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In this paper, we study the geodesic completeness of nondegenerate submanifolds in semi-Euclidean spaces by
extending the study of Beem and Ehrlich [1] to semi-Euclidean spaces. From the physical point of view, this
extend may have a significance that a semi-Euclidean space contains more variety of Lorentzian submanifolds
rather than those of Lorentzian hypersurfaces in a Minkowski space as in [1]. From mathematical point of
view, since there is no distinction in the analysis of geodesic completeness of Lorentzian submanifolds and
nondegenerate submanifolds in a semi-Euclidean space, we treat the mathematically more general case of
nondegenerate submanifolds in a semi-Euclidean space. The new ideas leading to this generalization are the
sufficient conditions for algorithms in the proofs of the results in [1]. Indeed these sufficient conditions for
the algorithms also work well for the nondegenerate submanifolds in a semi-Euclidean space.
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1. Introduction

Unlike in Riemannian Geometry, a closed imbedded submanifold of a complete semi-Riemannian
manifold may not be geodesically complete (cf. [7] and [9]). Cheng and Yau [6] have shown that a
closed imbedded spacelike hypersurface in Minkowski space is complete in the induced metric if it has
constant mean curvature. Harris [7] has shown that the assumption of constant mean curvature in the
above result can be replaced by the assumption of bounded principle curvatures. Beem and Ehrlich
[1] have obtained sufficient conditions for the geodesic completeness of a Lorentzian hypersurface M

in a Minkowski space by assuming that a unit normal vector field on M satisfies an affine growth
condition on M . In this paper, we study the geodesic completeness of nondegenerate submanifolds
in semi-Euclidean spaces by extending the study of Beem and Ehrlich [1] to semi-Euclidean spaces.
From the physical point of view, this extend may have a significance that a semi-Euclidean space
contains more variety of Lorentzian submanifolds rather than those of Lorentzian hypersurfaces in
a Minkowski space as in [1]. From mathematical point of view, since there is no distinction in the
analysis of geodesic completeness of Lorentzian submanifolds and nondegenerate submanifolds in a
semi-Euclidean space, we treat the mathematically more general case of nondegenerate submanifolds
in a semi-Euclidean space. We first state a slightly more general form of the subaffine growth
condition in [1]. Then, we show that, if the Euclidean norm of the second fundamental tensor of a

161



162 F. Erkekog̃lu

properly immersed nondegenerate submanifold M ∈ R
n
ν satisfies an affine growth condition along an

inextendible geodesic c of M then c is complete. In particular, we show that every properly immersed
totally umbilic nondegenerate submanifold M ∈ R

n
ν with dim M ≥ 2 is geodesically complete. We

call an inextendible geodesic c : (a, b) → M of M nonobtuse (respectively, nonacute) with respect to
a normal vector field Z on M if ċ(t) makes a nonobtuse (respectively, nonacute) angle with Z with
respect to the auxiliary Euclidean metric on R

n
ν . Then, we show that, if an inextendible geodesic

c : (a, b) → M of a properly immersed nondegenerate submanifold M ∈ R
n
ν is nonacute with respect

to the second fundamental form tensor along itself then b = ∞. For a holomorphic point of view
about geodesic completeness see [5].

The new ideas leading to this generalization are the sufficient conditions for algorithms in the
proofs of the results in [1]. Indeed these sufficient conditions for the algorithms also work well for
the nondegenerate submanifolds in a semi-Euclidean space. For examples, Definition 3.1, that is
the geodesic-wise version of the subaffine growth condition in [1], is sufficient for the algorithm
showing the geodesic completeness of nondegenerate submanifolds in a semi-Euclidean space. Also,
in the case of a Lorentzian hypersurface M in a Minkowski space, timelike geodesics of M makes
either nonobtuse or nonacute angle with a normal vector field of M , and hence with the second
fundamental form tensor of M along timelike geodesics of M . But the algorithm of its proof only
depends on the nonobtuse/nonacute angle it makes with the second fundamental form tensor along
these geodesics. Hence, by this observation, it can be generalized to nondegenerate submanifolds of
a semi-Euclidean space.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper.
R

n
ν denote n-dimensional semi-Euclidean space with standard metric

g = −
ν∑

i=1

dxi ⊗ dxi +
n∑

i=ν+1

dxi ⊗ dxi

and let

gE =
n∑

i=1

dxi ⊗ dxi

be the associated auxiliary Euclidean metric on R
n
ν , where 1 ≤ ν < n. (Notice that both metrics

have the same Levi–Civita connection ∇). A vector 0 	= v ∈ R
n
ν is called timelike (respectively, null

or spacelike) if g(v, v) < 0 (respectively, g(v, v) = 0 or g(v, v) > 0). An immersion f : M → R
n
ν of a

manifold M is called nondegenerate if f∗g is a (nonsingular) metric on M . Without loss of generality,
we shall always assume that f∗g is not negative definite. By a geodesic of M , we shall always mean
a geodesic of (M, f∗g). Let f : M → R

n
ν be a nondegenerate immersion of a manifold M . For each

p ∈ M , we identify TpM with f∗TpM ⊂ Tf(p)M and denote (f∗TpM)⊥ by TpM
⊥. We also identify

TpR
n
ν with R

n
ν for each p ∈ R

n
ν . The second fundamental form tensor � : TpM × TpM → TpM

⊥

of a nondegenerate submanifold in a semi-Riemannian manifold R
n
ν is defined by �(x, y) = ∇xY ⊥,

where Y ∈ ΓTM with Yp = y, ∇ is the Levi–Civita connection on R
n
ν and ∇xY ⊥ is the component

of ∇xY normal to M . The second fundamental form operator Lz : TpM → TpM in the direction
of z ∈ TpM

⊥ is defined by g(Lzx, y) = g(�(x, y), z), where x, y ∈ TpM . (Thus, Lzx = −(∇xZ)T ,
where Z is a normal extension of z to a neighborhood of p ∈ M and (∇xZ)T is the component of
∇xZ tangent to M). The second fundamental form �z in the direction z ∈ TpM

⊥ is defined by
�z(x, y) = g(Lzx, y), where x, y ∈ TpM (cf. [8, pp. 97–108]). We denote the Euclidean norm of a
vector v ∈ R

n
ν by ‖v‖E (that is ‖v‖ = [gE(v, v)]

1
2 ).

Remark 2.1. Although, in general, the induced metric on Mk may have any signature (p, q), p+q =
k, p < ν and cannot be made not negatively defined i.e., (k, 0); indeed we may assume f∗g on M
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is nonnegative definite because in case it is negative definite, we multiply g with −1 and obtain
metric f∗g on M positive definite without changing any concept in the paper. That is we consider
the immersion into R

n
n−ν instead of R

n
ν .

3. Geodesic Completeness of Nondegenerate Submanifolds

Let f : M → R
n
ν be an immersion of a manifold M . Let dM and LM (c) respectively denote the

distance function and the length of a curve c on M in the Riemannian structure of (M, f∗gE). In
[1], a normal vector field Z on a nondegenerate submanifold M in (Minkowski space) R

n
1 is said to

satisfy the subaffine growth condition on M if there exist p0 ∈ M and positive constants A, B such
that ‖Z(p)‖E ≤ A + BdM (p0, p) for all p ∈ M (cf. [1, Definition 3.3]). We now state a slightly more
general form of this definition.

Definition 3.1. Let f : M → R
n
ν be an immersion of a manifold M and let c : I → M be a curve.

A function ϕ along c is said to satisfy the affine growth condition along c if there exist a point
p0 ∈ M and positive constants A, B (which may depend on c) such that |ϕ(t)| ≤ A + BdM (p0, c(t))
for all t ∈ I. A function ϕ on M is said to satisfy the affine growth condition on M if it satisfies
the affine growth condition along each curve c : I → M . A function ϕ on M is said to satisfy
the subaffine growth condition on M if there exist p0 ∈ M and positive constants A, B such that
|ϕ(p)| ≤ A + BdM (p0, p) for all p ∈ M .

Remark 3.2. Notice that, if a function ϕ on M satisfies the subaffine growth condition on M then
ϕ satisfies the affine growth condition on M .

Recall that if c : (a, b) → M is a geodesic of a nondegenerate submanifold in R
n
ν then ∇ċċ =

�(ċ, ċ) (cf. [8, p. 103]). Let c : (a, b) → M be a geodesic of M , t0 ∈ (a, b) and s = s(t) be arc length of
a geodesic segment c|[t0,t] in (M, f∗gE). Then, since g and gE have the same Levi–Civita connection,
it follows from ds

dt = ‖ċ‖ = [gE(ċ, ċ)]
1
2 that d2s

dt2 = gE(�(ċ, ċ), ċ)[gE(ċ, ċ)]−
1
2 = gE(�(ċ, ċ), ċ

‖ċ‖E
).

Remark 3.3. The arc length s of the geodesic c of M which means in (M, gM ) is taken with respect
to induced Euclidean metric on M as indicated in the above paragraph since a geodesic with respect
to one metric is still a curve and has an arc length as a curve with respect to the other. Hence
ds
dt = ‖ċ‖. So, in the light of the above point the arc length should not be taken with respect to
induced semi-Euclidean metric on M which is nonsense in semi-Riemannian geometry since null
geodesics have zero arc length function. Consequently there is no confusion of orthogonal space of
TpM with respect to g and gE . In fact, orthogonal space to TpM with respect to gE is never used.

Theorem 3.4. Let f : M → R
n
ν be a nondegenerate proper immersion of a manifold M and let

c : (a, b) → M be an inextendible geodesic of M . If ‖�(ċ, ċ)‖E satisfies the affine growth condition
along c then c is complete.

Proof. (Following [1]). From Schwartz inequality,

d2s

dt2
= gE

(
�(ċ(t), ċ(t)),

ċ(t)
‖ċ(t)‖E

)

≤
∣∣∣∣gE

(
�(ċ(t), ċ(t)),

ċ(t)
‖ċ(t)‖E

)∣∣∣∣
≤ ‖�(ċ(t), ċ(t))‖E

≤ A + BdM (p0, c(t))

≤ A + BdM (p0, c(t0)) + BdM (c(t0), c(t))

≤ A′ + Bs,
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where p0 ∈ M, t0 ∈ (a, b), s(t) = LM (c |[t0,t]) and A′ = A + BdM (po, c(t0)). Hence, multiplying

this inequality with ds
dt (= ‖ċ‖E > 0) and integrating, we obtain [ds

dt ]
2 ≤ λ + 2A′s + Bs2, where

λ = [ds
dt (t0)]

2
. Thus, ds

dt ≤ [λ + 2A′s + Bs2]1/2, and therefore

∫ s(b−)

s0

[λ + 2A′s + Bs2]−1/2ds ≤
∫ b−

t0

dt = b− − t0,

where s0 = s(t0). On the other hand, since c is inextendible in M and f is proper,

lim
t→b−

s(t) = ∞

(cf. [2, p. 64, Lemma 2.52] or [3, p. 102, Lemma 3.65]). Hence, it suffices to show that

∫ ∞

s0

[λ + 2A′s + Bs2]−1/2ds = ∞.

It is easy to see that there exist S ∈ (s0,∞) such that [λ + 2A′s + Bs2]1/2 ≤ 2
√

Bs for all s ≥ S.
Thus,

∞ =
∫ ∞

S

(1/(2
√

Bs))ds ≤
∫ ∞

S

[λ + 2A′s + Bs2]−1/2ds.

A similar argument shows that a = ∞.

As a straightforward consequence of the above theorem, we have the following corollary.

Corollary 3.5. Let f : M → R
n
ν be a nondegenerate proper immersion of a manifold M . If

‖�(ċ, ċ)‖E satisfies the affine growth condition along every inextendable geodesic c : (a, b) → M

then M is geodesically complete.

We recall that a nondegenerate submanifold M is called umbilic at p ∈ M if there exist a normal
vector z to M at p such that �(x, y) = g(x, y)z. M is called totally umbilic if M is umbilic at
each p ∈ M . Thus, if M is totally umbilic then there is a normal vector field Z on M such that
�(X, Y ) = g(X, Y )Z, and Z is called the normal curvature vector field, where X, Y are vector fields
tangent to M (cf. [8, p. 105]).

Corollary 3.6. Let f : M → R
n
ν be a proper immersion of a connected manifold M as a nondegen-

erate totally umbilic submanifold, where dimM ≥ 2. Then M is geodesically complete.

Proof. Let c : (a, b) → M be an inextendible geodesic of M . Then, since M is totally umbilic,
�(ċ, ċ) = g(ċ, ċ)Z, where Z is the normal curvature vector field. Thus, it suffices to show that
‖Z‖E satisfies the subaffine growth condition on M . Then, it follows from Theorem 3.4 that M is
geodesically complete. Let LZ be the second fundamental form operator in the direction Z. Then,
for X, Y ∈ ΓTM , g(LZX, Y ) = g(�(X, Y ), Z) = g(X, Y )g(Z, Z). Thus, LZ = g(Z, Z)id on TM ,
where id : TM → TM is the identity homeomorphism. Also, since R

n
ν is of constant curvature, it

follows that Z is normal parallel, and hence k = g(Z, Z) is constant on M (cf. [8, p. 124, Exercise 6]).
Now, let p0 ∈ M and p ∈ M be any point. Since, f is a proper immersion, (M, f∗gE) is a complete
connected Riemannian manifold, and therefore there exist a geodesic γ : [c, d] → M of (M, f∗gE)
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with γ(c) = p0, γ(d) = p and LM (γ) = dM (p0, p0). Then, since Z is normal parallel, at γ(t) ∈ M ,

d

dt
gE(Z, Z) = 2gE(∇γ′Z, Z)

= 2gE([∇γ′Z]T , Z)

= −2gE(LZγ′, Z)

= −2kgE(γ′, Z)

≤ 2|k||gE(γ′, Z)|
≤ 2|k|‖γ′‖E‖Z‖E ,

from Schwarz inequality, where [∇γ′Z]T is the component of ∇γ′Z tangent to M with respect to
metric g. On the other hand, since d

dtgE(Z, Z) = 2‖Z‖E( d
dt‖Z‖E), it follows that d

dt‖Z‖E ≤ |k|‖γ′‖E .
Thus,

‖Z(p)‖E ≤ ‖Z(p0)‖E + |k|
∫ d

c

‖γ′‖Edt

= ‖Z(p0)‖E + |k|dM (p0, p).

Therefore, ‖Z‖E satisfies the subaffine growth condition on M .

Theorem 3.7. If f : M → R
n
ν be a proper immersion of a connected manifold M as a nondegenerate

totally umbilic submanifold, where dimM ≥ 2, then M is a space form. As a partial converse, every
constant curvature hypersurface M in a semi-Euclidean space satisfies affine growth condition.

Proof. M is geodesically complete by Corollary 3.6. Since M is totally umbilic then is of constant
curvature. Hence M is a space form.

Conversely, let c : [0, a) → M be an inextendable geodesic in M . Then, since M is a totally
umbilic hypersurface, �(ċ, ċ) = g(ċ, ċ)Z, where Z is the normal curvature vector field of M . Thus it
follows as in the above corollary that, there exist constants A and B such that ‖�(ċ(t), ċ(t))‖E ≤
A + BdM (c(0), c(t)) for all t ∈ [0, a).

Remark 3.8. Also note that, if f : M → R
n
ν is a proper immersion of a connected manifold M of

dimension ≥ 3 as a nondegenerate nonzero constant curvature hypersurface then, since M is totally
umbilic (cf. [8, p. 117] — which mentions only hypersurfaces, as opposed to the general codimension
of this paper), M is complete from Corollary 3.6.

It is also shown in [1] that if M is a properly immersed spacelike submanifold in R
n
1 which

has a unit normal timelike vector field satisfying the subaffine growth condition on M then M is
complete (cf. [1, Theorem 3.4]). Proof of this result uses the fact that, if z, n ∈ R

n
1 with g(z, z) =

−1, g(n, n) = 1, and g(z, n) = 0 then ‖z‖E ≥ ‖n‖E . However, if ν ≥ 2 then z, n ∈ R
n
ν with

g(z, z) = −1, g(n, n) = 1, and g(z, n) = 0 implies ‖z‖E ≥ ‖n‖E if z− and n− are linearly dependent,
where z− and n− are, respectively, the components of z and n in span{ ∂

∂x1 , . . . , ∂
∂xν } (notice that,

this is the case when ν = 1). Hence, [1, Theorem 3.4] can also be extended to semi-Riemannian
submanifolds in semi-Euclidean spaces with an additional (but highly restrictive) assumption. That
is; if c : (a, b) → M is a spacelike inextendible geodesic of a properly immersed nondegenerate
submanifold M in R

n
ν then, c is complete if there exist a unit normal timelike vector field Z to M

along c such that Z satisfies the affine growth condition along c and Z− = h(t)ċ− along c, where h

is a function along c.

Definition 3.9. Let M be a nondegenerate submanifold of R
n
ν , c : (a, b) → M be an

inextendible geodesic of M and Z be a normal vector field to M along c. c is called
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nonacute (respectively, nonobtuse) geodesic with respect to Z if gE(Z(t), ċ(t)) ≤ 0 (respectively,
gE(Z(t), ċ(t)) ≥ 0) for all t ≥ t0 for some t0 ∈ (a, b).

Examples of nonacute and nonobtuse geodesic can be obtained by intersecting hyperquadrics in
R

n
ν by the planes through the origin (cf. [8, pp. 108–114]).

Remark 3.10. Note that, if c is a nonspacelike geodesic of a timelike hypersurface M in R
n
1 then c

is either nonobtuse or a nonacute geodesic with respect to unit normal on M (cf. [1, Lemma 4.4]).
However, a spacelike geodesic of M may be not either nonobtuse or nonacute with respect to Z.
Also, a geodesic of a nondegenerate submanifold M of codim(M) ≥ 2 in R

n
1 may be not either

nonobtuse or nonacute.

Theorem 3.11. Let f : M → R
n
ν a nondegenerate proper immersion of M. If c : (a, b) → M is a

nonacute inextendable geodesic with respect to �(ċ, ċ) then b = ∞.

Proof. (Following [1]). Since, d2s
dt2 = gE(�(ċ(t), ċ(t)), ċ(t)) ≤ 0 for all t ≥ t0 for some t0 ∈ (a, b),

ds
dt = ‖ċ‖

E
is bounded on [t0, b). Thus,∫ s

s0

ds =
∫ t

t0

‖ċ‖E ≤
(

sup
[t0,b)

‖ċ‖E

)
(t − t0),

where s = s(t) and s0 = s(t0). On the other hand, since c is inextendible in M and f is proper,

lim
t→t0

s(t) = ∞,

and therefore b = ∞.

The sign ε of a nondegenerate hypersurface M in a semi-Riemannian manifold (M ′, g) is defined
by ε = g(Z, Z), where Z is a unit normal vector field to M (cf. [8, p. 106]).

Corollary 3.12. Let f : M → R
n
ν be a proper immersion of a manifold M as a nondegenerate

hypersurface with sign ε = −1 (respectively, ε = 1) and let c : (a, b) → M be an inextendible geodesic
of M . If unit normal vector field Z is in span{ ∂

∂x1 , . . . , ∂
∂xν } (respectively, in span{ ∂

∂xν+1 , . . . , ∂
∂xn })

along c then c is complete.

Proof. Assume ε = −1. Let, Z =
∑ν

i=1 ai( ∂
∂xi ) and ċ =

∑n
i=1 bi( ∂

∂xi ) along c, where ai(i = 1, . . . , ν)
and bi(i = 1, . . . , n) are some functions along c. Then, since g(Z, ċ) = 0,

∑ν
i=1 aibi = 0 along c. Thus,

gE(Z, ċ) = 0, and it follows from Theorem 3.11 that c is complete since c is a nonacute geodesic
with respect to �(ċ, ċ). Proof of ε = 1 is similar.

Corollary 3.13. Let f : M → R
n
ν be a proper immersion of a manifold M as a nondegenerate

hypersurface and let Z be a unit normal vector field to M . If �Z(ċ, ċ) ≥ 0 (respectively,�Z(ċ, ċ) ≤ 0)
then every nonacute (respectively, nonobtuse) inextendible geodesic c : (a, b) → M with respect to Z

has domain (a,∞).

Proof. Immediate from Theorem 3.11 since �(ċ, ċ) = �Z(ċ, ċ)Z.

Remark 3.14. Let M be a nondegenerate hypersurface with sign ε in R
n
ν , Z be a unit normal

vector field to M and let ℘ be a nondegenerate plane to M . Then, from Gauss equation, the
sectional curvature K(℘) of ℘ is given by

K(℘) =
ε[�Z(x, x) �Z (y, y) − (�Z(x, y))2]

g(x, x)g(y, y) − (g(x, y))2
,

where ℘ = span{x, y}. Then, if �Z(x, x) ≥ 0 (respectively, if �Z(x, x) ≤ 0) for every x ∈ ΓTM then
�Z(x+ty, x+ty) = �Z(x, x)+2t�Z (x, y)+t2�Z (y, y) ≥ 0 (respectively, ≤ 0) for all t ∈ R. Thus, in
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either case, �Z(x, x)+2t�Z (x, y)+t2�Z (y, y) ≥ 0 for every {x, y} which span a nondegenerate plane
tangent to M . Hence, if ε = 1 (respectively, ε = −1) then the sectional curvatures of nondegenerate
planes tangent to M with signature (+,−) are nonpositive (respectively, nonnegative) and the
sectional curvatures of nondegenerate planes tangent to M with signature (+, +) or (−,−) are
nonpositive (respectively, nonnegative). Thus, if M is of constant curvature C then C = 0. Note
also that, if M is of constant curvature (C = 0) then, M is totally geodesic iff M is totally umbilic.
(Also see the Remark below Corollary 3.6).

A nondegenerate hypersurface M in R
n
ν is called diagonal if its second fundamental form operator

is diagonalizable with respect to an orthonormal basis at each point p ∈ M

Remark 3.15. Notice that every spacelike hypersurface M in R
n
ν is diagonal. Moreover, if principal

curvatures of M are bounded then the second fundamental form of M is bounded along the geodesics
of M . However, if M is a semi-Riemannian hypersurface in R

n
ν then, even if M is diagonal, the

fundamental form of M may not be bounded (cf. [1]).
We finally state a special case of Theorem 3.11 for diagonal semi-Riemannian hypersur-

faces in R
n
ν by extending [1, Theorem 4.5] in semi-Euclidean spaces. Let M be a diagonal

nondegenerate hypersurface. Then, since the second fundamental form of M is diagonalizable,
let {e1, . . . , eν′ , eν′+1, . . . , en′} be the principle directions with corresponding principle curvatures
{k1, . . . , kν′ , kν′+1, . . . , kn′} with respect to a unit normal vector field Z at each point p ∈ M , where

ν′ =

{
ν if ε = 1
ν − 1 if ε = −1

, n′ = n − 1

and

g(ei, ei) =

{
−1 for 1 ≤ i ≤ ν′

1 for ν′ + 1 ≤ i ≤ n′ .

Corollary 3.16. Let f : M → R
n
ν be a proper immersion of a manifold M as a diagonal semi-

Riemannian hypersurface of sign ε and let Z be a unit normal vector field on M, where n ≥ 2. If
the principle curvatures of M with respect to Z satisfy min{k1, . . . , kν′} ≥ 0 ≥ max{kν′+1, . . . , kn′}
(respectively, min{kν′+1, . . . , kn′} ≥ 0 ≥ max{k1, . . . , kν′}) at each point p ∈ M then every nonobtuse
timelike (respectively, nonacute spacelike) inextendible geodesic c : (a, b) → M with respect to Z has
domain (a,∞).

Proof. We shall only prove the case when c is nonspacelike. Proof of the case when c is spacelike
is similar. Let k0 = min{k1, . . . , kν′} and K0 = max{kν′+1, . . . , kn′} at p ∈ M . Then, for all
nonspacelike u ∈ TpM

�Z(u, u) = −
ν′∑

i=1

ki(g(u, ei))2 +
n′∑

i=ν′+1

ki(g(u, ei))2

≤ −k0

ν′∑
i=1

(g(u, ei))2 + K0

n′∑
i=ν′+1

(g(u, ei))2

≤ k0

⎡
⎣− ν′∑

i=1

(g(u, ei))2 +
n′∑

i=ν′+1

(g(u, ei))2

⎤
⎦

= k0g(u, u)

≤ 0.
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Then, from Theorem 3.11, every inextendible nonobtuse nonspacelike geodesic of M with respect to
Z has domain(a,∞).

Note that, if M is a Lorentzian hypersurface in R
n
ν with sign ε then, ε = −1 iff ν = 1, and

ε = 1 iff ν = 2. In [1] and [4], Beem and Ehrlich studied the nonspacelike geodesic completeness of
spacetimes which can be isometrically immersed in R

n
1 as diagonal Lorentzian hypersurfaces with

nonvanishing second fundamental form. In the remarks below, we discuss the difference between the
Lorentzian hypersurfaces in R

n
1 and R

n
2 .

4. Remarks

1. Every Lorentzian hypersurface in R
n
1 is necessarily stably causal (cf. [1]). However, a Lorentzian

hypersurface in R
n
2 may contain closed timelike curves, for example, the pseudohyperbolic space

H
n
1 contains closed timelike curves (cf. [8, p. 229]).

2. If M is a Lorentzian hypersurface in R
n
1 then a unit normal vector field can be chosen so that every

future directed (respectively, past directed) nonspacelike geodesic of M is nonobtuse (respectively,
nonacute) (cf. [1]). However, if M is a Lorentzian hypersurface in R

n
2 then a future directed

nonspacelike geodesic may be neither nonobtuse nor nonacute with respect to a unit normal
vector field. (For example, elliptic timelike geodesics of pseudohyperbolic space H

n
1 are not either

nonabtuse or nonacute).

An example of a spacetime which can be isometrically immersed in R
n
2 as a Lorentzian hypersur-

face is the universal anti-de Sitter spacetime H̃
n
1 which is the universal covering space of the pseudo

hyperbolic space H
n
1 . H̃

n
1 is a causally simple (but not globally hyperbolic) spacetime with constant

curvature C < 0 (cf. [8, p. 229]).
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