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In this paper, we study the geodesic completeness of nondegenerate submanifolds in semi-Euclidean spaces by
extending the study of Beem and Ehrlich [1] to semi-Euclidean spaces. From the physical point of view, this
extend may have a significance that a semi-Euclidean space contains more variety of Lorentzian submanifolds
rather than those of Lorentzian hypersurfaces in a Minkowski space as in [1]. From mathematical point of
view, since there is no distinction in the analysis of geodesic completeness of Lorentzian submanifolds and
nondegenerate submanifolds in a semi-Euclidean space, we treat the mathematically more general case of
nondegenerate submanifolds in a semi-Euclidean space. The new ideas leading to this generalization are the
sufficient conditions for algorithms in the proofs of the results in [1]. Indeed these sufficient conditions for
the algorithms also work well for the nondegenerate submanifolds in a semi-Euclidean space.
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1. Introduction

Unlike in Riemannian Geometry, a closed imbedded submanifold of a complete semi-Riemannian
manifold may not be geodesically complete (cf. [7] and [9]). Cheng and Yau [6] have shown that a
closed imbedded spacelike hypersurface in Minkowski space is complete in the induced metric if it has
constant mean curvature. Harris [7] has shown that the assumption of constant mean curvature in the
above result can be replaced by the assumption of bounded principle curvatures. Beem and Ehrlich
[1] have obtained sufficient conditions for the geodesic completeness of a Lorentzian hypersurface M
in a Minkowski space by assuming that a unit normal vector field on M satisfies an affine growth
condition on M. In this paper, we study the geodesic completeness of nondegenerate submanifolds
in semi-Euclidean spaces by extending the study of Beem and Ehrlich [1] to semi-Euclidean spaces.
From the physical point of view, this extend may have a significance that a semi-Euclidean space
contains more variety of Lorentzian submanifolds rather than those of Lorentzian hypersurfaces in
a Minkowski space as in [1]. From mathematical point of view, since there is no distinction in the
analysis of geodesic completeness of Lorentzian submanifolds and nondegenerate submanifolds in a
semi-Euclidean space, we treat the mathematically more general case of nondegenerate submanifolds
in a semi-Euclidean space. We first state a slightly more general form of the subaffine growth
condition in [1]. Then, we show that, if the Euclidean norm of the second fundamental tensor of a

161



162 F. Erkekoglu

properly immersed nondegenerate submanifold M € R} satisfies an affine growth condition along an
inextendible geodesic ¢ of M then ¢ is complete. In particular, we show that every properly immersed
totally umbilic nondegenerate submanifold M € R} with dim M > 2 is geodesically complete. We
call an inextendible geodesic ¢ : (a,b) — M of M nonobtuse (respectively, nonacute) with respect to
a normal vector field Z on M if ¢(t) makes a nonobtuse (respectively, nonacute) angle with Z with
respect to the auxiliary Euclidean metric on R]}. Then, we show that, if an inextendible geodesic
c: (a,b) = M of a properly immersed nondegenerate submanifold M € R? is nonacute with respect
to the second fundamental form tensor along itself then b = co. For a holomorphic point of view
about geodesic completeness see [5].

The new ideas leading to this generalization are the sufficient conditions for algorithms in the
proofs of the results in [1]. Indeed these sufficient conditions for the algorithms also work well for
the nondegenerate submanifolds in a semi-Euclidean space. For examples, Definition 3.1, that is
the geodesic-wise version of the subaffine growth condition in [1], is sufficient for the algorithm
showing the geodesic completeness of nondegenerate submanifolds in a semi-Euclidean space. Also,
in the case of a Lorentzian hypersurface M in a Minkowski space, timelike geodesics of M makes
either nonobtuse or nonacute angle with a normal vector field of M, and hence with the second
fundamental form tensor of M along timelike geodesics of M. But the algorithm of its proof only
depends on the nonobtuse/nonacute angle it makes with the second fundamental form tensor along
these geodesics. Hence, by this observation, it can be generalized to nondegenerate submanifolds of
a semi-Euclidean space.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper.
R} denote n-dimensional semi-Euclidean space with standard metric

g:—Zd$i®dIi—|— Z de' @ dat
i=1 i=v+1
and let

n
gy = Z dr' @ dx'

i=1
be the associated auxiliary Euclidean metric on R}, where 1 < v < n. (Notice that both metrics
have the same Levi-Civita connection V). A vector 0 # v € R? is called timelike (respectively, null
or spacelike) if g(v,v) < 0 (respectively, g(v,v) = 0 or g(v,v) > 0). An immersion f: M — R} of a
manifold M is called nondegenerate if f*g is a (nonsingular) metric on M. Without loss of generality,
we shall always assume that f*¢ is not negative definite. By a geodesic of M, we shall always mean
a geodesic of (M, f*g). Let f: M — R? be a nondegenerate immersion of a manifold M. For each
p € M, we identify T, M with f.T,M C TjyM and denote (fT,M)* by Tle. We also identify
T,R? with R? for each p € R?. The second fundamental form tensor II : T,M x T,M — T,M*
of a nondegenerate submanifold in a semi-Riemannian manifold R} is defined by I(x,y) = V.Y,
where Y € I'T'M with Y, = y, V is the Levi-Civita connection on R}, and VZYJ‘ is the component
of V,Y normal to M. The second fundamental form operator L, : T, M — T,,M in the direction
of z € T,M™ is defined by g(L.z,y) = g(I(z,y), ), where x,y € T,M. (Thus, L.z = —(V,2)7T,
where Z is a normal extension of z to a neighborhood of p € M and (V,Z)T is the component of
V.Z tangent to M). The second fundamental form I, in the direction z € T,M* is defined by
II.(z,y) = g(L.x,y), where z,y € T,M (cf. [8, pp. 97-108]). We denote the Euclidean norm of a
vector v € R? by ||v|| 5 (that is [[v]| = [g&(v,v)]?).

Remark 2.1. Although, in general, the induced metric on M* may have any signature (p, q), p+q =
k,p < v and cannot be made not negatively defined i.e., (k,0); indeed we may assume f*g on M
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is nonnegative definite because in case it is negative definite, we multiply ¢ with —1 and obtain
metric f*g on M positive definite without changing any concept in the paper. That is we consider
the immersion into R} _, instead of R}.

n—v

3. Geodesic Completeness of Nondegenerate Submanifolds

Let f: M — R} be an immersion of a manifold M. Let dy; and Ly (c) respectively denote the
distance function and the length of a curve ¢ on M in the Riemannian structure of (M, f*gg). In
[1], a normal vector field Z on a nondegenerate submanifold M in (Minkowski space) RY is said to
satisfy the subaffine growth condition on M if there exist py € M and positive constants A, B such
that || Z(p)|| z < A+ Bdar(po,p) for all p € M (cf. [1, Definition 3.3]). We now state a slightly more
general form of this definition.

Definition 3.1. Let f: M — R} be an immersion of a manifold M and let ¢ : I — M be a curve.
A function ¢ along c is said to satisfy the affine growth condition along c¢ if there exist a point
po € M and positive constants A, B (which may depend on ¢) such that |p(t)| < A+ Bdas(po, c(t))
for all t € I. A function ¢ on M is said to satisfy the affine growth condition on M if it satisfies
the affine growth condition along each curve ¢ : I — M. A function ¢ on M is said to satisfy
the subaffine growth condition on M if there exist pg € M and positive constants A, B such that
lp(p)| < A+ Bdu(po,p) for all p € M.

Remark 3.2. Notice that, if a function ¢ on M satisfies the subaffine growth condition on M then
 satisfies the affine growth condition on M.

Recall that if ¢ : (a,b) — M is a geodesic of a nondegenerate submanifold in R” then V.¢ =
I1(¢, ¢) (cf. [8, p. 103]). Let ¢ : (a,b) — M be a geodesic of M, ty € (a,b) and s = s(t) be arc length of
a geodesic segment ¢, 4 in (M, f*gg). Then, since g and gg have the same Levi-Civita connection,

ds d*s

it follows from 9 = ||¢|| = [gr (¢, ¢)]? that &2 = g(I1(¢,¢), ¢)[gr (e, ¢)] "2 = gr(11(é,é), H—g”E).

Remark 3.3. The arc length s of the geodesic ¢ of M which means in (M, gps) is taken with respect
to induced Euclidean metric on M as indicated in the above paragraph since a geodesic with respect
to one metric is still a curve and has an arc length as a curve with respect to the other. Hence
g — ||¢||. So, in the light of the above point the arc length should not be taken with respect to
induced semi-Euclidean metric on M which is nonsense in semi-Riemannian geometry since null
geodesics have zero arc length function. Consequently there is no confusion of orthogonal space of

T, M with respect to g and gg. In fact, orthogonal space to T,,M with respect to gg is never used.

Theorem 3.4. Let f : M — R} be a nondegenerate proper immersion of a manifold M and let
c¢: (a,b) — M be an inextendible geodesic of M. If ||II(¢,¢)| ; satisfies the affine growth condition
along ¢ then c is complete.

Proof. (Following [1]). From Schwartz inequality,
d*s ) ) c(t
o =5 (60,0, 7o )

JEGIP
o (1) ). 7y )|

< H(e), ()l

< A+ Bda(po, c(t))

< A+ Bd(po, c(to)) + Bdar(c(to), c(t))
< A’ + Bs,

<
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where pg € M,ty € (a,b),s(t) = La(c |y,) and A" = A + Bdpr(po, c(to)). Hence, multiplying
this inequality with %2(= ||¢|, > 0) and integrating, we obtain [@]2 < A+ 2A's + Bs?, where

dt
A= [%(to)}z. Thus, %2 < [A + 2A’s + Bs?]'/2, and therefore

s(b7) b~
/ A+ 24's + Bs?)~1/2ds g/ dt =b~ —to,

S0 to

where sp = s(tp). On the other hand, since ¢ is inextendible in M and f is proper,

lim s(t) = oo
t—b—

(cf. [2, p. 64, Lemma 2.52] or [3, p. 102, Lemma 3.65]). Hence, it suffices to show that

/ A+ 2A4"s + Bs?]"Y2ds = .

S0

It is easy to see that there exist S € (sg,00) such that [\ + 2A4’s + Bs?]'/2 < 24/Bs for all s > S.
Thus,

00 = / (1/(2V/Bs))ds < / [\ +24"s + Bs?]~Y2ds.
S S
A similar argument shows that a = co. a

As a straightforward consequence of the above theorem, we have the following corollary.

Corollary 3.5. Let f : M — R} be a nondegenerate proper immersion of a manifold M. If
(¢, ¢)||; satisfies the affine growth condition along every inextendable geodesic ¢ : (a,b) — M
then M is geodesically complete.

We recall that a nondegenerate submanifold M is called umbilic at p € M if there exist a normal
vector z to M at p such that I(x,y) = g(x,y)z. M is called totally umbilic if M is umbilic at
each p € M. Thus, if M is totally umbilic then there is a normal vector field Z on M such that
II(X,Y) =¢g(X,Y)Z, and Z is called the normal curvature vector field, where X, Y are vector fields
tangent to M (cf. [8, p. 105]).

Corollary 3.6. Let f: M — R be a proper immersion of a connected manifold M as a nondegen-
erate totally umbilic submanifold, where dim M > 2. Then M is geodesically complete.

Proof. Let ¢ : (a,b) — M be an inextendible geodesic of M. Then, since M is totally umbilic,
II(¢,¢) = g(¢,¢)Z, where Z is the normal curvature vector field. Thus, it suffices to show that
|| Z]|; satisfies the subaffine growth condition on M. Then, it follows from Theorem 3.4 that M is
geodesically complete. Let Lz be the second fundamental form operator in the direction Z. Then,
for X,V € I'TM, g(LzX,Y) = g(lI(X,Y), Z) = g(X,Y)g(Z,Z). Thus, Ly = g(Z,Z)id on TM,
where id : TM — TM is the identity homeomorphism. Also, since R is of constant curvature, it
follows that Z is normal parallel, and hence k = ¢(Z, Z) is constant on M (cf. [8, p. 124, Exercise 6]).
Now, let po € M and p € M be any point. Since, f is a proper immersion, (M, f*gg) is a complete
connected Riemannian manifold, and therefore there exist a geodesic v : [¢,d] — M of (M, f*gr)
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with v(¢) = po,v(d) = p and Ly(7y) = dap(po, po). Then, since Z is normal parallel, at v(¢) € M,

d

dt
= QQE([VW’Z]T> Z)
= —2g9p(LzY. Z)
= —2kgr(v', Z)
< 2[kllge(+', 2)|
< 2[klIVII N 21l g,
from Schwarz inequality, where [V, Z]T is the component of V./Z tangent to M with respect to

metric g. On the other hand, since £gg(Z, Z) = 2||Z|| 5 (& Z|| ), it follows that £ (|Z| 5 < |k| (||| -
Thus,

d
1Z@)le < HZ(po)HEHk\/ 1/l pett

= 1Z(po)ll g + k|dar (po, p)-

Therefore, || Z|| ; satisfies the subaffine growth condition on M. O

Theorem 3.7. If f : M — R be a proper immersion of a connected manifold M as a nondegenerate
totally umbilic submanifold, where dim M > 2, then M is a space form. As a partial converse, every
constant curvature hypersurface M in a semi-Euclidean space satisfies affine growth condition.

Proof. M is geodesically complete by Corollary 3.6. Since M is totally umbilic then is of constant
curvature. Hence M is a space form.

Conversely, let ¢ : [0,a) — M be an inextendable geodesic in M. Then, since M is a totally
umbilic hypersurface, I1(¢, ¢) = g(¢,¢)Z, where Z is the normal curvature vector field of M. Thus it
follows as in the above corollary that, there exist constants A and B such that ||II(¢(¢),¢(2))| 5
A+ Bdp(c(0),c(t)) for all ¢t € [0,a).

O IA

Remark 3.8. Also note that, if f: M — R} is a proper immersion of a connected manifold M of
dimension > 3 as a nondegenerate nonzero constant curvature hypersurface then, since M is totally
umbilic (cf. [8, p. 117] — which mentions only hypersurfaces, as opposed to the general codimension
of this paper), M is complete from Corollary 3.6.

It is also shown in [1] that if M is a properly immersed spacelike submanifold in R} which
has a unit normal timelike vector field satisfying the subaffine growth condition on M then M is
complete (cf. [1, Theorem 3.4]). Proof of this result uses the fact that, if z,n € R} with g(z,2) =
—1,9(n,n) = 1, and g(z,n) = 0 then |z||; > ||n| ;. However, if v > 2 then z,n € R} with
9(z,2) = —1,g9(n,n) =1, and g(z,n) = 0 implies ||z]|z > ||n||z if 2~ and n~ are linearly dependent,
where 2z~ and n~ are, respectively, the components of z and n in span{%, e % (notice that,
this is the case when v = 1). Hence, [1, Theorem 3.4] can also be extended to semi-Riemannian
submanifolds in semi-Euclidean spaces with an additional (but highly restrictive) assumption. That
is; if ¢ : (a,b) — M is a spacelike inextendible geodesic of a properly immersed nondegenerate
submanifold M in R} then, ¢ is complete if there exist a unit normal timelike vector field Z to M
along ¢ such that Z satisfies the affine growth condition along ¢ and Z~ = h(t)¢~ along ¢, where h
is a function along c.

Definition 3.9. Let M be a nondegenerate submanifold of R}, ¢ : (a,b) — M be an
inextendible geodesic of M and Z be a normal vector field to M along c. ¢ is called
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nonacute (respectively, nonobtuse) geodesic with respect to Z if gp(Z(t),c(t)) < 0 (respectively,
ge(Z(t),é(t)) > 0) for all t > ¢, for some ty € (a,b).

Examples of nonacute and nonobtuse geodesic can be obtained by intersecting hyperquadrics in
R} by the planes through the origin (cf. [8, pp. 108-114]).

Remark 3.10. Note that, if ¢ is a nonspacelike geodesic of a timelike hypersurface M in R} then ¢
is either nonobtuse or a nonacute geodesic with respect to unit normal on M (cf. [1, Lemma 4.4]).
However, a spacelike geodesic of M may be not either nonobtuse or nonacute with respect to Z.
Also, a geodesic of a nondegenerate submanifold M of codim(M) > 2 in R} may be not either
nonobtuse or nonacute.

Theorem 3.11. Let f : M — R a nondegenerate proper immersion of M. If ¢ : (a,b) — M is a
nonacute inextendable geodesic with respect to 11(¢, ¢) then b = oo.

Proof. (Following [1]). Since, % = gr(II(¢(t),c(t)), ¢(t)) < 0 for all ¢ > to for some ¢y € (a,b),
ds — l|¢]l ; is bounded on [to, b). Thus,

5 t
[ as= [ el < (s lel) e - o)
S0 to [tU’b)

where s = s(t) and sg = s(tg). On the other hand, since ¢ is inextendible in M and f is proper,
tl;r& s(t) = oo,

and therefore b = co. O

The sign € of a nondegenerate hypersurface M in a semi-Riemannian manifold (M’, g) is defined
by € = g(Z,Z), where Z is a unit normal vector field to M (cf. [8, p. 106]).

Corollary 3.12. Let f : M — R} be a proper immersion of a manifold M as a nondegenerate

hypersurface with sign e = —1 (respectively, e = 1) and let ¢ : (a,b) — M be an inextendible geodesic
of M. If unit normal vector field Z is in span{%, e %} (respectively, in span{%, ce % )

along c then c is complete.

Proof. Assumee=—1.Let, Z =37 a;(3%)and ¢ = Y"1, bi(52) along ¢, where a;(i = 1,...,v)
and b;(i = 1,...,n) are some functions along c. Then, since g(Z,¢) = 0,Y.7_; a;b; = 0 along c. Thus,

gr(Z,¢) = 0, and it follows from Theorem 3.11 that ¢ is complete since ¢ is a nonacute geodesic
with respect to I1(¢, ¢). Proof of € = 1 is similar. O

Corollary 3.13. Let f : M — R} be a proper immersion of a manifold M as a nondegenerate
hypersurface and let Z be a unit normal vector field to M. If 11z (¢, ¢) > 0 (respectively, 1z (¢, ¢) < 0)
then every nonacute (respectively, nonobtuse) inextendible geodesic ¢ : (a,b) — M with respect to Z
has domain (a,c0).

Proof. Immediate from Theorem 3.11 since 1I(¢, ¢) = 1z (¢,¢)Z. O

Remark 3.14. Let M be a nondegenerate hypersurface with sign € in R}, Z be a unit normal
vector field to M and let p be a nondegenerate plane to M. Then, from Gauss equation, the
sectional curvature K (p) of @ is given by

_ dUz(z,2) Tz (y. y) — (Tz(2,y))’]
K(p) - 2
9(, 2)g(y, y) — (9(x,y))
where p = span{z, y}. Then, if [Tz (x, z) > 0 (respectively, if Iz (x, ) < 0) for every € T'TM then
Hy(z+ty, x+ty) = Uz (x, z)+2t1z (z,y)+t21z (y,y) > 0 (respectively, < 0) for all £ € R. Thus, in

)
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either case, Iz (z, x)+2t1 7 (z,y)+t21z (y,y) > 0 for every {x,y} which span a nondegenerate plane
tangent to M. Hence, if e = 1 (respectively, e = —1) then the sectional curvatures of nondegenerate
planes tangent to M with signature (+,—) are nonpositive (respectively, nonnegative) and the
sectional curvatures of nondegenerate planes tangent to M with signature (4,4) or (—,—) are
nonpositive (respectively, nonnegative). Thus, if M is of constant curvature C' then C' = 0. Note
also that, if M is of constant curvature (C' = 0) then, M is totally geodesic iff M is totally umbilic.
(Also see the Remark below Corollary 3.6).

A nondegenerate hypersurface M in R} is called diagonal if its second fundamental form operator
is diagonalizable with respect to an orthonormal basis at each point p € M

Remark 3.15. Notice that every spacelike hypersurface M in R} is diagonal. Moreover, if principal
curvatures of M are bounded then the second fundamental form of M is bounded along the geodesics
of M. However, if M is a semi-Riemannian hypersurface in R} then, even if M is diagonal, the
fundamental form of M may not be bounded (cf. [1]).

We finally state a special case of Theorem 3.11 for diagonal semi-Riemannian hypersur-
faces in R} by extending [1, Theorem 4.5] in semi-Euclidean spaces. Let M be a diagonal
nondegenerate hypersurface. Then, since the second fundamental form of M is diagonalizable,
let {e1,...,eu,€41,..., e, } be the principle directions with corresponding principle curvatures
{k1, .. ku kyrga, ... ko } with respect to a unit normal vector field Z at each point p € M, where

, v ife=1 ,
v = . , n=n—1
v—1 ife=-1

and

( ) -1 for1<i<v
€, €;) = ) .
gien 1 for v/ +1<i<n/

Corollary 3.16. Let f : M — R} be a proper immersion of a manifold M as a diagonal semi-
Riemannian hypersurface of sign € and let Z be a unit normal vector field on M, where n > 2. If
the principle curvatures of M with respect to Z satisfy min{ky, ..., ky,} >0 > max{ky 41,...,kn}
(respectively, min{ky 41, ..., kn} > 0> max{ky,...,k}) at each point p € M then every nonobtuse
timelike (respectively, nonacute spacelike) inextendible geodesic ¢ : (a,b) — M with respect to Z has
domain (a,0).

Proof. We shall only prove the case when ¢ is nonspacelike. Proof of the case when c is spacelike
is similar. Let kg = min{ks,...,k} and Ky = max{k,11,...,kn’} at p € M. Then, for all
nonspacelike u € T}, M

My (u,u) = =Y ki(g(u,e))” + > kilg(u,e:)?
i=1 i=v’/+1

’ ’
v

ko Y (glu )2+ Ko S (g(use,)?

i=1 i=v/+1

IN

<ko |~ Nlglw e+ Y (glu,ei))
=1 i=v'+1

— kog(u,u)

<0.
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Then, from Theorem 3.11, every inextendible nonobtuse nonspacelike geodesic of M with respect to
Z has domain(a, 00). O

Note that, if M is a Lorentzian hypersurface in R} with sign e then, e = —1 iff v = 1, and
e=11iff v = 2. In [1] and [4], Beem and Ehrlich studied the nonspacelike geodesic completeness of
spacetimes which can be isometrically immersed in R} as diagonal Lorentzian hypersurfaces with
nonvanishing second fundamental form. In the remarks below, we discuss the difference between the
Lorentzian hypersurfaces in R} and R%.

4. Remarks

1. Every Lorentzian hypersurface in R} is necessarily stably causal (cf. [1]). However, a Lorentzian

hypersurface in Ry may contain closed timelike curves, for example, the pseudohyperbolic space
T contains closed timelike curves (cf. [8, p. 229]).

2. If M is a Lorentzian hypersurface in R} then a unit normal vector field can be chosen so that every
future directed (respectively, past directed) nonspacelike geodesic of M is nonobtuse (respectively,
nonacute) (cf. [1]). However, if M is a Lorentzian hypersurface in RY then a future directed
nonspacelike geodesic may be neither nonobtuse nor nonacute with respect to a unit normal
vector field. (For example, elliptic timelike geodesics of pseudohyperbolic space HY are not either
nonabtuse or nonacute).

An example of a spacetime which can be isometrically immersed in R% as a Lorentzian hypersur-
face is the universal anti-de Sitter spacetime H{L which is the universal covering space of the pseudo
hyperbolic space HT. ~? is a causally simple (but not globally hyperbolic) spacetime with constant
curvature C' < 0 (cf. [8, p. 229]).
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