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The flow of a superfluid film adsorbed on a porous medium can be modeled by a meromorphic differential
on a Riemann surface of high genus. In this paper, we define the mixed Hodge metric of meromorphic
differentials on a Riemann surface and justify using this metric to approximate the kinetic energy of a
superfluid film flowing on a porous surface.
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1. Introduction and Background Information

A film of liquid helium-4 at temperatures near abolute zero behaves as a superfluid, meaning that it
flows as a virtually frictionless two-dimensional film adsorbed on a surface. Riemann, not knowing
that such a film could actually exist, referred to this phenomenon as an “ideal fluid”. We refer to the
flow of a superfluid helium film as a superflow. We have shown in previous work [2] that a superflow
is determined by the positions of its vortices only up to the addition of a holomorphic form on the
Riemann surface M. Due to the principle of conservation of energy, any physical fluid flow with a
fixed set of vortices must have the minimal kinetic energy of all other flows with that particular
vortex configuration. If the superflows that exist physically exhibit strings of circulation, then it
must be that these flows have minimal kinetic energy. Thus, the primary objective of this paper is
to discuss a method of approximating the kinetic energy of a superfluid film on a Riemann surface
M of genus g.

The remainder of this section provides some background information about superfluid helium
films and some basic mathematical terms we will be using to approximate the kinetic energy of such
a film. In Sec. 2 we will use the Mixed Hodge metric to approximate that energy, and we will devote
Sec. 3 to justifying this usage.

1.1. Some background information about superfluidity

Liquid 4He undergoes a dramatic change at temperatures near Tλ = 2.17K. Above this temperature,
4He is an ordinary low-viscosity liquid known as helium I, but at temperatures below Tλ, it becomes
a remarkable fluid known as helium II. According to the two-fluid theory proposed by Tisza [13] in
1940, helium II is composed of two separate fluids. The normal component has normal viscosity, but
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the superfluid component has very low viscosity and flows nearly frictionlessly and with high velocity
through very narrow channels, leaving the normal component behind. In 1946, Andronikashvili
demonstrated that as the temperature of liquid 4He is lowered from Tλ to temperatures near absolute
zero, the normal component of the fluid essentially disappears [1]. In this paper, we will consider
the case when the fluid is entirely composed of helium-II, which is an idealization of the situation
at temperatures near absolute zero.

The Feynman–Osanger relation [4, 11] is a consequence of quantum physics, which dictates that
the total circulation of a superfluid along any closed loop is an integer multiple of the fundamental
quantum of circulation h

m , where h = 2π� is Planck’s constant and m is the mass of one atom of
4He. This is one of the fundamental properties of superfluid flow, and it is an integral part of the
discussion to follow.

Another fundamental property of helium II is that vortices appear in the fluid in pairs of equal and
opposite polarity, called vortex-antivortex pairs [6]. Vortex-antivortex pairs are linked by strings of
circulation, fixed paths between the vortices along which the circulation around any simple loop that
intersects this path transversally remains a constant integer multiple of the fundamental quantum
of circulation [8, 9]. For a more thorough presentation of the properties of superfluidity relevant to
the upcoming discussion, see [2].

1.2. Mathematical background

The basic mathematical tools we will need are provided by Riemann surface theory. For further
explanation of any of these terms, please refer to Nakahara [10] or Farkas and Kra [3]. Some of the
definitions are provided here for convenience.

1.2.1. Intersection numbers and homology bases

Definition 1.1. Let α and β be two smooth oriented paths on a Riemann surface M which intersect
transversely. Then, the intersection number is defined by

#(α, β) =
∑

p∈α∩β

ε(p),

where

ε(p) =

{
+1 if α, β is positively oriented

−1 if α, β is negatively oriented

as shown in Fig. 1.

In order to discuss a generic path on a Riemann surface, we need to be able to break a path
down into its fundamental parts. The basic building blocks of a path on a Riemann surface comprise
a set of two types of loops: those that encircle a hole in the surface, akin to the hole in a doughnut

Positive Negative

β α α β

Fig. 1. Positive and negative intersections.



Kinetic Energy of Superfluid Film 153

α1
α2

β1 β2

Fig. 2. Two distinctly different types of paths on a genus 2 surface.

and denoted by β, and those that wrap around the surface through one of these holes, denoted by
α. These two types of simple paths are illustrated in Fig. 2.

Two paths are called homotopic if one can be smoothly deformed into the other. Informally, this
means that one of the paths can be moved along the surface to coincide with the other, without cut-
ting either path or jumping over a hole. Intersection numbers are invariant under homotopy and as
a result, if two paths are homotopic we consider them to be essentially the same path. The α and β

loops described above form a set of building blocks of all possible paths on the surface, which we call
a canonical homology basis, and we formally define in Definition 1.2. The four paths α1, α2, β1 and β2

shown in Fig. 2 comprise a canonical homology basis on a surface of genus 2. More specifically, we need
the α loops to never intersect each other and the β loops to never intersect each other, so that each α

loop intersects only its corresponding β loop exactly once. We keep track of these intersections using
the intersection numbers, so we need to specify the orientation of the α and β loops.

Definition 1.2. A canonical homology basis on a Riemann surface M of genus g is a set of oriented
loops {αi, βi}g

i=1 that satisfy

#(αi, βj) = δij =

{
1 if i = j

0 if i �= j

#(αi, αj) = 0

#(βi, βj) = 0.

We are interested in studying fluid flows on a punctured Riemann surface. The punctures on the
surface differ from the pre-existing holes, and introduce a new type of path on the surface; those
that encircle the puncture. For the purposes of this paper, we are only interested in the case where
the punctures come in pairs, corresponding to the vortex-antivortex pairs on the surface. The set of
all three types of loops on the surface forms a canonical homology basis on the punctured surface,
as defined in Definition 1.3 below.

Definition 1.3. Let M be a Riemann surface with paired points {(pj, qj)}r
j=1, let γpj be a small

loop around pj, and let γqj be a small loop around qj oriented so that for any path l from qj to pj,

#(γpj , l) = 1 #(γqj , l) = −1.

Then, the set

{α1, . . . , αg, β1, . . . , βg, γp1 , . . . , γpr , γq1 , . . . , γqr−1}

is a canonical homology basis on the punctured Riemann surface M\{pj, qj}r
j=1.

An example of a canonical homology basis on a genus 2 Riemann surface with punctures at p

and q is shown in Fig. 3.
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Fig. 3. A canonical homology basis for a punctured Riemann surface.

1.2.2. Differential one-forms and the Hodge star operator

Definition 1.4. A 1-form on a Riemann surface M is an assignment of two continuous functions f

and g to each local coordinate z = x + iy on M such that f dx + g dy is invariant under coordinate
changes. A 2-form on M is an assignment of a continuous function f to each coordinate z so that
f dx ∧ dy is invariant under coordinate changes.

In the above definition of a 2-form, we have used the exterior wedge product for multiplication of
1-forms. This multiplication satisfies the conditions dx∧dx = 0, dy∧dy = 0, and dy∧dx = −dx∧dy.

Definition 1.5. A 1-form ω is holomorphic provided that locally ω = df = fxdx + fydy where f is
a holomorphic function. A 1-form ω is meromorphic if we can assign a meromorphic function f to
each local coordinate z so that ω = f(z)dz is invariantly defined.

Remark 1. The class of holomorphic 1-forms is a subset of the class of meromorphic 1-forms. So, if a
1-form is holomorphic, it is automatically meromorphic. Meromorphic functions may have singular-
ities, while holomorphic functions have a power series representation and thus have no singularities.
It is the singularities of the meromorphic functions (and likewise the meromorphic differentials) that
we will use to represent vortices in the superfluid flow.

On a Riemann surface M of genus g, denoted (M, g), an (abelian) differential of the first kind
is a holomorphic 1-form, an (abelian) differential of the second kind is a meromorphic 1-form with
all residues 0, and an (abelian) differential of the third kind is a meromorphic 1-form with at least
one residue nonzero. We are concerned only with differentials of the first and third kinds.

To use complex notation for a 1-form, we let dz = dx + i dy and dz̄ = dx − i dy. Then, a 1-form
ω = u dz + v dz̄ is holomorphic if and only if v = 0 and u is a holomorphic function of the local
coordinate z. The differentials dz and dz̄ satisfy dz ∧ dz = 0, dz̄ ∧ dz̄ = 0 and dz̄ ∧ dz = −dz ∧ dz̄.

Definition 1.6. We define the Hodge star operator 	 on a 1-form ω = f dx + g dy on a Riemann
surface M by

	ω = −g dx + f dy.

For a complex representation of ω, we write ω = u dz + v dz̄, where f = u + v and g = i(u − v). We
then have

	ω = −iu dz + ivdz̄.

In later computations, we will be interested in integrating the wedge product ω ∧ 	ω̄.

2. Approximating Kinetic Energy

The process of computing the kinetic energy of a flow without vortices is well known. For a holo-
morphic flow ξ, the kinetic energy is given by the standard L2 Hodge metric:

K2
E = ‖ξ‖2 =

∫
M

ξ ∧ 	ξ̄,
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where 	 is the Hodge star operator defined in Sec. 1.2.2. In this section, we combine what we know
about superflows and meromorphic differentials on a Riemann surface to derive a good candidate for
a metric on M that agrees with the use of the L2 norm as the kinetic energy of a holomorphic flow.

Let M be a Riemann surface of genus g with canonical homology basis {αk, βk}g
k=1. It is a

well-known result [3] that for two given points p and q on M, there exists a real harmonic function
upq on M so that

• upq − log (z − p) is holomorphic on M\{p, q}
• upq + log (z − q) is holomorphic on M\{p, q}
• dupq is a real harmonic 1-form
• dupq + i 	 dupq is a meromorphic differential with

resp(dupq + i 	 dupq) = 1 = −resq(dupq + i 	 dupq).

Additionally, for any open set N on M containing p and q,∫ ∫
M\N

dupq ∧ 	dupq < ∞.

The meromorphic differential

1
2πi

h

m
(dupq + i 	 dupq) =

1
2π

h

m
(	dupq − i dupq)

is a complex representation of the quantized fluid flow with vortices at p and q. This differential is
the “meromorphic part” of a superflow with vortices at p and q.

Remark 2. The function upq may not be unique. However, 	dupq−i dupq is the unique meromorphic
differential with vortices at p and q and only real circulation.

Consequently, any superflow ω with paired vortices at {(pj, qj)}r
j=1 is of the form

ω =
1
2π

h

m
(	dupq − i dupq) + ν, (1)

where ν is a holomorphic differential so that the circulation of ω is quantized.
Let D =

∑r
j=1(pj + qj) be a divisor on M. Then, a canonical homology basis of the punctured

Riemann surface M\D is {α1, . . . , αg, β1, . . . , βg, γp1 , . . . , γpr , γq1 , . . . , γqr−1}, where γpk
is a small

loop around pk and γqk
is a small loop around qk. We define the subspace H1(D, C) of differential

forms on M by meromorphic 1-forms

1
2π

h

m
(	du − idu)

where

du =
r∑

j=1

dupjqj .

Claim 2.1. The space H1(D, C) is the set of meromorphic differentials with vortices at points of D

and only real circulation; this means that they have imaginary residues and real periods.

Proof. We know that 	du − i du is a meromorphic differential with vortices at points of D by
Remark 2. Since the differentials du and 	du are real and du is exact, we have

�
(∫

α

	du − i du

)
=

∫
α

du

= 0.
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Similarly, the β-periods of 	du− i du are also purely real. The residues of the differential 	du− i du

are ± 1
2πi

h
m at points of D, and are thus imaginary. Therefore, we have∫

γpj

(	du − i du) =
h

m
and

∫
γqj

(	du − i du) = − h

m
.

Since {α1, . . . , αg, β1, . . . , βg, γp1 , . . . , γpr , γq1 , . . . , γqr−1} is a homology basis for M\D, any loop γ

is a linear combination of these elements over Z, so for any loop γ on M we have

�
(∫

γ

(	du − i du)
)

= 0.

We define two other spaces of differentials on M by

H1(M\D, C) = 1-forms on M with simple poles at points of D

H1(M, C) = Non-singular 1-forms on M.

Then, we have the canonical decomposition [3]

H1(M\D, C) = H1(M, C) ⊕H1(D, C). (2)

This decomposition of vector spaces corresponds to the decomposition of superflows ω into a holo-
morphic part (in H1(M, C)) and a meromorphic part (in H1(D, C)) as in Eq. (1). From Remark 2,
this decomposition is unique.

Remark 3. We want to ensure that the real part of a superflow ω conforms to the physical situation,
and that the way we compute the kinetic energy has some basis in physical fact. First, we note
that H1(D, C) is just the complexification of H1(D, R), where H1(D, R) is the set of all harmonic
differentials of the form 	du. Thus, we have

H1(D, C) = H1(D, R) ⊗ C.

We see now that the decomposition in Eq. (2) has a real analog

H1(M\D, R) = H1(M, R) ⊕H1(D, R),

where H1(M, R) is the set of real non-singular harmonic 1-forms on M. It is this real decomposition
that describes the physical situation of a superfluid film on a Riemann surface.

If ω ∈ H1(M\D, C), then we can write ω = ξ + Ω, for a holomorphic differential ξ and Ω =
(	du − i du) ∈ H1(D, C). Then, the cohomology class of ω is just

[ω] = [	du]

since ξ and i du are exact. Thus, the cohomology of H1(M\D, C) is purely real; it is the same as
the cohomology of H1(D, R). This validates our choice of decomposition in Eq. (2) which we use to
compute the kinetic energy of the superflow.

As mentioned previously, we have the standard L2 Hodge metric on H1(M, C):

‖ξ‖2 =
∫ ∫

M
ξ ∧ 	ξ̄.

However, we need to use what Kaplan and Pearlstein have named the mixed Hodge metric [5, 12]
to approximate the kinetic energy of a superflow. This metric calculates the standard kinetic energy
on the holomorphic part of the flow (using the L2 norm) and approximates the “finite part” of the
kinetic energy near the vortices. We define it here and devote the next section to justifying its use
as an approximation to the kinetic energy of a superfluid flow.
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Definition 2.1. The mixed Hodge norm ‖ω‖mh on the punctured Riemann surface M\{pj, qj}r
j=1

is found by writing

ω = ξ + Ω,

where ξ is a holomorphic form, and Ω is meromorphic with purely real circulation [5]. Then, the
mixed Hodge norm is given by

‖ω‖2
mh = ‖ξ‖2 + k

∑
p∈M

|respΩ|2 ,

for some positive real constant k.

Remark 4. Using the mixed Hodge metric on H1(M\D, C), the decomposition in Eq. (2) is
orthogonal.

3. Justification for Using the Mixed Hodge Metric to Approximate Kinetic
Energy of a Superflow

First of all, the total kinetic energy of a holomorphic form ξ on M is given by the L2 Hodge norm:

‖ξ‖2 =
∫

M
ξ ∧ 	ξ̄.

Thus, in the case of a holomorphic superflow ξ, we have

‖ξ‖2 = ‖ξ‖2
mh.

For a meromorphic form ω, this L2 Hodge norm is infinite near the poles of ω, which is why we need
to develop a new metric for approximating the kinetic energy.

Physically, vortices are not point singularities, contrary to how we treat them mathematically.
In reality, there is a small disk around each vortex where there is no fluid flowing on the surface,
called a vortex core. It is estimated that the radius of a vortex core is approximately 10 Å. Thus, the
superfluid actually has finite energy, since the infinite regions have been removed (or never existed
in the first place).

Consider the situation of a superflow ω on a sphere of radius ρ with vortices at the north and
south poles. According to physical intuition, if we change the radius of the sphere, the kinetic
energy should change logarithmically with the radius ρ [7] . Notice that increasing the radius ρ of
the sphere and keeping the vortex core radius R fixed is mathematically equivalent to fixing the
radius ρ and shrinking the vortex core radius R. Thus, we would also expect that if we were to fix
the sphere radius ρ and change the vortex core radius R, the kinetic energy should change according
to log (R).

Remove disks of radius R centered at each vortex from the sphere. The top and bottom halves
of the remaining surface are each conformally equivalent to an annulus ΔR in C, with inner radius
R and outer radius π

2 ρ (see Fig. 4). On ΔR we use the standard Euclidean metric to compute the
kinetic energy.

Since there are no holomorphic forms on the sphere, a superflow with poles at the north and
south poles must be given by

ω =
1

2πi

h

m

1
z
dz.
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ρ

Vortex core with

radius R

Conformal

Equivalence

2

π
ρR

Fig. 4. The sphere minus disks (vortex cores).

The following calculation computes the kinetic energy of ω on ΔR.∫ ∫
ΔR

|ω|2 dx dy =
∫ ∫

ΔR

∣∣∣∣ 1
2πi

h

m

1
z

∣∣∣∣
2

dx dy

=
∫ π

2 ρ

R

∫ 2π

0

∣∣∣∣ 1
2πi

h

m

1
reiθ

∣∣∣∣
2

r dθ dr

=
∫ π

2 ρ

R

∫ 2π

0

(
1
2π

h

m

)2 1
r
dθ dr

=
h2

2πm2

[
log

(
π

2
ρ

)
− log R

]

=
h2

2πm2
log ρ + C,

for some constant C ∈ R. Thus, as we increase the size of the sphere, the change in the kinetic energy
is proportional to log ρ. This agrees with our physical intuition, so we believe that we are on the right
track for developing a metric to approximate the kinetic energy of a superflow with vortices.

For a surface of arbitrary genus, let MR be the surface formed by removing small disks of radius
R from M around the poles of ω. Then, we can find the kinetic energy of ω on the surface MR by
calculating

‖ω‖2
R =

∫
MR

ω ∧ 	ω̄.

Consider the flow of a superfluid in a small disk around a vortex. Let Δ be a fixed disk of radius
1 centered at a pole p of ω, and let ΔR be the complement of a small disk of radius R centered at
p in Δ. On Δ, we use the Euclidean metric. Locally, we can write

ω =
(

a

z
+ h(z)

)
dz,

where h(z) is a holomorphic and bounded function on all of Δ, and a = respω. Then, we can compute
the kinetic energy of ω on the annulus ΔR, using the L2 Hodge norm. (Notice that at this point,
we are still using the known metric for a holomorphic form on a surface since we have removed the
disks containing the poles of ω.)

‖ω‖2
R =

∫ ∫
ΔR

|ω|2 dx dy =
∫ ∫

ΔR

∣∣∣a
z

+ h(z)
∣∣∣2 dx dy

=
∫ 1

R

∫ 2π

0

∣∣∣ a

reiθ
+ h(reiθ)

∣∣∣2 r dθ dr.
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We know that |z1 + z2|2 = |z1|2 + |z2|2 + 2
(z̄1z2) for any two complex numbers z1 and z2. Thus,
we have

‖ω‖2
R =

∫ 1

R

∫ 2π

0

[∣∣∣ a

reiθ

∣∣∣2 +
∣∣h(reiθ)

∣∣2 + 2

(

ā

reiθ
h(reiθ)

)]
r dθ dr

= |a|2
∫ 1

R

∫ 2π

0

1
r

dθ dr +
∫ 1

R

∫ 2π

0

r
∣∣h(reiθ)

∣∣2 dθ dr

+ 2ā

∫ 1

R

∫ 2π

0


(e−iθh(reiθ)) dθ dr

= 2π |a|2 (− log R) + b(R),

where b(R) is a bounded function of R, as R → 0.
Thus, for the “meromorphic part” (the part with vortices and only real circulation) Ω of a

superflow ω we have:

‖Ω‖2 = 2π(− logR)
∑
p∈M

|respΩ|2 + b(R)

‖Ω‖2

− log R
= 2π

∑
p∈M

|respΩ|2 +
b(R)

− log R
.

But, if we shrink the radius R of the vortex cores, we have

lim
R→0

‖Ω‖2

− log R
= 2π

∑
p∈M

|respΩ|2 + lim
R→0

b(R)
(− log R)

= 2π
∑
p∈M

|respΩ|2 .

For very small fixed R, we have

‖Ω‖2 ≈ 2π(− log R)
∑
p∈M

|respΩ|2 .

Thus, we use the metric

‖ω‖2
mh = ‖ξ‖2 + c

∑
p∈M

|respΩ|2 ,

where c = 2π(− log R) is a positive constant based on the vortex core radius R, the differential ξ is
holomorphic, and Ω is meromorphic with simple poles at {(pj, qj)}r

j=1 and has only real circulation.
This metric gives a good finite approximation to the kinetic energy.

4. Concluding Remarks

The only part of the mixed Hodge metric that depends on the choice of metric on the manifold M is
the value of the constant c, which depends on the value R we use for the radius of the vortex cores.
Both the L2 Hodge metric on H1(M, C) and the sum of the squared magnitudes of the residues are
independent of the choice of the metric on the manifold M. The idea of harmonicity depends only
on the conformal structure of M. It is well known [3] that there exists a basis of 2g harmonic forms
{ϕj}2g

j=1 that satisfy ∫ ∫
M

ϕj ∧ 	ϕ̄k = δjk.
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Using these, we can write any smooth differential ξ on M as

ξ =
2g∑

j=1

[∫ ∫
M

ξ ∧ 	ϕ̄j

]
ϕj .

Then, we can write the L2 Hodge norm as

‖ξ‖2 =
2g∑

j=1

[∫ ∫
M

ξ ∧ 	ϕ̄j

]2

=
∫ ∫

M
ξ ∧ 	ξ̄

and this representation as an integral is independent of the metric on M. (We want to emphasize
that this is peculiar to the two-dimensional case only.)

Thus, the only part of our new metric that fails to be independent of the metric chosen on M is
the constant c. The dependence of c on the variable R may seem mathematically to invalidate the
results in this paper. Quite the contrary: The fact that c depends logarithmically on R agrees with
the physical expectations as discussed on page 157. Thus, instead of discouraging us, the fact that
c ≈ (− logR) validates the use of the mixed Hodge norm as an approximation of the kinetic energy
of a superfluid flow.

We see here that the mixed Hodge norm for a holomorphic flow is the same as the kinetic energy.
Additionally, we have shown that for a meromorphic flow, the mixed Hodge norm provides a good
approximation to the kinetic energy of a superfluid by considering the finite size of the vortex cores.
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