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In the calculus of variations, Lepage (n+ 1)-forms are closed differential forms, representing Fuler—Lagrange
equations. They are fundamental for investigation of variational equations by means of exterior differential
systems methods, with important applications in Hamilton and Hamilton—Jacobi theory and theory of
integration of variational equations. In this paper, Lepage equivalents of second-order Euler—Lagrange quasi-
linear PDE’s are characterised explicitly. A closed (n 4 1)-form uniquely determined by the Euler-Lagrange
form is constructed, and used to find a geometric solution of the inverse problem of the calculus of variations.
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1. Introduction

The inverse problem of the calculus of variations is concerned with the question when a system of
ordinary or partial differential equations of order r (r > 1) identifies with Euler-Lagrange equa-
tions, i.e., equations for extremals of a variational functional. This problem was first considered by
Helmholtz in 1887, for a system of second order ordinary differential equations [11]. In his semi-
nal paper, Helmholtz found necessary conditions for variationality, now called Helmholtz conditions
(Mayer [23] later proved that the conditions are also sufficient). Since that time, questions on exis-
tence, multiplicity and construction of Lagrangians to differential equations have been investigated
by many authors. A remarkable progress in the solution of the inverse variational problem was
achieved around 1980 by methods of differential geometry and global analysis, in connection with
new developments of the calculus of variations on fibred manifolds and the theory of variational
bicomplexes: Helmholtz conditions were generalised to PDE’s of an arbitrary order by Anderson
and Duchamp [1] and Krupka [14], and the inverse problem was extended to study conditions for
existence of a global Lagrangian. Nowadays, geometric and global rather than analytical aspects of the
inverse variational problem are of main interest, and relations between variationality and geometry
of differential equations are intensively studied and explored (see e.g. [4, 21, 22]).
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236  O. Krupkovd & D. Smetanovd

One of the most significant advances in this direction was the discovery of an intimate relation-
ship between variational equations and closed forms, i.e., between the Fuler—Lagrange operator and
the operator of the exterior derivative of differential forms (Crampin, Prince and Thompson [3],
Dedecker and Tulczyjew [5], Krupka [14, 15], Tonti [25]). Due to this relationship, the local version
of the inverse variational problem is transferred to an application of the Poincaré Lemma, and global
existence results follow from De Rham Theorem. A direct geometric expression of this property is
realised within the concept of Lepage (n + 1)-form, where n is the number of independent variables
(Krupkova [17-19]).

Lepage (n+ 1)-forms are closed differential forms, exclusively representing variational equations;
they are also called Lepage equivalents of variational equations. Besides questions connected with
the inverse variational problem, they are used to study variational equations and their solutions
with exterior differential systems methods. Most important applications arise in investigations of
symmetries and conservation laws, Hamilton and Hamilton—Jacobi theory, and integration of vari-
ational equations. Techniques using Lepage forms also hold the promise of a natural extension of
methods and results from the calculus of variations to the class of differential equations for which
no Lagrangian exists.

For ordinary variational equations (in physical terminology “higher-order mechanics”), the theory
of Lepage (n+1)-forms is well-established. For an exposition of results and applications with stress on
the geometry of ordinary differential equations and the inverse problem of the calculus of variations
we refer the reader to the book [20] and recent survey papers [21, 22]. On the other hand, for partial
differential equations (“field theory”) results achieved so far are by no means complete.

The aim of this paper is to investigate Lepage (n + 1)-forms associated with second-order Fuler—
Lagrange quasi-linear PDE’s. After a brief survey of the current status of the subject in Sec. 2, new
results are reported in Sec. 3 and proved in Sec. 4.

While for ordinary differential equations there is a one-to-one correspondence between Lepage
2-forms and variational equations, for partial differential equations the situation is more compli-
cated. We study the structure of Lepage (n + 1)-forms, and provide an ezplicit characterisation of
all corresponding Lepage equivalents. It turns out, however, that the class of Lepage equivalents con-
tains a distinguished (local) “fundamental equivalent” uniquely determined by the Euler-Lagrange
expressions. We discuss global existence of such an (n+ 1)-form, and find its relationship with the so
called “fundamental Lepage equivalent of a Lagrangian” (Krupka n-form) [2, 13]. Finally, the closed
(n + 1)-form uniquely determined by the Euler-Lagrange form is used to obtain the variationality
conditions in an intrinsic form.

Proofs of the theorems are quite straightforward, however, sometimes require long and difficult
calculations. To make the article easily accessible to different readers, we decided to divide the
exposition into two parts: Results are summarised in Sec. 3, and for interested readers, complete
proofs are included in Sec. 4.

Finally, we note that analogous differential forms were considered on Grassmann bundles by
Grigore and Popp, and Grigore [8, 9]. They introduced closed (n + 1)-forms representing variational
equations (“Lagrange—Souriau forms”), and used them to study Noether symmetries.

2. Lepage Forms

Throughout the paper, all manifolds and mappings are assumed smooth, and the summation over
repeated indices is used whenever appropriate. The background for our considerations is the theory
of jet bundles and the calculus of variations on fibred manifolds (see e.g. [16, 20, 24]). We consider
a fibred manifold 7 : Y — X, dim X = n, dimY = n 4+ m, where n,m > 1. For » = 1,2 we denote
by . : J"Y — X the r-jet prolongation of m, and by 7, : JY — J*Y, 0 < k < r, the canonical
projections (here J°Y =Y). A section of 7 is a mapping v : U — Y, where U C X is an open set,
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such that m oy = idy. The r-jet prolongation of « is denoted by J"v; it is a section of the fibred
manifold ,.

On jet bundles it is convenient to use vector fields and differential forms adapted to the fibred
structure [12]: A vector field £ on J"Y is called m,.-vertical if it projects onto the zero vector field
on X. A differential g-form 7 on J"Y is called horizontal (or, 0-contact) with respect to the pro-
jection ., if ign = 0 for every m.-vertical vector field £ on J"Y; 7 is called contact if J"y*n =0
for every section 7y of m. A contact form is said to be 1-contact if for every vertical vector field
&, the contraction ¢ is horizontal. Recurrently, n is said to be k-contact if for every vertical vec-
tor field &, ign is (k — 1)-contact. We have a useful Structure Theorem due to Krupka [12],
stating that every g-form n on J"Y admits a unique decomposition as a sum of forms on J' 1Y
as follows:

q
7T';k+1,1‘77 = h77 + Zpkna (21)
k=1

where hn is a horizontal form (called the horizontal part of n); and prn, 1 < k < q, is a k-contact
form (called the k-contact part of 7).

If (z°,y9),1 <i<n,1< o <m,are fibred coordinates on Y, defined on an open set V C Y, we
denote by (z,y7,y7), and (z*,y7, 47,47 ;,), J1 < ja, the associated coordinates on J'Y and J?Y,
respectively. Next, we write

wo = dxl AN dIZ VANRERIVAN dx”, Wigig iy — ii)/azikwiliz-“ikfu 1 S k S n,
for the local volume on X and its contractions, and
w? = dy° — yfdx', w =dyj — y}’ldxl,

for the associated basis of contact 1-forms on ﬂié (V) cC J?Y.
A dynamical form E of order r is a 1-contact (n 4 1)-form on J"Y, horizontal with respect to
the projection onto Y. In fibred coordinates,

E = E,w% Awy,

where E, are local functions on J"Y.

Let X be a first-order Lagrangian, i.e., a horizontal n-form on J'Y. A differential n-form 7 is
called Lepage equivalent of A (see [12]) if in the decomposition (2.1), hn = A, and p1dn is a dynamical
form; the (n + 1)-form E)\ = pidn is then called the Fuler-Lagrange form of . For a first-order
Lagrangian \ the Euler-Lagrange form is defined on J?Y and in every fibred chart reads

oL oL
Eyx=|—-——dj— | w’ Awp.
A <8y" djayg>w A wo

Note that components E, of E\ are functions affine in the second derivatives, since

0E, 1 0’L N 0?L
o3 2\ oyfoy;  OyfOyy

are defined on an open subset of J'Y.
As proved in [12], to every first-order Lagrangian a (global) Lepage equivalent exists and is
non-unique. The family of Lepage equivalents of A contains distinguished representatives that are
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completely determined by the Lagrangian: here we mention the famous Poincaré-Cartan form
6,7, 12],

oL
O) = Lwy + 7—w’ Awj,

8y3-’
and the Krupka form [13] (see also [2]),
1 oFL
px = Lwoy + o WA AW AWy (2.2)
]; (K12 9yjl -+~ Oyit k

The latter Lepage equivalent of A has the following important property (not possessed by the
Poincaré-Cartan form): dpy = 0 < E) = 0.

Consider a dynamical form E on J2Y. E is said to be locally variational if to every point in J2Y
one has a neighbourhood U, and a Lagrangian A on U, such that E|y = E. It is known that E is
locally variational if and only if the components of E satisfy the following identities:

0E, O0E,

— — =0, 2.3
o ot (2.3)
an aE: — 2dy, aEU” =0, (2.4)
oy 0yS oy,
0E, OEFE, OE, oE,
8yu 8yo' J 6y? djdk ay;;k 0 ( 5)

We recall a fundamental theorem due to Krupka [15], relating locally variational forms with
closed forms:

Theorem 1. A dynamical form E is locally variational if and only if to every point in the domain
of E there exists a neighbourhood W and an at least 2-contact form Fy on W such that the form
aw = E + Fy is closed.

A (n+ 1)-form « is called Lepage equivalent of E [17] if pyjoo = E and da = 0. One can see
immediately that if « is a Lepage equivalent of E then, around every point, o = dn where 1 is a
Lepage equivalent of a local Lagrangian for E.

The above theorem guarantees local existence of Lepage equivalents; it does not provide us with
explicit formulas for ay, by means of the components of E.

The problem of (global) existence and multiplicity of Lepage equivalents has been completely
solved for locally variational forms on J'Y in [10]:

Theorem 2. Fwvery first-order locally variational form E has a unique Lepage equivalent defined on
Y. It is denoted by ap and takes the form

ap = E,w’ A wy

- 1 O E,
+ T p
; kl(k +1)! Gyjl .- -ayj:

WO AW A AW A wj g, (2.6)

Moreover, in a neighbourhood U of every point in Y,

agply = dp, (2.7)

where X is a local first order Lagrangian for E. All Lepage equivalents of E are then described by the
formula o = ag + ¢ where ¢ is an arbitrary closed at least 2-contact form defined on J"Y, r > 1.
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In the next section we shall be interested in similar questions for second-order Euler-Lagrange
equations. To this end we shall use the following result [19]:

Lemma 1. Let o be a Lepage equivalent of a locally variational form E on J2Y. Then

g

2 dyy

OF,
WP AW’ Aw; + —:wa A wz A wj + padd, (2.8)

p2ox =
ayjp

where ¢ is a 2-contact n-form.

3. Lepage Equivalents of Second Order Euler—Lagrange Forms: Results

Let us consider a dynamical form E on J2Y, denote as above, E = E,w’ Awy. Assume that in every
fibred chart
2
& =0, (3.1)
82/;%83!5(1
meaning that the components F, of FE are affine functions in the second derivatives.

In what follows, we shall study the structure of Lepage equivalents of Euler—Lagrange forms the
components of which are affine in the second derivatives. In this section we summarise the results
of the paper, complete proofs are postponed to the next section.

The problem is to find all closed (n+ 1)-forms « such that p;ow = E. The closedness condition on
« means that at least some of the components of the higher-degree contact parts of & depend upon
the Euler-Lagrange expressions E,, 1 < ¢ < m. This means that « splits into a (not necessarily
invariant) sum

oa=ag+ ¢, (32)

where ag is completely determined by the Euler—Lagrange expressions, while ¢ does not depend
upon E. Hence, the first step to solve the structure problem is to find the form ag.

Theorem 3. Let E be a locally variational form on J?Y . If the condition (3.1) is satisfied then ap
is affine in the wy’s, and takes the form

ap = E,w? Awy

g LN N Vi S
WIAWTTA AW AWy,

= 1 O*E,
+ v vV,
];1 kl(k + D) oyst - 0yt

"1 OE,
+ E o —WT AW A AWET A WE AW, (3.3)
k=1 (k!)? 8y;'11 "'8yj:7116y;:p ! e

Moreover, ag is ma,1-projectable.

In view of the preceding theorem we obtain the following solution to the problem of the structure
of Lepage equivalents of “quasi-linear” second-order Euler—Lagrange equations:

Theorem 4. Let E be a locally variational form on J*Y satisfying (3.1). Every Lepage equivalent
a of E takes the form

a=ag+ ¢, (34)
where ag is a closed (first-order) form, given by (3.3), and ¢ is a closed, at least 2-contact form.

Corollary 1. Let E be a locally variational form on J2Y, satisfying condition (3.1). Given a fibred
chart (V,4) on'Y with coordinates (x%,y), the (n + 1)-form ap determined by the Euler-Lagrange
expressions of E and defined on ﬂ'ié(V) C JYY by (3.3) is a Lepage equivalent of E.
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It remains to illuminate transformation properties of the form ag with respect to fibred coordi-
nates. Consider two overlapping charts (V,v), ¢ = (2%, y?), and (V,), ¢ = (', 5°) on Y. Using in
the expression for ap transformation formulas

_ ~ det 0z \ OxP? QxP*
w]i"']k = de ax 8@‘71 85?% Wpi-prs

o’ ., . Oy] . 0yf

Tyt T gy Tyt
(3.5)
k =0 =0 k 77 7o 7o
go = 0 (00 09 )\ e O3t (057 097, 007
77 9z \9zk  oyr Tk J ozt \oxk = oy k " Oyb TPk
Eo' = det 87% 8% Ell?
oz ) 0y°
and the relation
oye oY oye bk
Y 00 _ Y Y (3.6)
oy, 0y oy Oyr
we obtain the following result:
e The at most 2-contact part (also called principal part) of ag
Gp = E;w’ ANwy + = W AW Awj + 2w Awy Aw; (3.7)

2 By}’ By;p

is invariant with respect to fibred coordinate transformations. This means that formula (3.7) defines
a global differential form. The form &g, however, is in general not closed.

e For k > 3 the form prap is generally not invariant. Consequently, ag is not invariant, i.e.,
formula (3.3) does not define a global differential form.

Remark. We have seen that the (n + 1)-form ap is global for » = 1 but no longer for r > 2. We
remind the reader that this situation is analogous to the case of the well-known Poincaré—Cartan
form O, that is global for 7 < 2 but not for higher order Lagrangians (cf. e.g. [15]). An important
case when ap for second order F is global is when E arises from a global Lagrangian (see Theorem 6
below).

The next results clarify the meaning of the Lepage equivalent ap of a locally variational form FE.

Theorem 5. Let E be a dynamical form on J?Y, satisfying (3.1). The following conditions are
equivalent :

(1) E is locally variational.
(2) ag is closed.
(3)
(4)

podag = 0.
Components E, of E satisfy conditions (4.23).

The above theorem provides us with a geometric meaning of the variationality conditions, as
conditions, under which the (n + 1)-form ag is closed. Otherwise speaking,

is an intrinsic expression of variationality conditions (2.3)—(2.5) (respectively, (4.23) below).

Since the form ap is a Lepage equivalent of a locally variational form F, around every point it
equals dp, where p is a Lepage equivalent of a Lagrangian of E. We shall answer the question which
of the Lepage equivalents of A corresponds to ag.
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Theorem 6. Let A be a Lagrangian on J'Y . Then
dp)\ =g,

where py is the Krupka form (2.2) of A.

4. Lepage Equivalents of Second Order Euler—Lagrange Forms: Proofs and
Computations

Proof of Theorem 3. If « is an (n + 1)-form such that pya = E then in fibred coordinates

a=FE,w’ ANwy

n+1
E L Jrbs = 1PLPs (01 A LA (O PLA LA WP .
+ Foy g orips WA AWTT AW A AWE AWy (4.1)
r+s=2
where the components Fj.. "5 20 P are completely skew-symmetric in lower indices o1 - - oy,

completely skew-symmetric in upper indices j; - - - jr4+s—1 and completely skew-symmetric in pairs
of indices (p1p1) - - - (psps). In what follows, let us denote the components of ag, i.e., the part of the
components of o, completely determined by E, by Fg, .5t tbtPe,

Lemma 1 provides us with the following components of the (n + 1)-form ag:

~ 1 [ 0F OFE - , OF, -
Foj'u == ( 7 — U) ) oj’yg = Fojjg|sym{jp} = —;, F]bp;zm =0. (42)
4 8];; 8y§’ 8yjp 1P2
Computing da = 0 we obtain the following relations:
(A)r,s>0,r+s=2,...,m:
e e p1ee 1 OFLL s 1y pe
Fol G50 g = e (43)
s s sym{jr4sPs+1} (5 + 1)(r + S) ayp:j:ljwrs

and

Fjl"'jr+s—1ps+lap1"'ps
1" CrPst1,P1" " Ps

alt{(p1p1)-(ps+1Ps+1)}

i DD
legi_ Jr4s—1l,P1Ps1

— (-1

(T—|—1) Oy PP+
R TO SR Lt 0 e
T+ 1(r + s a Ps+1
( )( ) yps+1 alt{(plpl)"'(ﬂs+1ps+1)}
1 8F(¥iIﬁﬁﬁ,jtsljll)f{gs-zfrl y
_ g | »
(r+1)(r+s) Ay . }
altyoy---on
(B) T7520,T+3:n+1:
_ sw B ang:::g:b-f)117'!;'1}T‘?zi+l )
(-1) 8yﬂs+1 Oy°r =0, (4.5)
o alt{(prp1)-(ps+1ps+r)} alt{o-0,}
Dol sl 0, (4.6)

82,/["1[2
that yield, on one hand, recurrence formulas for components of o, and, on the other hand, relations
between derivatives of the components of a. We note that if expressed by means of the components
of the form ap, these relations contain variationality conditions (2.3-2.5).
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Above and in what follows, sym{} and alt{} means complete symmetrisation and skew-
symmetrisation in the indicated indices (pairs of indices), respectively.

For the explicit computation of the form ag we shall explore formulas (4.3) and (4.4). The desired
recurrence formulas are obtained with help of the skew-symmetry conditions for the components of
« following from (4.1). Using (4.3) we easily obtain

Fj1“-jr+s,p1~-175+1|
1T Petl Hsym{jrgspata}

_ L ORI )
s + 1 r + s a ps+1_ N
( )( ) ypSJrleJrS alt{jl'~-jT+s}aa1t{(Plpl)"'(Ps+1ps+l)}
Working with (4.4) we must be more careful: First of all, if s = 0 we simply get for r > 2
e p——
vrart o p(r 4+ 1)
QFI It gRIIT Ny
: < e o A L (4.8)
T alt{al---ar+1},alt{j1~-jr}
Let s > 1. Accounting skew-symmetry conditions for the components of o we notice that
Fjl"'jr+s—1ps+lap1"'ps
T10rPs+1,P1 " Ps alt{(p1p1) - (pst1Ps+1)}
B 1
(r+1)(r+s)
(Lo OB
Oype i o
alt{(p1p1)-(ps+1ps+1) bralt{or-orpsi1}alt{ji-Jris—1Ps+1}
B OF gy e ity et
aya,,.
alt{o1--orp1-psy1},alt{ji-Jrys—1P1Pst1}
s J1Jrs—1l,P1oPst1
+(71> (r+S)leU1"'0'r;p1"'ps+1 ’alt{gl...g7,p1...psﬂ}’a]t{jl...jTH1p1..4p5+1}) ) (4'9)

since

aFjl"'jr+s—17p1"'ps+1
01 0r—1,P1""Ps+1

oy°r

alt{o1--0rpst1},alt{jifris—1Ps+1}

8F]’1-~-jr+371,171"'175+1
01°°0r—1,P1"""Ps+1

Qy°r

)

alt{o1--orp1pst1}.alt{jijris—1p1Pst1}

L. TSROV S R
and similarly for d; F} .00 e 100

one completely skew-symmetrised both in the lower indices oy - - - 0,p1 - - - ps+1 and the upper indices

P41 This means, however, that formula (4.9) splits into two parts:

J1° Jr+s—1P1 - Ps+1, and the complementary part. Applying the complete skew-symmetrisation,
we notice that

Fjl"'jr+s—1ps+1,l)1"'lls
01 0rPs+1,P1""Ps

o =0
alt{o1--0rp1-psy1 hralt{jijrrs—1P1Ps+1} ’

being symmetric in the pairs of indices (p1p1)--- (pst1ps+1), and at the same time by def-
inition, skew-symmetric in the pairs of indices (p1p1)---(psps). Summarising, the completely
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skw-symmetrised part of the splitting of (4.9) provides only another relation between derivatives of
components of «, while the recurrence formulas for the F’s are provided by the complementary part
of the splitting, and read as follows:

Fjl-“jr+571ps+1,;01“‘ps
O1+ 0 Ps 41,01 Ps

alt{(p1p1)--(ps+1Ps+1)}
1

B GRED

J1Jr4s—1,P1"""Ps
COFG 5 s

Ps+1
8yps+1

alt{(p1p1)-(ps+1ps+1) bralt{j1 - jriys—1pst1},alt{o1-orpsi1}

1

~ e

g1 drts—2Pst1,P1" Ps
. 8Fdi'“gtéf2s+1+’;1“l'ﬂs (4.10)
Yirsas alt{(p1p1)-(pst1ps+1) }ralt{di - dris—1psy1}alt{ororps i1}
Let us solve the recurrence formulas (4.7), (4.8) and (4.10) explicitly.
(i) Consider (4.8). First notice that the last two terms entering in this formula,
JiJr—1,Jr Jregr—1l, gr
F‘Tl'“a’"*ha’“*l|alt{o'1-~-o’r,10'7-},alt{j1~--jr}7 FUI"‘OT70T+1 alt{0'1--~0'r+1},alt{j1"'jﬂ}’ (411)

are completely symmetric in the pairs of indices (o1j1) - (0r—17r—1)(0r41Jr) and (o1j1):--
(0r—1jr—1)(0r 1)(0r417r), respectively, and completely skew-symmetric in the upper indices. This
means that these functions cannot be obtained from the recurrence formulas (4.7) and (4.10), i.e.,
in particular, they are independent upon a choice of E, and hence do not enter into ag. In this way

we obtain
o 1 RS
Fg—iz':‘qJ = 7"(7""‘1) aalq'ri:
y]T alt{o1---orq1},alt{j1--jr}
) ar‘flﬁ'jj

0102

ri(r+ 1)1 9y5? - - oy

alt{o1--orq1}alt{ji-jr}

1 O'E
- r(r + 1)1 9y72oyT Ula Tyt (4.12)
. . yjl y]2 y]r alt{o’1---0‘T+1},alt{jln-jr}
(ii) Using (4.10) for r — 1 and s = 1 we can see that
Fjl"'jr—1p27P1 |
T Tr=1P2:P1 alt{(p1p1) (p2p2)}
R ) o e A
o2 ay?rfl
Jr—1 alt{(p1p1)(p2p2)},alt{j1-jr—1p2},alt{o1--0r_1p2}
r—1 5
_ 1 OTERR s
- 12 o1 Or—1 , ( . )
r ay]l e ayjr—l 1 . .
alt{(p1p1)(p2p2)},alt{ji-jr—1p2},alt{o1-or_1p2}

and since FP>°Pt do not depend upon a choice of E, the F’s above do not enter into ag. In order

to compute components at ag, we have to use (4.7) for s = 0. Then with help of (4.12) we get
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for r > 2
1 OFJ

010, p1 01"‘0rap1|sym{jrp1} Ty ayglj
Y lalt{gh e}

ey — fivedep

1 0" Ey,
2 8yj28y ---6y}’ aypm

alt{o1---o,},alt{j1--Jjr}

1 0'E
- 7 (4.14)
12 2 ) o
7! ayj 8y Gyjr ayﬁpl alt{oron ) alt{rin)
since E is variational and satisfies (2.3).
(iii) Consider (4.7) for r = 0. It holds for s > 2
FiLdspre pa+1| _ 1 aF’j;l j’ o (4.15)
)PLPs+1 sym{jsps+1} S(S + 1) ayps+1_ .
Pot1]s alt{j1-js },alt{(p1p1)-(ps+1Ps+1)}

Since by Lemma 1 the functions F72:51P2 do not depend upon the Euler-Lagrange expressions, we

get that in (4.1) the F7} ];,’f:l Pt | ym{j.pe.1} are independent of a choice of E. Moreover, condition
da = 0 gives no formulas for the skew-symmetric parts of these functions. Hence, all components of
ap for r = 0 are equal to zero. Note that this means that the form ag belongs to the ideal generated

by the one-forms w?, 1 < o < m.

(iv) Finally, we shall show that the remaining components of ap are equal to zero. To this end we first
notice that (4.10) gives Fot e s e | Y perapesn)) €xpressed by means of derivatives of
B e e o ) (pesapess))- However, we have at disposal formulas for the symmetrised
part of the latter functions in psps4+1. The remaining parts are left arbitrary, i.e. do not contribute
to ap. Thus, next we have to consider (4.7) for r = 1. Substituting FJ# from (4.2) and using

assumption (3.1) we get for s > 1

J1tJs+15P1 Pst1 J1° Js+1,P1 Pst1
FU sP1 FU sP1" }

Pst1 Pstl sym{js+1Ps+1}

) T

SHIZ gyl
( * ) Ipotijon alt{j1---js+1}alt{(p1p1)---(pst+1Ps+1)}

1 8S+1E
— il =0 (4.16)
Ps ’
(8 + 1)'2 aypljl o .6ypsiijs+1

[7J1Jr4s—1Ps+1,P1°*"Ps —
so that also Foy g b 000 lalt{(prp1) (pesipesn)y = 0. Hence

Il Jrds Pl Ps+1 _ gpJitJrgs Pl Pst1 _
Fm-~~or,p1--~ﬂs+1 - F01-~~ar,p1~--ﬂs+1 sym{fst1pst1} (4‘17)

in view of (4.7), (4.14), and assumption (3.1).
It remains to prove that ap is projectable onto an open subset of J'Y. To this end let us write

0' - A + Bo’uyjk;v (418)
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where we may assume BJ¥ symmetric in j, k. Then

ap = -+ By’ w? Awg

ypq

1 akqu
i Zkz' (k+1)! 9yt - a ”kypq

4 VAL Vk L
w” Aw' A ANW™F NWjy gy,

— B”l,ypq w? A wg

zn: o 13%2 Yok Wl AW A AW AW
k:2 — 1)lk! 3yV1 ayj”:ill PJk Jidk—1
1 "By o ,
- nl(n+1)! oy’ - 0y ”"y”qw AW NN Wy,
_ 1 o"Bg )
nl(n +1)! oy ay]V: oot Ypq
CWIAWE N AW AW (4.19)

where the dots indicate first order terms. We shall show that the last term above vanishes. It is easy
to see that variationality conditions (2.4) imply the following identity:

OBP4 OBP4
o = 2ov (4.20)
Yy oy
alt{op} alt{qr}
Now, however,
o™ BPri o"Bra
vy 7z Vn = v1 Vn - O’ (421)
83/]'1 T ayjn o ayjl o ayﬁ
alt{ov--vn }halt{ji-jn} alt{vy-vn}alt{gji-jn}
as desired. O

Proof of Theorem 4. It is sufficient to show that ag is closed. This means that components

of ag
ng‘-::g;+1 - | : | Uza Egl Or41 ’ IL<r< n,
7".(7’ + 1) 8yj1 -0y iy alt(orarin}
(4.22)
e . l<r<n
" ayjl . ayjr laijp alt{o1---0},alt{j1-jr}
have to satisfy conditions podap = 0, that is,
0E, O0F, 7d <8E 6E,,) —0
dyv Oy dyy  oyy ’
0E, O0F, 0F,
— —2d =0 4.23
ayr oy oy (4.23)
0F, B ok, 0
s 9y, 7

and prdag =0, k > 3, i.e., conditions (4.3)—(4.6).
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Conditions (4.23) are obviously equivalent with the variationality conditions (2.3-2.5); this means
that they express the fact that E is locally variational.

Let us turn to relations (4.3-4.6).

Let s =0, (4.3) read

1 Jr—1
ORI

i1 e P — FJ1pydr
Foroalp =Foraih = 5,0
PIr

O, p

Accounting symmetries of the s, they split into two parts:

1OF)
T Oy,

Fd1des P Fd1eps g —
Fo'l"'Ur7P - FUI"'O'T7P

b

alt{j1--jr}

that are obviously satisfied with (4.22), and

YEI I , o E,,

=0, ie. =0.
P ’ 15 o p
Yp;, Ay;? -9y 0y,

sym{jr—17r} alt{o1--0on},sym{jr—1jr}

It is easy to show that due to the variationality conditions, the latter relations are identities: indeed,
differentiating the first of (4.23) with respect to ygqj we obtain

0?’E,

T =0, 4.24
ay}’ayz[;q ( )

alt{ov},sym{pgj}

proving our assertion. Next, relations (4.4) for s = 0 give us the following conditions on components
of ag:

Fjl"'jr—lp-, _ 1 8Féi£f;l
1 0rp, - (7’+ 1)7’ ayg

)

alt{j1--jr—1p}alt{o1-o.p}

J1Jr—1,P
N aFCTl'“Ur—l,P _rd Fjl"'jr—2ljr—17p =0
6yJT ralisy...o.,p — Y,
sym{jr—1p} alt{o1 0.}

QFI I
dyp

where 2 < r < n. Substituting from (4.22), the former conditions are apparently satisfied. The latter
ones become

O E,,
T Or—19 & P
8yj12 Y 8yjr72 dy Taij-flp

( O E,,
Or— ™ P
6y;12 Y aerle ay;rflayp sym{jr_1p}
; OE,.
— W o r— o
ayjf T ay; —21 8yl ay;')r—lp

r

=0, (4.25)

alt{o1--0,}

where we have used that, in view of (4.24), the 9*E, /0y 8y§’p are skew-symmetric in jI. We show
that (4.25) are again identities as a consequence of the variationality conditions. Indeed, for r = 2

02E,
Ay Oyy

they read

0’E, 0?E,

_9 —d
Ay dy” Ay oy’
sym{jp} v i Y alt{ov}

=0, (4.26)
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however, this is nothing but the derivative of the first of the variationality conditions (4.23) by yfp.
Relations (4.25) for » = 3,...,n — 1 are then apparently obtained by consecutive differentiation of
those for r = 2. It remains to check (4.5) and (4.6), which for s = 0 yield

OFsi g, OFRIE) _o, Mot o, (4.27)
yp Qyon+ Yp
alt{o1--oni1} alt{jnp}
and
QFI
1 _ n+1 — O, (428)
Y,
respectively. Substituting for the F’s and taking into account that 1 < ji,...,7, < n, we can see

immediately that the second of (4.27) are identities, and (4.28) are consequences of the variationality
conditions, more precisely, of (4.24). Finally, we notice that the first set of relations in (4.27) arises
in the same way as (4.25) by one more differentiation, hence these relations are identities due to the
variationality conditions, as well.

To finish the proof we have to consider relations (4.3-4.6) for the case s = 1. In view of our
assumption (3.1), (4.3) and (4.6) are satisfied trivially. (4.5) read

an+1Eal i O
o2 ... 5,0n P2 5. p1 =U.
ayjl 8%”_18%32 ay]"pl alt{(p1p1)(p2p2) },alt{or oy },alt{j1jn }

This is an identity: indeed, in the sum, terms where ps = j, are 0 due to (4.24), and terms where
p2 = Ji # jn vanish due to skew-symmetry in {(p1p1)(p2p2)} and in {j;j, }. Finally, (4.4) split to

= i e 1 OF}b
[adrp2 P | _ ) 7 (4.29)
o1:0rp2; P1lalt{ (p1p1)(p2p2)} (7» + 1)2 ayzﬂ)g
alt{(p1p1)(p2p2)},sym{pip2}
1 <r <n—1, which are identities due to (4.24), and
OF i m
— -0, (4.30)
Ypz alt{j1--jrpip2},alt{ci-orp1p2}

1 <r <n —1; the left-hand sides, however, vanish identically, since the F’s are symmetric in j.p;.
This completes the proof. O

Proof of Theorem 5. With help of Theorem 4, the proof is easy. (1) = (2) was proved above.
(2) = (3) follows from the Structure Theorem (formula (2.1)). (3) = (4) was shown in the proof of
Theorem 4. Finally, (4) = (1) was proved in [15]: one has to show that if E, satisfy (4.23) then

1
L= y”/ Eq(x%, uy”, uyy, uyy) du (4.31)
0

is a local Lagrangian for E. This is done by a direct computation, showing that the Euler—-Lagrange
expressions of L are equal to the given functions F,. |
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Proof of Theorem 6. Computing dp, we get

- 1 kL B 5
dpx = Ex + Z(’l)kk!(l« —1)1 D <0y¥1 ...aw) SR
k=2 J1 Ik

SN | ORI
2 G B oy
k:l( D)2 dyj; - - Oyj Oy

[ea Vi Vi . .
WOAWTEAN AW AWy

- 1 ORI
+ —1)k - 7 w
2V TRy

A AW A WD A W)y,

= 1 oFL
+ _1 F 1258 Vi
g( : (k —1)2 ayjl ay]k:

V1 Vi—1 Vi . .
wr A AW Nwi NWjigy -

Thus, components of dp) take the following form:

. . k+1 k+1
El(k + 1)! dyst - Oysk oy Ayl -+ Oy rOy;

alt{ovi v}

1 ak+1L ak+1L
BTSSR T w e waler wo e wvee
Tk + 1)1 Ayj) -+ Oy;r0y7 Ayl -~ Ay IyS,

o (d B_L)
Dyt -y \ oy

alt{ovy---vg}

B 1 akEo
- | | LA Yk
k(k + 1) ay]l 8y]k alt{ovy---vp}
=F3h . 1<k<n, s
and
Foul il
= — — Vk—
k! ay;jll o ayjf_fangk aylg 8y;/11 o ay]:—llay;fkayg alt{jpp} alt{ovi--vk_1}
Vg
1 OFt+1r,

CE12 9yt - 9y oy Oyl
it 81/]1 8yjk*1 ay]kayp sym{jrp},alt{ovi---vp_1}

1 " E,
TOE2Z 90 00 O
k! ayﬁ 8%’“—1 ay]kp alt{ovi---vg_1},alt{j1-jx }
= Fvnp 1<k<n-—1, (4.33)

oV Vg—1, 0’
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T R U e —
(n)* Oyj; -~ 0y; 7 O3 Oyp alt{ov-vn_1},alt{j1jn}
1 oL
()2 oyl - 9y Toy] oy sym{Jnp}alt {ovs v balt{ji i}

1 O"E,
TRy oy oy
s ayjl ayjna ayjnp alt{ovy-vn_1}alt{j1-jn}
= Fo il e (4.34)

Hence, dpx = ag, as desired.

Note that in formula (4.32),

oL

Ayjy -+~ Oy; Oy (

alt{ovi v, }

o0&
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