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A previously unknown bright N-soliton solution for an intermediate nonlinear Schrödinger equation of
focusing type is presented. This equation is constructed as a reduction of an integrable system related to a
Sato equation of a 2-component KP hierarchy for certain differential-difference dispersion relations. Bright
soliton solutions are obtained in the form of double Wronskian determinants.
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1. Introduction

This paper deals with the intermediate nonlinear Schrödinger equation of focusing type and its
bright soliton solutions. A general INLS equation can be written as follows:

iut = uxx + σu(i + T )(|u|2)x. (1.1)

Here, u(x, t) is a complex function of two real variables x, t and T denotes the integral transformation

T [u](x) =
∫ ∞

−∞
\ 1

2δ
coth

[ π

2δ
(y − x)

]
u(y)dy. (1.2)

The integral sign with a backslash denotes the principal value. The constant σ is taken to be ±1.
For positive (negative) σ, the equation is called the defocusing (focusing) INLS equation. Origi-

nally, the defocusing INLS equation was discovered by carrying out a reductive perturbation method
for the ILW equation [8]. It describes the long-term evolution of quasi-harmonic wave packets whose
wavelength is short compared to the fluid depth.

The inverse scattering transform for the defocusing equation and its Hirota bilinear form are
known [9, 4, 5]. The dark soliton solutions of this equation have been also investigated intensively.
But as for the focusing type, which is also an integrable system in its own right, as far as the author
knows, soliton solutions have never come up in the literature.

In this paper, it will be shown that bright solitons exist for the focusing INLS equation and that
they possess an interesting structure. An explicit formula for a bright N -soliton solution for this

∗Current Address: Nishikanda 2-2-10, Chiyoda-ku, Tokyo 101-0065, O-HARA Graduate School of Business,
y tutiya@o-hara.ac.jp.
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INLS equation will be presented. Our framework is basically a Sato description of the 2-component
KP hierarchy [10], starting however from special differential-difference dispersion relations. Being
related to the 2-component KP hierarchy, the solutions of the resulting equations are automatically
written as double Wronskians. This is one of the merits of this approach because it is generally a
hard task to write N -soliton solutions in simple forms such as determinants.

Moreover, it is worth pointing out that the present situation runs parallel to the case of the NLS
equation, for which it is known that the focusing NLS equation possesses bright soliton solutions
of the double Wronskian type and, in contrast, the defocusing NLS equation possesses dark soliton
solutions. In fact, when the constant δ in (1.1) is regarded as a deformation parameter for the
equation, the NLS equation is recovered in the limit δ → 0.

In particular, for small δ, the integral operator T can be expanded as T = − 1
δ ∂−1 + δ

3∂ + o(δ3),
and hence (1.1) can be written in the following form.

iut = uxx + σu

(
−1

δ
+ i∂ +

δ

3
∂2 + · · ·

)
|u|2. (1.3)

Thus, by setting U = u/
√

2δ and σ = −1, the focusing nonlinear Schrödinger equation

iUt = Uxx + 2U |U |2 (1.4)

appears in the limit δ = 0. It will be shown later on that the bright soliton solutions for the INLS
equation carry over to those of the NLS equation in this limit. This, in the author’s point of view,
justifies the use of the name “INLS” for the general equation (1.1).

When discussing nonlocal soliton equations, one usually changes them first to differential-
difference forms and treats them at that level. When one obtains a solution for the differential-
difference system however, it is always problematic whether it is still a solution of the original
nonlocal system. This problem often requires imposing certain analyticity conditions on the solu-
tions, conditions which are highly nontrivial. As will be seen, the INLS equation is no exception.

The structure of this paper is as follows. In Sec. 2, the INLS equation is decoupled into a certain
differential-difference form. In Sec. 3, its linear problem is introduced. Next, it will be shown how to
adapt Sato theory to differential-difference dispersion relations and a system of nonlinear evolution
equations of Davey–Stewartson type is obtained. In Sec. 4, this system is reduced to the INLS
equation in decoupled form and its N -soliton solutions are presented. In Sec. 5, it will be shown that
these solutions are proper not only for the decoupled system but also the original nonlocal equation.

2. Decoupling the INLS Equation

The method that will be used to decouple the Eq. (1.1) into a differential-difference form owes largely
to the properties of the integral transform (1.2) presented below [11, 2]. As these are well-known
facts, we shall skip the proofs.

Property 2.1. Let f(y) be a real function, define F (z) as the integral

F (z) :=
∫ ∞

−∞

1
2δ

coth
[ π

2δ
(y − z)

]
f(y)dy. (2.1)

F (z) is a function defined in the entire complex z-plane, except for the horizontal lines Im z =
2mδ, where m runs over all the integers. Then, if f(y) satisfies the Hölder condition on the real axis,
the boundary values of F (z) on z = x (x real) satisfy

F±(x) := lim
ε→0±

F (x + iε) = T [f ](x) ± if(x). (2.2)

In other word, F+(x) (F−(x)) is the analytic continuation of F (z) towards the real axis from the
upper (lower) side. In terms of the integral transformation (1.2), F+(x) and F−(x) also satisfy the
relation F+(x + 2iδ) = F−(x).
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Property 2.2. Suppose that a complex function G(z) is analytic everywhere in the strip 0 ≤ Im z ≤
2δ and is integrable on the real axis. (This condition will be referred to as “the analyticity condition”
throughout the rest of the paper). Then, the following equality holds for real x

iT [G(x + 2iδ) − G(x)] = G(x + 2iδ) + G(x). (2.3)

Now, define v := u† (where the dagger denotes complex conjugation) and

w± := −1
2

lim
ε→0±

∫ ∞

−∞

1
2δ

coth
[ π

2δ
(y − x ∓ εi)

]
|u(y)|2dy. (2.4)

Then, (1.1) can be decoupled into the following system by means of Property 2.1.


iut = uxx − 2uw+
x ,

−ivt = vxx − 2vw−
x ,

w− − w+ = iσuv.

(2.5)

Note that w+ and w− satisfy w+(x + 2iδ) = w−(x). In the next section, this system will be shown
to be related to a 2-component hierarchy. However it should be remembered that a solution for (2.5)
will only be a solution to (1.1) if it satisfies the analyticity condition.

3. Dispersion Relations and Sato Equations

Let us introduce the pseudo-differential operator,

P = I + W (1)∂−1 + W (2)∂−2 + · · · + W (n)∂−n, (3.1)

where the coefficients W (j) (j = 1, 2, . . .) are 2 × 2 matrices and I is the unit matrix. In general,
the k, l-elements of each W (j) are denoted as w

(j)
kl . However, the elements of the first three matrices

W (1), W (2), W (3) will be denoted as:

W (1) =
(

w11 w12

w21 w22

)
, W (2) =

(
v11 v12

v21 v22

)
, W (3) =

(
u11 u12

u21 u22

)
. (3.2)

Note that w
(j)
kl , wkl, vkl, ukl are, a priori, different from u, v, w in (2.5). ∂j denotes (∂/∂ξ)j for integer

j. Though the theory is developed for the case of n → ∞ in general, in this paper, we confine ourselves
to (3.1) for simplicity [6, 7] as the essence of the general theory is still kept in this simplification.

Let us consider the ordinary differential equation,

P∂n

(
f

g

)
= 0. (3.3)

The 2n linearly independent solutions of (3.3) we denote
(

f1
g1

)
,
(

f2
g2

)
, . . . ,

(
f2n

g2n

)
. Now we

assume that W (j), fj, gj , in addition to ξ, depend on infinitely many continuous variables
t
(1)
1 , t

(2)
1 , t

(1)
2 , t

(2)
2 , t

(1)
3 , t

(2)
3 , . . . and on two discrete variables z1, z2, by requiring fj and gj to satisfy

the following dispersion relations

∂

∂t
(1)
k

(
fj

gj

)
= E1∂

k

(
fj

gj

)
,

∂

∂t
(2)
k

(
fj

gj

)
= E2∂

k

(
fj

gj

)
, (3.4)

i




f

〈1〉
j

g
〈1〉
j


−

(
fj

gj

)
 = E1∂

(
fj

gj

)
,

i




f

〈2〉
j

g
〈2〉
j


−

(
fj

gj

)
 = E2∂

(
fj

gj

)
,

(3.5)
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for ∀k, j, where

E1 =
(

1 0
0 0

)
, E2 =

(
0 0
0 1

)
, (3.6)

and δ is a real and positive parameter. The symbol 〈µ〉 (µ = 1, 2) on top of a function means that
zµ is shifted forward by 2iδ. Note that the dispersion relation (3.4) is the same as for 2-component
KP hierarchy [10].

Differentiating (3.3) with respect to t
(µ)
j , we have the Sato equation

∂P

∂t
(µ)
j

= B
(µ)
j P − PEµ∂j . (3.7)

The operator B
(µ)
j is defined by,

B
(µ)
j :=

(
PEµ∂jP−1

)
+

, (3.8)

where (A)+ denotes the non-negative differential part of the pseudo differential operator A. The
calculations that lead from (3.7) to (3.14) are of course the same as those for the 2-component KP
hierarchy. (More detail is available in [1]). The first few B

(µ)
j ’s are explicitly written as,

B
(1)
1 = E1∂ + [W (1), E1], B

(2)
1 = E2∂ + [W (1), E2]

B
(1)
2 = E1∂

2 + [W (1), E1]∂ − W
(1)

t
(1)
1

− E1W
(1)
ξ

B
(2)
2 = E2∂

2 + [W (1), E2]∂ − W
(1)

t
(2)
1

− E2W
(1)
ξ .

(3.9)

The lowest order equations for W (1), W (2), W (3) are written below. Following Kac and van de
Leur [1], we write W for W (1) to simplify the notation.

∂W

∂t
(µ)
1

= EµWξ + [W, Eµ]W − [W (2), Eµ] (3.10)

∂W (2)

∂t
(µ)
1

= EµW
(2)
ξ + [W, Eµ]W (2) − [W (3), Eµ] (3.11)

∂W

∂t
(µ)
2

= −[W (3), Eµ] + Eµ(2W
(2)
ξ + Wξξ) + [W, Eµ](W (2) + Wξ)

− (W
t
(µ)
1

+ EµWξ)W. (3.12)

In particular, some of the matrix elements of (3.10) can be written explicitly as follows:

∂w21

∂t
(1)
1

= w21w11 − v21,
∂v21

∂t
(1)
1

= w21v11 − u21,

∂w12

∂t
(2)
1

= w12w22 − v12,
∂v12

∂t
(2)
1

= w12v22 − u12,

∂w22

∂t
(1)
1

= w21w12,
∂v22

∂t
(1)
1

= w21v12,

∂w11

∂t
(2)
1

= w12w21,
∂v11

∂t
(2)
1

= w12v21.

(3.13)
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Using (3.13), the (1,2) and (2,1)-components of (3) can be written as

∂w21

∂t
(1)
2

= −∂2w21

∂t
(1)2

1

+ 2w21
∂w11

∂t
(1)
1

,
∂w12

∂t
(1)
2

=
∂2w12

∂t
(1)2

1

− 2w12
∂w11

∂t
(1)
1

,

∂w21

∂t
(2)
2

=
∂2w21

∂t
(2)2

1

− 2w21
∂w22

∂t
(2)
1

,
∂w12

∂t
(2)
2

= −∂2w12

∂t
(2)2

1

+ 2w12
∂w22

∂t
(2)
1

.

(3.14)

Extending this construction, let us consider a difference operator with respect to zµ acting on (3.3),
which yields the Sato equation

i(P 〈µ〉 − P ) = CµP − P 〈µ〉Eµ∂, (3.15)

Cµ = (P 〈µ〉Eµ∂P−1)+ = Eµ∂ + W 〈µ〉Eµ − EµW. (3.16)

The coefficient of ∂−1 in (3.15) is

i(W 〈µ〉 − W ) = EµW (2) − (W (2))〈µ〉Eµ + EµWξ + (W 〈µ〉Eµ − EµW )W. (3.17)

And in particular, when µ = 1, the (2,2)-component of (3.17) is

i(w〈1〉
22 − w22) = w

〈1〉
21 w12 (3.18)

and for µ = 2, the (1,1)-component of (3.17) is

i(w〈2〉
11 − w11) = w

〈2〉
12 w21. (3.19)

Thus, from (3.14), (3.18) and (3.19), one obtains two systems of time evolution equations


∂w21

∂t
(1)
2

= −∂2w21

∂t
(1)2

1

+ 2w21
∂w11

∂t
(1)
1

∂w
〈2〉
12

∂t
(1)
2

=
∂2w

〈2〉
12

∂t
(1)2

1

− 2w
〈2〉
12

∂w
〈2〉
11

∂t
(1)
1

i(w〈2〉
11 − w11) = w

〈2〉
12 w21

(3.20)

and 


∂w12

∂t
(2)
2

= −∂2w12

∂t
(2)2

1

+ 2w12
∂w22

∂t
(2)
1

∂w
〈1〉
21

∂t
(2)
2

=
∂2w

〈1〉
21

∂t
(2)2

1

− 2w
〈1〉
21

∂w
〈1〉
22

∂t
(2)
1

i(w〈1〉
22 − w22) = w

〈1〉
21 w12

. (3.21)

Because (3.20) and (3.21) are essentially the same system, we shall only deal with (3.20) hereafter.
Note that (3.20) still has three independent variables though it looks very much like (2.5).

4. The Reduction to the INLS Equation and Its Solutions

Introducing the change of variables t
(1)
2 = it, we impose the reduction condition,(

∂

∂z2
− ∂

∂t
(1)
1

)
w

(k)
ij = 0, (4.1)
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which restricts the t
(1)
1 , z2 dependence in P to the form t(1) + z2. Hence, we introduce the new

variable x := t(1) + z2 with which (3.20) can be written as


iw21,t = w21,xx − 2w21w11,x

−iw̄12,t = w̄12,xx − 2w̄12w̄11,x

i(w̄11 − w11) = w̄12w21

(4.2)

where, ·̄ denotes a 2iδ-shift with respect to x. If, now, w21 and w̄12 are complex conjugate for real
x and t and if w21 is analytic everywhere in the strip 0 ≤ Im x ≤ 2δ, then (4.2) can be represented
as a single equation by means of Property 2.2

iw21,t = w21,xx − w21(T + i)(|w21|2)x. (4.3)

Equation (4.3) is the same as (1.1) for σ = −1. Concerning the last term of (4.3), it also should
be noticed that for the class of functions we are dealing with, the integral operator commutes with
the x-derivative. Thus, the notations (T + i){(|w21|2)x} and {(T + i)(|w21|2)}x represent the same
function, which is denoted by (T + i)(|w21|2)x.

Now we go on to consider actual solutions. Expressing Eq. (3.3) on the solutions
(

fj

gj

)
(j =

1, 2, . . . , 2n), one can write




f1 · · · ∂n−1f1 g1 · · · ∂n−1g1

f2 · · · ∂n−1f2 g2 · · · ∂n−1g2

...
...

...
...

...
...

f2n · · · ∂n−1f2n g2n · · · ∂n−1g2n







w
(n)
11 w

(n)
21

...
...

w
(1)
11 w

(1)
21

w
(n)
12 w

(n)
22

...
...

w
(1)
12 w

(1)
22




= −




∂nf1 ∂ng1

...
...

∂nf2n ∂ng2n


 . (4.4)

Then, by means of Cramer’s rule, w21, w12, w11 are expressible as (in other words, a solution of
(3.20) can be expressed as)

w21 = (−)n+1

∣∣∣∣∣∣∣∣∣∣

f1 ∂ξf1 · · · ∂n−2
ξ f1 g1 ∂ξg1 · · · ∂n

ξ g2

f2 ∂ξf2 · · · ∂n−2
ξ f2 g2 ∂ξg2 · · · ∂n

ξ g2

...
...

...
...

...
...

...
...

f2n ∂ξf2n · · · ∂n−2
ξ f2n g2n ∂ξg2n · · · ∂n

ξ g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 ∂ξf1 · · · ∂n−1
ξ f1 g1 ∂ξg1 · · · ∂n−1

ξ g1

f2 ∂ξf2 · · · ∂n−1
ξ f2 g2 ∂ξg2 · · · ∂n−1

ξ g2

...
...

...
...

...
...

...
...

f2n ∂ξf2n · · · ∂n−1
ξ f2n g2n ∂ξg2n · · · ∂n−1

ξ g2n

∣∣∣∣∣∣∣∣∣∣

(4.5a)

w12 = (−)n

∣∣∣∣∣∣∣∣∣∣

f1 ∂ξf1 · · · ∂n
ξ f1 g1 ∂ξg1 · · · ∂n−2

ξ g2

f2 ∂ξf2 · · · ∂n
ξ f2 g2 ∂ξg2 · · · ∂n−2

ξ g2

...
...

...
...

...
...

...
...

f2n ∂ξf2n · · · ∂n
ξ f2n g2n ∂ξg2n · · · ∂n−2

ξ g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 ∂ξf1 · · · ∂n−1
ξ f1 g1 ∂ξg1 · · · ∂n−1

ξ g1

f2 ∂ξf2 · · · ∂n−1
ξ f2 g2 ∂ξg2 · · · ∂n−1

ξ g2

...
...

...
...

...
...

...
...

f2n ∂ξf2n · · · ∂n−1
ξ f2n g2n ∂ξg2n · · · ∂n−1

ξ g2n

∣∣∣∣∣∣∣∣∣∣

(4.5b)
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w11 = −

∣∣∣∣∣∣∣∣∣∣

f1 · · · ∂n−2
ξ f1 ∂n

ξ f1 g1 ∂ξg1 · · · ∂n−1
ξ g2

f2 · · · ∂n−2
ξ f2 ∂n

ξ f2 g2 ∂ξg2 · · · ∂n−1
ξ g2

...
...

...
...

...
...

...
f2n · · · ∂n−2

ξ f2n ∂n
ξ f2n g2n ∂ξg2n · · · ∂n−1

ξ g2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 ∂ξf1 · · · ∂n−1
ξ f1 g1 ∂ξg1 · · · ∂n−1

ξ g1

f2 ∂ξf2 · · · ∂n−1
ξ f2 g2 ∂ξg2 · · · ∂n−1

ξ g2

...
...

...
...

...
...

...
...

f2n ∂ξf2n · · · ∂n−1
ξ f2n g2n ∂ξg2n · · · ∂n−1

ξ g2n

∣∣∣∣∣∣∣∣∣∣

. (4.5c)

To describe the n-soliton solution we set fj, gj

{
fj = cj exp[kjξ + kjt

(1)
1 + k2

j t
(1)
2 + aj ]

gj = exp[−kjz2 + i(e−2iδkj − 1)ξ]
, (4.6)

where we have omitted independent variables which do not appear in (4.2). We choose not to absorb
the constant cj in the phase aj as it will take a specific value in relation to the analiticity condition
(cf. Proposition 4.1), whereas aj will essentially remain as a free parameter.

Now, we divide the jth row of both the numerator and denominator of (4.5a) by gj (and similarly
by fj for (4.5b)). Then, we see that w21, w12 and w11 contain fj and gj only in the form fj/gj (or
its inverse). Obviously fj/gj contains t

(1)
1 and z2 only in the form x = t

(1)
1 + z2. Thus, by setting

fj/gj = cje
λj := cj exp{(kj − Lj)ξ + kjx + ik2

j t + aj},
Lj := i(e−2iδkj − 1),

(4.7)

w21 and w12 are expressible as follows:

w21(x) = (−)n+1

∣∣∣∣∣∣∣∣∣∣

c1e
λ1 k1c1e

λ1 · · · kn−2
1 c1e

λ1 1 L1 · · · Ln
1

c2e
λ2 k2c2e

λ2 · · · kn−2
2 c2e

λ2 1 L2 · · · Ln
2

...
...

...
...

...
...

...
...

c2neλ2n k2nc2neλ2n · · · kn−2
2n c2neλ2n 1 L2n · · · Ln

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1e
λ1 k1c1e

λ1 · · · kn−1
1 c1e

λ1 1 L1 · · · Ln−1
1

c2e
λ2 k2c2e

λ2 · · · kn−1
2 c2e

λ2 1 L2 · · · Ln−1
2

...
...

...
...

...
...

...
...

c2neλ2n k2nc2neλ2n · · · kn−1
2n c2neλ2n 1 L2n · · · Ln−1

2n

∣∣∣∣∣∣∣∣∣∣

(4.8a)

w12(x) = (−)n

∣∣∣∣∣∣∣∣∣∣

1 k1 · · · kn
1 c−1

1 e−λ1 L1c
−1
1 e−λ1 · · · Ln−2

1 c−1
1 e−λ1

1 k2 · · · kn
2 c−1

2 e−λ2 L2c
−1
2 e−λ2 · · · Ln−2

2 c−1
2 e−λ2

...
...

...
...

...
...

...
...

1 k2n · · · kn
2n c−1

2n e−λ2n L2nc−1
2n e−λ2n · · · Ln−2

2n c−1
2n e−λ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 k1 · · · kn−1
1 c−1

1 e−λ1 L1c
−1
1 e−λ1 · · · Ln−1

1 c−1
1 e−λ1

1 k2 · · · kn−1
2 c−1

2 e−λ2 L2c
−1
2 e−λ2 · · · Ln−1

2 c−1
2 e−λ2

...
...

...
...

...
...

...
...

1 k2n · · · kn−1
2n c−1

2n e−λ2n L2nc−1
2n e−λ2n · · · Ln−1

2n c−1
2n e−λ2n

∣∣∣∣∣∣∣∣∣∣

(4.8b)
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w11(x) = (−)

∣∣∣∣∣∣∣∣∣∣

c1e
λ1 · · · kn−2

1 c1e
λ1 kn

1 c1e
λ1 1 L1 · · · Ln−1

1

c2e
λ2 · · · kn−2

2 c2e
λ2 kn

2 c2e
λ2 1 L2 · · · Ln−1

2
...

...
...

...
...

...
...

...
c2neλ2n · · · kn−2

2n c2neλ2n kn
2nc2neλ2n 1 L2n · · · Ln−1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1e
λ1 k1c1e

λ1 · · · kn−1
1 c1e

λ1 1 L1 · · · Ln−1
1

c2e
λ2 k2c2e

λ2 · · · kn−1
2 c2e

λ2 1 L2 · · · Ln−1
2

...
...

...
...

...
...

...
...

c2neλ2n k2nc2neλ2n · · · kn−1
2n c2neλ2n 1 L2n · · · Ln−1

2n

∣∣∣∣∣∣∣∣∣∣

. (4.8c)

Thus, (4.8) is a solution to the differential-difference Eq. (4.2) . Furthermore, (4.8a) will become a
solution for (4.3) if we impose certain conditions on kj and cj . The following proposition constitutes
the main result of this paper.

Proposition 4.1. Suppose kj , aj and cj satisfy the following conditions.

(C1) k†
j = −kj+n, a†

j = −an+j and ξ is real.
(C2) π

2δ > Re k1 > Re k2 > · · · > Re kn > 0.
(C3) cj, (j = 1, 2, . . . , n) are given by

cj =
n∏

r=1

Lj − Ln+r

kj − kn+r
, cn+j = −

n∏
r=1
r �=j

Ln+j − Ln+r

kn+j − kn+r
.

Then, w21(x − iδ) as in (4.8a) satisfies the analyticity condition and becomes a solution of (4.3).

After imposing the above conditions, there still remain 4n real parameters in the determinants
that appear in (4.8). The real and imaginary parts of the kj (j = 1, 2, . . . , n) will define the amplitude
and the velocity of each soliton. The dependence on the parameter ξ can be absorbed in the real
and imaginary parts of the aj (j = 1, 2, . . . , n) which correspond to phase shifts. We show some
examples of solitons before proving Proposition 4.1.

Example 4.1. The 1-soliton solution is presented below. The parameters are set as k1 = p + qi,
k2 = −k†

1 = −p + qi and 0 < p < π
2δ in order to satisfy the conditions C1 and C2. ξ is taken to be

zero and a1 = α + βi.

w21(x − iδ) =
−
√

p sin 2δpei{−qx−(p2−q2)t−β}

cosh
[
p(x − iδ − 2qt) + δq + 1

2 log sin 2δp
p + α

] . (4.9)

Example 4.2. A 2-soliton solution with k1 = 0.2+ 0.02i, k2 = 0.11 + 0.1i, δ = 4, ξ = a1 = a2 = 0
is presented below. |w21(x − iδ)|2 is plotted in the range −1200 ≤ t ≤ 600 and −130 ≤ x ≤ 130.

A peculiar feature of this solution is that the slower soliton becomes smaller during the intersec-
tion period and afterwards, has its height restored. Actually, it can be seen that the smaller soliton
is oscillating before and after overtaking the taller one.

As for the 2-soliton solution, the phase shift of the interaction can be explicitly calculated. Setting
kj = pj +iqj and switching from the laboratory reference frame to the moving frame having the same
velocity as the faster soliton whose velocity is equal to −2q1 (for convenience we choose q1 < q2 < 0),
(4.8a) is expressed approximately as

|w21(x, t)| ∼
{

cosh(p1x) (t → −∞)
cosh(p1x + θ) (t → ∞)

, (4.10)
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x
t

Fig. 1. An example of the 2-soliton solution in the intersection region.

where the phase shift θ is given as follows:

e2θ =
(p1 + p2)2 + (q1 − q2)2

(p1 − p2)2 + (q1 − q2)2
× cosh 2δ(q1 − q2) − cos 2δ(p1 + p2)

cosh 2δ(q1 − q2) − cos 2δ(p1 − p2)
. (4.11)

The phase shift for the slower soliton can be calculated in a similar manner, and one finds it to be
exactly equal to −θ.

5. Proof of Proposition 4.1

Proposition 4.1 will be proven in three steps. The first step is to show that w21(x−iδ) and w12(x+iδ)
are complex conjugate. The second is to show that w21(x − iδ) and w12(x + iδ) vanish when x goes
to ±∞. The third and final step is to show that w21(x − iδ) is analytic everywhere in the strip
0 ≤ Im x ≤ 2δ. Taken together the latter two statements constitute “the analyticity condition” of
Sec. 2. The proof will be carried out by reducing fractions and products made of differences. For
simplicity some new notations are introduced.

For an arbitrary set of subscripts σ = {σ1, σ2, . . . , σa} with the ordering σ1 < σ2 < · · · < σa, we
denote the Vandermonde determinant as

kσ :=
∏

1≤j<j′≤a

(kσj − kσj′), Lσ :=
∏

1≤j<j′≤a

(Lσj − Lσj′). (5.1)

We also define a notation for products of differences between two disjoint sets of variables. Let
µ = {µ1, µ2, . . . , µb} be a set of subscripts with the ordering µ1 < µ2 < · · · < µb, σ as above, then
we define,

kσ→µ :=
a∏

j=1

b∏
j′=1

(kσj − kµj′) , Lσ→µ :=
a∏

j=1

b∏
j′=1

(Lσj − Lµj′) . (5.2)

The following statements will be used extensively.

Remark 5.1. According to the condition C1, k†
j = −kn+j , L†

j = −Ln+j and λ†
j = −λn+j for real

x, t. In these equalities, the subscripts should be read modulo 2n.

Remark 5.2. The real parts of the Lj ’s are positive for j = 1, 2, . . . , n due to condition C2.

Remark 5.3. Let σ := {σ1, σ2, . . . , σa} be a set of subscripts and consider products of differences kσ

and Lσ. If we split σ into two arbitrary disjoint subsets µ := {µ1, µ2, . . . , µb} , κ := {κ1, κ2, . . . , κc}
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(b + c = a), we have the decompositions:
Lσ

kσ
=

LµLκLµ→κ

kµkκkµ→κ
, Lσkσ = LµLκLµ→κkµkκkµ→κ. (5.3)

Note that the equalities do not hold for Lσ or kσ independently, i.e.,

Lσ 	= LµLκLµ→κ, kσ 	= kµkκkµ→κ, (5.4)

as the signs can differ on both sides of the relations due to the ordering of the subscripts. Obviously
these signs are cancelled when we think of a fraction or product like (5.3).

Now we proceed to the proof of Proposition 4.1. A first result we need is the following theorem,
which shall be proven in the Appendix.

Theorem 5.1. w21 and w12 are complex conjugate.

Secondly we have

Property 5.1. w21(x − iδ) and w12(x + iδ) go to 0 when x goes to ±∞.

Proof.
Because of condition C2 in Proposition 4.1, we see that the first n − 1 (n) rows become dominant
in the numerator (denominator) of (4.8a) when x goes to ∞. Thus, we have

w21(x) x→∞−−−→ (−)n+1 k{1,...,n−1}L{n,...,2n}
∏n−1

r=1 eλr

k{1,...,n}L{n+1,...,2n}
∏n

r=1 eλr
= (−)n+1 L{n}→{n+1,...,2n}

k{1,...,n−1}→{n}
e−λn → 0. (5.5)

On the contrary, the rows from the n + 1th to the 2n − 1th (the 2nth) become dominant when x

goes to −∞, which implies,

w21(x) x→−∞−−−−→ (−)
k{n+1,...,2n−1}L{1,...,n,2n}

∏2n−1
r=n+1 eλr

k{n+1,...,2n}L{1,...,n}
∏n

r=1 eλr
=

−L{1,...,n}→{2n}
k{n+1,...,2n−1}→{2n}

e−λ2n → 0.

(5.6)

This procedure also applies to w21(x − iδ) and w12(x + iδ).

To accomplish the third step of the proof, we first change the denominator of w21 to a determinant
of the sum of two matrices of half the size.

Theorem 5.2.
k{n+1,...,2n}
L{n+1,...,2n}

× 1
L{1,...,n}→{n+1,...,2n}

× τ = (−)
n(n−1)

2 det
(

eλn+j

Li − Ln+j
+

eλi

ki − kn+j

)
1≤i,j≤n

,

(5.7)

where τ denotes the denominator of (4.8a).

Proof. First we express the right-hand side of (5.7) as a sum, each term of which is the product
of a minor determinant of the matrix ( eλi

ki−kn+j
)ij and a minor of the matrix ( eλn+j

Li−Ln+j
)ij . Thus, we

have

(−)
n(n−1)

2 det
(

eλn+j

Li − Ln+j
+

eλi

ki − kn+j

)

= (−)
n(n−1)

2

∑
{σ,σ′}
{µ,µ′}

(−)[σ]+[µ]det
(

1
kσi − kn+µj

)
det

(
1

Lσ′
i
− Ln+µ′

j

)
. (5.8)

More precisely, when expanding the left-hand side we first choose rows, from which we then choose
the elements of matrix ( eλi

ki−kn+j
)ij . We label these rows σ := {σ1, σ2, . . . , σr}. The remaining rows

are labeled σ′ := {σ′
1, σ

′
2, . . . , σ

′
s}, which yield the the elements of ( eλn+j

Li−Ln+j
)ij .
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We also have to decide on a partition of the columns. We label the columns belonging to
( eλi

ki−kn+j
)ij as µ := {µ1, µ2, . . . , µr} (the number of elements in σ and µ must of course be the

same). The remaining columns are denoted as µ′ := {µ′
1, . . . , µ

′
s}.

It should be noted that we keep the internal ordering of these subsets to be ascending. The
summation that appears in (5.8) runs over all possible partitions {σ, σ′} and {µ, µ′}. More detail
regarding the decomposition of the determinant of a sum of two matrices into minor determinants
can be found in [3].

Since we will use the subscripts {n + µ1, . . . , n + µr} and {n + µ′
1, . . . , n + µ′

s} more often than µ

and µ′ themselves, we denote them as n + µ and n + µ′. Now, each term in (5.8) can be recognized
to be a Cauchy determinant. So we can express (5.8) as

(−)
n(n−1)

2 det
(

eλn+j

Li − Ln+j
+

eλi

ki − kn+j

)

= (−)
n(n−1)

2

∑
{σ,σ′}
{µ,µ′}

(−)[σ]+[µ]+
r(r−1)

2 +
s(s−1)

2

× kσkn+µLσ′Ln+µ′

kσ→n+µLσ′→n+µ′
e

Pr
j=1 λσj

+
Ps

j=1 λn+µ′
j

=
∑

{σ,σ′}
{µ,µ′}

(−)[σ]+[µ]+(n+1)r kσkn+µLσ′Ln+µ′

kσ→n+µLσ′→n+µ′
e

Pr
j=1 λσj

+
Ps

j=1 λn+µ′
j . (5.9)

Next we expand the left-hand side of (5.7) and verify that the coefficient in e
Pr

j=1 λσj
+

Ps
j=1 λn+µ′

j is
the same as that of (5.9). The expansion involves a rather cumbersome parity which we temporarily
denote as (−)S . Due to Remark 5.3 we have the following:

The coefficient of e
Pr

j=1 λσj
+

Ps
j=1 λn+µ′

j in the left-hand side of (5.7)

=
k{n+1,...,2n}
L{n+1,...,2n}

1
L{1,...,n}→{n+1,...,2n}

×
r∏

j=1

cσj ×
s∏

j=1

cn+µ′
j

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 kσ1 · · · kn−1
σ1

...
...

...
...

1 kσr · · · kn−1
σr

1 kn+µ′
1

· · · kn−1
n+µ′

1
...

...
...

...
1 kn+µ′

s
· · · kn−1

n+µ′
s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Lσ′
1

· · · Ln−1
σ′
1

...
...

...
...

1 Lσ′
s

· · · Ln−1
σ′

s

1 Ln+µ1 · · · Ln−1
n+µ1

...
...

...
...

1 Ln+µr · · · Ln−1
n+µr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
× (−)S

= (−)S × k{n+1,...,2n}
L{n+1,...,2n}

k{σ,n+µ′}L{σ′,n+µ}
L{1,...,n}→{n+1,...,2n}

r∏
j=1

cσj ×
s∏

j=1

cn+µ′
j

= (−)S × k{n+1,...,2n}
L{n+1,...,2n}

kσkn+µ′kσ→n+µ′Lσ′Ln+µLσ′→n+µ

L{1,...,n}→{n+1,...,2n}

×
r∏

j=1

Lσj→{n+1,...,2n}
kσj→{n+1,...,2n}

×

 s∏

j=1

−
Ln+µ′

j→{n+1,...,2n}\{n+µ′
j}

kn+µ′
j→{n+1,...,2n}\{n+µ′

j}




= (−)S × (−)s × k{n+1,...,2n}
L{n+1,...,2n}

kσkn+µ′kσ→n+µ′Lσ′Ln+µLσ′→n+µ

L{1,...,n}→{n+1,...,2n}
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× Lσ→{n+1,...,2n}
kσ→{n+1,...,2n}

(
Ln+µ′

kn+µ′

)2
Ln+µ′→n+µ

kn+µ′→n+µ

= (−)S × (−)s × kσkn+µLσ′Ln+µ′

kσ→n+µLσ′→n+µ′
. (5.10)

Thus, the remaining task is to show that the signs of (5.9) and (5.10) are the same. In (5.10),
(−)S denotes the parity of the permutation needed to rearrange {1, 2, . . . , 2n} in the order {σ, n +
µ′, σ′, n + µ}. In this rearrangement, we first change {1, 2, . . . , 2n} to {σ, σ′, n + µ, n + µ′}, which
has the parity (−)[σ]+[µ]. Then we change {σ, σ′, n + µ, n + µ′} to {σ, n + µ′, σ′, n + µ}, which has
the parity (−)ns. Thus, we have

(−)S × (−)s = (−)[σ]+[µ]+(n+1)s = (−)[σ]+[µ]+(n+1)r. (5.11)

From (5.9), (5.10), (5.11), We see that Theorem 5.2 holds.

Using Theorem 5.2, we can now accomplish the last step in the proof of Proposition 4.1.

Corollary 5.1. If the absolute values of kj are small enough, w21(x−iδ) becomes analytic everywhere
in the strip 0 ≤ Im x ≤ 2δ.

Proof.
We shall prove that w21(x) is analytic everywhere in δ ≥ |Im x|. We first rewrite Theorem 5.2 as
follows:

τ = (−)
n(n−1)

2 × L{n+1,...,2n}
k{n+1,...,2n}

× L{1,...,n}→{n+1,...,2n} × e
Pn

J=1 λn+j

× det
(

1
Li − Ln+j

+
eλi−λn+j

ki − kn+j

)
. (5.12)

So, whether w21(x) is analytic or not depends on the last determinant in (5.12). Due to Remark 5.1,
the determinant becomes

det

(
1

Li + L†
j

+
eλi+λ†

j

ki + k†
j

)
. (5.13)

It is easily seen that (5.13) is positive for real x because, for any nonzero vector (y1, y2, . . . , yn),

(y1, . . . , yn)




1

L1+L†
1

+ eλ1+λ
†
1

k1+k†
1

· · · 1

L1+L†
n

+ eλ1+λ
†
n

k1+k†
n

...
. . .

...
1

Ln+L†
1

+ eλn+λ
†
1

kn+k†
1

· · · 1

Ln+L†
n

+ eλn+λ
†
n

ki+k†
j






y†
1
...

y†
n




=
∫ 0

−∞
du(y1, . . . , yn)




e(L1+L†
1)u · · · e(L1+L†

n)u

...
. . .

...
e(Ln+L†

1)u · · · e(Ln+L†
n)u






y†
1
...

y†
n




+
∫ x

−∞
du(y1, . . . , yn)




eλ1+λ†
1 |x=u · · · eλ1+λ†

n |x=u

...
. . .

...
eλn+λ†

1 |x=u · · · eλn+λ†
n |x=u






y†
1
...

y†
n




=
∫ 0

−∞
du

n∑
j=1

|yje
Lju|2 +

∫ x

−∞
du

n∑
j=1

|(yje
λj |x=u)|2 > 0. (5.14)
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Regarding the integrals aboves, note that kj + k†
j and Lj + L†

j are positive due to condition C1 and
Remark 5.2. Thus, we see (5.13) is nonzero on the real axis. As for the whole strip δ ≤ |Im x|, by
inspection of (5.5) and (5.6), we see that w21 is analytic in the strip if the real part of |x| is
large enough. More precisely, there exists a real constant R such that w21 is analytic in the region
{x |δ ≤ |Im x| ∩ |Re x| ≥ R}, which leaves open the possibility that w21 might still have singular
points in the rectangle {x |δ ≤ |Im x| ∩ |Re x| < R}. However, since w21 is real analytic, we have a
certain analytic neighborhood including the line {x|−R ≤ x ≤ R}. Furthermore, since w21 contains
the variable x only in the form kjx, choosing the absolute values of kj small enough, one can make
sure the analytic neighborhood gets broad enough until it contains the whole rectangle.

6. Concluding Remarks

We presented a double Wronskian solution for the focusing intermediate nonlinear Schrödinger
equation. Its construction was based on Sato theory, which also clarified the relation between the
2-component KP hierarchy and this particular INLS equation.

The solitons exhibit peculiar interactions, i.e. the 2-soliton solution exhibits oscillations for the
slower soliton in the interaction region. It is an interesting problem to investigate the properties of
these soliton solutions in comparison to those of e.g. the NLS equation, which should shed more
light on the characteristic interaction properties of the INLS solitons. This will be investigated in
the future.

As pointed out in the Introduction, the δ → 0 limit of the INLS equation with σ = −1 yields the
focusing NLS equation. It is important to remark that the solution (4.8a) satisfying C1 ∼ C3 endures
this limit, i.e. U = w21/

√
2δ corresponds to the n-soliton solution of the focusing NLS in double

Wronskian form. Let us explain the fact briefly. Since cj → (2δ)n, cn+j → −(2δ)n−1, (j = 1, 2, . . . , n)
and Lj → 2δkj, (j = 1, 2, . . . , 2n) as δ → 0, w21 can be approximated as follows:

w21(x)/
√

2δ = (−)n+1

∣∣∣∣∣∣∣∣∣∣

√
2δeλ1 · · · kn−2

1

√
2δeλ1 1 k1 · · · kn

1√
2δeλ2 · · · kn−2

2

√
2δeλ2 1 k2 · · · kn

2
...

...
...

...
...

...
...

−(
√

2δ)−1eλ2n · · · −kn−2
2n (

√
2δ)−1eλ2n 1 k2n · · · kn

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
2δeλ1 · · · kn−1

1

√
2δeλ1 1 k1 · · · kn−1

1√
2δeλ2 · · · kn−1

2

√
2δeλ2 1 k2 · · · kn−1

2
...

...
...

...
...

...
...

−(
√

2δ)−1eλ2n · · · −kn−1
2n (

√
2δ)−1eλ2n 1 k2n · · · kn−1

2n

∣∣∣∣∣∣∣∣∣∣

(6.1)

By defining the phase constants aj = a′
j − 1

2 ln(2δ), the
√

2δ’s in the determinants disappear and
(6.1) becomes nothing else but the bright n-soliton solution of the focusing NLS equation.

The other limit δ → ∞ should be also mentioned. In this case, T is deformed into the Hilbert
transform and (1.1) becomes as follows:

iut = uxx − u(i + H)(|u|2)x, H [u](x) =
∫ ∞

−∞
\ u(y)

π(y − x)
dy. (6.2)

It is only confirmed that the 1-soliton solution (4.9) allows this limit. More precisely, taking p =
π
2δ − v

δ2 , α = −2δ − 1
2 log(p−1 sin 2δp), β = 0 and δ → ∞, u(x, t) becomes

u(x, t) =
−2i

√
πve−i(qx−q2t)

π(x − 2qt) + 2iv
(6.3)
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and satisfies the Eq. (6.2). Note that v must be positive to satisfy the condition C2. As for general
multi-soliton solutions, proper parameters for the limit remains unknown.
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Appendix A. Proof of Theorem 5.1

Proof. By virtue of Remark 5.1, the complex conjugate of (4.8a) is

w†
21 = (−)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c†1e
−λn+1 · · · (−kn+1)n−2c†1e

−λn+1 1 · · · (−Ln+1)n

...
...

...
...

...
...

c†ne−λ2n · · · (−k2n)n−2c†ne−λ2n 1 · · · (−L2n)n

c†n+1e
−λ1 · · · (−k1)n−2c†n+1e

−λ1 1 · · · (−L1)n

...
...

...
...

...
...

c†2ne−λn · · · (−kn)n−2c†2ne−λn 1 · · · (−Ln)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c†1e
−λn+1 · · · (−kn+1)n−1c†1e

−λn+1 1 · · · (−Ln+1)n−1

...
...

...
...

...
...

c†ne−λ2n · · · (−k2n)n−1c†ne−λ2n 1 · · · (−L2n)n−1

c†n+1e
−λ1 · · · (−k1)n−1c†n+1e

−λ1 1 · · · (−L1)n−1

...
...

...
...

...
...

c†2ne−λn · · · (−kn)n−1c†2ne−λn 1 · · · (−Ln)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.1)

We arrange the rows in ascending order for the subscripts of λ and gather the negative signs in each
row. Then we have,

w†
21 =

(−)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c†n+1e
−λ1 · · · kn−2

1 c†n+1e
−λ1 1 · · · Ln

1
...

...
...

...
...

...
c†2ne−λn · · · kn−2

n c†2ne−λn 1 · · · Ln
n

c†1e
−λn+1 · · · kn−2

n+1c†1e
−λn+1 1 · · · Ln

n+1
...

...
...

...
...

...
c†ne−λ2n · · · kn−2

2n c†ne−λ2n 1 · · · Ln
2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c†n+1e
−λ1 · · · kn−1

1 c†n+1e
−λ1 1 · · · Ln−1

1
...

...
...

...
...

...
c†2ne−λn · · · kn−1

n c†2ne−λn 1 · · · Ln−1
n

c†1e
−λn+1 · · · kn−1

n+1c†1e
−λn+1 1 · · · Ln−1

n+1
...

...
...

...
...

...
c†ne−λ2n · · · kn−1

2n c†ne−λ2n 1 · · · Ln−1
2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.2)

Now we carry out the Laplace expansions of both the numerator and the denominator in (A.2).
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The numerator of (A.2) = (−)n ×
∑

(−)[σ]
n−1∏
r=1

c†n+σr
e−λσr

×

∣∣∣∣∣∣∣∣∣∣

1 kσ1 · · · kn−2
σ1

1 kσ2 · · · kn−2
σ2

...
...

...
...

1 kσn−1 · · · kn−2
σn−1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

1 Lσ′
1

· · · Ln
σ′
1

1 Lσ′
2

· · · Ln
σ′
2

...
...

...
...

1 Lσ′
n+1

· · · Ln
σ′

n+1

∣∣∣∣∣∣∣∣∣∣
= (−)n+1 ×

∑
(−)[σ]kσLσ′

n−1∏
r=1

c†n+σr
e−λσr . (A.3)

The summation runs over all possible ascending partitions σ, σ′ of {1, 2, . . . , 2n}, where σ :=
{σ1, σ2, . . . , σn−1} and σ′ := {σ′

1, σ
′
2, . . . , σ

′
n+1}. (−)[σ] denotes the parity of the permutation needed

to move the rows of type σ to the beginning and of type σ′ to the end. We apply the same proce-
dure to the denominator of (A.2) (for which the partition is denoted by µ := {µ1, µ2, . . . , µn}, µ′ :=
{µ′

1, µ
′
2, . . . , µ

′
n}) and have

w†
21 =

(−)n+1
∑

{σj},{σ′
j}(−)[σ]kσLσ′

∏n−1
r=1 c†n+σr

e−λσr∑
µ,µ′(−)[µ]kµLµ′

∏n
r=1 c†n+µr

e−λµr

. (A.4)

Next we consider w12. Rearranging the columns in (4.8b), we have,

w12 =

(−)n+1

∣∣∣∣∣∣∣∣∣∣

c−1
1 e−λ1 · · · Ln−2

1 c−1
1 e−λ1 1 · · · kn

1

c−1
2 e−λ2 · · · Ln−2

2 c−1
2 e−λ2 1 · · · kn

2
...

...
...

...
...

...
c−1
2n e−λ2n · · · Ln−2

2n c−1
2n e−λ2n 1 · · · kn

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−1
1 e−λ1 · · · Ln−1

1 c−1
1 e−λ1 1 · · · kn−1

1

c−1
2 e−λ2 · · · Ln−1

2 c−1
2 e−λ2 1 · · · kn−1

2
...

...
...

...
...

...
c−1
2n e−λ2n · · · Ln−1

2n c−1
2n e−λ2n 1 · · · kn−1

2n

∣∣∣∣∣∣∣∣∣∣
=

(−)n
∑

σ,σ′(−)[σ]Lσkσ′
∏n−1

r=1 c−1
σr

e−λσr∑
µ,µ′(−)[µ]Lµkµ′

∏n
r=1 c−1

µr e−λµr

. (A.5)

To prove w†
21 = w12 all we have to do is to show that

the coefficient of e−
Pn−1

j=1 λσj of the numerator of (A.4)

the coefficient of e−
Pn−1

j=1 λσj of the numerator of (A.5)

=
the coefficient of e−

Pn
j=1 λµj of the denominator of (A.4)

the coefficient of e−
P

n
j=1 λµj of the denominator of (A.5)

(A.6)

for arbitrary σ and µ. To accomplish this, we will make repeated use of Remark 5.3:

the l.h.s. of (A.6) = −kσLσ′
∏n−1

r=1 c†n+σr

Lσkσ′
∏n−1

r=1 c−1
σr

= −kσLσ′

Lσkσ′

n−1∏
r=1

c†n+σr
cσr . (A.7)
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Note that cj can be rewritten as,

cj =




L{j}→{n+1,...,2n}
k{j}→{n+1,...,2n}

=
L{j}→{n+1,...,2n}\{j}
k{j}→{n+1,...,2n}\{j}

(j = 1, 2, . . . , n)

−L{j}→{n+1,...,2n}\{j}
k{j}→{n+1,...,2n}\{j}

(j = n + 1, n + 2, . . . , 2n).
(A.8)

Thus, we have

n−1∏
r=1

c†n+σr
cσr =

n−1∏
r=1

{
−
(

L{n+σr}→{n+1,...,2n}\{n+σr}
k{n+σr}→{n+1,...,2n}\{n+σr}

)† L{σr}→{n+1,...,2n}\{σr}
k{σr}→{n+1,...,2n}\{σr}

}

= (−)n−1
n−1∏
r=1

L{σr}→{1,...,n}\{σr}
k{σr}→{1,...,n}\{σr}

L{σr}→{n+1,...,2n}\{σr}
k{σr}→{n+1,...,2n}\{σr}

= (−)n−1
n−1∏
r=1

Lσr→{1,...,2n}\{σr}
kσr→{1,...,2n}\{σr}

= (−)n−1

(
Lσ

kσ

)2
Lσ→σ′

kσ→σ′
. (A.9)

Substituting (A.9) into the r.h.s. of (A.7), we have,

the r.h.s. of (A.7) = −(−)n−1 kσLσ′

Lσkσ′

(
Lσ

kσ

)2
Lσ→σ′

kσ→σ′

= (−)n L{1,...,2n}
k{1,...,2n}

. (A.10)

We also have

the r.h.s. of (A.6) =
kµLµ′

∏n−1
r=1 c†n+µr

Lµkµ′
∏n−1

r=1 c−1
µr

=
kµLµ′

Lµkµ′

n−1∏
r=1

c†n+µr
cµr

=
kµLµ′

Lµkµ′
× (−)n

(
Lµ

kµ

)2
Lµ→µ′

kµ→µ′
= (−)n L{1,...,2n}

k{1,...,2n}
. (A.11)

Hence, from (A.10), (A.11) we see that w†
21 = w12.
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