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In this paper, we first obtain Wronskian solutions to the Bäcklund transformation of the Leznov lattice
and then derive the coupled system for the Bäcklund transformation through Pfaffianization. It is shown
the coupled system is nothing but the Bäcklund transformation for the coupled Leznov lattice introduced
by J. Zhao etc. [1]. This implies that Pfaffianization and Bäcklund transformation is commutative for the
Leznov lattice. Moreover, since the two-dimensional Toda lattice constitutes the Leznov lattice, it is obvious
that the commutativity is also valid for it.
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1. Introduction

Bäcklund transformations play a very important role and have made great contributions in the
development of soliton theory [2, 3]. As the transformation between a solution of a given linear or
nonlinear differential equation and another solution to another same or different differential equation,
a Bäcklund transformation provides us a powerful tool to construct solutions. Moreover, its bilinear
form not only generate Lax pairs used in the inverse scattering method in a standard way, but also
new soliton equations and Miura transformations. A typical example is the Bäcklund transformation
for the KdV equation which can be used to derive Lax pair for the KdV equation, generate the
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modified KdV equation (mKdV) and the Miura transformation between the KdV equation and the
mKdV equation [4, 5].

Pfaffians are more general than determinants and have richer structures. Many interesting fea-
tures of pfaffians have been discovered through research into soliton equations. The pfaffianization
procedure, introduced by Hirota and Ohta in 1991 [6], is a fairly effective technique to general-
ize soliton equations with determinant solutions into their coupled systems with pfaffian solutions.
Recently, this procedure has been successfully applied to several important equations [7–13]. Besides,
Gilson has also generalized all the equations in bilinear KP hierarchy to their pfaffian forms [14].

So far, the solutions to bilinear equations are expressed by determinants or pfaffians. Determi-
nants are for the KP hierarchy. The pfaffian representations are for the B-type KP hierarchy and
for the coupled KP hierarchy. As the Bäcklund transformation for the KP equation, the modified
KP equation also has determinant solutions and thus can be pfaffianized. Based on these facts, Hu
etc. proposed the idea of commutativity of pfaffianization and Bäcklund transformation for the KP
equation in [15]. They successfully derived the Bäcklund transformation for the coupled KP equation
[6], which to a certain point, solved the open problem posed by Hirota in his book [4]: What kind of
soliton equations are generated from Bäcklund transformation formulae of the coupled KP equation?
The main idea of commutativity of pfaffianization and BT (CPBT) may be explained as follows.
Given a general soliton equation, say Σ, suppose that the coupled Σ system is generated through
pfaffianization of Σ and the modified Σ (mΣ) system also serves as a BT for Σ, then the system
derived by pfaffianizing mΣ should provide us with a Bäcklund transformation for the coupled Σ if
the CPBT is valid for Σ (see Fig. 1).

In the present paper, we show that the commutativity of pfaffianization and BT, is also valid for
the two-dimensional Leznov lattice. It is worth to point out that the commutativity is also valid for
the two-dimensional Toda lattice equation as proved in [23], noting that the bilinear system of the
Leznov lattice is nothing but the bilinear form of the two-dimensional Toda lattice plus one more
equation.

The paper is organized as follows. In Sec. 2, we present Wronskian solutions to the modified
Leznov lattice. In Sec. 3, we derive the pfaffianized system to the modified Leznov lattice. In Sec. 4,
we show that the pfaffianized system constitutes a Bäcklund transformation for the coupled Leznov
lattice. Further discussions are given in Sec. 5.

2. Wronskian Solutions to the Modified Leznov Lattice

The Leznov lattice under consideration is given by [16]

∂2

∂x∂y
ln θn = θn+1Pn+1 − 2θnPn + θn−1Pn−1, (2.1)

∂Pn

∂y
= θn+1 − θn−1, (2.2)

Σ coupled Σ

mΣ Pfaffianized mΣ

�Pfaffianization

�Pfaffianization

�

BT

�

BT

Fig. 1.
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which occurs as a special case of the so-called U-Toda system UT (m1, m2) with m1 = 1 and m2 = 2.
By introducing an additional variable z and the following dependent variable transformations:

θn =
fn+1fn−1

f2
n

, Pn =
1
2

DxDyfn · fn

fn+1fn−1
,

we obtain the bilinear form of the Leznov lattice (2.1)–(2.2) [17]

[DyDz − 2(eDn − 1)]fn · fn = 0, (2.3)

(DyDx − 2Dze
Dn)fn · fn = 0. (2.4)

where the bilinear operators DxDs and exp(Dn) are defined by [4, 18]

DxDsa · b ≡
(

∂

∂x
− ∂

∂x′

) (
∂

∂s
− ∂

∂s′

)
a(x, s)b(x′, s′)|x′=x,s′=s

and

exp(Dn)an · bn ≡ an+1bn−1.

It has the following Bäcklund Transformation [17]

(Dz − λ−1eDn − μ)fn · f ′
n = 0, (2.5)

(Dye
Dn
2 + λe

−Dn
2 − γe

Dn
2 )fn · f ′

n = 0, (2.6)

(Dx − λ−1Dze
Dn − λ−1μeDn + k)fn · f ′

n = 0. (2.7)

Considering the special case λ = γ = k = 1 and μ = −1, we have the modified Leznov lattice

(Dz − eDn + 1)fn · f ′
n = 0, (2.8)

(Dye
Dn
2 + e

−Dn
2 − e

Dn
2 )fn · f ′

n = 0, (2.9)

(Dx − Dze
Dn − eDn + 1)fn · f ′

n = 0. (2.10)

Similar to the 2D modified Toda equation [4], we can easily show that the soliton solutions to
(2.8)–(2.10) can be expressed as determinants

fn = det(φi(n + j − 1))1≤i,j≤N , f ′
n = det(φ̂i(n + j − 1))1≤i,j≤N , (2.11)

where φi(m) and φ̂i(m) satisfy the following relations:

φ̂i(m) = φi(m + 1) − φi(m),
∂

∂x
φi(m) = −φi(m − 2), (2.12)

∂

∂y
φi(m) = φi(m + 1),

∂

∂z
φi(m) = −φi(m − 1), (2.13)

for i = 1, 2, . . . , N.

In fact, we can express fn and f ′
n in a compact form [19, 20]

f ′
n = |0̂, . . . , ̂N − 1|, f ′

n+1 = |1̂, . . . , N̂ |, (2.14)

fn = |0, 0̂, . . . , ̂N − 2| = |−̂1, 0̂, . . . , ̂N − 2| + | − 1, 0̂, . . . , ̂N − 2|, (2.15)

where j − 1 and ̂j − 1 denotes the column vector (φ1(n + j − 1), φ2(n + j − 1), . . . , φn(n + j − 1))T

and (φ̂1(n + j − 1), φ̂2(n + j − 1), . . . , φ̂n(n + j − 1))T respectively. By using the dispersion relation
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(2.12) and (2.13), we obtain the differential and difference formulae

f ′
n−1 = |−̂1, . . . , ̂N − 2|, ∂

∂y
f ′

n = |0̂, . . . , ̂N − 2, N̂ |,

∂

∂x
f ′

n = |−̂1, 0̂, 2̂, . . . , ̂N − 1| − |−̂2, 1̂, . . . , ̂N − 1|,

∂

∂z
f ′

n = −|−̂1, 1̂, . . . , ̂N − 1| ∂

∂z
f ′

n−1 = −|−̂2, 0̂, . . . , ̂N − 2|,

fn+1 = |1, 1̂, . . . , ̂N − 1| = |0̂, . . . , ̂N − 1| + |0, 1̂, . . . , ̂N − 1|,
∂

∂x
fn = −| − 2, 0̂, . . . , ̂N − 2| − |0, −̂2, 1̂, . . . , ̂N − 2| + |0, −̂1, 0̂, 2̂, . . . , ̂N − 2|,

∂

∂y
fn+1 = |0̂, . . . , ̂N − 2, N̂ | + |1, 1̂, . . . , ̂N − 1| + |0, 1̂, . . . , ̂N − 2, N̂ |,

∂

∂z
fn = −| − 1, 0̂, . . . , ̂N − 2| − |0, −̂1, 1̂, . . . , ̂N − 2|

= −| − 1, 0̂, . . . , ̂N − 2| − | − 1, −̂1, 1̂, . . . , ̂N − 2|,
∂

∂z
fn+1 = −|0, 1̂, . . . , ̂N − 1| − |1, 0̂, 2̂, . . . , ̂N − 1|

= −|0, 1̂, . . . , ̂N − 1| − |0, 0̂, 2̂, . . . , ̂N − 1|.
Substitution of the above expressions into the modified Leznov lattice will lead to the following
Plücker relation respectively

(Dz + e−Dn − 1)f ′
n · fn = fn

∂

∂z
f ′

n − f ′
n

∂

∂z
fn + f ′

n−1fn+1 − f ′
nfn

= |−̂1, . . . , ̂N − 2| × |0, 1̂, . . . , ̂N − 1| − |−̂1, 1̂, . . . , ̂N − 1| × |0, 0̂, . . . , ̂N − 2|
+ |0̂, . . . , ̂N − 1| × |0, −̂1, 1̂, . . . , ̂N − 2| ≡ 0, (2.16)

(Dye−
Dn
2 − e

Dn
2 + e−

Dn
2 )f ′

n · fn = fn+1
∂

∂y
f ′

n − f ′
n

∂

∂y
fn+1 − f ′

n+1fn + f ′
nfn+1

= |0̂, . . . , ̂N − 2, N̂ | × |0, 1̂, . . . , ̂N − 1| − |0̂, . . . , ̂N − 1| × |0, 1̂, . . . , ̂N − 2, N̂ |
− |1̂, . . . , N̂ | × |0, 0̂, . . . , ̂N − 2| ≡ 0, (2.17)

(Dze
−Dn − e−Dn − Dx + 1)f ′

n · fn

= fn+1
∂

∂z
f ′

n−1 − f ′
n−1

∂

∂z
fn+1 − fn

∂

∂x
f ′

n + f ′
n

∂

∂x
fn − f ′

n−1fn+1 + fnf ′
n

= |0, 0̂, . . . , ̂N − 2| × |−̂2, 1̂, . . . , ̂N − 1| − |−̂2, 0̂, . . . , ̂N − 2| × |0, 1̂, . . . , ̂N − 1|
− |0̂, . . . , ̂N − 1| × |0, −̂2, 1̂, . . . , ̂N − 2| + |0̂, . . . , ̂N − 1| × |0, −̂1, 0̂, 2̂, . . . , ̂N − 2|
− |0, 0̂, . . . , ̂N − 2| × |−̂1, 0̂, 2̂, . . . , ̂N − 1| − |−̂1, . . . , ̂N − 2| × |0, 0̂, 2̂, . . . , ̂N − 1| ≡ 0. (2.18)

Therefore, the modified Leznov lattice has Wronskian solutions fn and f ′
n given by (2.11).

3. Pfaffianization of the Modified Leznov Lattice

Generally speaking, for high-dimensional soliton equations with Wronskian solutions, we can always
obtain their coupled systems through pfaffianization. In this section, we will consider the coupled
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system for the modified Leznov lattice (2.8)–(2.10) in the same way. In order to do this, we replace
fn and f ′

n expressed as determinants with those expressed as pfaffians

fn = pf(1, 2, . . . , N)n, f ′
n = pf(1, 2, . . . , N, N + 1, c)n, N is even, (3.1)

whose entries satisfy

∂

∂x
pf(i, j)n = −pf(i − 2, j)n − pf(i, j − 2)n,

∂

∂y
pf(i, j)n = pf(i + 1, j)n + pf(i, j + 1)n,

∂

∂z
pf(i, j)n = −pf(i − 1, j)n − pf(i, j − 1)n,

pf(i, j)n+1 = pf(i + 1, j + 1)n, pf(i, c)n = 1.

Then we can calculate that

fn,x = pf(0, 1, 3, . . . , N)n − pf(−1, 2, . . . , N)n, fn,z = −pf(0, 2, . . . , N)n, (3.2)

fn+1 = pf(2, 3, . . . , N, N + 1)n, fn+1,y = pf(2, . . . , N, N + 2)n, (3.3)

f ′
n+1 = pf(2, . . . , N + 2, c)n, f ′

n−1 = pf(0, . . . , N, c)n, (3.4)

f ′
n,x = pf(1, . . . , N + 1, c)n − pf(−1, 2, . . . , N + 1, c)n + pf(0, 1, 3, . . . , N + 1, c)n, (3.5)

f ′
n,y = pf(1, . . . , N, N + 2, c)n − pf(1, . . . , N + 1, c)n, (3.6)

f ′
n,z = pf(1, . . . , N + 1, c)n − pf(0, 2, . . . , N + 1, c)n. (3.7)

Following Hirota and Ohta’s procedure, we now introduce four new functions defined by

σn = pf(0, 1, . . . , N, N + 1)n, g′n = pf(0, 1, . . . , N + 1, N + 2, c)n, (3.8)

gn = pf(2, 3, . . . , N − 1)n, σ′
n = pf(2, 3, . . . , N − 1, N, c)n, (3.9)

Then we can show that fn, f ′
n, gn, g′n, σn, and σ′

n so defined satisfy the following bilinear equations

(Dz + e−Dn − 1)f ′
n · fn − σnσ′

n = 0, (3.10)

(Dye−
Dn
2 − e

Dn
2 + e−

Dn
2 )f ′

n · fn + e
Dn
2 σnσ′

n = 0, (3.11)

(Dze
−Dn − e−Dn − Dx + 1)f ′

n · fn − σnσ′
n − Dzσn · σ′

n = 0, (3.12)

Dzfn · σ′
n−1 + fn−1σ

′
n + fnσ′

n−1 − f ′
n−1gn = 0, (3.13)

Dzσn+1 · f ′
n + σnf ′

n+1 + σn+1f
′
n − fn+1g

′
n = 0, (3.14)

Dyfn · σ′
n − fn+1σ

′
n−1 − fnσ′

n + gnf ′
n = 0, (3.15)

Dyσn · f ′
n − σn+1f

′
n−1 − σnf ′

n + fng′n = 0, (3.16)

Dzf
′
n+1 · σn − Dxf ′

n · σn+1 − f ′
n+1σn + f ′

nσn+1 + Dzg
′
n · fn+1 − g′nfn+1 = 0, (3.17)

Dzσ
′
n · fn−1 − Dxσ′

n−1 · fn − σ′
nfn−1 + σ′

n−1fn − Dzgn · f ′
n−1 − gnf ′

n−1 = 0. (3.18)

In fact, substitution of (3.1)–(3.9) into (3.10) will lead to the following pfaffian algebraic identity
[5, 6]

pf(a1, a2, . . . , aN−1, α, β, γ)npf(a1, a2, . . . , aN−1, δ)n

− pf(a1, a2, . . . , aN−1, α, β, δ)npf(a1, a2, . . . , aN−1, γ)n

+ pf(a1, a2, . . . , aN−1, α, γ, δ)npf(a1, a2, . . . , aN−1, β)n

− pf(a1, a2, . . . , aN−1, β, γ, δ)npf(a1, a2, . . . , aN−1, , α)n = 0. (3.19)
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where the list {a1, a2, . . . , aN−1} represents {2, 3, . . . , N} and the list {α, β, γ, δ} is chosen to be
{0, 1, N + 1, c}. Thus, (3.10) holds. Similarly, we can prove that (3.11) and (3.12) also hold. More-
over, with the help of another pfaffian identity

pf(a1, a2, . . . , aN−2, α, β, γ, δ)npf(a1, a2, . . . , aN−2)n

− pf(a1, a2, . . . , aN−2, α, β)npf(a1, a2, . . . , aN−2, γ, δ)n

+ pf(a1, a2, . . . , aN−2, α, γ)npf(a1, a2, . . . , aN−2, β, δ)n

−pf(a1, a2, . . . , aN−2, α, δ)npf(a1, a2, . . . , aN−2, β, γ)n = 0, (3.20)

we can prove that (3.13)–(3.18) hold. Therefore Eqs. (3.10)–(3.18) constitute a pfaffianized version
of the modified Leznov lattice (2.8)–(2.10).

4. Bäcklund Transformation for the Pfaffianized Leznov Lattice

Recall that fn, σn and gn given by (3.1), (3.8) and (3.9) are solutions to the following coupled Leznov
lattice [1]

[DyDz − 2(eDn − 1)]fn · fn + 2σngn = 0, (4.1)

(DxDy − 2Dze
Dn)fn · fn = 2Dzσn · gn, (4.2)

Dye−
1
2Dnσn · fn = −Dze

1
2 Dnσn · fn, (4.3)

Dye
− 1

2Dnfn · gn = −Dze
1
2 Dnfn · gn, (4.4)

which is generated through pfaffianization of the Leznov lattice (2.3) and (2.4). Then we have

Proposition 4.1. The pfaffianized version (3.10)–(3.18) of the modified Leznov lattice (2.8)–(2.10)
serves as a BT for the coupled Leznov lattice (4.1)–(4.3).

Proof. For the sake of convenience, we introduce an additional discrete variable m and set

fn = fn(m), σn = fn(m + 1), gn = fn(m − 1), (4.5)

f ′
n = f ′

n(m), g′n = f ′
n(m + 1), σ′

n = f ′
n(m − 1). (4.6)

Then Eqs. (4.1)–(4.3) are reduced to

[DyDz − 2(eDn − 1)]fn · fn + 2fm+1fm−1 = 0, (4.7)

(DxDy − 2Dze
Dn − 2Dze

Dm)fn · fn = 0, (4.8)

Dye−
1
2Dn+ Dm

2 fn · fn = −Dze
1
2Dn+ Dm

2 fn · fn. (4.9)

In this case, (3.10)–(3.18) are transformed into

(Dye−
1
2Dn − e

1
2 Dn + e−

1
2 Dn + e−Dm− 1

2Dn)f ′
n(m) · fn(m) = 0, (4.10)

(Dz − eDn + eDm + 1)fn(m) · f ′
n(m) = 0, (4.11)

(Dye−
1
2 Dm + e−Dn− 1

2 Dm + e−
1
2Dm − e

1
2Dm)f ′

n(m) · fn(m) = 0, (4.12)

(Dze
1
2Dn+ 1

2Dm + e−
1
2Dn+ 1

2 Dm + e
1
2Dn+ 1

2Dm − e
1
2 Dn− 1

2Dm)fn(m) · f ′
n(m) = 0, (4.13)

(Dze
−Dn − e−Dn − Dx + 1 − e−Dm + Dze

−Dm)f ′
n(m) · fn(m) = 0, (4.14)

(Dze
Dn
2 −Dm

2 − Dxe−
Dn
2 −Dm

2 − e
Dn
2 −Dm

2

+ e−
Dn
2 −Dm

2 + Dze
Dm
2 −Dn

2 − e
Dm
2 −Dn

2 )f ′
n(m) · fn(m) = 0. (4.15)
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Therefore what we need to do is to prove that (4.10)–(4.15) are a bilinear BT for (4.7)–(4.9), i.e.
the following equations hold,

P1 ≡ [DyDz − 2(eDn − 1) + 2eDm ]f ′
n(m) · f ′

n(m) = 0,

P2 ≡ (Dye
1
2 Dm− 1

2 Dn + Dze
1
2 Dm+ 1

2Dn)f ′
n(m) · f ′

n(m) = 0,

P3 = (DxDy − 2Dze
Dn − 2Dze

Dm)f ′
n(m) · f ′

n(m) = 0.

In fact, by using (4.10)–(4.15) and the bilinear identities in Appendix, we can precisely show that

−fn(m)2P1 ≡ [DyDzfn(m) · fn(m) − 2fn+1(m)fn−1(m) + 2fn(m)2

+ 2fn(m + 1)fn(m − 1)]f ′
n(m)2 − [DyDzf

′
n(m) · f ′

n(m) − 2f ′
n+1(m)f ′

n−1(m)

+ 2f ′
n(m)2 + 2f ′

n(m + 1)f ′
n(m − 1)]fn(m)2

= 2Dy[Dzfn(m) · f ′
n(m) − fn+1(m)f ′

n−1(m) + fn(m + 1)f ′
n(m − 1)

+ fn(m)f ′
n(m)] · (fn(m)f ′

n(m)) + 2[(Dyfn+1(m) · f ′
n(m) + fn(m)f ′

n+1(m)

− fn+1(m)f ′
n(m) − fn+1(m + 1)f ′

n(m − 1))]fn(m)f ′
n−1(m) − 2[(Dyfn(m) · f ′

n−1(m)

+ fn−1(m)f ′
n(m) − fn(m)f ′

n−1(m) − fn(m + 1)f ′
n−1(m − 1))]fn+1(m)f ′

n(m)

− 2[(Dyfn(m + 1) · f ′
n(m) − fn+1(m + 1)f ′

n−1(m) − fn(m + 1)f ′
n(m)

+ fn(m)f ′
n(m + 1))]fn(m)f ′

n(m − 1) − 2[(Dyfn(m) · f ′
n(m − 1)

− fn+1(m)f ′
n−1(m − 1) − fn(m)f ′

n(m − 1) + fn(m − 1)f ′
n(m))]fn(m + 1)f ′

n(m)

= 0,

−[e
1
2Dm+ 1

2 Dnfn(m) · fn(m)]P2

≡ [(Dye
1
2Dm− 1

2Dn + Dze
1
2 Dm+ 1

2Dn)fn(m) · fn(m)][e
1
2Dm+ 1

2Dnf ′
n(m) · f ′

n(m)]

− [(Dye
1
2Dm− 1

2Dn + Dze
1
2 Dm+ 1

2Dn)f ′
n(m) · f ′

n(m)][e
1
2 Dm+ 1

2Dnfn(m) · fn(m)]

= 2 sinh
(

1
2
Dm

)
(Dye

1
2 Dnfn(m) · f ′

n(m)) · (e− 1
2 Dnfn(m) · f ′

n(m))

− 2 sinh
(

1
2
Dn

)
(Dye

1
2 Dmfn(m) · f ′

n(m)) · (e− 1
2Dmfn(m) · f ′

n(m))

+ 2 sinh
(

1
2
Dm +

1
2
Dn

)
(Dzfn(m) · f ′

n(m)) · fn(m)f ′
n(m)

= 2 sinh
(

1
2
Dm

)
[(e

1
2Dn + e

1
2Dn+Dm)fn(m) · f ′

n(m)] · (e− 1
2Dnfn(m) · f ′

n(m))

− 2 sinh
(

1
2
Dn

)
[(e

1
2Dm + eDn+ 1

2Dm)fn(m) · f ′
n(m)] · (e− 1

2Dmfn(m) · f ′
n(m))

+ 2 sinh
(

1
2
Dm +

1
2
Dn

)
[(eDn − eDm)fn(m) · f ′

n(m)] · (fn(m)f ′
n(m))

= 0,

f2
n(m)P3 ≡ f2

n(m)(DxDy − 2Dze
Dn − 2Dze

Dm)f ′
n(m) · f ′

n(m)

− f ′2
n (m)(DxDy − 2Dze

Dn − 2Dze
Dm)fn(m) · fn(m)
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= 2Dy(Dxf ′
n(m) · fn(m)) · f ′

n(m)fn(m)

− 4Dz cosh
Dn

2
(e

Dn
2 f ′

n(m) · fn(m)) · (e−Dn
2 f ′

n(m) · fn(m))

− 4Dz cosh
Dm

2
(e

Dm
2 f ′

n(m) · fn(m)) · (e−Dm
2 f ′

n(m) · fn(m))

= 2Dy(Dxf ′
n(m) · fn(m)) · f ′

n(m)fn(m)

− 4Dz cosh
Dn

2
[(Dye−

Dn
2 + e−Dm−Dn

2 )f ′
n(m) · fn(m)] · (e−Dn

2 f ′
n(m) · fn(m))

− 4Dz cosh
Dm

2
[(Dye−

Dm
2 + e−Dn−Dm

2 )f ′
n(m) · fn(m)] · (e−Dm

2 f ′
n(m) · fn(m))

= 2Dy(Dxf ′
n(m) · fn(m)) · f ′

n(m)fn(m)

− 2Dy[(Dzf
′
n(m) · fn(m)) · (e−Dnf ′

n(m) · fn(m))

− f ′
n(m)fn(m) · (Dze

−Dnf ′
n(m) · fn(m))]

− 2Dy[(Dzf
′
n(m) · fn(m)) · (e−Dmf ′

n(m) · fn(m))

− fn(m)′fn(m) · (Dze
−Dmf ′

n(m) · fn(m))]

− 4Dz cosh
Dn

2
[e−Dm−Dn

2 f ′
n(m) · fn(m)] · (e−Dn

2 f ′
n(m) · fn(m))

− 4Dz cosh
Dm

2
[e−Dn−Dm

2 f ′
n(m) · fn(m)] · (e−Dm

2 f ′
n(m) · fn(m))

= 2Dyf
′
n(m)fn(m) · [(−Dx + Dze

−Dn + Dze
−Dm − e−Dn − e−Dm)f ′

n(m) · fn(m)]

+ 4[Dzf
′
n(m) · f ′

n−1(m − 1) + Dyf
′
n−1(m) · f ′

n(m − 1)]fn(m + 1)fn+1(m)

+ 4[Dzfn(m) · fn+1(m + 1) + Dyfn+1(m) · fn(m + 1)]f ′
n−1(m)f ′

n(m − 1)

= 0.

In this way, we have completed the proof of Proposition 1.

To sum up, we have proved that the CPBT is valid for the Leznov lattice.

5. Conclusion

In this paper, we present Wronskian solutions (2.11) to the modified Leznov lattice (2.8)–(2.10)
and derive its coupled system (3.10)–(3.18) by pfaffianization. We further show that the coupled
system for the modified Leznov lattice (3.10)–(3.18) is nothing but the Bäcklund transformation for
the coupled system of the Leznov lattice (4.1)–(4.3). This means that the CPBT is also valid for
the Leznov lattice besides the KP equation. Moreover, we proved that the CPBT is applicable to a
special lattice proposed by Blaszk and Szum [21, 22].
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Appendix

The following bilinear identities hold for arbitrary functions a, b, c and d:

(DxDsa · a)b2 − a2(DxDsb · b) = 2Dx(Dsa · b) · (ab) (A.1)

(Dxe
1
2 Dm− 1

2Dna · a)(e
1
2Dm+ 1

2 Dnb · b) − (Dxe
1
2 Dm− 1

2 Dnb · b)(e 1
2Dm+ 1

2Dna · a)

= 2 sinh
(

1
2
Dm

)
(Dxe

1
2 Dna · b) · (e− 1

2Dna · b) − 2 sinh
(

1
2
Dn

)
(Dxe

1
2 Dma · b) · (e− 1

2Dma · b)
(A.2)

(DxeDna · a)b2 − (DxeDnb · b)a2 = 2Dx cosh
(

Dn

2

)
(e

Dn
2 a · b) · (e−Dn

2 a · b) (A.3)

2Dz cosh
(

Dn

2

)
(Dye−(1/2)Dna · b) · (e−(1/2)Dna · b)

= Dy[(Dza · b) · (e−Dna · b) − ab · (Dze
−Dna · b)]. (A.4)
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equation, Inverse Problems 21 (2005) 1461–1472.

[16] A. N. Leznov, Graded Lie algebras, representation theory, integrable mappings and integrable systems,
Theor. Math. Phys. 122 (2000) 211–228.

[17] X.-B. Hu and H. W. Tam, Application of Hirota’s bilinear formalism to a two-dimensional lattice by
Leznov, Phys. Lett. A 276 (2000) 65–72.

[18] R. Hirota and R. Satsuma, A variety of nonlinear network equations generated from the Bäcklund
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