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In the calculus of variations, Lepage (n+1)-forms are closed differential forms, representing Euler–Lagrange
equations. They are fundamental for investigation of variational equations by means of exterior differential
systems methods, with important applications in Hamilton and Hamilton–Jacobi theory and theory of
integration of variational equations. In this paper, Lepage equivalents of second-order Euler–Lagrange quasi-
linear PDE’s are characterised explicitly. A closed (n+1)-form uniquely determined by the Euler–Lagrange
form is constructed, and used to find a geometric solution of the inverse problem of the calculus of variations.
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1. Introduction

The inverse problem of the calculus of variations is concerned with the question when a system of
ordinary or partial differential equations of order r (r ≥ 1) identifies with Euler–Lagrange equa-
tions, i.e., equations for extremals of a variational functional. This problem was first considered by
Helmholtz in 1887, for a system of second order ordinary differential equations [11]. In his semi-
nal paper, Helmholtz found necessary conditions for variationality, now called Helmholtz conditions
(Mayer [23] later proved that the conditions are also sufficient). Since that time, questions on exis-
tence, multiplicity and construction of Lagrangians to differential equations have been investigated
by many authors. A remarkable progress in the solution of the inverse variational problem was
achieved around 1980 by methods of differential geometry and global analysis, in connection with
new developments of the calculus of variations on fibred manifolds and the theory of variational
bicomplexes: Helmholtz conditions were generalised to PDE’s of an arbitrary order by Anderson
and Duchamp [1] and Krupka [14], and the inverse problem was extended to study conditions for
existence of a global Lagrangian. Nowadays, geometric and global rather than analytical aspects of the
inverse variational problem are of main interest, and relations between variationality and geometry
of differential equations are intensively studied and explored (see e.g. [4, 21, 22]).
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One of the most significant advances in this direction was the discovery of an intimate relation-
ship between variational equations and closed forms, i.e., between the Euler–Lagrange operator and
the operator of the exterior derivative of differential forms (Crampin, Prince and Thompson [3],
Dedecker and Tulczyjew [5], Krupka [14, 15], Tonti [25]). Due to this relationship, the local version
of the inverse variational problem is transferred to an application of the Poincaré Lemma, and global
existence results follow from De Rham Theorem. A direct geometric expression of this property is
realised within the concept of Lepage (n + 1)-form, where n is the number of independent variables
(Krupková [17–19]).

Lepage (n+1)-forms are closed differential forms, exclusively representing variational equations;
they are also called Lepage equivalents of variational equations. Besides questions connected with
the inverse variational problem, they are used to study variational equations and their solutions
with exterior differential systems methods. Most important applications arise in investigations of
symmetries and conservation laws, Hamilton and Hamilton–Jacobi theory, and integration of vari-
ational equations. Techniques using Lepage forms also hold the promise of a natural extension of
methods and results from the calculus of variations to the class of differential equations for which
no Lagrangian exists.

For ordinary variational equations (in physical terminology “higher-order mechanics”), the theory
of Lepage (n+1)-forms is well-established. For an exposition of results and applications with stress on
the geometry of ordinary differential equations and the inverse problem of the calculus of variations
we refer the reader to the book [20] and recent survey papers [21, 22]. On the other hand, for partial
differential equations (“field theory”) results achieved so far are by no means complete.

The aim of this paper is to investigate Lepage (n+1)-forms associated with second-order Euler–
Lagrange quasi-linear PDE’s. After a brief survey of the current status of the subject in Sec. 2, new
results are reported in Sec. 3 and proved in Sec. 4.

While for ordinary differential equations there is a one-to-one correspondence between Lepage
2-forms and variational equations, for partial differential equations the situation is more compli-
cated. We study the structure of Lepage (n + 1)-forms, and provide an explicit characterisation of
all corresponding Lepage equivalents. It turns out, however, that the class of Lepage equivalents con-
tains a distinguished (local) “fundamental equivalent” uniquely determined by the Euler–Lagrange
expressions. We discuss global existence of such an (n+1)-form, and find its relationship with the so
called “fundamental Lepage equivalent of a Lagrangian” (Krupka n-form) [2, 13]. Finally, the closed
(n + 1)-form uniquely determined by the Euler–Lagrange form is used to obtain the variationality
conditions in an intrinsic form.

Proofs of the theorems are quite straightforward, however, sometimes require long and difficult
calculations. To make the article easily accessible to different readers, we decided to divide the
exposition into two parts: Results are summarised in Sec. 3, and for interested readers, complete
proofs are included in Sec. 4.

Finally, we note that analogous differential forms were considered on Grassmann bundles by
Grigore and Popp, and Grigore [8, 9]. They introduced closed (n+1)-forms representing variational
equations (“Lagrange–Souriau forms”), and used them to study Noether symmetries.

2. Lepage Forms

Throughout the paper, all manifolds and mappings are assumed smooth, and the summation over
repeated indices is used whenever appropriate. The background for our considerations is the theory
of jet bundles and the calculus of variations on fibred manifolds (see e.g. [16, 20, 24]). We consider
a fibred manifold π : Y → X , dimX = n, dimY = n + m, where n, m ≥ 1. For r = 1, 2 we denote
by πr : JrY → X the r-jet prolongation of π, and by πr,k : JrY → JkY , 0 ≤ k ≤ r, the canonical
projections (here J0Y = Y ). A section of π is a mapping γ : U → Y , where U ⊂ X is an open set,
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such that π ◦ γ = idU . The r-jet prolongation of γ is denoted by Jrγ; it is a section of the fibred
manifold πr.

On jet bundles it is convenient to use vector fields and differential forms adapted to the fibred
structure [12]: A vector field ξ on JrY is called πr-vertical if it projects onto the zero vector field
on X . A differential q-form η on JrY is called horizontal (or, 0-contact) with respect to the pro-
jection πr, if iξη = 0 for every πr-vertical vector field ξ on JrY ; η is called contact if Jrγ∗η = 0
for every section γ of π. A contact form is said to be 1-contact if for every vertical vector field
ξ, the contraction iξη is horizontal. Recurrently, η is said to be k-contact if for every vertical vec-
tor field ξ, iξη is (k − 1)-contact. We have a useful Structure Theorem due to Krupka [12],
stating that every q-form η on JrY admits a unique decomposition as a sum of forms on Jr+1Y

as follows:

π∗
r+1,rη = hη +

q∑
k=1

pkη, (2.1)

where hη is a horizontal form (called the horizontal part of η); and pkη, 1 ≤ k ≤ q, is a k-contact
form (called the k-contact part of η).

If (xi, yσ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m, are fibred coordinates on Y , defined on an open set V ⊂ Y , we
denote by (xi, yσ, yσ

j ), and (xi, yσ, yσ
j , yσ

j1j2
), j1 ≤ j2, the associated coordinates on J1Y and J2Y ,

respectively. Next, we write

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn, ωi1i2···ik
= i∂/∂xik ωi1i2···ik−1 , 1 ≤ k ≤ n,

for the local volume on X and its contractions, and

ωσ = dyσ − yσ
l dxl, ωσ

j = dyσ
j − yσ

jldxl,

for the associated basis of contact 1-forms on π−1
2,0(V ) ⊂ J2Y .

A dynamical form E of order r is a 1-contact (n + 1)-form on JrY , horizontal with respect to
the projection onto Y . In fibred coordinates,

E = Eσωσ ∧ ω0,

where Eσ are local functions on JrY .
Let λ be a first-order Lagrangian, i.e., a horizontal n-form on J1Y . A differential n-form η is

called Lepage equivalent of λ (see [12]) if in the decomposition (2.1), hη = λ, and p1dη is a dynamical
form; the (n + 1)-form Eλ = p1dη is then called the Euler–Lagrange form of λ. For a first-order
Lagrangian λ the Euler–Lagrange form is defined on J2Y and in every fibred chart reads

Eλ =

(
∂L

∂yσ
− dj

∂L

∂yσ
j

)
ωσ ∧ ω0.

Note that components Eσ of Eλ are functions affine in the second derivatives, since

∂Eσ

∂yν
jl

= −1
2

(
∂2L

∂yσ
j ∂yν

l

+
∂2L

∂yσ
l ∂yν

j

)

are defined on an open subset of J1Y .
As proved in [12], to every first-order Lagrangian a (global) Lepage equivalent exists and is

non-unique. The family of Lepage equivalents of λ contains distinguished representatives that are
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completely determined by the Lagrangian: here we mention the famous Poincaré–Cartan form
[6, 7, 12],

Θλ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj,

and the Krupka form [13] (see also [2]),

ρλ = Lω0 +
n∑

k=1

1
(k!)2

∂kL

∂yν1
j1

· · ·∂yνk

jk

ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk
. (2.2)

The latter Lepage equivalent of λ has the following important property (not possessed by the
Poincaré–Cartan form): dρλ = 0 ⇔ Eλ = 0.

Consider a dynamical form E on J2Y . E is said to be locally variational if to every point in J2Y

one has a neighbourhood U , and a Lagrangian λ on U , such that E|U = Eλ. It is known that E is
locally variational if and only if the components of E satisfy the following identities:

∂Eσ

∂yν
jk

− ∂Eν

∂yσ
jk

= 0, (2.3)

∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

− 2dk
∂Eν

∂yσ
jk

= 0, (2.4)

∂Eσ

∂yν
− ∂Eν

∂yσ
+ dj

∂Eν

∂yσ
j

− djdk
∂Eν

∂yσ
jk

= 0. (2.5)

We recall a fundamental theorem due to Krupka [15], relating locally variational forms with
closed forms:

Theorem 1. A dynamical form E is locally variational if and only if to every point in the domain
of E there exists a neighbourhood W and an at least 2-contact form FW on W such that the form
αW = E + FW is closed.

A (n + 1)-form α is called Lepage equivalent of E [17] if p1α = E and dα = 0. One can see
immediately that if α is a Lepage equivalent of E then, around every point, α = dη where η is a
Lepage equivalent of a local Lagrangian for E.

The above theorem guarantees local existence of Lepage equivalents; it does not provide us with
explicit formulas for αW by means of the components of E.

The problem of (global) existence and multiplicity of Lepage equivalents has been completely
solved for locally variational forms on J1Y in [10]:

Theorem 2. Every first-order locally variational form E has a unique Lepage equivalent defined on
Y . It is denoted by αE and takes the form

αE = Eσωσ ∧ ω0

+
n∑

k=1

1
k!(k + 1)!

∂kEσ

∂yν1
j1

· · · ∂yνk

jk

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk
. (2.6)

Moreover, in a neighbourhood U of every point in Y,

αE |U = dρλ, (2.7)

where λ is a local first order Lagrangian for E. All Lepage equivalents of E are then described by the
formula α = αE + φ where φ is an arbitrary closed at least 2-contact form defined on JrY, r ≥ 1.
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In the next section we shall be interested in similar questions for second-order Euler–Lagrange
equations. To this end we shall use the following result [19]:

Lemma 1. Let α be a Lepage equivalent of a locally variational form E on J2Y . Then

p2α =
1
2

∂Eσ

∂yν
j

ωσ ∧ ων ∧ ωj +
∂Eσ

∂yν
jp

ωσ ∧ ων
p ∧ ωj + p2dφ, (2.8)

where φ is a 2-contact n-form.

3. Lepage Equivalents of Second Order Euler–Lagrange Forms: Results

Let us consider a dynamical form E on J2Y , denote as above, E = Eσωσ ∧ω0. Assume that in every
fibred chart

∂2Eσ

∂yν
jk∂yρ

pq
= 0, (3.1)

meaning that the components Eσ of E are affine functions in the second derivatives.
In what follows, we shall study the structure of Lepage equivalents of Euler–Lagrange forms the

components of which are affine in the second derivatives. In this section we summarise the results
of the paper, complete proofs are postponed to the next section.

The problem is to find all closed (n+1)-forms α such that p1α = E. The closedness condition on
α means that at least some of the components of the higher-degree contact parts of α depend upon
the Euler–Lagrange expressions Eσ, 1 ≤ σ ≤ m. This means that α splits into a (not necessarily
invariant) sum

α = αE + φ, (3.2)

where αE is completely determined by the Euler–Lagrange expressions, while φ does not depend
upon E. Hence, the first step to solve the structure problem is to find the form αE .

Theorem 3. Let E be a locally variational form on J2Y . If the condition (3.1) is satisfied then αE

is affine in the ων
p ’s, and takes the form

αE = Eσωσ ∧ ω0

+
n∑

k=1

1
k!(k + 1)!

∂kEσ

∂yν1
j1

· · ·∂yνk
jk

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk

+
n∑

k=1

1
(k!)2

∂kEσ

∂yν1
j1

· · · ∂y
νk−1
jk−1

∂yνk

jkp

ωσ ∧ ων1 ∧ · · · ∧ ωνk−1 ∧ ωνk
p ∧ ωj1···jk

. (3.3)

Moreover, αE is π2,1-projectable.

In view of the preceding theorem we obtain the following solution to the problem of the structure
of Lepage equivalents of “quasi-linear” second-order Euler–Lagrange equations:

Theorem 4. Let E be a locally variational form on J2Y satisfying (3.1). Every Lepage equivalent
α of E takes the form

α = αE + φ, (3.4)

where αE is a closed (first-order ) form, given by (3.3), and φ is a closed, at least 2-contact form.

Corollary 1. Let E be a locally variational form on J2Y, satisfying condition (3.1). Given a fibred
chart (V, ψ) on Y with coordinates (xi, yσ), the (n + 1)-form αE determined by the Euler–Lagrange
expressions of E and defined on π−1

1,0(V ) ⊂ J1Y by (3.3) is a Lepage equivalent of E.
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It remains to illuminate transformation properties of the form αE with respect to fibred coordi-
nates. Consider two overlapping charts (V, ψ), ψ = (xi, yσ), and (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ) on Y . Using in
the expression for αE transformation formulas

ω̄ji···jk
= det

(
∂x̄

∂x

)
∂xp1

∂x̄j1
· · · ∂xpk

∂x̄jk
ωp1···pk

,

ω̄σ =
∂yσ

∂yν
ων , ω̄σ

j =
∂yσ

j

∂yν
ων +

∂yσ
j

∂yν
p

ων
p ,

ȳσ
j =

∂xk

∂x̄j

(
∂ȳσ

∂xk
+

∂ȳσ

∂yρ
yρ

k

)
, ȳσ

ji =
∂xk

∂x̄i

(
∂ȳσ

j

∂xk
+

∂ȳσ
j

∂yρ
yρ

k +
∂ȳσ

j

∂yρ
p
yρ

pk

)
,

Ēσ = det
(

∂x

∂x̄

)
∂yν

∂ȳσ
Eν ,

(3.5)

and the relation
∂yσ

j

∂ȳν
k

∂ȳν
k

∂yρ
= −∂yσ

j

∂ȳν

∂ȳν

∂yρ
, (3.6)

we obtain the following result:

• The at most 2-contact part (also called principal part) of αE

α̂E = Eσωσ ∧ ω0 +
1
2

∂Eσ

∂yν
j

ωσ ∧ ων ∧ ωj +
∂Eσ

∂yν
jp

ωσ ∧ ων
p ∧ ωj (3.7)

is invariant with respect to fibred coordinate transformations. This means that formula (3.7) defines
a global differential form. The form α̂E , however, is in general not closed.

• For k ≥ 3 the form pkαE is generally not invariant. Consequently, αE is not invariant, i.e.,
formula (3.3) does not define a global differential form.

Remark. We have seen that the (n + 1)-form αE is global for r = 1 but no longer for r ≥ 2. We
remind the reader that this situation is analogous to the case of the well-known Poincaré–Cartan
form Θλ that is global for r ≤ 2 but not for higher order Lagrangians (cf. e.g. [15]). An important
case when αE for second order E is global is when E arises from a global Lagrangian (see Theorem 6
below).

The next results clarify the meaning of the Lepage equivalent αE of a locally variational form E.

Theorem 5. Let E be a dynamical form on J2Y, satisfying (3.1). The following conditions are
equivalent :

(1) E is locally variational.
(2) αE is closed.
(3) p2dαE = 0.
(4) Components Eσ of E satisfy conditions (4.23).

The above theorem provides us with a geometric meaning of the variationality conditions, as
conditions, under which the (n + 1)-form αE is closed. Otherwise speaking,

p2dαE = 0 (3.8)

is an intrinsic expression of variationality conditions (2.3)–(2.5) (respectively, (4.23) below).
Since the form αE is a Lepage equivalent of a locally variational form E, around every point it

equals dρ, where ρ is a Lepage equivalent of a Lagrangian of E. We shall answer the question which
of the Lepage equivalents of λ corresponds to αE .
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Theorem 6. Let λ be a Lagrangian on J1Y . Then

dρλ = αEλ
,

where ρλ is the Krupka form (2.2) of λ.

4. Lepage Equivalents of Second Order Euler–Lagrange Forms: Proofs and
Computations

Proof of Theorem 3. If α is an (n + 1)-form such that p1α = E then in fibred coordinates

α = Eσωσ ∧ ω0

+
n+1∑

r+s=2

F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs ωσ1 ∧ · · · ∧ ωσr ∧ ωρ1

p1
∧ · · · ∧ ωρs

ps
∧ ωj1···jr+s−1 , (4.1)

where the components F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs are completely skew-symmetric in lower indices σ1 · · ·σr,

completely skew-symmetric in upper indices j1 · · · jr+s−1 and completely skew-symmetric in pairs
of indices (ρ1p1) · · · (ρsps). In what follows, let us denote the components of αE , i.e., the part of the
components of α, completely determined by E, by F̃

j1···jr+s−1,p1···ps
σ1···σr,ρ1···ρs .

Lemma 1 provides us with the following components of the (n + 1)-form αE :

F̃ j
σν =

1
4

(
∂Eσ

∂yν
j

− ∂Eν

∂yσ
j

)
, F̃ j,p

σ,ρ = F j,p
σ,ρ|sym{jp} =

∂Eσ

∂yρ
jp

, F̃ j, p1p2
,ρ1ρ2

= 0. (4.2)

Computing dα = 0 we obtain the following relations:

(A) r, s ≥ 0, r + s = 2, . . . , n:

F
j1···jr+s,p1···ps+1
σ1···σr ,ρ1···ρs+1

∣∣
sym{jr+sps+1}=

1
(s + 1)(r + s)

∂F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1jr+s

, (4.3)

and

F
j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs

∣∣
alt{(ρ1p1)···(ρs+1ps+1)}

= (−1)s 1
(r + 1)

dlF
j1···jr+s−1l, p1···ps+1
σ1···σr , ρ1···ρs+1

+ (−1)s 1
(r + 1)(r + s)

∂F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1

∣∣∣∣∣
alt{(ρ1p1)···(ρs+1ps+1)}

− 1
(r + 1)(r + s)

∂F
j1···jr+s−1,p1···ps+1
σ1···σr−1,ρ1···ρs+1

∂yσr

∣∣∣∣∣
alt{σ1···σr}

. (4.4)

(B) r, s ≥ 0, r + s = n + 1:

(−1)s ∂F j1···jn,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1

∣∣∣∣∣
alt{(ρ1p1)···(ρs+1ps+1)}

− ∂F
j1···jn,p1···ps+1
σ1···σr−1,ρ1···ρs+1

∂yσr

∣∣∣∣∣∣
alt{σ1···σr}

= 0, (4.5)

∂F j1···jn,p1···ps
σ1···σr ,ρ1···ρs

∂yκ
l1l2

= 0, (4.6)

that yield, on one hand, recurrence formulas for components of α, and, on the other hand, relations
between derivatives of the components of α. We note that if expressed by means of the components
of the form αE , these relations contain variationality conditions (2.3–2.5).
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Above and in what follows, sym{} and alt{} means complete symmetrisation and skew-
symmetrisation in the indicated indices (pairs of indices), respectively.

For the explicit computation of the form αE we shall explore formulas (4.3) and (4.4). The desired
recurrence formulas are obtained with help of the skew-symmetry conditions for the components of
α following from (4.1). Using (4.3) we easily obtain

F
j1···jr+s,p1···ps+1
σ1···σr ,ρ1···ρs+1

∣∣
sym{jr+sps+1}

=
1

(s + 1)(r + s)
∂F

j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1jr+s

∣∣∣∣∣
alt{j1···jr+s},alt{(ρ1p1)···(ρs+1ps+1)}

. (4.7)

Working with (4.4) we must be more careful: First of all, if s = 0 we simply get for r ≥ 2

F j1···jr
σ1···σr+1

=
1

r(r + 1)

·
(

∂F
j1···jr−1,
σ1···σr ,

∂y
σr+1
jr

− ∂F
j1···jr−1,jr
σ1···σr−1,σr+1

∂yσr
+ rdlF

j1···jr−1l,jr
σ1···σr ,σr+1

)∣∣∣∣∣
alt{σ1···σr+1},alt{j1···jr}

. (4.8)

Let s ≥ 1. Accounting skew-symmetry conditions for the components of α we notice that

F
j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs

∣∣
alt{(ρ1p1)···(ρs+1ps+1)}

=
1

(r + 1)(r + s)

·
(

(−1)s ∂F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1

∣∣∣∣∣
alt{(ρ1p1)···(ρs+1ps+1)},alt{σ1···σrρs+1},alt{j1···jr+s−1ps+1}

− ∂F
j1···jr+s−1,p1···ps+1
σ1···σr−1,ρ1···ρs+1

∂yσr

∣∣∣∣∣
alt{σ1···σrρ1···ρs+1},alt{j1···jr+s−1p1···ps+1}

+ (−1)s(r + s)dlF
j1···jr+s−1l, p1···ps+1
σ1···σr, ρ1···ρs+1

∣∣
alt{σ1···σrρ1···ρs+1},alt{j1···jr+s−1p1···ps+1}

)
, (4.9)

since

∂F
j1···jr+s−1,p1···ps+1
σ1···σr−1,ρ1···ρs+1

∂yσr

∣∣∣∣∣
alt{σ1···σrρs+1},alt{j1···jr+s−1ps+1}

=
∂F

j1···jr+s−1,p1···ps+1
σ1···σr−1,ρ1···ρs+1

∂yσr

∣∣∣∣∣
alt{σ1···σrρ1···ρs+1},alt{j1···jr+s−1p1···ps+1}

,

and similarly for dlF
j1···jr+s−1l, p1···ps+1
σ1···σr , ρ1···ρs+1 . This means, however, that formula (4.9) splits into two parts:

one completely skew-symmetrised both in the lower indices σ1 · · ·σrρ1 · · · ρs+1 and the upper indices
j1 · · · jr+s−1p1 · · · ps+1, and the complementary part. Applying the complete skew-symmetrisation,
we notice that

F
j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs

∣∣
alt{σ1···σrρ1···ρs+1},alt{j1···jr+s−1p1···ps+1} = 0,

being symmetric in the pairs of indices (ρ1p1) · · · (ρs+1ps+1), and at the same time by def-
inition, skew-symmetric in the pairs of indices (ρ1p1) · · · (ρsps). Summarising, the completely
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skw-symmetrised part of the splitting of (4.9) provides only another relation between derivatives of
components of α, while the recurrence formulas for the F ’s are provided by the complementary part
of the splitting, and read as follows:

F
j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs

∣∣
alt{(ρ1p1)···(ρs+1ps+1)}

= (−1)s 1
(r + 1)(r + s)

· ∂F
j1···jr+s−1,p1···ps
σ1···σr ,ρ1···ρs

∂y
ρs+1
ps+1

∣∣∣∣∣
alt{(ρ1p1)···(ρs+1ps+1)},alt{j1···jr+s−1ps+1},alt{σ1···σrρs+1}

= (−1)s 1
(r + 1)(r + s)

· ∂F
j1···jr+s−2ps+1,p1···ps
σ1···σr−1ρs+1,ρ1···ρs

∂yσr

jr+s−1

∣∣∣∣∣
alt{(ρ1p1)···(ρs+1ps+1)},alt{j1···jr+s−1ps+1},alt{σ1···σrρs+1}

. (4.10)

Let us solve the recurrence formulas (4.7), (4.8) and (4.10) explicitly.

(i) Consider (4.8). First notice that the last two terms entering in this formula,

F
j1···jr−1, jr
σ1···σr−1, σr+1

∣∣
alt{σ1···σr−1σr},alt{j1···jr}, F

j1···jr−1l, jr
σ1···σr , σr+1

∣∣
alt{σ1···σr+1},alt{j1···jrl}, (4.11)

are completely symmetric in the pairs of indices (σ1j1) · · · (σr−1jr−1)(σr+1jr) and (σ1j1) · · ·
(σr−1jr−1)(σr l)(σr+1jr), respectively, and completely skew-symmetric in the upper indices. This
means that these functions cannot be obtained from the recurrence formulas (4.7) and (4.10), i.e.,
in particular, they are independent upon a choice of E, and hence do not enter into αE . In this way
we obtain

F̃ j1···jr
σ1···σr+1

=
1

r(r + 1)
∂F̃

j1···jr−1
σ1···σr

∂y
σr+1
jr

∣∣∣∣∣
alt{σ1···σr+1},alt{j1···jr}

=
2

r!(r + 1)!
∂r−1F̃ j1

σ1σ2

∂yσ3
j2

· · · ∂y
σr+1
jr

∣∣∣∣∣
alt{σ1···σr+1},alt{j1···jr}

=
1

r!(r + 1)!
∂rEσ1

∂yσ2
j1

∂yσ3
j2

· · ·∂y
σr+1
jr

∣∣∣∣∣
alt{σ1···σr+1},alt{j1···jr}

. (4.12)

(ii) Using (4.10) for r − 1 and s = 1 we can see that

F
j1···jr−1p2,p1
σ1···σr−1ρ2,ρ1

∣∣
alt{(ρ1p1)(ρ2p2)}

= − 1
r2

∂F
j1···jr−2p2,p1
σ1···σr−2ρ2,ρ1

∂y
σr−1
jr−1

∣∣∣∣∣
alt{(ρ1p1)(ρ2p2)},alt{j1···jr−1p2},alt{σ1···σr−1ρ2}

= − 1
r!2

∂r−1F p2,p1
ρ2,ρ1

∂yσ1
j1

· · · ∂y
σr−1
jr−1

∣∣∣∣∣
alt{(ρ1p1)(ρ2p2)},alt{j1···jr−1p2},alt{σ1···σr−1ρ2}

, (4.13)

and since F p2,p1
ρ2,ρ1

do not depend upon a choice of E, the F ’s above do not enter into αE . In order
to compute components at αE , we have to use (4.7) for s = 0. Then with help of (4.12) we get
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for r ≥ 2

F̃ j1···jr ,p1
σ1···σr ,ρ1

= F j1···jr,p1
σ1···σr ,ρ1

∣∣
sym{jrp1} =

1
r

∂F̃
j1···jr−1
σ1···σr

∂yρ1
p1jr

∣∣∣∣∣
alt{j1···jr}

=
1

r!2
∂rEσ1

∂yσ2
j1

∂yσ3
j2

· · · ∂yσr

jr−1
∂yρ1

p1jr

∣∣∣∣∣
alt{σ1···σr},alt{j1···jr}

=
1

r!2
∂rEρ1

∂yσ2
j1

∂yσ3
j2

· · · ∂yσr

jr−1
∂yσ1

jrp1

∣∣∣∣∣
alt{σ1···σr},alt{j1···jr}

, (4.14)

since E is variational and satisfies (2.3).

(iii) Consider (4.7) for r = 0. It holds for s ≥ 2

F
j1···js,p1···ps+1
,ρ1···ρs+1

∣∣
sym{jsps+1} =

1
s(s + 1)

∂F
j1···js−1,p1···ps
,ρ1···ρs

∂y
ρs+1
ps+1js

∣∣∣∣∣
alt{j1···js},alt{(ρ1p1)···(ρs+1ps+1)}

. (4.15)

Since by Lemma 1 the functions F j1, p1p2
,ρ1ρ2

do not depend upon the Euler–Lagrange expressions, we
get that in (4.1) the F

j1···js,p1···ps+1
,ρ1···ρs+1 |sym{jsps+1} are independent of a choice of E. Moreover, condition

dα = 0 gives no formulas for the skew-symmetric parts of these functions. Hence, all components of
αE for r = 0 are equal to zero. Note that this means that the form αE belongs to the ideal generated
by the one-forms ωσ, 1 ≤ σ ≤ m.

(iv) Finally, we shall show that the remaining components of αE are equal to zero. To this end we first
notice that (4.10) gives F

j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs |alt{(ρ1p1)(ρs+1ps+1)} expressed by means of derivatives of

F
j1···js−1ps+1,p1···ps
ρs+1,ρ1···ρs |alt{(ρ1p1)(ρs+1ps+1)}. However, we have at disposal formulas for the symmetrised

part of the latter functions in psps+1. The remaining parts are left arbitrary, i.e. do not contribute
to αE . Thus, next we have to consider (4.7) for r = 1. Substituting F̃ j,p

σ,ρ from (4.2) and using
assumption (3.1) we get for s ≥ 1

F̃
j1···js+1,p1···ps+1
σ,ρ1···ρs+1 = F

j1···js+1,p1···ps+1
σ,ρ1···ρs+1

∣∣
sym{js+1ps+1}

=
1

(s + 1)2
∂F j1···js,p1···ps

σ,ρ1···ρs

∂y
ρs+1
ps+1js+1

∣∣∣∣∣
alt{j1···js+1},alt{(ρ1p1)···(ρs+1ps+1)}

=
1

(s + 1)!2
∂s+1Eσ

∂yρ1
p1j1

· · · ∂y
ρs+1
ps+1js+1

= 0, (4.16)

so that also F̃
j1···jr+s−1ps+1,p1···ps
σ1···σrρs+1,ρ1···ρs |alt{(ρ1p1)(ρs+1ps+1)} = 0. Hence

F̃
j1···jr+s,p1···ps+1
σ1···σr ,ρ1···ρs+1 = F

j1···jr+s,p1···ps+1
σ1···σr ,ρ1···ρs+1

∣∣
sym{js+1ps+1} = 0, (4.17)

in view of (4.7), (4.14), and assumption (3.1).
It remains to prove that αE is projectable onto an open subset of J1Y . To this end let us write

Eσ = Aσ + Bjk
σνyν

jk, (4.18)
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where we may assume Bjk
σν symmetric in j, k. Then

αE = · · · + Bpq
σνyν

pq ωσ ∧ ω0

+
n∑

k=1

1
k!(k + 1)!

∂kBpq
σρ

∂yν1
j1

· · · ∂yνk

jk

yρ
pq ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk

−Bpq
σνyν

pq ωσ ∧ ω0

−
n∑

k=2

1
(k − 1)!k!

∂k−1Bjkp
σνk

∂yν1
j1

· · · ∂y
νk−1
jk−1

yνk
pjk

ωσ ∧ ων1 ∧ · · · ∧ ωνk−1 ∧ ωj1···jk−1

= · · · + 1
n!(n + 1)!

∂nBpq
σρ

∂yν1
j1

· · · ∂yνn

jn

yρ
pq ωσ ∧ ων1 ∧ · · · ∧ ωνn ∧ ωj1···jn

= · · · + 1
n!(n + 1)!

∂nBpq
σρ

∂yν1
j1

· · · ∂yνn

jn

∣∣∣∣∣
alt{σν1···νn},alt{j1···jn}

yρ
pq

·ωσ ∧ ων1 ∧ · · · ∧ ωνn ∧ ωj1···jn , (4.19)

where the dots indicate first order terms. We shall show that the last term above vanishes. It is easy
to see that variationality conditions (2.4) imply the following identity:

∂Bpq
σν

∂yρ
r

∣∣∣∣
alt{σρ}

=
∂Bpq

σν

∂yρ
r

∣∣∣∣∣
alt{qr}

. (4.20)

Now, however,

∂nBpq
σρ

∂yν1
j1

· · · ∂yνn

jn

∣∣∣∣∣
alt{σν1···νn},alt{j1···jn}

=
∂nBpq

σρ

∂yν1
j1

· · ·∂yνn

jn

∣∣∣∣∣∣
alt{ν1···νn},alt{qj1···jn}

= 0, (4.21)

as desired.

Proof of Theorem 4. It is sufficient to show that αE is closed. This means that components
of αE

F̃ j1···jr
σ1···σr+1

=
1

r!(r + 1)!
∂rEσ1

∂yσ2
j1

· · · ∂y
σr+1
jr

∣∣∣∣∣
alt{σ1···σr+1}

, 1 ≤ r ≤ n,

F̃ j1···jr ,p
σ1···σr ,ρ =

1
r!2

∂rEσ1

∂yσ2
j1

· · ·∂yσr

jr−1
∂yρ

jrp

∣∣∣∣∣
alt{σ1···σr},alt{j1···jr}

, 1 ≤ r ≤ n

(4.22)

have to satisfy conditions p2dαE = 0, that is,

∂Eσ

∂yν
− ∂Eν

∂yσ
− 1

2
dl

(
∂Eσ

∂yν
l

− ∂Eν

∂yσ
l

)
= 0,

∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

− 2dl
∂Eσ

∂yν
jl

= 0, (4.23)

∂Eσ

∂yν
jp

− ∂Eν

∂yσ
jp

= 0,

and pkdαE = 0, k ≥ 3, i.e., conditions (4.3)–(4.6).
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Conditions (4.23) are obviously equivalent with the variationality conditions (2.3–2.5); this means
that they express the fact that E is locally variational.

Let us turn to relations (4.3–4.6).
Let s = 0, (4.3) read

F̃ j1···jr , p
σ1···σr , ρ = F̃ j1···p, jr

σ1···σr , ρ =
1
r

∂F̃
j1···jr−1
σ1···σr

∂yρ
pjr

.

Accounting symmetries of the F̃ ’s, they split into two parts:

F̃ j1···jr , p
σ1···σr , ρ = F̃ j1···p, jr

σ1···σr , ρ =
1
r

∂F̃
j1···jr−1
σ1···σr

∂yρ
pjr

∣∣∣∣∣
alt{j1···jr}

,

that are obviously satisfied with (4.22), and

∂F̃
j1···jr−1
σ1···σr

∂yρ
pjr

∣∣∣∣∣
sym{jr−1jr}

= 0, i.e.
∂rEσ1

∂yσ2
j1

· · · ∂yσr

jr−1
∂yρ

pjr

∣∣∣∣∣
alt{σ1···σr},sym{jr−1jr}

= 0.

It is easy to show that due to the variationality conditions, the latter relations are identities: indeed,
differentiating the first of (4.23) with respect to yρ

pqj we obtain

∂2Eσ

∂yν
j ∂yρ

pq

∣∣∣∣∣
alt{σν},sym{pqj}

= 0, (4.24)

proving our assertion. Next, relations (4.4) for s = 0 give us the following conditions on components
of αE :

F̃
j1···jr−1p,
σ1···σrρ, =

1
(r + 1)r

∂F̃
j1···jr−1
σ1···σr

∂yρ
p

∣∣∣∣∣
alt{j1···jr−1p},alt{σ1···σrρ}

,

∂F̃
j1···jr−1
σ1···σr

∂yρ
p

∣∣∣∣∣
sym{jr−1p}

− ∂F̃
j1···jr−1, p
σ1···σr−1, ρ

∂yσr

∣∣∣∣∣∣
alt{σ1···σr}

− r dlF̃
j1···jr−2ljr−1, p
σ1···σr , ρ = 0,

where 2 ≤ r ≤ n. Substituting from (4.22), the former conditions are apparently satisfied. The latter
ones become (

∂rEσ1

∂yσ2
j1

· · · ∂y
σr−1
jr−2

∂yσr

jr−1
∂yρ

p

∣∣∣∣∣
sym{jr−1p}

− r
∂rEσ1

∂yσ2
j1

· · · ∂y
σr−1
jr−2

∂yσr∂yρ
jr−1p

− dl
∂rEσ1

∂yσ2
j1

· · · ∂y
σr−1
jr−2

∂yσr

l ∂yρ
jr−1p

) ∣∣∣∣∣
alt{σ1···σr}

= 0, (4.25)

where we have used that, in view of (4.24), the ∂2Eσ/∂yν
l ∂yρ

jp are skew-symmetric in jl. We show
that (4.25) are again identities as a consequence of the variationality conditions. Indeed, for r = 2
they read

(
∂2Eσ

∂yν
j ∂yρ

p

∣∣∣∣∣
sym{jp}

− 2
∂2Eσ

∂yν∂yρ
jp

− dl
∂2Eσ

∂yν
l ∂yρ

jp

⎞
⎠

∣∣∣∣∣∣
alt{σν}

= 0, (4.26)
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however, this is nothing but the derivative of the first of the variationality conditions (4.23) by yρ
jp.

Relations (4.25) for r = 3, . . . , n − 1 are then apparently obtained by consecutive differentiation of
those for r = 2. It remains to check (4.5) and (4.6), which for s = 0 yield

∂F̃ j1···jn
σ1···σn+1

∂yρ
p

− ∂F̃ j1···jn, p
σ1···σn,ρ

∂yσn+1

∣∣∣∣∣
alt{σ1···σn+1}

= 0,
∂F̃ j1···jn

σ1···σn+1

∂yρ
p

∣∣∣∣∣∣
alt{jnp}

= 0, (4.27)

and

∂F̃ j1···jn
σ1···σn+1

∂yκ
l1l2

= 0, (4.28)

respectively. Substituting for the F̃ ’s and taking into account that 1 ≤ j1, . . . , jn ≤ n, we can see
immediately that the second of (4.27) are identities, and (4.28) are consequences of the variationality
conditions, more precisely, of (4.24). Finally, we notice that the first set of relations in (4.27) arises
in the same way as (4.25) by one more differentiation, hence these relations are identities due to the
variationality conditions, as well.

To finish the proof we have to consider relations (4.3–4.6) for the case s = 1. In view of our
assumption (3.1), (4.3) and (4.6) are satisfied trivially. (4.5) read

∂n+1Eσ1

∂yσ2
j1

· · · ∂yσn

jn−1
∂yρ2

p2∂yρ1
jnp1

∣∣∣∣∣
alt{(ρ1p1)(ρ2p2)},alt{σ1···σn},alt{j1···jn}

= 0.

This is an identity: indeed, in the sum, terms where p2 = jn are 0 due to (4.24), and terms where
p2 = ji 	= jn vanish due to skew-symmetry in {(ρ1p1)(ρ2p2)} and in {jijn}. Finally, (4.4) split to

F̃ j1···jrp2, p1
σ1···σrρ2, ρ1

∣∣
alt{(ρ1p1)(ρ2p2)} = − 1

(r + 1)2
∂F̃ j1···jr , p1

σ1···σr , ρ1

∂yρ2
p2

∣∣∣∣∣
alt{(ρ1p1)(ρ2p2)},sym{p1p2}

, (4.29)

1 ≤ r ≤ n − 1, which are identities due to (4.24), and

∂F̃ j1···jr , p1
σ1···σr , ρ1

∂yρ2
p2

∣∣∣∣∣
alt{j1···jrp1p2},alt{σ1···σrρ1ρ2}

= 0, (4.30)

1 ≤ r ≤ n − 1; the left-hand sides, however, vanish identically, since the F̃ ’s are symmetric in jrp1.
This completes the proof.

Proof of Theorem 5. With help of Theorem 4, the proof is easy. (1) ⇒ (2) was proved above.
(2) ⇒ (3) follows from the Structure Theorem (formula (2.1)). (3) ⇒ (4) was shown in the proof of
Theorem 4. Finally, (4) ⇒ (1) was proved in [15]: one has to show that if Eσ satisfy (4.23) then

L = yσ

∫ 1

0

Eσ(xi, uyν, uyν
k , uyν

kl) du (4.31)

is a local Lagrangian for E. This is done by a direct computation, showing that the Euler–Lagrange
expressions of L are equal to the given functions Eσ.
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Proof of Theorem 6. Computing dρλ we get

dρλ = Eλ +
n∑

k=2

(−1)k 1
k!(k − 1)!

djk

(
∂kL

∂yν1
j1

· · · ∂yνk
jk

)
ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk−1

+
n∑

k=1

1
(k!)2

∂k+1L

∂yν1
j1

· · · ∂yνk

jk
∂yσ

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωj1···jk

+
n∑

k=1

(−1)k 1
(k!)2

∂k+1L

∂yν1
j1

· · · ∂yνk

jk
∂yρ

p
ων1 ∧ · · · ∧ ωνk ∧ ωρ

p ∧ ωj1···jk

+
n∑

k=2

(−1)k 1
(k − 1)!2

∂kL

∂yν1
j1

· · · ∂yνk

jk

ων1 ∧ · · · ∧ ωνk−1 ∧ ωνk

jk
∧ ωj1···jk−1 .

Thus, components of dρλ take the following form:

F j1···jk
σν1···νk

=
1

k!(k + 1)!

(
(k + 1)

∂k+1L

∂yν1
j1

· · · ∂yνk
jk

∂yσ
− dl

∂k+1L

∂yν1
j1

· · · ∂yνk
jk

∂yσ
l

)∣∣∣∣∣
alt{σν1···νk}

=
1

k!(k + 1)!

(
(k + 1)

∂k+1L

∂yν1
j1

· · · ∂yνk

jk
∂yσ

+ k
∂k+1L

∂yν1
j1

· · · ∂yνk∂yσ
jk

− ∂k

∂yν1
j1

· · · ∂yνk

jk

(
dl

∂L

∂yσ
l

))∣∣∣∣∣
alt{σν1···νk}

=
1

k!(k + 1)!
∂kEσ

∂yν1
j1

· · · ∂yνk

jk

∣∣∣∣∣
alt{σν1···νk}

= F̃ j1···jk
σν1···νk

, 1 ≤ k ≤ n, (4.32)

and

F j1···jk, p
σν1···νk−1, ρ

= − 1
k!2

(
∂k+1L

∂yν1
j1

· · · ∂y
νk−1
jk−1

∂yσ
jk

∂yρ
p
− ∂k+1L

∂yν1
j1

· · · ∂y
νk−1
jk−1

∂yσ
jk

∂yρ
p

∣∣∣∣∣
alt{jkp}

⎞
⎠

∣∣∣∣∣∣
alt{σν1···νk−1}

= − 1
k!2

∂k+1L

∂yν1
j1

· · ·∂y
νk−1
jk−1

∂yσ
jk

∂yρ
p

∣∣∣∣∣
sym{jkp},alt{σν1···νk−1}

=
1

k!2
∂kEσ

∂yν1
j1

· · · ∂y
νk−1
jk−1

∂yρ
jkp

∣∣∣∣∣
alt{σν1···νk−1},alt{j1···jk}

= F̃ j1···jk, p
σν1···νk−1, ρ, 1 ≤ k ≤ n − 1, (4.33)
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F j1···jn, p
σν1···νn−1, ρ = − 1

(n!)2
∂n+1L

∂yν1
j1

· · ·∂y
νn−1
jn−1

∂yσ
jn

∂yρ
p

∣∣∣∣∣
alt{σν1···νn−1},alt{j1···jn}

= − 1
(n!)2

∂n+1L

∂yν1
j1

· · ·∂y
νn−1
jn−1

∂yσ
jn

∂yρ
p

∣∣∣∣∣
sym{jnp},alt{σν1···νn−1},alt{j1···jn}

=
1

n!2
∂nEσ

∂yν1
j1

· · ·∂y
νn−1
jn−1

∂yρ
jnp

∣∣∣∣∣
alt{σν1···νn−1},alt{j1···jn}

= F̃ j1···jn, p
σν1···νn−1, ρ. (4.34)

Hence, dρλ = αE , as desired.
Note that in formula (4.32),

dl
∂n+1L

∂yν1
j1

· · · ∂yνn

jn
∂yσ

l

∣∣∣∣∣
alt{σν1···νn}

= 0. (4.35)
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Research supported by grants GAČR 201/06/0922 and 201/09/0981 of the Czech Science Founda-
tion, MSM 6198959214 of the Czech Ministry of Educations, Youth and Sports, and Czechoslovak
Cooperation Grant CZ-8/SK-CZ-0081-07 (MEB 080808).

References

[1] I. Anderson and T. Duchamp, On the existence of global variational principles, Am. J. Math. 102
(1980) 781–867.

[2] D. E. Betounes, Extension of the classical Cartan form, Phys. Rev. D 29 (1984) 599–606.
[3] M. Crampin, G. E. Prince and G. Thompson, A geometric version of the Helmholtz conditions in time

dependent Lagrangian dynamics, J. Phys. A: Math. Gen. 17 (1984) 1437–1447.
[4] M. Crampin, W. Sarlet, E. Mart́ınez, G. B. Byrnes and G. E. Prince, Toward a geometrical under-

standing of Douglas’s solution of the inverse problem in the calculus of variations, Inverse Problems 10
(1994) 245–260.

[5] P. Dedecker and W. M. Tulczyjew, Spectral sequences and the inverse problem of the calculus of
variations, in Lecture Notes in Math. 836, Proc. Internat. Coll. on Diff. Geom. Methods in Math.
Phys., Salamanca 1979 (Springer, Berlin, 1980), pp. 498–503.
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