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In this note we give the conditions for the existence of algebraic geodesics on some two-dimensional quadrics,
namely, on hyperbolic paraboloids and elliptic paraboloids. It appears that in some cases, such geodesics
are the rational space curves.
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1. Introduction

The problem of geodesics on the second order surfaces (quadrics) is a classical one. For a two-
dimensional ellipsoid, an explicit description of geodesics was given by Jacobi [4] and Weierstrass
[8]. For other quadrics, this problem was considered by Halphen [2] and Hadamard [3] (for the
modern exposition of this topic, see [5–7]).

It is well known that the generic geodesic on a two-dimensional quadric is a transcendental space
curve. However, in some cases, this geodesic becomes an algebraic space curve. Hence, such geodesics
may be considered as the complete intersection (or a connected component of the intersection) of
the two-dimensional quadric with the algebraic surface in the space R

3.
In the paper [1], an approach was proposed for the description of such surfaces in the case of

two-dimensional ellipsoid and some of them were described explicitly.
In this note we give the conditions for the existence of algebraic geodesics on other two-

dimensional quadrics, namely, on hyperbolic paraboloids and elliptic paraboloids. It appears that in
some cases, such geodesics are rational space curves.

2. Hyperbolic Paraboloid

The equation for the hyperbolic paraboloid in the three-dimensional Euclidean space R
3 can be

expressed in the form

x2

a
− y2

b
− 2z = 0, a > 0, b > 0. (1)

1
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Following [3] let us express coordinates x, y, z in terms of elliptic coordinates λ, µ:

x2 = − a(λ + a)(µ + a)
a + b

, (2)

y2 = − b(λ − b)(µ − b)
a + b

, (3)

2z = − (λ + µ + a − b), λ < −a, µ > b. (4)

In these coordinates, the element of length takes the form

ds2 =
λ − µ

4

[
λdλ2

(λ + a)(λ − b)
− µ dµ2

(µ + a)(µ − b)

]
, (5)

and the geodesic is given by the equation∫
dλ

√
λ

(λ + c)(λ + a)(λ − b)
=

∫
dµ

√
µ

(µ + c)(µ + a)(µ − b)
, (6)

where a constant c characterizes the geodesic.
Recall that on the hyperbolic paraboloid there are two families of straight lines, and any such

line is geodesic. Moreover, two principal parabolas (the intersection of planes x = 0 and y = 0 with
paraboloid) are also geodesics.

As it was shown in [3], if c �= a or c �= −b, then µ → +∞ as t → +∞ or t → −∞ and any
geodesic tends to the straight line given by the formulae

x ∼ ±
√

qa

a + b
µ,

y ∼ ±
√

qb

a + b
µ, (7)

2z ∼ (1 − q)µ, q = const = lim
t→+∞

|λ|
µ

.

The main result of this note is the following theorem.

Theorem 1. If c = a and
√

a+b
a is a rational number, the geodesic defined by Eq. (6) is an algebraic

curve.

Proof. In this case, the elliptic integral in (6) reduces to a more simple form:∫
dλ

1
λ + a

√
λ

λ − b
=

∫
dµ

1
µ + a

√
µ

µ − b
. (8)

The integrand I has two poles at λ = −a and λ = ∞:

I ∼ 1
r(λ + a)

as λ → −a

I ∼ 1
λ

as λ → ∞.

Here

r =

√
a + b

a
. (9)

It is easy to see that if r is a rational number r = p/q (for p and q integer), then the integral in (8)
is the logarithm of an algebraic function.
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In fact, the integral in (8) can be calculated explicitly by means of the standard change of
variables (λ, µ) → (ξ, η):

λ =
b/a

1 − ξ2
, µ =

b/a

1 − η2
. (10)

In this way we come to the algebraic equation

(1 − ξ)p(1 − η)p(r + ξ)q(r + η)q − c2(1 + ξ)p(1 + η)p(r − ξ)q(r − η)q = 0, (11)

where c2 is a constant of integration. Changing variables (ξ, η) for (x, y) and using Eqs. (2) and (3)
we get the equation

F (x, y) = 0, (12)

where F (x, y) is a polynomial in (x, y). Hence, this equation defines an algebraic plane curve. The
variable z may be found now from (1) or (4). Then we obtain an algebraic space curve.

So, we proved that our geodesic is an algebraic space curve.

Note that our geodesic asymptotically approaches the principal parabola (x = 0) as t → ∞ and
a straight line as t → −∞. It also has the property: x > 0, y(t0) = 0, y > 0, t > t0; y < 0, t < t0.
Note also that (λ + a) ∼ µ−r as λ → −a, µ → ∞.

Example 1. Let us consider in more detail the case a = 1, b = 3, r = 2, p = 2, q = 1. Taking
c2 = 1 in (11) we get the algebraic equation for new variables ξ, η

(1 − ξ)2(1 − η)2(2 + ξ)(2 + η) − (1 + ξ)2(1 + η)2(2 − ξ)(2 − η) = 0. (13)

Expanding the left-hand side we get

(ξ + η)(ξ2 + η2 − ξη − 3) = 0. (14)

Using Eqs. (2), (3), and (14) we obtain simple expressions for x and y:

x2 =
1
4

2 − ζ

ζ + 1
, y2 =

9
4

ζ2

(2 − ζ)(ζ + 1)
, (15)

where

ζ = ξη, −1 < ζ < 2. (16)

Eliminating ζ from these equations we get a relation between x and y

x

(
x − y√

3

)
=

1
2

or x

(
x +

y√
3

)
=

1
2
. (17)

From this we obtain a parametrization of our geodesic:

x =
τ

2
, y =

√
3

τ2 − 2
2τ

, z =
τ2 − 1
2τ2

. (18)

Hence, the geodesic tends to the straight line in the plane z = 1/2 as τ → ∞ (in accordance
with [3]), and to the principal hyperbola (x = 0) as τ → 0.
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Observe that if

x2

1
− y2

3
= 2z (19)

we have

(λ + 1) ∼ − 1
µ2

as µ → ∞. (20)

In a more general case

x2

1
− y2

b
= 2z, b = n2 − 1, n is integer, (21)

we have

(λ + 1) ∼ − αn

µn
, where αn is constant. (22)

From this it follows that

x2 ∼ αn

n2

1
µn−1

, y2 ∼ (n2 − 1)µ, xyn−1 → const. (23)

3. Elliptic Paraboloid

The basic formulae for this case are similar to the formulae of previous section, so we give just few
ones. The equation for elliptic non-degenerate paraboloid in the three-dimensional Euclidean space
R

3 has the form

x2

a
+

y2

b
− 2z = 0, a > b > 0. (24)

In elliptic coordinates λ and µ, we have

x2 = − a(λ + a)(µ + a)
a − b

,

(25)

y2 = − b(λ + b)(µ + b)
b − a

,

2z = −(λ + µ + a + b), λ < −a, −a < µ < −b. (26)

The expression for the element of length is of the form

ds2 =
λ − µ

4

[
λdλ2

(λ + a)(λ + b)
− µ dµ2

(µ + a)(µ + b)

]
(27)

and the geodesic is represented by the equation

∫
dλ

√
λ

(λ + c)(λ + a)(λ + b)
=

∫
dµ

√
µ

(µ + c)(µ + a)(µ + b)
, (28)

where a constant c characterizes the geodesic.

Theorem 2. If c = a, r =
√

(a − b)/a is a rational number, the geodesic defined by Eq. (28) is an
algebraic curve.

Proof. It is completely analogous to the proof of Theorem 1.
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Example 2. In the simplest case r = 1/2, we have

x2

4
+

y2

3
− 2z = 0. (29)

Taking c2 = 1 in (11) we come to the equation

(1 − ξ)(1 − η)
(

1
2

+ ξ

)2 (
1
2

+ η

)2

− (1 + ξ)(1 + η)
(

1
2
− ξ

)2 (
1
2
− η

)2

= 0. (30)

After simplifications we get

(ξ + η)
(

ξ2 + η2 − ξη − 3
4

)
= 0. (31)

This equation implies the following equations for coordinates x and y:

x2

4
= 16

ζ + 1
4

ζ − 1
2

,
y2

3
= 9

ζ2

(ζ− 1
2 )2

, (32)

where

ζ = ξη, −1
4

< ζ <
1
2
.

Eliminating ζ from these equations we obtain a simple relation between x and y:

y√
3

=
x2

32
− 1. (33)

So, our geodesic is the intersection of the elliptic paraboloid (29) with the parabolic cylinder (33).

Note that in both above examples the geodesic is a rational space curve. It would be interesting
to find other examples of rational geodesics on hyperbolic and elliptic paraboloids.
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