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By using gauge transformations, we manage to obtain new solutions of (2 + 1)-dimensional Kadomtsev–
Petviashvili (KP), Kaup–Kuperschmidt (KK) and Sawada–Kotera (SK) equations from nonzero seeds. For
each of the preceding equations, a Galilean type transformation between these solutions u2 and the previously
known solutions u′

2 generated from zero seed is given. We present several explicit formulas of the single-
soliton solutions for u2 and u′

2, and further point out the two main differences of them under the same value
of parameters, i.e., height and location of peak line, which are demonstrated visibly in three figures.
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1. Introduction

In the 1980s, Sato and his colleagues brought us the famous Sato theory [3, 29]. Since then, the
pseudo-differential operator has been playing an important role in the research of the Kadomtsev–
Petviashvili (KP) hierarchy [5], which can yield many important nonlinear partial differential equa-
tions, such as the generalized nonlinear Schrödinger equation, the KdV equation, the Sine–Gordon
equation and the famous KP equation. To be self-consistent, we would like to give a brief review of
the KP hierarchy [3, 5, 13, 29].

Let

L = ∂ + u2∂
−1 + u3∂

−2 + · · · , (1.1)

be a pseudo-differential operator (ΨDO), here {ui}, ui = ui(t1, t2, t3, . . .) serve as generators of a
differential algebra A. The corresponding generalized Lax equations are defined as

∂L

∂tn
= [Bn, L], n = 1, 2, 3, . . . , (1.2)

which give rise to infinite number of partial differential equations of the KP hierarchy, Bn is defined
as Bn = [Ln]+. It can be easily showed that Eq. (1.2) is equivalent to the so-called Zakharov–Shabat
(ZS) Eq. [34]

∂Bm

∂tn
− ∂Bn

∂tm
+ [Bm, Bn] = 0, (m, n = 2, 3, . . .). (1.3)
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The eigenfunction φ and conjugate eigenfunction ψ corresponding to L are defined by

∂φ

∂tn
= Bnφ, (1.4)

∂ψ

∂tn
= −B∗

nψ. (1.5)

The first non-trivial example is the KP equation given by the t2-flow and t3-flow of the KP
hierarchy

(4ut − 12uux − uxxx)x − 3uyy = 0, (1.6)

in which u = u2, x = t1, y = t2 and t = t3.
Suppose L given by Eq. (1.1) and L∗ defined by

L∗ = −∂ +
∞∑

i=1

(−1)i∂−iui+1.

If L satisfies L∗ + L = 0, then L is called the Lax operator of the CKP hierarchy [2, 13], and the
corresponding flow equations of the CKP hierarchy are described by

∂L

∂tn
= [Bn, L], n = 1, 3, 5, . . . . (1.7)

The first non-trivial example is the CKP equation [13, 23]

ut =
5
9

(
∂−1

x uyy + 3ux∂−1
x uy − 1

5
uxxxxx − 3uuxxx − 15

2
uxuxx − 9u2ux + uxxy + 3uuy

)
(1.8)

which is generated by t3-flow and t5-flow and also called the (2+1)-dimensional Kaup–Kuperschmidt
(KK) equation [18]. Here u = u2, x = t1, y = t3 and t = t5. Moreover, L is called the Lax
operator of the BKP hierarchy [3, 4] if it satisfies L∗ = −∂L∂−1, and the flow equations of the BKP
hierarchy associated with it are also described by Eq. (1.7). The first non-trivial example is the BKP
equation [22, 24]

ut =
5
9

(
∂−1

x uyy + 3ux∂−1
x uy − 1

5
uxxxxx − 3uuxxx − 3uxuxx − 9u2ux + uxxy + 3uuy

)
, (1.9)

which is generated by t3-flow and t5-flow and also called the (2 + 1)-dimensional Sawada–Kotera
(SK) equation [18]. Here, u = u2, x = t1, y = t3 and t = t5.

If we find a set of functions u2, u3, . . . which makes the corresponding pseudo-differential operator
L satisfies Eq. (1.3), then we have a solution of the KP hierarchy. It is a well-known result that this
set of solutions can be generated from one single function τ(x) as the following way

u2 =
∂2

∂t21
log τ, (1.10)

u3 =
1
2

[
∂2

∂t1∂t2
− ∂3

∂t31

]
log τ. (1.11)

During the last two decades, in order to solve the KP hierarchy, the gauge transformation was
formally introduced in Ref. [21]. The basic idea behind gauge transformation is to find a transfor-
mation for the initial Lax operator L(0) of the KP hierarchy after which the new operator L(1) and
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B
(1)
n still satisfies Lax equation Eq. (1.2) and Eq. (1.3) respectively. Here

L(1) = T ◦ L(0) ◦ T−1, B(1)
n = (L(1))n

+, (1.12)

T is a suitable pseudo-differential operator. There exist two kinds of gauge transformation opera-
tors [21]

TD(φ(0)) = φ(0)∂(φ(0))−1, (1.13)

TI(ψ(0)) = (ψ(0))−1∂−1ψ(0), (1.14)

in which φ(0), ψ(0) are eigenfunction and conjugate eigenfunction of L(0) respectively and they are
also called the generating functions of the gauge transformation. TD is called differential type of gauge
transformation, TI is called integral type of gauge transformation. After one gauge transformation
TD, the new τ -function

τ (1) = φ(0)τ (0), (1.15)

is transformed from an initial τ -function τ (0) associated with the initial Lax operator L(0). A similar
result can be formulated for the case of TI

τ (1) = ψ(0)τ (0). (1.16)

With the help of formulas Eq. (1.10), Eq. (1.11), Eq. (1.15) and Eq. (1.16), we can obtain new solu-
tions {u(1)

i } from the known seed solutions {u(0)
i } in the L(0). For example, u

(1)
2 = u

(0)
2 +(log φ(0))xx

by the gauge transformation in Eq. (1.15). By a successive application of gauge transformations,
the determinant representation of τ (n+k) is given in [14] and further more u

(n+k)
2 can be deduced

by using Eq. (1.10).
In the last decade, the method of gauge transformation has been developed by several researchers.

The original form of this transformation proposed in Ref. [21] cannot be applied directly to the
sub-hierarchies of the KP hierarchy. So in [16, 26, 27], an improvement was made which makes it
applicable to the BKP and CKP hierarchies, and in [1, 15, 17, 20, 28, 32] another improvement
was made so that the gauge transformation can be used on the constrained KP hierarchy. Besides
gauge transformation, some other methods have been used to solve the KP, BKP, CKP equations.
In [10], Hirota method was considered on the KP equation. Darboux transformation was applied
on this equation in Chap. 3 of [25]. N-soliton solutions of the BKP equation was obtained through
Hirota method in [11, 12], lump solutions was obtained through this method in [9], the same method
was applied to the (2 + 1)-dimensional KK equations in [33] and 3-soliton solutions were obtained
explicitly. Darboux transformation was applied to (2 + 1)-dimensional KK, SK equations in [19].
In [6], ∂̄-dressing method was used on the (2 + 1)-dimensional KK, SK equations and line solitons
and line rational lumps were obtained. It is easy to recognize that all these known solutions are
corresponding to the solutions given by gauge transformation from zero seed. However, solving the
soliton equations starting from a “nonzero seed” has not attracted enough attention. There are
very few works on the KPI and KP II equations with a non-decay initial background [7, 8, 31] by
dressing method and classical inverse scattering method. On the other hand, gauge transformation
from nonzero seeds was not considered before to our knowledge. One possible reason is that in
the case of the KdV equation, solutions obtained by gauge transformation from zero seed can be
transformed to those solutions from nonzero seeds by a Galilean transformation [30]. So far, we
have not seen any similar discussions on solutions of (2 + 1)-dimensional KP, KK, SK equations.
Therefore, in this paper, we solve these equations by gauge transformation from nonzero seeds and
manage to find out the relations between new solutions and those from zero seed.

The organization of this paper is as follows. In Sec. 2 we consider the KP equation. In Sec. 3
and Sec. 4, we discuss (2 + 1)-dimensional KK and SK equations respectively. Section 5 is devoted
to the conclusions and discussions. The notations we use in this paper is the same as in [20].
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2. Successive Gauge Transformation for KP Equation

It is a natural thought to consider successive application of gauge transformation for KP hierarchy. In
[14, 21], a very useful theorem was introduced about the result after successive gauge transformations.

Lemma 1 [14, 21]. After n times TD and k times TI transformations (n ≥ k), we have:

τ (k+n) = ψ
(k−1+n)
k · ψ(k−2+n)

k−1 . . . ψ
(n)
1 · τ (n)

= IWk,n(ψ(0)
k , ψ

(0)
k−1, . . . , ψ

(0)
1 ; φ(0)

1 , φ
(0)
2 , . . . , φ(0)

n ) · τ (0), (2.1)

in which IWk,n(ψ(0)
k , ψ

(0)
k−1, . . . , ψ

(0)
1 ; φ(0)

1 , φ
(0)
2 , . . . , φ

(0)
n ) stands for

IWk,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
φ

(0)
1 · ψ(0)

k

∫
φ

(0)
2 · ψ(0)

k · · · ∫
φ

(0)
n · ψ(0)

k∫
φ

(0)
1 · ψ(0)

k−1

∫
φ

(0)
2 · ψ(0)

k−1 · · · ∫
φ

(0)
n · ψ(0)

k−1

...
... · · · ...∫

φ
(0)
1 · ψ(0)

1

∫
φ

(0)
2 · ψ(0)

1 · · · ∫
φ

(0)
n · ψ(0)

1

φ
(0)
1 φ

(0)
2 · · · φ

(0)
n

φ
(0)
1,x φ

(0)
2,x · · · φ

(0)
n,x

...
... · · · ...

(φ(0)
1 )(n−k−1) (φ(0)

2 )(n−k−1) · · · (φ(0)
n )(n−k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ

(0)
i and ψ

(0)
i are solutions of Eq. (1.4) and Eq. (1.5) associated with the initial value τ (0), further

we have

u
(k+n)
2 = (log IWk,n)x,x + u

(0)
2 . (2.2)

By using the above theorem, we now start to construct the new solutions of the KP equation in
Eq. (1.6) from nonzero seeds. To the end, we choose the initial Lax operator of the KP hierarchy
to be

L(0) = ∂ + ∂−1 + ∂−2 + ∂−3 + · · · ,

such that all u
(0)
i = 1 and then the seed solution of the KP equation is u(0) = u

(0)
2 = 1. We know

that the KP equation is generated by t2-flow and t3-flow of the KP hierarchy, so the generating
functions φ

(0)
i and ψ

(0)
i for the gauge transformation satisfy⎧⎨⎩φ

(0)
i,t2

= B
(0)
2 φ

(0)
i = (∂2 + 2)φ(0)

i , B
(0)
2 = (L(0))2+

φ
(0)
i,t3

= B
(0)
3 φ

(0)
i = (∂3 + 3∂ + 3)φ(0)

i , B
(0)
3 = (L(0))3+

(2.3)

⎧⎨⎩ψ
(0)
i,t2

= −(B(0)
2 )∗ψ(0)

i = −(∂2 + 2)ψ(0)
i ,

ψ
(0)
i,t3

= −(B(0)
3 )∗ψ(0)

i = (∂3 + 3∂ − 3)ψ(0)
i .

(2.4)

Lemma 2. The solutions of Eq. (2.3), Eq. (2.4) are in form of

φ
(0)
i =

n∑
j=1

kje
βj−3
αj+1x+αjy+βjt

, βj = βj(αj), (2.5)

ψ
(0)
i =

m∑
j=1

k̃je
fβj+3

−gαj+1x+fαjy+fβjt
, β̃j = β̃j(α̃j). (2.6)
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Here αj , βj , α̃j , β̃j should satisfy the following relations

(βj − 3)2 = (αj + 1)2(αj − 2), (2.7)

(β̃j + 3)2 = (−α̃j + 1)2(−α̃j − 2). (2.8)

Proof. We assume the solutions of Eq. (2.3) have the form φ̂ = X(x)Y (y)T (t), then Eq. (2.3) is
equivalent to ⎧⎪⎪⎨⎪⎪⎩

Yy

Y
=

Xxx

X
+ 2,

Tt

T
=

Xxxx

X
+ 3

Xx

X
+ 3.

(2.9)

Let
Yy

Y
= α,

Tt

T
= β, (2.10)

where α and β are constants, we have{
(α − 2)X = Xxx,

(β − 3)X = Xxxx + 3 Xx,
(2.11)

which can be reduced to ⎧⎪⎪⎨⎪⎪⎩
Xx =

(α + 1) (α − 2)
β − 3

X,

Xx =
β − 3
α + 1

X.

(2.12)

Under the consistency condition (β − 3)2 = (α + 1)2 (α − 2) we can obtain

X(x) = c1 e
β−3
α+1 x. (2.13)

From Eq. (2.10), we have

Y (y) = c2 eαy, T (t) = c3 eβt,

which infer the solutions of Eq. (2.3)

φ̂ = k e
β−3
α+1 x+αy+βt, (2.14)

with the help of Eq. (2.13), where k = c1 c2 c3. By linear superposition, the linear combination of φ̂

in Eq. (2.14) with respect to different α and β is still a solution of Eq. (2.3), that is

φ
(0)
i =

n∑
j=1

kj φ̂j =
n∑

j=1

kj e
βj−3
αj+1x+αjy+βjt

. (2.15)

A similar procedure can be applied to ψ
(0)
i which yields Eq. (2.6).

Having these results, it’s sufficient to perform gauge transformation on L(0). But according to
Lemma 1, the transformed τ -function may not be satisfactory, since it may vanish on some point.
To rule out this situation, we need the following theorem.

Theorem 1. Let the generating functions of n-steps TD be φ
(0)
m (m = 1, 2, . . . , n) in Eq. (2.5) and

rewritten as φ
(0)
m =

∑pm

i=1 km,i expam,ix+αm,iy+βm,it for simplicity, then the new τ-function

τ (n) = IW0,n · τ (0) = Wn(φ(0)
1 , φ

(0)
2 , . . . , φ(0)

n ) · τ (0), (2.16)



184 J. He & X. Li

and Wn(φ(0)
1 , φ

(0)
2 , . . . , φ

(0)
n ) > 0 if km,i > 0, am,i < am′,j for all m < m′ and ∀ i, j. The transformed

solution u
(n)
2 of KP equation is

u
(n)
2 = 1 + (log(Wn(φ(0)

1 , φ
(0)
2 , . . . , φ(0)

n )))xx (2.17)

Proof. First, Wn takes the following form

Wn =

∣∣∣∣∣∣∣∣∣∣∣∣

φ
(0)
1 φ

(0)
2 · · · φ

(0)
n

∂
∂xφ

(0)
1

∂
∂xφ

(0)
2 · · · ∂

∂xφ
(0)
n

...
... · · · ...

∂n−1

∂xn−1 φ
(0)
1

∂n−1

∂xn−1 φ
(0)
2 · · · ∂n−1

∂xn−1 φ
(0)
n

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

then we expand the determinant with respect to columns using the equation

φ(0)
m =

pm∑
i=1

km,i eam,i x+αm,i y+βm,i t, m = 1 · · ·n.

Then we have:

Wn =
∑

1≤iq≤pq, q=1...n

n∏
j=1

kj,ij eaj,ij
x+αj,ij

y+βj,ij
t

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a1,i1 a2,i2 · · · an,in

...
... · · · ...

an−1
1,i1

an−1
2,i2

· · · an−1
n,in

∣∣∣∣∣∣∣∣∣∣
(2.18)

Notice the Vendermonde determinants in the above equation. Since km,i > 0, the coefficients of
these Vendermonde determinants are positive. Using am,i < am′,j for all m < m′ and ∀i, j, it is easy
to prove that all Vendermonde determinants in the above equation are positive, so Wn > 0. Using
Eq. (2.16), Eq. (2.2) and u

(0)
2 = 1, we can obtain Eq. (2.17).

Next, we give single-soliton solutions of the KP equation from a zero seed and a nonzero seed
respectively. Notations with prime are corresponding to the results of gauge transformation from a
zero seed. The generating functions are

(φ(0)
1 )′ = k′eξ′

1 + k′eξ′
2 , (2.19)

φ
(0)
1 = keξ1 + keξ2 , (2.20)

where

ξ′1 =
β′

1

α′
1

x + α′
1y + β′

1t, (2.21)

ξ′2 =
β′

2

α′
2

x + α′
2y + β′

2t, (2.22)

ξ1 =
β1 − 3
α1 + 1

x + α1y + β1t, (2.23)

ξ2 =
β2 − 3
α2 + 1

x + α2y + β2t, (2.24)
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and (α′
i)

3 = (β′
i)

2, (βi − 3)2 = (αi +1)2 (αi − 2), i = 1, 2. The two single-solitons of the KP equation
can be written as

(u(1)
2 )′ =

1
4

(
β′

1

α′
1

− β′
2

α′
2

)2

sech2

(
ξ′2 − ξ′1

2

)
, (2.25)

u
(1)
2 = 1 +

1
4

(
β1 − 3
α1 + 1

− β2 − 3
α2 + 1

)2

sech2

(
ξ1 − ξ2

2

)
. (2.26)

There are two differences between u2 and u′
2 under the same parameters α: (1) the height of solitons,

(2) the location of the peak line of the solitons, which are demonstrated visibly in Fig. 1. In Fig. 2,

Fig. 1. Single-soliton solutions at t = 1 of the KP equation. The lower one is (u
(1)
2 )′ with k′ = 1, α′

1 = 2.7225 and

α′
2 = 3.24; the higher one is (u

(1)
2 − 1) with parameters k = 1, α1 = 2.7225 and α2 = 3.24.

Fig. 2. Two-soliton solution at t = 0 of the KP equation.
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we demonstrate the solution obtained by a two-step gauge transformation by using Eq. (2.17) and

φ
(0)
1 = e2y+3t + ex+3y+7t, (2.27)

φ
(0)
2 = e

√
2x+4y+(3+5

√
2)t + e

√
6x+8y+(3+9

√
6)t. (2.28)

Corollary 1. There exists a Galilean type transformation

u′
2 �→ u2(x, y, t) = 1 + u′

2(x + 3 t, y, t). (2.29)

between u′
2 in Eq. (2.25) and u2 in Eq. (2.26).

Obviously, this result is consistent with the Galilean transformation [30] of the KdV equation by
a dimensional reduction.

3. Gauge Transformation for (2 + 1)-Dimensional KK Equation

Gauge transformation of the CKP hierarchy is somewhat different from that of the KP hierarchy,
because a transformed Lax operator L(1) by one-step gauge transformation has to satisfy (L(1))∗ +
L(1) = 0. To meet this requirement, we introduce the following lemma.

Lemma 3 ([16]). (1) The appropriate gauge transformation Tn+k is given by n = k and generating
functions ψ

(0)
i = φ

(0)
i for i = 1, 2, . . . , n.

(2) The τ-function τ
(n+n)
CKP of the CKP hierarchy has the form

τ
(n+n)
CKP = IWn,n(φ(0)

n , φ
(0)
n−1, . . . , φ

(0)
1 ; φ(0)

1 , φ
(0)
2 , . . . , φ(0)

n ) · τ (0)
CKP

=

∣∣∣∣∣∣∣∣∣
∫

φ
(0)
n · φ(0)

1 · · · ∫
φ

(0)
n · φ(0)

n

... · · · ...∫
φ

(0)
1 · φ(0)

1 · · · ∫
φ

(0)
1 · φ(0)

n

∣∣∣∣∣∣∣∣∣ · τ
(0)
CKP, (3.1)

and further we have

u
(n+n)
2 = u

(0)
2 + (log IWn,n)xx. (3.2)

To solve the (2 + 1)-dimensional KK equation from nonzero seed solution, we choose a initial
Lax operator L(0) of the CKP hierarchy to be

L(0) = ∂ + ∂−1 + ∂−3 + ∂−5 + · · · .

Since the (2+1)-dimensional KK equation is generated by t3-flow and t5-flow of the CKP hierarchy,
we solve ⎧⎨⎩φ

(0)
i,t3

= B
(0)
3 φ

(0)
i = (∂3 + 3∂)φ

(0)
i , B

(0)
3 = (L(0))3+,

φ
(0)
i,t5

= B
(0)
5 φ

(0)
i = (∂5 + 5∂3 + 15∂)φ

(0)
i , B

(0)
5 = (L(0))5+,

(3.3)

in order to obtain the eigenfunctions.

Lemma 4. The solutions of Eq. (3.3) are

φ
(0)
i =

n∑
j=1

kj e

α3
j−18αj+9βj

α2
j
+αjβj+81

x+αjy+βjt
, βj = βj(αj), (3.4)

here αj , βj should satisfy the relation

α5
j − 25α3

j + 30βjα
2
j + 1215αj − β3

j − 243βj = 0. (3.5)
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Proof. First, we assume the solution of Eq. (3.3) has the form φ̂ = X(x)Y (y)T (t) then we have⎧⎪⎪⎨⎪⎪⎩
Yy

Y
=

Xxxx

X
+ 3

Xx

X
,

Tt

T
=

Xxxxxx

X
+ 5

Xxxx

X
+ 15

Xx

X
.

(3.6)

Let
Yy

Y
= α,

Tt

T
= β, (3.7)

where α and β are constants, Eq. (3.6) become{
Xxxx = αX − 3Xx,

Xxxxxx = βX − 15Xx − 5Xxxx,
(3.8)

which can be further reduced to {
9Xxx − (α + β)Xx + α2X = 0,

αXxx + 9Xx + (2α − β)X = 0.
(3.9)

Combining the two equations in Eq. (3.9) together, we have

(α2 + αβ + 81)Xx = (α3 − 18α + 9β)X. (3.10)

The solution of Eq. (3.10)

X(x) = c1e
α3−18α+9β

α2+αβ+81
x
. (3.11)

By substituting Eq. (3.11) back into Eq. (3.8), we have

α5 − 25α3 + 30βα2 + 1215α− β3 − 243β = 0, (3.12)

that means if α and β satisfy Eq. (3.12), then Eq. (3.11) is the solution of Eq. (3.8). From Eq. (3.7),
we have

Y (y) = c2e
αy, T (t) = c3e

βt,

together with Eq. (3.11) we have

φ̂ = ke
α3−18α+9β

α2+αβ+81
x+αy+βt

, (3.13)

where k = c1 c2 c3. Using the linear superposition as we did in Lemma 2, we can obtain

φ
(0)
i =

n∑
j=1

kj φ̂j =
n∑

j=1

kje

α3
j−18αj+9βj

α2
j
+αjβj+81

x+αjy+βjt
. (3.14)

Similar to the previous section about KP equation, we need the following theorem to assure that
the solutions we get are without singularities.

Theorem 2. Let eigenfunctions φ
(0)
m take the form as in Lemma 4

φ(0)
m =

n∑
i=1

km,i eam,ix+αm,iy+βm,it, (3.15)

where m = 1, 2, if km,i > 0, a1,i < a2,j, then IW2,2(φ
(0)
2 , φ

(0)
1 ; φ(0)

1 , φ
(0)
2 ) < 0. The solution of the

(2 + 1)-dimensional KK equation can be written as

u
(2+2)
2 = 1 + (log IW2,2)xx. (3.16)
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Proof. We rewrite φ
(0)
1 and φ

(0)
2 in Eq. (3.15) as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φ
(0)
1 =

n∑
i=1

Rie
aix,

φ
(0)
2 =

n∑
i=1

Sie
bix.

Here the values of Ri and Si are greater than zero. Then we have∫
(φ(0)

1 )2 =
n∑

i,j=1

RiRj
e(ai+aj)x

ai + aj
, (3.17)

∫
(φ(0)

2 )2 =
n∑

i,j=1

SiSj
e(bi+bj)x

bi + bj
, (3.18)

∫
φ

(0)
1 φ

(0)
2 =

n∑
i,j=1

RiSj
e(ai+bj)x

ai + bj
. (3.19)

Since ai < bj for i, j = 1 · · ·n, it is easy prove the following inequality

RiRj
e(ai+aj)x

ai + aj
SkSl

e(bk+bl)x

bk + bl
> RiSkRjSl

e(ai+bk)x

ai + bk

e(aj+bl)x

aj + bl
, (3.20)

where 1 ≤ i, j, k, l ≤ n, then∣∣∣∣∣∣
∫

φ
(0)
1 φ

(0)
2

∫
(φ(0)

1 )2∫
(φ(0)

2 )2
∫

φ
(0)
1 φ

(0)
2

∣∣∣∣∣∣ =
(∫

φ
(0)
1 φ

(0)
2

)2

−
∫

(φ(0)
1 )2

∫
(φ(0)

2 )2 < 0. (3.21)

can be directly verified by using Eq. (3.17), Eq. (3.18), Eq. (3.19). Equation (3.16) can be obtained
by Eq. (3.2) and u

(0)
2 = 1.

Remark 1. For T(1+1) = TITD, with the generating function φ
(0)
1 as in Eq. (3.15), it is easy to

show that

τ (1+1) =
(∫

(φ(0)
1 )2

)
τ (0) (3.22)

is positive. The corresponding new solution of the (2 + 1)-dimensional KK equation can be repre-
sented as

u
(1+1)
2 = 1 +

(
log

∫
(φ(0)

1 )2
)

xx

(3.23)

Here, we give the single-soliton solution of the (2 + 1)-dimensional KK equation from the gener-
ating function

φ
(0)
1 = eξ1 + eξ2 , (3.24)

where ξi = α3
i−18αi+9βi

α2
i +αiβi+81

x + αiy + βit, the solution is

u
(1+1)
2 = 1 +

(a1 − a2)2

a1 + a2

(
e

ξ1−ξ2
2

a1
+ e

ξ2−ξ1
2

a2

) (
e

ξ1−ξ2
2 + e

ξ2−ξ1
2

)
(

eξ1−ξ2

2a1
+ eξ2−ξ1

2a2
+ 2

a1+a2

)2 , (3.25)
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where ai = α3
i −18αi+9βi

α2
i +αiβi+81

. The solution (u(1+1)
2 )′ generated from zero seed have the form

(u(1+1)
2 )′ =

(a′
1 − a′

2)
2

a′
1 + a′

2

(
e

ξ′1−ξ′2
2

a′
1

+ e
ξ′2−ξ′1

2

a′
2

)(
e

ξ′1−ξ′2
2 + e

ξ′2−ξ′1
2

)
(

eξ′1−ξ′2
2a′

1
+ eξ′2−ξ′1

2a′
2

+ 2
a′
1+a′

2

)2
, (3.26)

where ξ′i = (α′
i)

2

β′
i

x + α′
iy + β′

it, a′
i = (α′

i)
2

β′
i

and (α′
i)

5 = (β′
i)

3. The differences between u
(1+1)
2 and

(u(1+1)
2 )′ under the same value of parameters are showed in Fig. 3. By taking

φ
(0)
1 = e0.0001999999974x+0.0006y+0.003t + e0.0006666665679x+0.002y+0.01t

+ e0.003333320988x+0.01y+0.05t + e0.006666567904x+0.02y+0.1t, (3.27)

φ
(0)
2 = e1.218304787x+5.463203409y+30t + e0.4917724251x+1.594247576y+8t

+ e0.6835764081x+2.370148557y+12t + e0.970831384x+3.827515914y+20t. (3.28)

in Eq. (3.16), we can obtain solution of the (2 + 1)-dimensional KK equation which is plotted in
Fig. 4.

4. Gauge Transformation for (2 + 1)-Dimensional SK Equation

The procedure of this section is mostly the same as the previous section except that the transformed
Lax operator L(1) by one-step gauge transformation should satisfy (L(1))∗ = −∂L(1)∂−1, so we need
Lemma 5 about gauge transformation for BKP hierarchy.

Lemma 5 ([16]). (1) The appropriate gauge transformation Tn+k is given by n = k and generating
functions ψ

(0)
i = φ

(0)
i,x for i = 1, 2, . . . , n.

Fig. 3. Single-soliton solutions at t = 1 of the (2 + 1)-dimensional KK equation. The higher one is (u
(1+1)
2 )′ with

α′
1 = 0.970299 and α′

2 = 0.075; the lower one is (u
(1+1)
2 − 1) with parameters α1 = 0.970299 and α2 = 0.075.
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Fig. 4. Solution at t = 0 of the (2 + 1)-dimensional KK equation.

(2) The τ-function τ
(n+n)
BKP of the BKP hierarchy has the form

τ
(n+n)
BKP = IWn,n(φ(0)

n,x, φ
(0)
n−1,x, . . . , φ

(0)
1,x; φ(0)

1 , φ
(0)
2 , . . . , φ(0)

n ) · τ (0)
BKP

=

∣∣∣∣∣∣∣∣∣
∫

φ
(0)
n,x · φ(0)

1 · · · ∫
φ

(0)
n,x · φ(0)

n

... · · · ...∫
φ

(0)
1,x · φ(0)

1 · · · ∫
φ

(0)
1,x · φ(0)

n

∣∣∣∣∣∣∣∣∣ · τ
(0)
BKP (4.1)

and we have

u
(n+n)
2 = u

(0)
2 + (log IWn,n)xx. (4.2)

With this theorem, we can write down the solutions of the (2 + 1)-dimensional SK equation
explicitly after successive application of gauge transformations. We take the initial Lax operator
L(0) of the BKP hierarchy as

L(0) = ∂ + ∂−1 + ∂−3 + ∂−5 + · · · .

The corresponding eigenfunction φ
(0)
i and conjugate eigenfunction ψ

(0)
i = φ

(0)
i,x are given by Lemma

4 and Lemma 5, i.e.

φ
(0)
i =

n∑
j=1

kje

α3
j−18αj+9βj

α2
j
+αjβj+81

x+αjy+βjt
, (4.3)

ψ
(0)
i =

n∑
j=1

kj

α3
j − 18αj + 9βj

α2
j + αjβj + 81

e

α3
j−18αj+9βj

α2
j
+αjβj+81

x+αjy+βjt
, βj = βj(αj). (4.4)

Similar as Sec. 2 and Sec. 3, we need the following theorem to assure that the new τ -function we
get after gauge transformations will not vanish at any point.

Theorem 3. Let eigenfunction φ
(0)
m take the form as in Eq. (4.3)

n∑
i=1

km,ie
am,ix+αm,iy+βm,it, m = 1, 2, if 0 < 3 · a1,i < a2,j ,
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then we have IW2,2(φ
(0)
2,x, φ

(0)
1,x; φ(0)

1 , φ
(0)
2 ) < 0. The solution can be written as

u
(2+2)
2 = 1 + (log IW2,2)xx. (4.5)

Proof. φ
(0)
1 and φ

(0)
2 can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φ
(0)
1 =

n∑
i=1

Rie
aix,

φ
(0)
2 =

n∑
i=1

Sie
bix,

where the value of Ri and Si are greater than zero, then we have

(φ(0)
1 )2

2
=

1
2

n∑
i,j=1

RiRje
(ai+aj)x, (4.6)

(φ(0)
2 )2

2
=

1
2

n∑
i,j=1

SiSje
(bi+bj)x, (4.7)

∫
φ

(0)
1,xφ

(0)
2 =

n∑
i,j=1

RiSj
ai

ai + bj
e(ai+bj)x, (4.8)

∫
φ

(0)
2,xφ

(0)
1 =

n∑
i,j=1

RjSi
bi

aj + bi
e(aj+bi)x. (4.9)

The following inequality

(ai + bk)(aj + bl) > 4aibl,

is trivial if we use 0 < 3 · a1,i < a2,j which means 0 < 3 · ai < bk, together with Eq. (4.6)–(4.9), we
can prove∣∣∣∣∣∣

∫
φ

(0)
1 φ

(0)
2,x

(φ
(0)
2 )2

2

(φ
(0)
1 )2

2

∫
φ

(0)
1,xφ

(0)
2

∣∣∣∣∣∣ =
(∫

φ
(0)
1,xφ

(0)
2

)(∫
φ

(0)
2,xφ

(0)
1

)
− (φ(0)

1 )2(φ(0)
2 )2

4
< 0, (4.10)

by a direct calculation. Equation (4.5) can be obtained by Eq. (4.2) and u
(0)
2 = 1.

Remark 2. For T1+1 = TI TD, with the generating function φ
(0)
1 as in Eq. (4.3), it is easy to show

that

τ (1+1) =
(φ(0)

1 )2

2
τ (0) (4.11)

is positive. The corresponding new solution of the (2 + 1)-dimensional SK equation can be repre-
sented as

u
(1+1)
2 = 1 +

(
log

(
(φ(0)

1 )2

2

))
xx

(4.12)

To obtain a single-soliton solution of the (2 + 1)-dimensional SK equation, we start from a
generating function

φ
(0)
1 = eξ + e−ξ, (4.13)

and the solution is

u
(1+1)
2 = 1 + 2a2sech2(ξ), (4.14)
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here ξ = α3−18α+9β
α2+αβ+81 x + αy + βt and a = α3−18α+9β

α2+αβ+81 . A solution generated from zero seed is

(u(1+1)
2 )′ = 2(a′)2sech2(ξ′), (4.15)

in which ξ′ = (α′)2

β′ x + α′y + β′t, (α′)5 = (β′)3 and a′ = (α′)2

β′ . The differences between u
(1+1)
2 and

(u(1+1)
2 )′ are showed in Fig. 5. In Fig. 6, we plot the solution of the (2+1)-dimensional SK equation

by taking

φ
(0)
1 = e0.009999666694x+0.02999999998y+0.15t + e0.01333254332x+0.03999999992y+0.2t

+ e0.006666567904x+0.02y+0.1t, (4.16)

φ
(0)
2 = e0.5924749002x+1.985399095y+10t + e0.06656825084x+0.1999997386y+t

+ e1.218304787x+5.463203409y+30t, (4.17)

in Eq. (4.5).

Fig. 5. Single-soliton solutions at t = 1 of (2+1)-dimensional SK equation. The higher one is (u
(1+1)
2 )′ with α′ = 4.096,

the lower one is (u
(1+1)
2 − 1) with parameters α = 4.096.

Fig. 6. Solution at t = 0 of (2 + 1)-dimensional SK equation.
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Corollary 2. For the (2 + 1)-dimensional KK equation and (2 + 1)-dimensional SK equation, there
exist a common Galilean type transformation between (u(1+1)

2 )′ (generated from zero seed) and u
(1+1)
2

(generated from nonzero seed), i.e.

u′
2(x, y, t) �→ u2(x, y, t) = 1 + u′

2(x + 3y + 15t, y + 5t, t). (4.18)

5. Conclusions and Discussions

By now we have obtained new solutions u
(n)
2 in Theorem 1 for KP equation, u

(2+2)
2 in Theorem 2

for (2 + 1)-dimensional KK equation and u
(2+2)
2 in Theorem 3 for (2 + 1)-dimensional SK equation

by using the gauge transformations of the KP hierarchy, CKP hierarchy and BKP hierarchy respec-
tively. The corresponding generating functions of the gauge transformations previously mentioned
are explicitly expressed in Lemma 2 and Lemma 4. For these three equations, the single-soliton
u

(1)
2 (or u

(1+1)
2 ) generated from nonzero seeds and (u(1)

2 )′(or (u(1+1)
2 )′) generated from zero seed are

constructed. The main differences between the u2 and (u2)′ are height and locations of the peak line
under the same value of parameters, which are demonstrated visibly in Figs. 1, 2 and 3. We also
found a Galilean type transformation in Eq. (2.29) between (u(1)

2 )′ and u
(1)
2 for the KP equation,

and another one in Eq. (4.18) between (u(1+1)
2 )′ and u

(1+1)
2 for the (2 + 1)-dimensional KK and

SK equations. To guarantee the new solutions u2 generated by gauge transformations is smooth, in
other words, the transformed τ -function does not vanish at any point, we only consider the Wn in
Theorem 1 and IW2,2 in Theorem 2 and theorem 3.

The Corollary 1 and Corollary 2 show that we can establish a one-parameter transformation
group (specifically, Galilean type transformation) of the solutions of these three equations by setting
the seeds u

(0)
2 = ε (arbitrary constant) instead of u

(0)
2 = 1. The advantage of this new method to

find one-parameter group is to avoid solving the characteristic line equation, which is not easy to
solve, as usual approach of Lie point transformation. We will try to do this in the future. On the
other hand, if we can choose some more complicated initial Lax operator L(0) in which {u(0)

i } are
not constants and we are able to solve the corresponding generating functions, then we can get some
other new solutions. Of course, the calculation is much tedious although the idea is straightforward.
The present work is the first step to this difficult purpose.
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