Lie (super)algebras (except for occasional isomorphisms intermixing the types,
e.g., oo

(1)
ΠΠ(6 | 2) � pe(1)(4)).

The problem of describing preserved bilinear forms has two levels: we can consider linear
transformations (Linear Algebra) and arbitrary coordinate changes (Differential Geometry).

In the literature, both levels are completely investigated, except for the case where
p = 2. More precisely, the fact that the non-split and split forms of the Lie algebras that
preserve the symmetric forms are not always isomorphic was never mentioned. A similar
fact is known on the Chevalley group level preserving quadratic forms, cf. [30]; although
similar, the classification of non-degenerate quadratic form and groups preserving them
has no relation — if p = 2 — with two types of non-degenerate symmetric forms and Lie
algebras preserving them.

2.2. Known facts: The case p = 2

(1) Arf has discovered the Arf invariant — an important invariant of non-degenerate
quadratic forms in characteristic 2; for an exposition, see [7]. Two such forms are equivalent
if and only if their Arf invariants are equal.

With any symmetric bilinear form B a quadratic form Q(x) := B(x, x) is associated.
The other way round, given a quadratic form Q, we define a symmetric bilinear form, called
the polar form of Q, by setting

BQ(x, y) = Q(x + y) − Q(x) − Q(y).

If p = 2, the correspondence Q ↔ BQ is not one-to-one. More precisely:

• the Arf invariant cannot be used for classification of symmetric bilinear forms because
one symmetric bilinear form can serve as the polar form for two non-equivalent (and
having different Arf invariants) quadratic forms;

• not every symmetric bilinear form can be represented as a polar form.

(2) Albert [1] classified symmetric bilinear forms over a field of characteristic 2 and proved
that

(1) two anti-symmetric forms of equal ranks are equivalent;
(2) every non-anti-symmetric form has a matrix which is equivalent to a diagonal matrix;
(3) if K is perfect, then every two non-anti-symmetric forms of equal ranks are equivalent.

(3) Albert also obtained some results on the classification of quadratic forms over a field K

of characteristic 2 (considered as elements of the quotient space of all bilinear forms modulo
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the space of anti-symmetric forms). In particular, he showed that if K is algebraically closed,
then every quadratic form is equivalent to exactly one of the forms

x1xr+1 + · · · + xrx2r or x1xr+1 + · · · + xrx2r + x2
2r+1, (2.11)

where 2r is the rank of the form.

Theorem 2.1 ([1, 16]). Let K be a perfect field of characteristic 2. Let V be an
n-dimensional space over K.

(1) For n odd, there is only one equivalence class of non-degenerate symmetric bilinear
forms on V .

(2) For n even, there are two equivalence classes of non-degenerate symmetric bilinear
forms, one contains 1n and the other one (none of the Gram matrices of this class has
a nonzero entry on the main diagonal ) contains Sn and Πn.

Remark 2.2. For the purposes of representation theory, it is desirable to have the Cartan
subalgebra consisting of matrices with nonzero entries only on the main diagonal (or as
close as possible). So it may be preferable to replace 1ni in the above bilinear forms by an
equivalent form

diag(12,Π2k−2) ∼ diag(12, S2k−2) if ni = 2k,

diag(1,Π2k) ∼ Π2k+1 ∼ S2k+1 if ni = 2k + 1.
(2.12)

2.3. New results

In view of (2.10) the next Lemma is nontrivial.

Lemma 2.3. (1) The Lie algebras oI(2k) and oΠ(2k) are not isomorphic (though are of
the same dimension); the same applies to their derived algebras:

(2) o
(1)
I (2k) �� o

(1)
Π (2k), though dim o

(1)
I (2k) = dim o

(1)
Π (2k);

(3) o
(2)
I (2k) �� o

(2)
Π (2k) unless k = 1.

Based on these results, I describe the two types of analogs of the Poisson bracket in the
purely even case, four types of analogs of the Poisson bracket in the super case, and (just
one) contact bracket, cf. [21]. Similar results for the odd bilinear form yield a description
of the anti-bracket (a.k.a. Buttin bracket), and the (peri)contact bracket, cf. [21].

If p �= 2, the quotient of the Poisson po(2n |m) (resp. the Buttin b(n)) Lie (super)algebra
modulo the center coincides with Cartan prolongs of orthogonal/orthosymplectic (resp.
periplectic) Lie (super)algebra, called the Lie (super)algebra of Hamiltonian vector fields
h(2n;N |m), and le(n;N), respectively. If p = 2, these prolongs contain elements corre-
sponding to non-existing functions — for example, squares of odd variables.

Altogether there are 5 types of analogs of Hamiltonian Lie algebras:

(1) There are two types of the “full” Hamiltonian Lie algebras — hI(n;N ) and hΠ(2n;N) —
the Cartan prolongs of the respective Lie algebras oI(n) and oΠ(n).

(2) There are two types of Cartan prolongs of the derived orthogonal Lie algebras o
(1)
B .

These prolongs “little” Hamiltonian Lie algebras — lhI(n;N) and lhΠ(2k;N ) — consist
of elements (vector fields) A =

∑
1≤i≤n Ai∂i of the “full” Lie algebras hI(n;N) and
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hΠ(2k;N ) satisfying the following conditions:

for o
(1)
I (n): ∂iAi = 0 for all i = 1, . . . , n;

for o
(1)
Π (2k): ∂iAk+i = ∂k+iAi = 0 for all i = 1, . . . , k.

(2.13)

(3) There is slhΠ(2k;N ), the Cartan prolong of the second derived Lie algebra o
(2)
Π consist-

ing of divergence-free elements of lhΠ(2k;N ).

Altogether there are 9 types of analogs of Hamiltonian Lie superalgebras:

(1) There are four types of the “full” Hamiltonian superalgebras — hII(n;N |m),
hIΠ(n;N | 2m)hΠI(2n;N |m), hΠΠ(2n;N | 2m) — the Cartan prolongs of the respective
Lie superalgebras ooII(n |m), ooIΠ(n | 2m), ooΠI(2n |m), ooΠΠ(2n | 2m).

(2) There are four types of Cartan prolongs of the derived Lie superalgebras oo
(1)
B , the “lit-

tle” Hamiltonian superalgebras — lhII(n0̄;N |n1̄), lhIΠ(n0̄;N | 2k1̄) lhΠI(2k0̄;N |n1̄),
lhΠΠ(2k0̄;N | 2k1̄). These prolongs consist of elements A =

∑
1≤i≤n0̄+n1̄

Ai∂i of the
“full” superalgebras satisfying the following conditions, where n0̄ = 2k0̄ and n1̄ = 2k1̄

if n0̄ or n1̄ is even:

for oo
(1)
II (n0̄ |n1̄) : divA = 0;

for oo
(1)
IΠ(n0̄ | 2k1̄) : ∂iAi = 0 for all i = 1, . . . , n0̄;

for oo
(1)
ΠI(2k0̄ |n1̄) : ∂iAi = 0 for all i = 2k0̄ + 1, . . . , 2k0̄ + n1̄;

for oo
(1)
ΠΠ(2k0̄ | 2k1̄) : ∂iAk0̄+i = ∂k0̄+iAi = 0 for all i = 1, . . . , k0̄; and

∂2k0̄+iA2k0̄+k1̄+i = ∂2k0̄+k1̄+iA2k0̄+i = 0 for all i = 1, . . . , k1̄.

(2.14)

(3) There is slhΠΠ(2k0̄;N | 2k1̄), the Cartan prolong of oo
(2)
ΠΠ(2k0̄ | 2k1̄), consisting of

divergent-free elements of the prolong of lhΠΠ(2k0̄;N | 2k1̄).

There are three types of analogs of the anti-bracket (Buttin) Lie superalge-
bras and their quotients modulo center:

(1) There is “full” Lie superalgebra le(k;N) := le(k;N | k), the Cartan prolong of pe(k | k);
(2) There is “little” Lie superalgebra lle(k;N ) := le(k;N | k), the Cartan prolongs of

pe(1)(k | k), consisting of the elements A =
∑

1≤i≤n Ai∂i of the “full” superalgebra sat-
isfying the condition

∂iAk+i = ∂k+iAi = 0 for all i = 1, . . . , k. (2.15)

(3) There is slle(k;N), the Cartan prolong of pe(2)(k | k), consisting of divergence-free
elements of lle(k;N).

We offer several analogs of the notion “differential form”: The “usual” one, the divided
power ones, and the tensor one. Note that the usual, valid for p �= 2, interpretation of the
Hamiltonian Lie superalgebra h as the one preserving a non-degenerate closed differential
2-form (neither “usual” nor divided power ones) is not applicable to some of the analogs
of h introduced below.

Particular cases of Hamiltonian Lie (super)algebras were partly investigated in [24, 22].
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3. Functions, Vector Fields, and Differential Forms for p > 0

3.1. Divided powers

Let us consider the supercommutative superalgebra C[x] of polynomials in a indeterminates
x = (x1, . . . , xa), for convenience ordered in a “standard format”, i.e., so that the first m

indeterminates are even and the rest n ones are odd (m + n = a). Among the integer bases
of C[x] (i.e., the bases, in which the structure constants are integers), there are two canonical
ones, — the usual, monomial, one and the basis of divided powers, which is constructed in
the following way.

For any multi-index r = (r1, . . . , ra), where r1, . . . , rm are non-negative integers, and
rm+1, . . . , rn are 0 or 1, we set

u
(ri)
i :=

xri
i

ri!
and u(r) :=

a∏
i=1

u
(ri)
i .

These u(r) form an integer basis of C[x]. Clearly, their multiplication relations are

u(r) · u(s) =
n∏

i=m+1

min(1, 2 − ri − si) · (−1)
P

m<i<j≤a rjsi ·
(

r + s

r

)
u(r+s),

where

(
r + s

r

)
:=

m∏
i=1

(
ri + si

ri

)
.

(3.1)

In what follows, for clarity, we will write exponents of divided powers in parentheses, as
above, especially if the usual exponents might be encountered as well.

Now, for an arbitrary field K of characteristic p > 0, we may consider the supercommu-
tative superalgebra K[u] spanned by elements u(r) with multiplication relations (3.1). For
any m-tuple N = (N1, . . . , Nm), where Ni are either positive integers or infinity, denote

O(m;N ) := K[u;N ] := SpanK(u(r) | ri < pNi for i ≤ m and ri = 0 or 1 for i > m) (3.2)

(we assume that p∞ = ∞). As is clear from (3.1), K[u;N ] is a subalgebra of K[u]. The
algebra K[u] and its subalgebras K[u;N ] are called the algebras of divided powers; they can
be considered as analogs of the polynomial algebra.

In what follows we will drop the parameter N and write just O(m) or even O(x) (having
in mind O(u)), when the exact value of N is not important.

Only one of these numerous algebras of divided powers O(n;N) are indeed generated
by the indeterminates declared: If Ni = 1 for all i. Otherwise, in addition to the ui, we have
to add u

(pki )
i for all i ≤ m and all ki such that 1 < ki < Ni to the list of generators. Since

any derivation D of a given algebra is determined by the values of D on the generators, we
see that der(O(m;N )) has more than m functional parameters (coefficients of the analogs
of partial derivatives) if Ni �= 1 for at least one i. Define distinguished partial derivatives by
setting

∂i(u
(k)
j ) = δiju

(k−1)
j for all k < pNj . (3.3)

The simple vectorial Lie algebras over C have only one parameter: the number of inde-
terminates. If char K = p > 0, the vectorial Lie algebras acquire one more parameter: N .
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For Lie superalgebras, N only concerns the even indeterminates. In what follows, by abuse
of notation, we often denote the divided power indeterminates by xr, not u(r).

The Lie (super)algebra of all derivations der(O(m;N )) turns out to be not so interesting
as its Lie subsuperalgebra of distinguished derivations: The general vectorial Lie algebra of
distinguished derivations is denoted by (W is in honor of Witt who in 1930s considered the
characteristic p version of the “centerless Virasoro algebra”)

vect(m;N |n) a.k.a W (m;N |n) a.k.a

derdist K[u;N ] = SpanK(u(r)∂k | ri < pNi for i ≤ m (3.4)

and ri = 0 or 1 for i > m; 1 ≤ k ≤ a).

3.2. CTS-prolongations in the modular case

Let DSk be the operation of rising to the kth divided symmetric power and DS
. := ⊕kDSk;

we set

i : DSk+1(g−)∗ ⊗ g− → DSk(g−)∗ ⊗ g∗− ⊗ g−;

j : DSk(g−)∗ ⊗ g0 → DSk(g−)∗ ⊗ g∗− ⊗ g−
(3.5)

be the natural maps. Let the (i,N )-th prolong of the pair (g−, g0) be:

gk,N = (j(DS
.(g−)∗ ⊗ g0) ∩ i(DS

.(g−)∗ ⊗ g−))k,N , (3.6)

where the subscript k in the right hand side singles out the component of degree k. Together
with O(n;N) all prolongs acquire one more — shearing — parameter: N .

Superization of the prolongation construction is immediate.
Set (g−, g0)∗,N = ⊕i≥−d gi,N ; then, as is easy to verify, (g−, g0)∗ is a Lie (super)algebra.

Provided g0 acts on g−1 without kernel, (g−, g0)∗,N is a subalgebra of vect(m;N |n) for
m |n = sdim g− and some N .

3.2.1. Superizations of the Cartan prolongs and its
Tanaka–Shchepochkina generalization

A necessary condition for a Z-graded Lie algebra g of finite depth to be simple is [g−1, g1] =
g0; so being interested in simple algebras, we note, that if [g−1, g1] �= g0 in (g−1, g0)∗,N , we
can — if p �= 2 — replace g0 by [g−1, g1], and the resulting space is still a Lie algebra.

If p = 2, then we cannot, in general, replace in (g−1, g0)∗ the Lie superalgebra g0 by
[g1, g−1], since [g1, g−1] may be not closed under squaring. So, if we want to replace g0

by the minimal possible space containing [g1, g−1] and closed relative to the bracket and
squaring, we should take

[g1, g−1] := [g1, g−1] + Span{g2 | g ∈ [g1, g−1]1̄}. (3.7)

Example 3.1. Now, recall that the 1-form α on a superdomain M is said to be contact
if it singles out a non-integrable distribution in the tangent bundle TM and dα is non-
degenerate on the fibers of this distribution; for details, see [19]. The Lie superalgebra that
preserves the distribution singled out by a contact form is said to consist of contact vector
fields.
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What is the Lie algebra of contact vector fields on K
n in these terms? Denote by hei(2n)

the Heisenberg Lie algebra: its space is W ⊕ K · z, where W is a 2n-dimensional space
endowed with a non-degenerate anti-symmetric bilinear form B and the bracket in hei(2n)
is given by the following relations:

z is in the center and [v,w] = B(v,w) · z for any v,w ∈ W . (3.8)

Clearly, for p �= 2, we have the following realization of the Lie algebra of contact vector
fields (here: c(g) := g ⊕ Kz):

k(2n + 1) ∼= (hei(2n), c(sp(2n)))∗,N . (3.9)

3.3. On vectorial Lie superalgebras, there are TWO analogs of trace

More precisely, there are traces and their Cartan prolongs, called divergencies. On any Lie
(super)algebra g over a field K, a trace is any map tr : g → K such that

tr([g, g]) = 0. (3.10)

The straightforward analogs of the trace are, therefore, the linear functionals that vanish
on g(1) := [g, g] (the first derived is often briefly denoted by g′ if p = 0); the number of
linearly independent traces is equal to dim g/g(1); if g is a Lie superalgebra, these traces
are called supertraces and they can be even or odd. Each trace is defined up to a nonzero
scalar factor selected ad lib.

Let now g be a Z-graded vectorial Lie superalgebra with g− := ⊕i<0 gi generated by
g−1, and let tr be a (super)trace on g0. The divergence div : g → F is an adg−1-invariant
prolongation of the trace satisfying the following conditions:

div : g → F preserves the degree, i.e., deg div = 0;

Xi(divD) = div[Xi,D] for all elements Xi that span g−1;

div | g0
= tr;

div | g− = 0.

By construction, the Lie (super)algebra sg := Ker div | g of divergence-free elements of g

is the complete prolong of (g−,Ker tr |g0
). This fact explains why we say that div is the

prolongation of the trace.
Strictly speaking, divergences are not traces (they do not satisfy (3.10)) but for vectorial

Lie (super)algebras they embody the idea of the trace (understood as property (3.10)) better
than the traces. We denote the special (divergence free) subalgebra of a vectorial algebra g

by sg, e.g., svect(n |m). If there are several traces on g0, there are several types of special
subalgebras of g and we need a different name for each.

3.4. Symmetric and exterior differential forms

In what follows, as is customary in supergeometry, we use the anti-symmetric ∧ product
for the analogs of the exterior differential forms, and the symmetric ◦ product for the
symmetric differential forms, e.g., analogs of the metrics. We can also consider the divided
power versions of the exterior and symmetric forms. Usually we suppress the ∧ or ◦ signs,
since all is clear from the context, unless both multiplications are needed simultaneously.
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Considering exterior differential forms, we use divided powers dx
(∧k)
i with multiplication

relations (3.1), where the indeterminates are now the dxi of parity Π(xi) + 1̄, and the Lie
derivative along the vector field X given by the formula

LX(dx
(∧k)
i ) = (LXdxi) ∧ dx

(∧k−1)
i .

Note that if we consider divided power differential forms in characteristic 2, then, for xi

odd, we have dxi ∧ dxi = 2(dx
(∧2)
i ) = 0.

Considering divided powers of chains and cochains of Lie superalgebras affects the for-
mula for the (co)chain differentials. For cochains of a given Lie superalgebra g, this only
means that a divided power of an odd element must be differentiated as a whole:

d(ϕ(∧k)) = dϕ ∧ ϕ(∧(k−1)) for any ϕ ∈ (g∗)1̄.

For chains, the modification is a little more involved: Let g1, . . . , gn be a basis of g. Then
for chains of g with coefficients in a right module A, and a ∈ A, we have

d

(
a ⊗

n∧
i=1

g
(∧ri)
i

)
=

∑
Π(gk)=1̄,rk≥2

a ⊗
∧
i<k

g
(∧ri)
i ∧ g2

k ∧ g
(∧(rk−2))
k ∧

∧
i>k

g
(∧ri)
i

+
∑

1≤k<l≤n,rk,rl≥1

(−1)
P

k<m<l rmΠ(gm)a

⊗
∧
i<k

g
(∧ri)
i ∧ [gk, gl] ∧ g

(∧(rk−1))
k ∧

∧
k<i<l

g
(∧ri)
i ∧ g

(∧(rl−1))
l ∧

∧
i>l

g
(∧ri)
i

+
∑
rk≥1

(−1)Π(gk)
P

m<k rmΠ(gm)(agk) ⊗
∧
i<k

g
(∧ri)
i ∧ g

(∧(rk−1))
k ∧

∧
i>k

g
(∧ri)
i .

Denote the divided power cohomology by DPH i,N (g;M) and divided power homology by
DPH i,N (g;M). Note that if g is a Lie superalgebra, we cannot interpret its generating
relations in terms of homology, as we do for p = 0, instead we need H2(g) := H2(g; K) if
p �= 2 (cf. [12]) and DPH 2,N (g) := DPH 2,N (g; K) if p = 2: We must use divided powers
(with N such that Ni ≥ 2 for all i) since otherwise we won’t be able to take into account
the relations of the form x2 = 0.

4. Relation with 1-Forms (Differential Geometry)

In this section, p = 2; so the space of bilinear forms is filtered, with symmetric forms forming
a subspace invariant with respect to the changes of bases.

4.1. A factor-class approach to bilinear forms

For reasons given in [16], equivalences (2.7) and (2.8) are inadequate for classification of non-
symmetric forms. Instead of considering non-symmetric forms individually, we can consider
the quotient space NB(n) of the space of all forms modulo the space of symmetric forms.
We will denote the element of this quotient space with representative B, by {B}. We say
that {B} and {C} are equivalent (and denote it {B} ∼ {C}), if there exists an invertible
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matrix M such that

{MBM T } = {C}, i.e., if MBM T − C is symmetric (4.1)

(this definition does not depend on the choice of representatives B and C).
Any {B} has both degenerate and non-degenerate representatives: the representative

with nonzero elements only above the diagonal (such representative is unique and charac-
terizes {B}) is degenerate, and if we add the unit matrix to it, we get a non-degenerate
representative of {B}.

Note that {B} can be also characterized by the symmetric zero-diagonal matrix B+BT .
The rank of B + BT is said to be the rank of {B}. According to a Lemma [16], it is always
even and is equal to doubled minimal rank of representatives of {B}. We say that the class
{B} is non-degenerate, if so is the matrix B + BT .

Theorem 4.1. The classes {B} and {C} are equivalent if and only if they have equal
ranks.

4.2. Matrices and 1-forms

Let B and B′ be the matrices of bilinear forms on an n-dimensional space V over a field K

of characteristic 2. Let x0, x1, . . . , xn be independent indeterminates; set

deg x0 = 2, deg x1 = · · · = deg xn = 1.

We say that B and B′ are 1-form-equivalent if there exists a degree preserving transfor-
mation, i.e., a set of independent variables x′

0, x
′
1, . . . , x

′
n such that

deg x′
0 = 2, deg x′

1 = · · · = deg x′
n = 1, (4.2)

which are polynomials in x0, x1, . . . , xn in divided powers with shearing parameter

N = (N0, . . . , Nn) such that Ni > 1 for every i from 1 to n, (4.3)

and such that

dx0 +
n∑

i,j=1

Bijxidxj = dx′
0 +

n∑
i,j=1

B′
ijx

′
idx′

j . (4.4)

Lemma 4.2. B and B′ are 1-form-equivalent if and only if {B} ∼ {B′}.

4.3. The case of odd indeterminates

Let us modify the definition of 1-form-equivalence for the super case where x1, . . . , xn are
all odd. In this case, we can only use divided powers with N = (N0, 1, . . . , 1).

We say that B and B′ are 1-superform-equivalent if there exists a set of indeterminates
x′

0, x
′
1, . . . , x

′
n, which are polynomials in x0, x1, . . . , xn, such that

Π(x′
0) = 0̄, Π(x′

1) = · · · = Π(x′
n) = 1̄, deg x′

0 = 2, deg x′
1 = · · · = deg x′

n = 1 (4.5)
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and

dx0 +
n∑

i,j=1

Bijxidxj = dx′
0 +

n∑
i,j=1

B′
ijx

′
idx′

j. (4.6)

Lemma 4.3. The matrices B and B′ are 1-superform-equivalent if and only if exist an
invertible matrix M and a symmetric zero-diagonal matrix A such that

B = MB ′MT + A. (4.7)

4.3.1. Relation with quadratic forms

In pre-super era, Albert [1] considered the equivalence (4.7) as an equivalence of (matrices
of) quadratic forms. In particular, he proved the following

Statement 4.4. If K is algebraically closed, every matrix B is equivalent in the sense
(4.7) to exactly one of the matrices

Y (n, r) =

0
B@

0r 1r 0

0r 0r 0

0 0 0n−2r

1
CA or Ỹ (n, r) =

0
BBB@

0r 1r 0 0

0r 0r 0 0

0 0 1 0

0 0 0 0n−2r−1

1
CCCA,

where 2r = rank(B + BT ). The corresponding quadratic form is non-degenerate if and only
if either (a) n = 2r and the matrix is equivalent to Y (n, r), or (b) n = 2r+1 and the matrix
is equivalent to Ỹ (n, r).

If, in 1-form-equivalence, we consider divided powers with shearing parameter N =
(N0, 1, . . . , 1), it is the same as to consider 1-superform-equivalence.

Lemma 4.5. Let x0, . . . , xn be indeterminates,

Π(x0) = 0̄, Π(x1) = · · · = Π(xn) = Π.

Then the 1-form on the (n + 1 | 0)-dimensional (if Π = 0̄) or (1 | n)-dimensional (if Π = 1̄)
superspace

α = dx0 +
n∑

i,j=1

Bijxidxj (4.8)

is contact (see Subsec. 3.1) if and only if one of the following conditions holds:

(1) Π = 0̄, and {B} is non-degenerate. i.e., n = rank(B + BT ) (this rank is always even);
(2) Π = 1̄, and the quadratic form corresponding to B is non-degenerate.

From this, we get the following

Theorem 4.6. The following are the canonical expressions of the odd contact forms
if the indeterminates x1, . . . , xn are of the same parity (for the general case, see
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Theorem 4.8):

α = dx0 +
k∑

i=1

xidxk+i


for n = 2k and x1, . . . , xn

all even or all odd;

+ x2k+1dx2k+1 for n = 2k + 1 and x1, . . . , xn odd.

(4.9)

Remark 4.7. (1) If n > 1 and x1, . . . , xn are odd, the 1-form α = dx0 +
∑n

i=1 xidxi is not
contact since (recall that p = 2)

α = d

x0 +
∑
i<j

xixj

+

(
n∑

i=1

xi

)
d

(
n∑

i=1

xi

)
, hence

rk dα = rkd

(
n∑

i=1

xi

)
∧ d

(
n∑

i=1

xi

)
= 1.

(2) Let p = 2. Since there are two types of orthogonal Lie algebras if n is even, and
orthogonal algebras coincide, in a sense, with symplectic ones, it seems natural to
expect that there are also two types of the Lie algebras of Hamiltonian vector fields
(preserving I or S (or Π), respectively).

Are there two types of contact Lie algebras corresponding to these cases? The (some-
what unexpected) answer is NO:

The classes of 1-(super)form-equivalence of bilinear forms which correspond to contact
forms have nothing to do with classes of classical equivalence of symmetric bilinear
forms. The 1-forms, corresponding to symmetric bilinear forms are exact if x1, . . . , xn

are even, and are of rank ≤ 2 if x1, . . . , xn are odd.

(3) Lin [23] considered an n-parameter family of simple Lie algebras for p = 2 preserving
in dimension 2n + 1 the distribution given by the contact form

α = dt +
n∑

i=1

((1 − ai)pidqi + aiqidpi), where ai ∈ K.

Obviously, the linear change

t′ = t +
∑

aipiqi and identical on other indeterminates (4.10)

reduces α to the canonical form dt +
∑n

i=1 pidqi. So the parameters ai can be eliminated.
Although Lin mentioned the change (4.10) on p. 21 of [23], its consequence was not formu-
lated and, seven years after, Brown [6] reproduced Lin’s misleading n-parameter description
of k(2n + 1).

4.4. The general case of an odd 1-form

Let

Π(x0) = Π(x1) = · · · = Π(xn0̄
) = 0̄, Π(xn0̄+1) = · · · = Π(xn) = 1̄.

This corresponds to the following equivalence (we call it 1-superform-equivalence again) of
even bilinear forms on a superspace V of superdimension (n0̄ |n1̄), where n1̄ = n−n0̄: Two
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such forms B and B′ are said to be 1-superform-equivalent if, for their supermatrices, we
have (4.7), where M ∈ GL(n0̄ |n1̄) and A is a symmetric even supermatrix such that
the restriction of the bilinear form corresponding to it onto the odd subspace V1̄ is anti-
symmetric. This means that, in the standard format of supermatrices,

B =
(

B0̄ 0

0 B1̄

)
and B′ =

(
B ′̄

0 0

0 B ′̄
1

)
are 1-superform-equivalent if and only if

(1) B0̄ and B ′̄
0

are 1-form-equivalent, and
(2) B1̄ and B ′̄

1
are 1-superform-equivalent. Then, from (4.9) we get the following.

Theorem 4.8. The following are the canonical expressions for an odd contact form on a
superspace:

dt +
k∑

i=1

pidqi +
l∑

j=1

ξidηi

{
for n0̄ = 2k and n1̄ = 2l,

+θdθ for n0̄ = 2k and n1̄ = 2l + 1,

where t = x0, and pi = xi, qi = xk+i for 1 ≤ i ≤ k are the even indeterminates; ξi =
xn0̄+i, ηi = xn0̄+l+i for 1 ≤ i ≤ l, and θ = xn for n1̄ = 2l + 1 are the odd indeterminates.

This follows from the fact proved in [16] that the 1-form

dx0 +
n0̄∑

i,j=1

Aijxidxj +
n1̄∑

i,j=1

Bijxn0̄+idxn0̄+j

is contact if and only if the forms

dx0 +
n0̄∑

i,j=1

Aijxidxj and dx0 +
n1̄∑

i,j=1

Bijxn0̄+idxn0̄+j

are contact on the superspaces of superdimension (n0̄ + 1 | 0) and (1 |n1̄), respectively.

4.5. Generating functions

Recall that the contact Lie superalgebra consists of the vector fields D that preserve the
contact structure (non-integrable distribution given by a contact form α) on the supervariety
M = K

n0̄+1 |n1̄ . Such fields satisfy

LD(α) = FDα for some FD ∈ F , where F is the space of functions on M . (4.11)

Let us consider the form

α = dx0 +
k∑

i=1

xidxk+i

{
if n = n0̄ + n1̄ = 2k

+x2k+1dx2k+1 if n = 2k + 1,

such that

Π(x0) = · · · = Π(xk0̄
) = Π(xk+1) = · · · = Π(xk+k0̄

) = 0̄,

Π(xk0̄+1) = · · · = Π(xk) = Π(xk+k0̄+1) = · · · = Π(x2k+1) = 1̄

(here n0̄ = 2k0̄; if n0̄ is odd, no contact form exists).
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The vector fields D that satisfy (4.11) for some function FD look differently for different
characteristics. For p �= 2, and also if p = 2 and n = 2k, they have the following form (for
any f ∈ F):

Kf = (1 − E′)(f)
∂

∂x0
+

∂f

∂x0
E′ +

k0̄∑
i=1

(
∂f

∂xk+i

∂

∂xi
− ∂f

∂xi

∂

∂xk+i

)

− (−1)Π(f)

 k∑
i=k0̄+1

(
∂f

∂xi

∂

∂xk+i
+

∂f

∂xk+i

∂

∂xi

)

+


if n = 2k

1
2

∂f

∂x2k+1

∂

∂x2k+1
if n = 2k + 1

, (4.12)

where E′ =
∑k

i=1 xi
∂

∂xi
+
{

if n = 2k
1
2x2k+1

∂
∂x2k+1

if n = 2k + 1 .
If p = 2 and n = 2k + 1, we cannot use this formula for Kf anymore (at least, not for

arbitrary f) since it contains 1
2 . In this case, the elements of the contact algebra have the

following forms:

(a) for any f such that ∂f
∂x0

= ∂f
∂x2k+1

= 0, i.e., for any f ∈ O(x1, . . . , x2k;N ), we have

Kf = (1 − E′)(f)
∂

∂x0
+

k0̄∑
i=1

(
∂f

∂xk+i

∂

∂xi
− ∂f

∂xi

∂

∂xk+i

)

− (−1)Π(f)

 k∑
i=k0̄+1

(
∂f

∂xi

∂

∂xk+i
+

∂f

∂xk+i

∂

∂xi

), (4.13)

where E′ =
∑k

i=1 xi
∂

∂xi
. (Note, that if F consists of polynomials (or series), instead of

divided powers, then we can use f ∈ K[xp
0, x1, . . . , x2k] for any characteristic p > 0.)

(b) For any g ∈ O(x0, . . . , x2k;N ), we have

(b1) Ag := g

(
x2k+1

∂

∂x0
+

∂

∂x2k+1

)
(b2) Bg := gx2k+1

∂

∂x2k+1
.

(4.14)

Remark 4.9. We do not unite these two formulas into one although they both can be
obtained from (4.12) by “multiplication by 2” for the following reason. Indeed, unification
gives

x2k+1
∂f

∂x2k+1

∂

∂x0
+
(

∂f

∂x2k+1
+ x2k+1

∂f

∂x0

)
∂

∂x2k+1
. (4.15)

If f = gx2k+1, where g ∈ O(x0, . . . , x2k;N), then (4.15) is equal to (b1) from (4.14), all
right. But if f ∈ O(x0, . . . , x2k), then (4.15) is equal to

∂f

∂x0
x2k+1

∂

∂x2k+1
;
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but more general (since the endomorphism ∂
∂x0

is not onto on O(x0, . . . , x2k)) vector fields
(b2) from (4.14) also preserve the form α (not only the distribution given by it).

The brackets and squarings of contact vector fields, and the corresponding contact brack-
ets of generating functions are as follows:

[Kf ,Kf ′ ] = K[f,f ′]K.b.
; [Mf ,Mf ′ ] = M[f,f ′]K.b.

;

(Kf )2 = KPk
i=1

∂f
∂xi

∂f
∂xk+i

; (Mf )2 = MPk
i=1

∂f
∂xi

∂f
∂xk+i

;

[Kf , Ag] = A[f,g]K.b.
; (Ag)2 = B

g ∂g
∂x0

;

[Kf , Bg] = B[f,g]K.b.
; [Ag, Bg′ ] = Agg′ ;

[Ag, Ag′ ] = B ∂
∂x0

(gg′), [Bg, Bg′ ] = (Bg)2 = 0,

(4.16)

where the contact bracket is of the form

{f, g}k.b. =
∂f

∂x0
(1 − E′)(g) + (1 − E′)(f)

∂g

∂x0
+

k∑
i=1

(
∂f

∂xi

∂g

∂xk+i
+

∂f

∂xk+i

∂g

∂xi

)
(4.17)

and where

x0 :=

{
τ for m(n;N |n + 1)

t for k(2k + 1;N |n1̄).

For k(2k + 1;N | 2l) and m(n;N |n + 1), the bracket of contact vector fields reduces to k.b.

4.5.1. Contact algebra as a CTS prolong

If one tries to build the contact algebra g by means of a non-degenerate symmetric bilinear
form B on the space V by setting (like it is done in characteristic 0) g to be the CTS prolong
(g−, g0)∗, where the non-positive terms of g are:

gi =



0 if i ≤ −3;

K · K1 if i = −2

V = SpanK(Kx1 , . . . ,Kxn) if i = −1

oB(V ) ⊕ KKt � SpanK(Kxixj | i, j = 1, . . . , n) ⊕ KKt if i = 0

(4.18)

and where the multiplication is given by the formulas

[X,Y ] = B(X,Y )K1 for any X,Y ∈ g−1;

oB(V ) acts on V via the standard action;

[g0, g−2] = 0;

Kt acts as id on g−1,

[Kt, oB(V )] = 0,

then the form B must be zero-diagonal one (because 0 = [X,X] = B(X,X)K1 for X ∈ g−1).
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One can also try to construct a Lie superalgebra in a similar way by letting g−1 be
purely odd and

X2 = B(X,X)K1 for any X ∈ g−1. (4.19)

Let us realize this Lie superalgebra by vector fields on a superspace of superdimension
(1 |n) with basis x0, . . . , xn such that

Π(x0) = 0̄; Π(xi) = 1̄ for 1 ≤ i ≤ n.

If e1, . . . , en is a basis of V and we set (here ∂i = ∂
∂xi

for i = 0, . . . , n):

K1 = ∂0; ei = ∂i +
n∑

j=1

Aijxj∂0 for i = 1, . . . , n,

then, to satisfy relations (4.19), we need the following (here the Gram matrix B is taken in
the basis e1, . . . , en):

Aii = Bii for 1 ≤ i ≤ n;

Aij + Aji = Bij + Bji for 1 ≤ i < j ≤ n

i.e., A ∈ {B}, where the equivalence class is taken modulo zero-diagonal symmetric matrices.
(For a discussion of various possible equivalences of non-symmetric forms, see [16].)

These vector fields preserve the 1-form

α = dx0 +
n∑

i,j=1

Aijxidxj .

So, to get a contact Lie superalgebra in this way, one needs B to be non-symmetric
with non-degenerate class {B} (i.e., such that B + BT is non-degenerate).

4.6. The case of an even 1-form

Let Π(x0) = 1̄. This corresponds to the following equivalence of odd bilinear forms on
a superspace V of superdimension (n0̄ |n1̄): two such forms B and B′ are said to be 1-
superform-equivalent if for their (super)matrices we have (4.7), where M ∈ GL(n0̄ |n1̄) and
A is a symmetric odd supermatrix. Then, since(

1n0̄
0

0 M

)(
B +

(
0 C

CT 0

))(
1n0̄

0
0 MT

)
=
(

0 0
X(D + CT ) 0

)
for B =

(
0 C

D 0

)
,

any such B is equivalent to a form with a supermatrix of the shape (the indices above and
to the left of the supermatrix are the sizes of the blocks)

r n0̄ − r n1̄

n0̄

r

n1̄ − r

 0 0 0
1r 0 0
0 0 0

,
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where r = rank(D + CT ). The corresponding form is contact if and only if r = n0̄ = n1̄.
Hence, we get the following somewhat unexpected result:

Theorem 4.10. The following expressions for the canonical form of an even (peri) contact
1-form on a superspace of dimension (k | k + 1) are equivalent for all l (0 to k):

(1) dτ +
k∑

i=1

ξidqi, (2) dτ +
k∑

i=1

qidξi, (3) dτ +
l∑

i=1

ξidqi +
k∑

i=l+1

qidξi, (4.20)

where τ = x0, and ξi = xk+i, qi = xi for 1 ≤ i ≤ k.

The pericontact vector fields that preserve the contact structure with the form (4.20.3)
are of the shape

Mf = (1 − E′)(f)
∂

∂τ
+

l∑
i=1

(
∂f

∂qi

∂

∂ξi
+ (−1)Π(f) ∂f

∂ξi

∂

∂qi

)

−
k∑

i=l+1

(
(−1)Π(f) ∂f

∂qi

∂

∂ξi
+

∂f

∂ξi

∂

∂qi

)
+ (−1)Π(f) ∂f

∂τ
E′, (4.21)

where

E′ =
l∑

i=1

ξi
∂

∂ξi
+

k∑
i=l+1

qi
∂

∂qi

(we usually select one of the extreme cases l = 0 or l = k, i.e., either E′ =
∑

ξi
∂

∂ξi
or

E′ =
∑

qi
∂

∂qi
).

5. The Hamiltonian Lie Superalgebras

Let B = (Bij) be an even symmetric non-degenerate bilinear form on a superspace V of
dimension n0̄ |n1̄ with a basis {x1, . . . , xn}, where n = n0̄ + n1̄, such that

Π(x1) = · · · = Π(xn0̄
) = 0̄, Π(xn0̄+1) = · · · = Π(xn) = 1̄.

Then the Cartan prolong of the Lie superalgebra ooB(n0̄ |n1̄) is analogous to the Hamilto-
nian Lie superalgebra.

5.1. Relations with differential 2-forms

Let W be a free module over a supercommutative superalgebra A. The module

T
.(W ) =

∞⊕
n=0

T n(W ), where T n(W ) = W ⊗A · · · ⊗A W (n factors)

possesses a natural algebra structure. It is called the tensor algebra of W over A.
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The two quotients of T
.(W ) are of special interest: the symmetric algebra S

.(W ) and
the external algebra ∧.(W ). The symmetric algebra is defined as the quotient modulo the
ideal generated by elements of the forms

x ⊗ y − y ⊗ x, where x, y ∈ W0̄ or x ∈ W0̄, y ∈ W1̄;

x ⊗ x, where x ∈ W1̄.

The exterior algebra is defined as the quotient modulo the ideal generated by elements of
the forms

x ⊗ x, where x ∈ W0̄;

x ⊗ y − y ⊗ x, where x, y ∈ W1̄ or x ∈ W0̄, y ∈ W1̄.

(These two algebras can also be considered as subalgebras in T
.(W ). Note that if we define

them so, then for p = 2 and purely even W , we have ∧.(W ) ⊂ S
.(W ).)

For a given vector superspace V , one can construct in this way the superalgebra D
.(V ) —

the tensor algebra of the free module of differential 1-forms over the supercommutative
superalgebra of polynomials in V . This algebra was seldom if ever considered in geome-
try whereas the algebras of exterior and symmetric differential forms are indispensable in
Riemannian and differential geometries, respectively.

In the case of characteristic p �= 2, the Hamiltonian Lie superalgebra can be represented
as the Lie superalgebra of vector fields preserving a given exterior differential 2-form of
maximal rank with constant coefficient. In the case of characteristic 2, the Cartan prolong
of the Lie superalgebra ooB(n0̄ |n1̄) can be represented as a Lie superalgebra of vector fields
preserving a given exterior differential 2-form only if B is equivalent to BΠΠ or BΠI ; the
corresponding 2-form is

ωB =
∑

1≤i≤j≤n

Bijdxi ∧ dxj , (5.1)

where dxi ∧ dxj denotes the equivalence class with a representative dxi ⊗ dxj . However,
this prolong can be represented as a Lie superalgebra of vector fields preserving a given
tensor, not exterior, differential 2-form for any equivalence class of B; the corresponding
2-form is

ωB =
∑

1≤i≤j≤n

Bijdxi ⊗ dxj . (5.2)

5.2. The structure of the prolongs

As a linear space, the above Cartan prolong can be represented as

RegB ⊕ Irreg1
B ⊕ Irreg2

B , (5.3)

where

RegB =


n∑

i,j=1

(B−1)ij
∂f

∂xi

∂

∂xj
| f ∈ O(x1, . . . , xn;N)

 ,
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Irreg1
B = Span

 n∑
j=1

(B−1)ijxi
∂

∂xj
|n0̄ < i ≤ n


Irreg2

B = Span

 n∑
j=1

(B−1)ijx
(2Ni−1)
i

∂

∂xj
| 1 ≤ i ≤ n0̄ such that N i < ∞

 . (5.4)

Note that sdim Irreg1
B = n1̄ | 0, and this space is spanned by elements “generated” by

nonexisting “Hamiltonians” x
(2)
i , where n0̄ < i ≤ n; the space Irreg2

B is spanned by elements

“generated” by nonexisting “Hamiltonians” x
(2Ni)
i , where 1 ≤ i ≤ n0̄.

This description implies, in particular, that the superdimensions of the prolongs do
not depend on the type of the superalgebra (i.e., is it ooII , ooIΠ, ooΠI or ooΠΠ) — they
only depend on the superdimension n0̄ |n1̄, the number of the prolong and the shearing
parameter N .

For N = N∞, the dimension of the kth prolong is equal to a coefficient of the super-
character of O(x1, . . . , xn0̄

, ξ1, . . . , ξn1̄
;N), i.e.,

n1̄∑
i=0

(
n0̄

k + 2 − i

)(
n1̄

i

)

= the coefficient of xk+2 in the Taylor series expansion of
(1 + x)n1̄

(1 − x)n0̄
at x = 0.

For N = Ns, the dimension of the kth prolong is equal to
( n
k+2

)
, and the dimension of the

complete prolong is equal to 2n +n−1. The general formula for the superdimensions seems
to be complicated (I was unable to derive it).

5.3. Cartan prolongs of the derived algebras

If n0̄, n1̄ > 0, then the Cartan prolong of oo
(1)
II (n0̄ |n1̄) can be represented as

Reg′II ⊕ Irreg′1II ,

where

Reg′II =

HII,f | f ∈ O(x1, . . . , xn),
n0̄∑

j=1

∂2f

∂x2
i

= 0

,

Irreg′1II = Span
(

xi−1
∂

∂xi−1
+ xi

∂

∂xi
|n0̄ < i ≤ n

)
.

If n0̄ > 1 and N1 = · · · = Nn0̄
= ∞, then the dimension of the (k,N )-th prolong of

oo
(1)
II (n0̄ |n1̄) is equal to the dimension of the kth prolong of ooII(n0̄ − 1 |n1̄ + 1).
Let n0̄ = 1 and N1 = ∞. Then the dimension of the (k,N )-th prolong of oo

(1)
II (n0̄ |n1̄)

is equal to
(n1̄+1

k+2

)
.
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If n0̄, n1̄ > 0, and n1̄ = 2k1̄, then the Cartan prolong of oo
(1)
IΠ(n0̄ |n1̄) can be repre-

sented as

Reg′IΠ ⊕ Irreg1
IΠ,

where

Reg′IΠ = {HIΠ,f | f ∈ O(x1, . . . , xn), f has degree ≤ 1 w.r.t. any xi, 1 ≤ i ≤ n}.

So, independently of N , the dimension of the kth prolong of oo
(1)
IΠ(n0̄ |n1̄) is equal to( n

k+2

)
.

If n0̄, n1̄ > 0, and n0̄ = 2k0̄, then the Cartan prolong of oo
(1)
ΠI (n0̄ |n1̄) is equal to

RegΠI ⊕ Irreg2
ΠI .

Thus, the superdimension of the kth prolong of oo
(1)
ΠI(n0̄ |n1̄) is equal to the superdimension

of the kth prolong of ooΠI(n0̄ |n1̄).
If n0̄, n1̄ > 0, and n0̄ = 2k0̄, n1̄ = 2k1̄, then the Cartan prolong of oo

(1)
ΠΠ(n0̄ |n1̄) is

equal to

{HΠΠ,f | f ∈ O(x1, . . . , xn), f has degree ≤ 1 w.r.t. any xi, 1 ≤ i ≤ n}.

So, independently of N , the dimension of the kth prolong of oo
(1)
ΠΠ(n0̄ |n1̄) is equal to( n

k+2

)
.

5.3.1. The prolong of the second derived

The Cartan prolong of oo
(2)
ΠΠ(n0̄ |n1̄) consists of elements of the Cartan prolong of oo

(1)
ΠΠ,

generated by functions f such that

k0̄∑
i=0

∂2f

∂pi∂qi
+

k1̄∑
i=0

∂2f

∂ξi∂ηi
= 0.

The formula for the dimension of the kth prolong of oo
(2)
ΠΠ(n0̄ |n1̄) seems to be rather

complicated. One can show, though, that this dimension depends only on n and k — not
on n0̄ and n1̄.

6. The Poisson Lie Superalgebras

As it was said above, the space RegB consists of vector fields of the form

HB,f =
n∑

i,j=1

(B−1)ij
∂f

∂xi

∂

∂xj
, where f ∈ O(x1, . . . , xn).

Here are the precise forms of these fields for the above bilinear forms:

HII,f :=
n0̄∑
i=1

∂f

∂xi

∂

∂xi
+

n1̄∑
i=1

∂f

∂θi

∂

∂θi
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HIΠ,f :=
n0̄∑
i=1

∂f

∂xi

∂

∂xi
+

k1̄∑
i=1

(
∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)

HΠI,f :=
k0̄∑
i=1

(
∂f

∂pi

∂

∂qi
+

∂f

∂qi

∂

∂pi

)
+

n1̄∑
i=1

∂f

∂θi

∂

∂θi

HΠΠ,f :=
k0̄∑
i=1

(
∂f

∂pi

∂

∂qi
+

∂f

∂qi

∂

∂pi

)
+

k1̄∑
i=1

(
∂f

∂ξi

∂

∂ηi
+

∂f

∂ηi

∂

∂ξi

)
, (6.1)

where

pi = xi, qi = xk0̄+i for n0̄ = 2k0̄ and 1 ≤ i ≤ k0̄;

θi = xn0̄+i for 1 ≤ i ≤ n1̄;

ξi = xn0̄+i, ηi = xn0̄+k1̄+i for n1̄ = 2k1̄ and 1 ≤ i ≤ k1̄.

The space RegB is closed under the Lie bracket (but may be not closed under squaring).
The corresponding Poisson bracket of the nonexisting “generating functions” is

{f, g}B =
n∑

i,j=1

(B−1)ij
∂f

∂xi

∂g

∂xj
. (6.2)

In particular, the Poisson brackets corresponding to the above bilinear forms B are

{f, g}II :=
n0̄∑
i=1

∂f

∂xi

∂g

∂xi
+

n1̄∑
i=1

∂f

∂θi

∂g

∂θi

{f, g}IΠ :=
n0̄∑
i=1

∂f

∂xi

∂g

∂xi
+

k1̄∑
i=1

(
∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)

{f, g}ΠI :=
k0̄∑
i=1

(
∂f

∂pi

∂g

∂qi
+

∂f

∂qi

∂g

∂pi

)
+

n1̄∑
i=1

∂f

∂θi

∂g

∂θi

{f, g}ΠΠ :=
k0̄∑
i=1

(
∂f

∂pi

∂g

∂qi
+

∂f

∂qi

∂g

∂pi

)
+

k1̄∑
i=1

(
∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)
.

(6.3)

In the cases ΠI and ΠΠ, if N is such that Ni ≥ 2 for all i, then the space RegB is closed
under squaring (i.e., it is a Lie superalgebra), and so (Hf )2 = Hf [2], where the respective
expressions of f [2] are

f [2] :=



k0̄∑
i=1

∂f

∂pi

∂f

∂qi
+

n1̄∑
i=1

(
∂f

∂θi

)(2)

for ΠI

k0̄∑
i=1

∂f

∂pi

∂f

∂qi
+

k1̄∑
i=1

∂f

∂ξi

∂f

∂ηi
for ΠΠ.

(6.4)

Remark 6.1. In Eq. (6.4) we use divided square for arbitrary polynomials, not only for
the indeterminates xi, where i ≤ n0̄. We mean that X(2) = 0 for any monomial X not
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proportional to xi, where i ≤ n0̄, and that the following relation holds:

(a + λb)(2) = a(2) + λ2b(2) + λab for any a, b ∈ O(x1, . . . , xn), λ ∈ K.

7. Deformations of the Buttin Superalgebra Over K

7.1. The antibracket (Buttin) Lie superalgebras

Schouten discovered what is called in Differential Geometry is called Schouten bracket (over
R or C), C. Buttin proved that the Schouten bracket satisfies the super Jacobi identity, that
was the reason for Leites [17] to call the Lie superalgebra of functions with the Schouten
bracket the Buttin superalgebra b(n) (he also called the bracket the Buttin bracket). Later,
Batalin and Vilkovysky rediscovered this bracket and dubbed it the antibracket (indepen-
dently this was done by Zinn–Justin). Leites [17] interpreted the quotient Lie superalgebra,
later called le(n) = b(n)/z, of the antibracket (a.k.a. Buttin) Lie superalgebra modulo its
center as an analog of Lie algebra of Hamiltonian vector fields, i.e., as preserving a non-
degenerate closed differential 2-form, an odd one. The Lie superalgebra le(n) is the Cartan
prolong of Lie superalgebra peB . It also allows the description (5.3) and (5.4), so the dimen-
sions of the prolongs are the same as of the prolongs of ortho-orthogonal superalgebras.
The space RegB is closed under the Lie (super)bracket and under squaring. In particular,
if B = Πm |m, then RegB consists of vector fields of the form

Lef :=
m∑

i=1

(
∂f

∂xi

∂

∂θi
+

∂f

∂θi

∂

∂xi

)
.

The corresponding antibracket and squaring of the generating functions are, respectively:

{f, g}a.b. :=
m∑

i=1

(
∂f

∂xi

∂g

∂θi
+

∂f

∂θi

∂g

∂xi

)
; f [2] :=

m∑
i=1

∂f

∂xi

∂f

∂θi
.

The Cartan prolong lle(m;N) of pe
(1)
Π (m) consists of

{Lef | f ∈ O(x1, . . . , x2m), degxi
f ≤ 1 for any i, where 1 ≤ i ≤ 2m}.

So, independently of N , the dimension of the kth prolong of pe
(1)
Π (m) is equal to

(
2m

k + 2

)
.

The Cartan prolong slle(m;N ) of pe
(2)
Π (m) consists of{

Lef ∈ lle(m;N )

∣∣∣∣∣Lef ∈
m∑

i=0

∂2f

∂xi∂θi
= 0

}
.

7.2. Deformations of the Buttin superalgebra over C

As is clear from the definition of the antibracket, there is a regrading (namely, b(n;n) given
by deg ξi = 0,deg qi = 1 for all i) under which b(n), initially of depth 2, takes the form g =
⊕i≥−1 gi with g0 = vect(0 | n) and g−1

∼= Π(C[ξ]). Replace now the vect(0 |n)-module g−1 of
functions (with inverted parity) by the module of λ-densities, i.e., set g−1

∼= Π(Vol(0 | n)λ),
where the Lie derivative LD along the vector field D ∈ vect(0 | n) is given by the
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formula

LD(f(ξ)volλξ ) = (D(f) + (−1)p(f)p(D)λf divD)volλξ and p(volλξ ) = 1̄. (7.1)

Define bλ(n;n) to be the Cartan prolong

(g−1, g0)∗ = (Π(Vol(0 | n)λ), vect(0 | n))∗. (7.2)

Clearly, this is a deform of b(n;n). The collection of these bλ(n;n) for all λ’s is called the
main deformation, the other deformations, defined in what follows, will be called singular.

The deform bλ(n) of b(n) is a regrading of bλ(n;n) described as follows. Set

ba,b(n) =
{

Mf ∈ m(n)
∣∣∣∣adivMf = (−1)p(f)2(a − bn)

∂f

∂τ

}
. (7.3)

For future use, we will denote the operator that singles out bλ(n) in m(n) as follows:

divλ = (bn − aE)
∂

∂τ
− a∆, where λ =

2a
n(a − b)

and ∆ =
∑
i≤n

∂2

∂qi∂ξi
. (7.4)

Taking into account the explicit form of the divergence of Mf we get

ba,b(n) =
{

Mf ∈ m(n)
∣∣∣∣(bn − aE)

∂f

∂τ
= a∆f

}
= {D ∈ vect(n |n + 1) |LD(volaq,ξ,τα

a−bn
0 ) = 0}. (7.5)

It is subject to a direct verification that ba,b(n) � bλ(n) for λ = 2a
n(a−b) . This isomorphism

shows that λ actually runs over CP 1, not C. Obviously, the Lie superalgebra b∞(n) differs
from other members of the parametric family and should be considered separately.

As follows from the description of vect(m |n)-modules ([4]) and the criteria for simplicity
of Z-graded Lie superalgebras ([13]), the Lie superalgebras bλ(n) are simple for n > 1 and
λ �= 0, 1, ∞. It is also clear that the Lie superalgebras bλ(n) are non-isomorphic for distinct
λ’s, bar occasional isomorphisms in small dimensions.

The Lie superalgebra b(n) = b0(n) is not simple: it has an ε-dimensional, i.e.,
(0 | 1)-dimensional, center. At λ = 1 and ∞ the Lie superalgebras bλ(n) are not simple
either: they has an ideal of codimension εn and εn+1, respectively. The corresponding exact
sequences are

0 → CM1 → b(n) → le(n) → 0,

0 → b′1(n) → b1(n) → C · Mξ1···ξn → 0,

0 → b′∞(n) → b∞(n) → C · Mτξ1···ξn → 0.

(7.6)

Clearly, at the exceptional values of λ, i.e., 0, 1, and ∞, the deformations of bλ(n) should be
investigated extra carefully; for the complete description of deformation of bλ(n), see [20].
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7.3. The Lie (super)algebras preserving symmetric bilinear forms

If p = 2, the analogs of symplectic and periplectic Lie (super)algebras accrue additional
elements: If the matrix of the bilinear form B is Π2n (resp. Πn |n), then aut(B) consists of
the (super)matrices of the form (

A B

C At

)
, (7.7)

where B and C are symmetric. Denote these general Lie (super)algebras autgen(B); for
B = Π2n (resp. Πn |n) the notation is ogen(2n) (resp. pegen(n)).

Let ZD denote the space of symmetric matrices with zeros on their main diagonals. The
derived Lie (super)algebra aut(1)(B) consists of the (super)matrices of the form (7.7), where
B,C ∈ ZD . In other words, these Lie (super)algebras resemble the orthogonal Lie algebras.
On these Lie (super)algebras aut(1)(B) the following (super)trace (half-trace) is defined:

htr :

(
A B

C At

)
→ tr A. (7.8)

The traceless Lie sub(super)algebra of aut(1)(B) is isomorphic to aut(2)(B).
There is, however, an algebra ãut(B), such that aut(1)(B) ⊂ ãut(B) ⊂ aut(B), consisting

of (super)matrices of the form (7.7), where B ∈ ZDs (or isomorphic to it version with
C ∈ ZD). Shchepochkina suggests to denote this ãut(B) by op if B is even and pe if B is
odd. Consider now these cases separately.

7.4. Generalized Cartan prolongations of the Lie (super)algebras
preserving symmetric bilinear forms

7.4.1. Let p �= 2 and g0 = peB(n)

If the form B is in canonical shape B = Πn |n, then g0 consists of the supermatrices of the
form

X =

(
A B

C −At

)
, where B is symmetric and C antisymmetric. (7.9)

Clearly, str X = 2 tr A. We also have g(1) = spe(n), i.e., is of codimension 1 and singled out
by the condition str X = 0, which is equivalent to trA = 0.

The Lie superalgebra le(n;N |n) is, by definition, the Cartan prolong (id, pe(n))∗,N .
Over C, there is no shearing parameter, and le(n) := le(n |n) is spanned by the elements

Lef , where f ∈ C[q, ξ].
Let p > 2. If N i = ∞ for all coordinates, the generating functions are f ∈ O[q;N | ξ],

whereas if Ni < ∞ for some i, the generating functions are f ∈ O(q;N | ξ) ∪ Span(qpNi

i ).
The prolong (id, spe(n))∗,N is singled out by the condition

div Lef = 0 ⇔ ∆f = 0, where ∆ =
∑
i≤n

∂2

∂qi∂ξi
.
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The operator ∆ is, therefore, the Cartan prolong of the supertrace expressed as an operator
acting on the space of generating functions.

What modifications should be performed in the above description if p = 2?
The Lie superalgebra pe(n)gen is larger than pe(n): both B and C are symmetric, see

(7.7). Observe that pe(n)gen ⊂ sl(n |n).
The Cartan prolong (id, pe(n)gen)∗,N if N = N∞ consists of the regular part Reg and

an additional part Irreg

Reg = Span(Lef | f ∈ O[q;N | ξ]), Irreg = Span(ξi∂ui)
n
i=1.

The part Irreg corresponds to the non-existing generating functions ξ2
i .

The the additional part Irreg does not change while the regular part is of the form
looking alike for any p > 2:

Reg = Span(Lef | f ∈ O(q;N | ξ) ∪ Span(q2Ni

i )), Irreg = Span(ξi∂ui)
n
i=1.

We denote this Cartan prolong le(n;N |n)gen := (id, pe(n)gen)∗,N . Clearly, it is contained in
svect(n;N |n), and therefore coincides with sle(n;N |n)gen.

For g = pe(n)gen, their derived g(1) and g(2) and the Cartan prolongs of these derived
are already considered. We saw that g(1) consists of supermatrices of the form (7.7) with
zero-diagonal matrices B and C, and g(2) is singled out of g(1) by the condition htr = 0.
The Cartan prolongs of each of these Lie superalgebras only have the regular part:

(id, g(1))∗,N = Span(Lef | f ∈ O(q;N s | ξ));
(id, g(2))∗,N = Span(Lef | f ∈ O(q;N s | ξ) and ∆f = 0).

(7.10)

Consider now the direct analog of the complex superalgebra pe(n), i.e., the Lie
superalgebra consisting of the supermatrices of the form (7.7) with B ∈ ZD . It is this
Lie superalgebra which is natural to designate by pe(n). Its commutant pe(n)(1) is of codi-
mension 1 and singled out in pe(n) by the condition htr = 0.

Thus, htr plays the role of supertrace on g = pe(n).
The Cartan prolong (id, pe(n))∗,N consists of the regular part only, and therefore looks

the same for any p > 0. The Cartan prolong (id, (pe(n))(1))∗,N is singled out in le(n;N |n)
by the following condition in terms of generating functions: ∆(f) = 0.

Thus, the “correct” direct analogs of the complex Lie superalgebras sle(n) and spe(n)
are (id, (pe(n))(1))∗,N and pe(n)(1), respectively.

Remark 7.1. For N with Ni < ∞ for all i, the Lie superalgebra le(n;N |n)(1) is spanned,
for any p > 0, by the elements f ∈ O(q;N | ξ), whereas the “virtual” generating functions
belonging to ∪iSpan(qpNi

i ) determine outer derivations of le(n;N |n)(1). (Indeed: The brack-
ets and squarings are given in terms of generating functions and there is no way to obtain
qpNi

i from lesser powers.) In other words, to obtain a simple Lie superalgebra, we have to
take generating functions from the space O(q;N | ξ).

If p > 0, the element of the highest degree does not belong to le(n;N |n)(1):

f = qpN1−1
1 · · · qpNn−1

n ξ1 · · · ξn �∈ le(n;N |n)(1).
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7.5. On m and b

First of all, observe that legen has no non-trivial central extension. Only le has it; this central
extension is a correct direct analog of the complex Buttin superalgebra b.

To pass from b(n;N |n) to m(n;N |n+1), we have to add the central element to b(n)0 =
pe(n); this element will serve as a grading operator of the prolong. We see that m is the
generalized Cartan prolong of (b(n)−, cb(n)0).

The commutant of m(n;N |n + 1)0 is the same as that of b(n)0 = pe(n), so is of codi-
mension 2. Hence there are two traces on m(n;N |n + 1)0, and therefore there are two
divergences on m. One of them is

∂τ , more precisely Dτ := ∂τ ◦ sign, (7.11)

i.e., the operator such that

Dτ (f) = (−1)p(f)∂τ (f) for any f ∈ O(q;N | ξ) (7.12)

since (see [29]) this should be the map commuting, not supercommuting with m−. The
condition Dτ (f) = 0 singles out precisely b(n).

7.5.1. sb(n;N)

The definition of sb(n;N) is the same for any characteristic p (in terms of generating
“functions” from the appropriate space F):

sb(n;N) = Span(f ∈ F |∆(f) = 0). (7.13)

7.5.2. ba,b(n;N |n + 1) for p = 2

The other trace on m0(n;N |n + 1) is htr. On le, the Cartan prolong of this trace was
the operator ∆. But ∆ does not commute with the whole m−. To obtain the m−-invariant
prolong of this trace on m0, we have to express htr in terms of the operators commuting
with m− (Y -type vectors in terms of [29]). Taking m− spanned by the elements

m−2 = K · ∂τ , m−1 = Span(∂qi + ξi∂τ , ∂ξi
)ni=1,

we see that the operators commuting with m− are spanned by

∂τ , ∂qi , ∂ξi
+ qi∂τ .

In terms of these operators the vector field Mf takes the form:

Mf = f∂τ +
∑

i

(∂qi(f)(∂ξi
+ qi∂τ ) + (∂ξi

+ qi∂τ )(f)∂qi) (7.14)

and the invariant prolong of htr takes the form:

∆m(f) =
∑

i

((∂ξi
+ qi∂τ )∂qi(f) = ∆(f) + Eq∂τ (f), where Eq =

∑
i

qi∂qi . (7.15)
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The condition ∆m(f) = 0 singles out the p = 2 analog of sm, whereas the condition

a∂τ (f) + b∆m(f) = 0 (7.16)

singles out the p = 2 analog of ba,b(n;N |n + 1).
Having applied to the above described constructions the functor F of forgetting the

superstructure we obtain new subalgebras in the Lie algebras of Hamiltonian and contact
vector fields; some of them — ba,b(n;N |n + 1) — have no analogs for p �= 2.

8. The Contact Brackets. Contact Lie Superalgebras as CTS-Prolongs

All the minuses in what follows are used in order to make expressions look like their analogs
in characteristic p �= 2 (if this analogs exist).

8.1. The odd (contact) form

8.1.1. Notation

The superdimension of the superspace on which the contact structure is considered is equal
to either 2k0̄ + 1 | 2k1̄ or 2k0̄ + 1 | 2k1̄ + 1. Set k = k0̄ + k1̄.

The indeterminates are denoted by t, pi, qi, θ, where i = 1, . . . , k and θ is present only if
the superdimension is equal to 2k0̄ + 1 | 2k1̄ + 1. The parities of the indeterminates are:

Π(t) = 0̄; Π(θ) = 1̄; Π(pi) = Π(qi) =

{
0̄ if i ≤ k0̄;

1̄ if i > k0̄.

The contact form is of the shape

α = dt +
∑

i

pidqi(+θdθ).

8.1.2. Basis

The basis elements of the zeroth part g0 of the contact Lie superalgebra g in its standard
Z-grading are as follows (since some of these elements have no analogs in characteristic
p �= 2, we use + sign everywhere):

Element Conditions on existence

1 t∂t +
P

pi∂pi sdim = 2k0̄ + 1 | 2k1̄
2 pi∂pj + qj∂qi 1 ≤ i, j ≤ k
3 pipj∂t + pi∂qj + pj∂qi 1 ≤ i �= j ≤ k
4 qiqj∂t + qi∂pj + qj∂pi 1 ≤ i �= j ≤ k

5 p
(2)
i ∂t + pi∂qi 1 ≤ i ≤ k0̄ (i.e., the pi and qi are even)

6 q
(2)
i ∂t + qi∂pi 1 ≤ i ≤ k0̄ (i.e., the pi and qi are even)

7 piθ∂t + pi∂θ sdim = 2k0̄ + 1 | 2k1̄ + 1, 1 ≤ i ≤ k
8 qiθ∂t + qi∂θ sdim = 2k0̄ + 1 | 2k1̄ + 1, 1 ≤ i ≤ k
9 θ∂θ sdim = 2k0̄ + 1 | 2k1̄ + 1

Remark 8.1. Clearly, the elements with θ (Cases 7–9) exist only if there is an odd number
of odd variables; it is remarkable, though, that the element of case 1 has no analog in
dimension 2k0̄ + 1 | 2k1̄ + 1.
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8.1.3. Realization of g0 in terms of ortho-orthogonal Lie superalgebras

If sdim = 2k0̄ +1 | 2k1̄, then this algebra is the subalgebra of oo′ΠΠ(2k0̄ | 2k1̄) spanned by the
grading operator I0 = diag(1k0̄ | k1̄

, 0k0̄ | k1̄
) and the supermatrices of format k0̄ | k1̄ | k0̄ | k1̄

and having the form

(
A C

D AT

) where A ∈ gl(k0̄ | k1̄),
C,D are symmetric,
Cii = Dii = 0 for all k0̄ < i ≤ k.

If sdim = 2k0̄ + 1 | 2k1̄ + 1, then g0 is NOT a subalgebra of ooΠΠ(2k0̄ | 2k1̄ + 1). It is a
subalgebra of the algebra of supermatrices preserving the degenerate form

antidiag(1k0̄ | k1̄
, 0, 1k0̄ | k1̄

),

and it is spanned by supermatrices of format k0̄ | k1̄ + 1 | k0̄ | k1̄ and having the form

A X C

0 z 0
D Y AT


where A ∈ gl(k0̄ | k1̄),
C,D are symmetric,
Cii = Dii = 0 for all k0̄ < i ≤ k0̄ + k1̄,

X, Y are arbitrary k0̄ | k1̄-vectors,
z ∈ K.

8.2. The even (pericontact) form

In this case the superdimension of the superspace is equal to 2k | 2k + 1, the coordinates
are τ, qi, ξi, where

Π(pi) = 0̄; Π(τ) = Π(ξi) = 1̄.

Let the pericontact form be of the simplest form (4.20.1).

8.2.1. Basis

The basis elements of the zeroth part g0 of the pericontact Lie superalgebra g in its standard
Z-grading are as follows:

Element Conditions on existence

1 τ∂τ +
P

qi∂qi —
2 qi∂qj − ξj∂ξi

1 ≤ i, j ≤ k
3 qiqj∂τ − qi∂ξj

− qj∂ξi
1 ≤ i < j ≤ k

4 ξiξj∂τ − ξi∂qj + ξj∂qi 1 ≤ i < j ≤ k

5 q
(2)
i ∂t − qi∂ξi

1 ≤ i ≤ k

(The situation here is analogous to the case of p �= 2, so we keep minus signs.)
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8.2.2. Realization of g0 in terms of pe(k)

The Lie superalgebra g0 is the subalgebra of pe(k) consisting of supermatrices of format
k | k and of the form (

A C

D AT

) where A ∈ gl(k),
C is symmetric,
D ∈ ZD(k).

9. Divergence-Free Subalgebras

9.1. Contact vector fields

We have

div(Kf ) =



(k + 1)
∂f

∂x0
if n = 2k;

0 if n = 2k + 1;

x2k+1
∂g

∂x0
if n = 2k + 1, case (4.14), b1;

g if n = 2k + 1, case (4.14), b2.

(9.1)

div(Mf ) = (k + 1)
∂f

∂x0
. (9.2)

9.2. Hamiltonian vector fields

We have

div(HI,f) =
n∑

i=1

∂2f

∂2
xi

; div(HII,f ) =
n∑

i=1

∂2f

∂2
xi

; div(HΠΠ,f ) = 0;

div(HΠ,f) = 0; div(HIΠ,f ) =
n0̄∑
i=1

∂2f

∂2
xi

; div(HΠI,f ) =
n∑

i=n0̄+1

∂2f

∂2
xi

.

(9.3)

div(Lef ) = 0. (9.4)
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