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We consider Lotka–Volterra systems in three dimensions depending on three real parameters. By using
elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for

such systems for various values of the parameters, and give the explicit form of the corresponding cofactors.
More precisely, we show that a Darboux polynomial of degree greater than one is reducible. In fact, it is a
product of linear Darboux polynomials and first integrals.
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1. Introduction

The Lotka–Volterra model is a basic model of predator-prey interactions. The model was developed
independently by Alfred Lotka (1925), and Vito Volterra (1926). It forms the basis for many models
used today in the analysis of population dynamics. It has other applications in Physics, e.g. laser
Physics, plasma Physics (as an approximation to the Vlasov–Poisson equation), and neural networks.
In three dimensions it describes the dynamics of a biological system where three species interact.

The most general form of Lotka–Volterra equations is

ẋi = εixi +
n∑

j=1

aijxixj , i = 1, 2, . . . , n.

We consider Lotka–Volterra equations without linear terms (εi = 0), and where the matrix of
interaction coefficients A = (aij) is skew-symmetric. This is a natural assumption related to the
principle that crowding inhibits growth.

The most famous special case of Lotka–Volterra system is the KM system (also known as the
Volterra system) defined by

ẋi = xi(xi+1 − xi−1) i = 1, 2, . . . , n, (1.1)

where x0 = xn+1 = 0. It was first solved by Kac and van-Moerbeke in [13], using a discrete version of
inverse scattering due to Flaschka [10]. In [16] Moser gave a solution of the system using the method
of continued fractions, and in the process he constructed action-angle coordinates. Equations (1.1)
can be considered as a finite-dimensional approximation of the Korteweg-de Vries (KdV) equation.
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The variables xi are an intermediate step in the construction of the action-angle variables for the
Liouville model on the lattice. This system has a close connection with the Toda lattice,

ȧi = ai(bi+1 − bi) i = 1, . . . , n − 1

ḃi = 2(a2
i − a2

i−1) i = 1, . . . , n.

In fact, a transformation of Hénon connects the two systems:

ai = −1
2
√

x2ix2i−1 i = 1, . . . , n − 1

bi =
1
2
(x2i−1 + x2i−2) i = 1, . . . , n.

The systems which we consider are all integrable in the sense of Liouville. In other words, there
are enough integrals in involution to ensure the complete integrability of the system.

Any constant value of a first integral defines a submanifold which is invariant under the flow of
the Hamiltonian vector field. A second integral is a function which is constant on a specific level set.
While a first integral satisfies ḟ = 0, a second integral is characterized by the property ḟ = λf , for
some function λ which is called the cofactor of f . Second integrals are also called special functions,
stationary solutions, and in the case of polynomials, eigenpolynomials, or, more frequently, Darboux
polynomials. In systems which have a Lie theoretic origin (e.g. the full Kostant Toda lattice), they
arise from semi-invariants of group actions. The importance of Darboux polynomials lies in the
following simple fact. If f and g are relatively prime Darboux polynomials, with the same cofactor,
then their quotient is a first integral. We propose to understand the behavior of a system based on
the algebraic properties of its Darboux polynomials.

As a starting point we consider the system

ẋ1 = x1(rx2 + sx3)

ẋ2 = x2(−rx1 + tx3) (1.2)

ẋ3 = x3(−sx1 − tx2)

where r, s, t ∈ R.
Our main result is the following:

Theorem 1. An arbitrary Darboux polynomial of the system (1.2) is reducible. In fact, it is a
product of linear Darboux polynomials.

The method of proof that we use follows the approach of Labrunie in [14] for the so called ABC
system.

The system (1.2) is Hamiltonian. We define the following quadratic Poisson bracket in R3 by the
formula

π = rx1x2
∂

∂x1
∧ ∂

∂x2
+ sx1x3

∂

∂x1
∧ ∂

∂x3
+ tx2x3

∂

∂x2
∧ ∂

∂x3
. (1.3)

Generically, the rank of this Poisson bracket is 2 and it possesses a Casimir given by F = xt
1x

−s
2 xr

3.
The function H = x1 +x2 +x3 is always a constant of motion. In fact, taking H as the Hamiltonian
and using the Poisson bracket (1.3) we obtain Eq. (1.2).

Lotka–Volterra systems have been studied extensively, see e.g. [4, 12, 19]. The Darboux method of
finding integrals of finite dimensional vector fields and especially for various types of Lotka–Volterra
systems has been used by several authors, e.g. [2, 3, 5–7, 14, 15, 17, 18].

The paper is organized as follows. In Sec. 2, we recall a few basic facts about Darboux polynomi-
als. In Sec. 3 we prove Theorem 1 under general conditions for r, s, t, and we also give the explicit
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form of the cofactors. Section 4 deals with the case s = t. We did not examine other such cases since
the method of proof is identical with these two cases. Finally in Sec. 5 we present in detail three
examples which include the open and periodic KM-system in three dimensions.

2. Darboux Polynomial Preliminaries

Consider a system of ordinary differential equations

dxi

dt
= vi(x1(t), . . . , xn(t)), i = 1, . . . , n, (2.1)

where the functions vi are smooth on a domain U ⊂ Kn. Here K = R or K = C, and we denote by
K[x], x = (x1, . . . , xn), the ring of polynomials in n variables over K. Let φ : I → U be a solution
of (2.1) defined on an open non-empty interval I of the real axis. A continuous function F : U → R

is called a first integral of system (2.1) if it is constant along its solution, i.e. if the function F ◦ φ is
constant on its domain of definition for arbitrary solution φ of (2.1). When F is differentiable, it is
a first integral of system (2.1) if

Lv(F ) =
n∑

i=1

vi(x)
∂F

∂xi
(x) = 0, (2.2)

where Lv is the Lie derivative along the vector field v = (v1, . . . , vn). If A is any function of x, then
the Lie derivative of A is the time derivative of A, i.e. Ȧ = dA

dt = Lv(A). The vector field generates
a flow φt that maps a subset U of Kn to Kn in such a way that a point in U follows the solution
of the differential equation. That is, φ̇(x)(t) = v(φ(x)) ∀ x ∈ U . The time derivative is also called
the derivative along the flow since it describes the variation of a function of x with respect to t as
x evolves according to the differential system.

Many first integral search techniques, such as the Prelle–Singer procedure, are based on the
Darboux polynomials. A polynomial f ∈ K[x] is called a Darboux polynomial of system (2.1) if

Lv(f) = λf, (2.3)

for some polynomial λ ∈ K[x], which is called the cofactor of f . When λ = 0, the Darboux polynomial
is a first integral; f is said to be a proper Darboux polynomial if λ 	= 0. Let f1, f2 be Darboux
polynomials with cofactors λ1, λ2, respectively. It is easy to verify that:

(i) The product f1f2 is also a Darboux polynomial, with cofactor λ1 + λ2, and
(ii) If λ1 = λ2 = λ then the sum f1 + f2 is also a Darboux polynomial, with cofactor λ.

The following propositions ([11]) give some more elementary but important properties of Darboux
polynomials.

Proposition 1. Let f, g ∈ K[x] be nonzero and coprime (i.e. they do not have common divisors
different from constants). Then, f\g is a rational first integral if and only if f and g are Darboux
polynomials with the same cofactor λ ∈ K[x].

Proposition 2. (i) All irreducible factors of a Darboux polynomial are Darboux polynomials,
(ii) Suppose that the system (2.1) is homogeneous of degree m, i.e. all vi are homogeneous of degree

m, and let f be an arbitrary Darboux polynomial of (2.1) with cofactor λ. Then λ is homogeneous
of degree m − 1, and all homogeneous components of f are Darboux polynomials of (2.1) with
cofactor λ.

Thus, the search for Darboux polynomials can be restricted to irreducible polynomials, and,
if the system is homogeneous, to homogeneous polynomials. Since the dynamical system (1.2) is
homogeneous of degree 2, the cofactor of any Darboux polynomial of the system will be a linear
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combination of the variables x1, x2, x3. It follows that any Darboux polynomial f of system (1.2)
will satisfy

L(f) = x1(rx2 + sx3)
∂f

∂x1
+ x2(−rx1 + tx3)

∂f

∂x2
+ x3(−sx1 − tx2)

∂f

∂x3

= (αx1 + βx2 + γx3)f, (2.4)

where α, β, γ are constants. If it is not clear from the context, we shall denote these constants by
α(f), β(f), γ(f) respectively.

3. Darboux Polynomials of the Lotka–Volterra System

We carry out our analysis aiming at maximum generality, that is, imposing as few conditions on the
parameters r, s, t as possible. In this section we make such assumptions in Propositions 9, 10 and
Theorem 2, however, as we note in Remark 3, one can obtain the results by making assumptions
about the cofactor of the Darboux polynomial instead of the parameters. An important role in this
work plays the homogeneity property, as can be seen in the following two propositions.

Proposition 3. Let f be a homogeneous Darboux polynomial of system (1.2) of degree m. If γ(f) 	=
0, then f has no xm

3 term so that f(x1, x2, x3) = x1φ(x1, x2, x3) + x2ψ(x1, x2, x3).

Proof. Since the polynomial f is homogeneous, we use Euler’s identity

x1
∂f

∂x1
+ x2

∂f

∂x2
+ x3

∂f

∂x3
= mf. (3.1)

Using Eq. (3.1) we substitute for x1
∂f
∂x1

in Eq. (2.4) to obtain

x2(−rx1 + tx3 − rx2 − sx3)
∂f

∂x2
+ x3(−sx1 − tx2 − rx2 − sx3)

∂f

∂x3

= (αx1 + (β − mr)x2 + (γ − ms)x3)f.

Setting x1 = 0, x2 = 0, and letting F (x3) = f(0, 0, x3) we have

−sx2
3F

′(x3) = (γ − ms)x3F (x3). (3.2)

If s = 0, γ 	= 0, Eq. (3.2) implies that F = 0. Otherwise, if s 	= 0 we have F (x3) = κx
m−γ/s
3 , for some

constant κ. Since f is homogeneous of degree m, the only term containing only x3 is necessarily xm
3 .

Thus, if γ 	= 0 we must have F = 0 also in this case, and the proposition is proved.

We shall use the following notation: for a polynomial f = f(x1, x2, x3) we denote f̂ = f |x1=0,
f̄ = f |x2=0, f̆ = f |x3=0. We denote Nm = {1, 2, . . . , m}, Nm = Nm ∪ {0}, and for any number r,
Nmr = {nr : n ∈ Nm}.
Proposition 4. Let f be a homogeneous Darboux polynomial of degree m. If γ(f) 	= 0, then s =
0 ⇒ x2|f, t = 0 ⇒ x1|f, s 	= 0 and γ /∈ Nms ⇒ x2|f, t 	= 0 and γ /∈ Nmt ⇒ x1|f .

We also have the following statements for α and β:
If β(f) 	= 0, then r = 0 ⇒ x3|f, t = 0 ⇒ x1|f, r 	= 0 and β /∈ Nmr ⇒ x3|f, t 	= 0 and

β /∈ −Nmt ⇒ x1|f .
If α(f) 	= 0, then r = 0 ⇒ x3|f, s = 0 ⇒ x2|f, r 	= 0 and α /∈ −Nmr ⇒ x3|f, s 	= 0 and

α 	= −Nms ⇒ x2|f .

Proof. We prove the statements for γ. The proof of the statements for α and β is similar. Assume
that γ 	= 0. Then, it follows from Proposition 3 that f = x1φ1 + x2ψ1, where φ1 = φ1(x1, x2, x3),
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ψ1 = ψ1(x1, x2, x3) are either homogeneous polynomials of degree m − 1, or zero (but they are not
both zero). Setting this in Eq. (2.4) yields

x1L(φ1) + x2L(ψ1) = (αx1 + βx2 + γx3 − rx2 − sx3)x1φ1

+ (αx1 + βx2 + γx3 + rx1 − tx3)x2ψ1. (3.3)

Setting x2 = 0 in Eq. (3.3) we have

x1L(φ1) = (αx1 + (γ − s)x3)x1φ̄1.

The operator φ1 → φ̄1 commutes with the derivations with respect to x1 and x3, and therefore we
obtain

sx1x3

(
∂φ̄1

∂x1
− ∂φ̄1

∂x3

)
= (αx1 + (γ − s)x3)φ̄1. (3.4)

If s = 0 then φ̄1 = 0, which implies that φ1 is divisible by x2 and that f = x1φ1 + x2ψ1 is divisible
by x2. Suppose now that s 	= 0, deg φ̄1 = deg φ1 = m − 1, and that γ 	= ns, n ∈ Nm. The r.h.s.
of (3.4) is divisible by x1, and since γ − s 	= 0, it follows that x1|φ̄1. Let φ̄1 = x1φ2, where φ2 is a
homogeneous polynomial of degree m − 2. Then, we have

∂φ̄1

∂x1
= x1

∂φ2

∂x1
+ φ2,

∂φ̄1

∂x3
= x1

∂φ2

∂x3
,

and from (3.4) we obtain

sx1x3

(
∂φ2

∂x1
− ∂φ2

∂x3

)
= (αx1 + (γ − 2s)x3)φ2.

Since γ − 2s 	= 0, φ2 is divisible by x1. Continuing in the same way we obtain

sx1x3

(
∂φm−1

∂x1
− ∂φm−1

∂x3

)
= (αx1 + (γ − (m − 1)s)x3)φm−1,

where deg φm−1 = 1, and x1|φm−1. Thus, φm−1 = const. x1, and from the above equation we have
sx3 = αx1 + (γ − (m− 1)s)x3. By equating coefficients we obtain γ = ms, which is a contradiction.
Therefore, we must have φ̄1 = 0, which implies that f is divisible by x2.

Setting x1 = 0 in (3.3) and using (2.4) we obtain

tx2x3

(
∂ψ̂1

∂x2
− ∂ψ̂1

∂x3

)
= (βx2 + (γ − t)x3)ψ̂1.

If t = 0 then ψ̂1 = 0, hence ψ1 is divisible by x1 and so f is divisible by x1. Suppose that t 	= 0,
deg ψ̂1 = deg ψ1 = m− 1, and γ 	= nt, n ∈ Nm. Then it can be shown in a similar way as above that
ψ1 is divisible by x1, which implies that f is divisible by x1, and the proposition is proved.

This leads to the characterization of the cofactors of Darboux polynomials of system (1.2), as
follows.

Proposition 5. Let f be a homogeneous Darboux polynomial of degree m. We have either γ(f) = 0,

or γ(f) = γ1s, γ1 ∈ Nm, or γ(f) = γ2t, γ2 ∈ Nm, or γ(f) = γ1s + γ2t, γ2 ∈ {1, 2, . . . , m − 1},
γ1 ∈ Nm−γ2 .

Proof. Since f is a Darboux polynomial it satisfies L(f) = (αx1 + βx2 + γx3)f . Suppose that
γ 	= 0 and γ 	= ns, n ∈ Nm. Then by Proposition 4 f is divisible by x2, that is f = x2f1 for some
homogeneous polynomial f1 of degree m − 1 and we have

L(f1) = ((α + r)x1 + βx2 + (γ − t)x3)f1.
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Suppose that γ(f1) 	= 0, i.e. γ 	= t, and that γ(f1) 	= ns, n ∈ Nm−1, that is γ 	= ns + t, n ∈ Nm−1.
Then, again by Proposition 4 it follows that f1 is divisible by x2, and writing f1 = x2f2 we obtain

L(f2) = ((α + 2r)x1 + βx2 + (γ − 2t)x3)f2.

If γ 	= 2t, and γ 	= ns + 2t, n ∈ Nm−2, then f2 is divisible by x2. Continuing in the same way, after
m − 1 steps we obtain

L(fm−1) = ((α + (m − 1)r)x1 + βx2 + (γ − (m − 1)t)x3)fm−1, (3.5)

where deg fm−1 = 1. If γ 	= (m−1)t and γ 	= s+(m−1)t, then x2|fm−1, and thus fm−1 = const x2.
From Eq. (3.5) we then have −rx1 + tx3 = (α + (m − 1)r)x1 + βx2 + (γ − (m − 1)t)x3, and by
equating coefficients we obtain γ = mt. We therefore conclude that we have either γ = 0, or γ = ns,
or γ = nt, n ∈ Nm, or γ = γ1s + γ2t, γ2 = 1, 2, . . . , m − 1, γ1 ∈ Nm−γ2 , and the proposition is
proved.

Remark 1. We note that in the proof of Proposition 5 we can make the successive assumptions
γ(f) 	= nt (n ∈ Nm), γ(f1) 	= nt, (n ∈ Nm−1), . . . , γ(fm−1) 	= nt, (n ∈ N1), which imply that the
respective functions are divisible by x1. We obtain the same result also in this case, in particular
the relation γ1s+γ2t with the conditions γ1 = 1, 2, . . . , m−1, γ2 ∈ Nm−γ1 , which are the same with
the conditions stated in the proposition.

Proposition 6. Let f be a homogeneous Darboux polynomial of degree m. We have:

(a) α(f) = 0, or α(f) = −α1r, α1 ∈ Nm, or α(f) = −α2s, α2 ∈ Nm, or α(f) = −α1r − α2s,

α2 = 1, 2, . . . , m − 1, α1 ∈ Nm−α2 .
(b) β(f) = 0, or β(f) = β1r, β1 ∈ Nm, or β(f) = −β2t, β2 ∈ Nm, or β(f) = β1r − β2t, β2 =

1, 2, . . . , m − 1, β1 ∈ Nm−β2.

Proof. The proof is similar to the proof of Proposition 5.

The following propositions give further analysis on the cofactors, and their relation with the
parameters and the form of the Darboux polynomials.

Proposition 7. Let r, s, t be nonzero, r\s = q1, r\t = q2, and s\t = q3. Let f be a homogeneous
Darboux polynomial of degree m, and α1, α2, β1, β2, γ1, γ2 the integers which appear in Propositions 5
and 6.

(a) If α1 +(α2 − j) 1
q1

/∈ Nm−j and β1 − (β2− j) 1
q2

/∈ Nm−j , for j = 0, 1, 2, . . . , m− 1, then α2 = β2.
(b) If (α1 − j)q1 + α2 /∈ Nm−j and γ1 + (γ2 − j) 1

q3
/∈ Nm−j , for j = 0, 1, 2, . . . , m− 1, then α1 = γ2.

(c) If −(β1− j)q2 +β2 /∈ Nm−j and (γ1− j)q3 +γ2 /∈ Nm−j , for j = 0, 1, 2, . . . , m−1, then β1 = γ1.

Proof. We prove statement (a). The proof of statements (b) and (c) is similar. If α2 or β2 is
nonzero, then by hypothesis we have α(f) = −(α1 + α2

1
q1

)r 	= 0 and α(f) 	= −nr, n ∈ Nm, or
β(f) = (β1 − β2

1
q2

)r 	= 0 and β(f) 	= nr, n ∈ Nm, respectively. In either case, it follows from
Proposition 4 that f is divisible by x3. We can write f = x3f1, for some homogeneous polynomial
f1 of degree m − 1, and we have

L(f1) = ((α + s)x1 + (β + t)x2 + γx3)f1

= ((−α1r − (α2 − 1)s)x1 + (β1r − (β2 − 1)t)x2 + γx3)f1.

By the same argument as above, if we do not have α2(f1) = β2(f1) = 0, i.e. if we do not have
α2 = β2 = 1, then we have either α(f1) = −(α1 + (α2 − 1) 1

q1
)r 	= 0 and α(f1) 	= −nr, n ∈ Nm−1, or
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β(f1) = (β1 − (β2 − 1) 1
q2

)r 	= 0 and β(f1) 	= nr, n ∈ Nm−1, and f1 is divisible by x3. Continuing in
the same way, after m − 1 steps we obtain

L(fm−1) = ((−α1r − (α2 − (m − 1))s)x1 + (β1r − (β2 − (m − 1))t)x2 + γx3)fm−1, (3.6)

where deg fm−1 = 1. If we do not have α2 = β2 = m − 1, then it follows by our assumptions that
x3|fm−1, which implies that fm−1 = const x3 and f = const xm

3 . However, α2(x3) = β2(x3) = 1,
and by simple properties of Darboux polynomials it follows that α2(f) = β2(f) = m. Therefore, we
must have α2 = β2 = n, for some integer n ∈ {0, 1, 2, . . . , m}, and the proposition is proved.

Proposition 8. Let r, s, t be nonzero, r\s = q1, and r\t = q2. Let f be a proper Darboux polynomial,
homogeneous of degree m, with γ(f) = 0, and let α1, α2, β1, β2 be the integers which appear in
Proposition 6.

(a) If α1 	= 0 and α1q1 + α2 /∈ Nm, or β1 	= 0 and −(β1q2 − β2) /∈ Nm, then s = −pt, for some
positive rational number p.

(b) If α1 = β1 = 0, (α2 − j) 1
q1

/∈ Nm−j and −(β2 − j) 1
q2

/∈ Nm−j , for j = 0, 1, 2, . . . , m− 1, then we
have f = xα2

3 I where I is a first integral.

Proof. (a) Suppose α1 	= 0 and α1q1 + α2 /∈ Nm. The other case is similar. Then we have α(f) =
−(α1q1 + α2)s 	= 0 and α(f) 	= −ns, n ∈ Nm. From Proposition 4 it follows that f is divisible by
x2, so that f = x2f1 for some homogeneous polynomial f1 of degree m − 1, and we have

L(f1) = ((α + r)x1 + βx2 − tx3)f1. (3.7)

Equation (3.7) shows that f1 is a Darboux polynomial with γ(f1) = −t. However, from Proposition 5
we have γ(f1) = γ1s + γ2t for non-negative integers γ1, γ2 ∈ {0, 1, 2, . . . , m − 1}. Therefore,
γ1s + γ2t = −t, which is possible only if γ1 	= 0, in which case s = − (1+γ2)

γ1
t, and the statement is

proved with p = 1+γ2
γ1

.
(b) Suppose that α1 = β1 = 0. Since f is a proper Darboux polynomial with γ(f) = 0 we must

have α2 	= 0 or β2 	= 0, and our assumptions imply that in fact α2 = β2 (see Proposition 7). We
have α(f) = −α2

1
q1

r 	= 0 and α(f) 	= −nr, n ∈ Nm. It follows from Proposition 4 that f is divisible
by x3. So f = x3f

′
1 for some polynomial f ′

1 of degree m − 1, and we have

L(f ′
1) = (−(α2 − 1)sx1 − (β2 − 1)tx2)f ′

1.

By the same argument, if α2 − 1 = β2 − 1 	= 0, then f ′
1 is divisible by x3. Continuing in the same

way, we find that f = xα2
3 I for some first integral I (I ≡ 1 if α2 = β2 = m), and the proposition is

proved.

These results allow us to characterize the Darboux polynomials of system (1.2).

Proposition 9. Let f be a Darboux polynomial of system (1.2), homogeneous of degree m. If s = 0
then

f = xγ2
2 f1, (3.8)

where f1 is a Darboux polynomial with γ(f1) = 0. If s, t are nonzero and Nms ∩ Nmt = ∅, then we
have

f = xγ1
1 xγ2

2 f2, (3.9)

where f2 is a Darboux polynomial with γ(f2) = 0. Here, the non-negative integers γ1, γ2 are such
that γ(f) = γ1s + γ2t.
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Proof. If γ(f) = 0, then the result in each case follows by setting γ1 = γ2 = 0, f1 = f2 = f .
Suppose that γ(f) 	= 0 and s = 0. Then, by Proposition 4 f is divisible by x2, and writing f = x2f

′
1

we have

L(f ′
1) = ((α + r)x1 + βx2 + (γ − t)x3)f ′

1.

Let this procedure be repeated as many times as it can, and let γ2 be the number of times that
it can. We have f = xγ2

2 f1, where f1 is a Darboux polynomial with γ(f1) = γ − γ2t = 0 since we
had to stop the division procedure by x2, and Eq. (3.8) is proved. Suppose now that γ(f) 	= 0, s, t

are nonzero and Nms ∩ Nmt = ∅. Thus γ /∈ Nms or γ /∈ Nmt. Let us consider the case γ /∈ Nms.
The case γ /∈ Nmt is similar. Then f is divisible by x2 and as before we have f = xγ2

2 f ′
2, where

f ′
2 is a Darboux polynomial with γ(f ′

2) = γ − γ2t. Since we had to stop the division procedure by
x2, we must have either γ(f ′

2) = 0, in which case Eq. (3.9) is satisfied with γ1 = 0 and f2 = f ′
2, or

γ(f ′
2) = γ1s, for some γ1 ∈ Nm. In the latter case γ(f ′

2) /∈ Nmt and f ′
2 is divisible γ1 times by x1,

that is, f ′
2 = xγ1

1 f2, γ(f2) = 0, and Eq. (3.9) follows.

Remark 2. The condition Nms ∩ Nmt = ∅ implies that there do not exist integers n1, n2 ∈ Nm

such that s = n2
n1

t. This condition is satisfied in each of the following cases:

(a) one of s, t is positive and the other is negative,
(b) s, t have the same sign but one is rational and the other irrational,
(c) s, t have the same sign, they are both irrational, and their ratio is irrational,
(d) s, t have the same sign, they are both rational, and s/t < 1/m or s/t > m,

(e) s, t have the same sign, they are both irrational, their ratio is rational, and s/t < 1/m or
s/t > m.

Remark 3. In Proposition 9, instead of the condition Nms∩Nmt = ∅, we can make an alternative
assumption as follows. First let s\t = q3, and let fk, k = 0, 1, 2, . . . , f = f0, be a sequence of Darboux
polynomials as we describe below. We denote γ(fk) = γ1(fk)s + γ2(fk)t, γ1 = γ1(f), γ2 = γ2(f).
For k = 0, 1, 2, . . . , γ1 + γ2 − 1, we suppose that

(i) γ1(fk) + γ2(fk)
1
q3

/∈ Nm−k or (ii) γ1(fk)q3 + γ2(fk) /∈ Nm−k. (3.10)

In particular, if γ1(fk) = 0 then we require condition (i) to hold, whereas if γ2(fk) = 0 then we
require condition (ii) to hold (if γ1(fk) 	= 0 and γ2(fk) 	= 0 then we can have either condition (i)
or (ii)). If condition (i) holds, then γ(fk) 	= 0 and γ(fk) 	= ns, n ∈ Nm−k, which implies that fk

is divisible by x2. Thus fk = x2fk+1, and γ1(fk+1) = γ1(fk), γ2(fk+1) = γ2(fk) − 1. If condition
(ii) holds, then γ(fk) 	= 0 and γ(fk) 	= nt, n ∈ Nm−k, which implies that x1|fk. In this case we have
fk = x1fk+1, γ1(fk+1) = γ1(fk)− 1, γ2(fk+1) = γ2(fk). Following this procedure, after γ1 + γ2 steps
we obtain f = xγ1

1 xγ2
2 f ′, where γ(f ′) = 0.

The following proposition states similar results in terms of the constants α and β. The proof is
similar to the proof of Proposition 9.

Proposition 10. Let f be a homogeneous Darboux polynomial of degree m, and let α1, α2, β1, β2

be the integers which appear in Proposition 6.

(i) If s = 0 then f = xα1
2 f1, where f1 is a Darboux polynomial with α(f1) = 0.

(ii) If r, s are nonzero and −Nmr ∩ (−Nms) = ∅ then f = xα1
2 xα2

3 f2, where f2 is a Darboux
polynomial with α(f2) = 0.
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(iii) If r, t are nonzero and Nmr∩(−Nmt) = ∅ then f = xβ1
1 xβ2

3 f3, where f3 is a Darboux polynomial
with β(f3) = 0.

We are now ready to prove the main result of this section.

Theorem 2. Let f be a Darboux polynomial of system (1.2), homogeneous of degree m. Suppose that
either : (i) s = 0 and Nmr∩(−Nmt) = ∅, or (ii) r, s, t are nonzero, Nmr∩(−Nmt) = ∅, Nms∩Nmt =
∅, and (−Nmr) ∩ (−Nms) = ∅. (In particular, condition (ii) is satisfied, for example, when r > 0,

t > 0 and s < 0, or r < 0, t < 0 and s > 0). Then, there exist three non-negative integers i, j, k and
a polynomial first integral I — which may be trivial — such that

f = xi
1x

j
2x

k
3I (3.11)

and

α(f) = −rj − sk, β(f) = ri − tk, γ(f) = si + tj. (3.12)

Proof. Consider the case s = 0 and Nmr∩ (−Nmt) = ∅. The other case is similar. We use Eq. (3.8)
of Proposition 9 and the equations in statements (i) and (iii) of Proposition 10 in the following
algorithm.

(1) Set n = 0 and fn = f .
(2) Applying Proposition 10 for α (statement (i)) yields

fn = xα1
2 fn+1, α(fn+1) = 0.

If fn+1 is a first integral, go to the final step, else increment n by one.
(3) Applying Proposition 10 for β (statement (iii)) yields

fn = xβ1
1 xβ2

3 fn+1, β(fn+1) = 0.

If fn+1 is a first integral, go to the final step, else increment n by one.
(4) Applying Proposition 9 for γ (Eq. (3.8)) yields

fn = xγ2
2 fn+1, γ(fn+1) = 0.

If fn+1 is a first integral, go to the final step, else increment n by one and return to step 2.
(5) (Final step) Set I = fn+1 and using the sequence of equations linking fl to fl+1, l = 1, . . . , n

given by the algorithm determine the exponents i, j, k in Eq. (3.11).

At every step one has deg fl+1 ≤ deg fl; when three consecutive terms of the sequence are of
the same degree, they are equal and α(fl) = β(fl) = γ(fl) = 0, so fl is a first integral. Thus the
algorithm converges in a finite number of steps. Equation (3.12) follows from simple properties of
Darboux polynomials.

If condition (ii) holds, then the proof is the same but now in steps 2 and 4 of the algorithm we use
the equation in statement (ii) of Proposition 10, and Eq. (3.9) of Proposition 9, respectively.

4. The Case s = t

In this section we study the case s = t, which is not covered by Theorem 2 in the previous section.
It can be seen that in this case x1 + x2 is an additional linear Darboux polynomial of system (1.2),
with cofactor sx3. Therefore, polynomials of the form f = xi

1x
j
2x

k
3(x1 + x2)l, where i, j, k, l are

non-negative integers, are Darboux polynomials. We show that a Darboux polynomial will have this
form with l > 0, provided its cofactor satisfies some conditions which depend on the ratio r\s.
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Proposition 11. Suppose that r, s, t are nonzero, s = t, and let r\s = q1. Let f be a homogeneous
Darboux polynomial of degree m which does not have the form (3.11), and let α1, α2, β1, β2, γ1,

γ2 be the integers which appear in Propositions 5 and 6. For j = 0, 1, 2, . . . , m − 1, suppose that
α1 +(α2− j) 1

q1
/∈ Nm−j , β1− (β2− j) 1

q1
/∈ Nm−j , (α1− j)q1 +α2 /∈ Nm−j , and −((β1− j)q1−β2) /∈

Nm−j. Then, we have (i) α2 = β2 and (ii) α1 + β1 < γ1 + γ2.

Proof. Relation (i) is statement (a) of Proposition 7. We prove the inequality (ii). Suppose on
the contrary that α1 + β1 > γ1 + γ2. By arguments that we have used repeatedly in this paper
(for example see Proposition 8), f is divisible α1 times by x2 and β1 times by x1. Thus we have
f = xβ1

1 xα1
2 f ′, where f ′ is a Darboux polynomial of degree m − (α1 + β1) such that

L(f ′) = (−α2sx1 − β2sx2 + (γ − (α1 + β1)s)x3)f ′.

By Proposition 5 there exist non-negative integers γ′
1, γ′

2 ∈ {0, 1, . . . , m − (α1 + β1)} such that
γ(f ′) = γ′

1s + γ′
2t = (γ′

1 + γ′
2)s. This implies that γ′

1 + γ′
2 = γ1 + γ2 − α1 − β1 < 0, a contradiction.

If α1 + β1 = γ1 + γ2, then from the equation above we have L(f ′) = (−α2sx1 − β2sx2)f ′, and
our assumptions imply that f ′ is divisible α2 times by x3 (Proposition 8). So we have f ′ = xα2

3 I,
and therefore f = xβ1

1 xα1
2 xα2

3 I, where I is a first integral. Since we assume that f does not have the
form (3.11) we may exclude this possibility, and the proof is completed.

Proposition 12. Suppose that r, s, t are nonzero, s = t, and let r\s = q1. Let f be a homogeneous
Darboux polynomial of degree m which does not have the form (3.11). With the same assumptions
as in Proposition 11 we have f = (x1 + x2)f1, for some polynomial f1.

Proof. From Proposition 8 it follows that we may assume γ(f) 	= 0. By Proposition 3 f does not
have an xm

3 term and we can write f = x1φ1 +x2ψ1, for some polynomials φ1, ψ1. For a polynomial
f = f(x1, x2, x3) we denote by f̃ the polynomial obtained from f by setting x2 = −x1, that is
f̃ = f̃(x1, x3) = f |x2=−x1 . So, f̃ = x1(φ̃1 − ψ̃1), and letting h1 = φ1 −ψ1 we have f̃ = x1h̃1. Setting
s = t and x2 = −x1 in Eq. (3.3) we obtain

x1L̃(φ1) − x1L̃(ψ1) = ((α − β + r)x1 + (γ − s)x3)x1(φ̃1 − ψ̃1)

or

L̃(h1) = ((α − β + r)x1 + (γ − s)x3)h̃1. (4.1)

Setting s = t and x2 = −x1 in Eq. (2.4) we obtain

L̃(h1) = −x1(rx1 − sx3)

(
∂̃h1

∂x1
− ∂̃h1

∂x2

)
. (4.2)

Combining Eqs. (4.1) and (4.2), and noting that α2 = β2 (Proposition 11), we obtain

−x1(rx1 − sx3)

(
∂̃h1

∂x1
− ∂̃h1

∂x2

)
= (−(α1 + β1 − 1)rx1 + (γ1 + γ2 − 1)sx3)h̃1. (4.3)

From Proposition 11 we also have α1 + β1 < γ1 + γ2, which implies that the term −(α1 + β1 −
1)rx1 + (γ1 + γ2 − 1)sx3 is not a constant multiple of (rx1 − sx3). Since (rx1 − sx3) divides the
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right-hand side of Eq. (4.3), it divides h̃1. Therefore we have

h1 = (rx1 − sx3)ρ1 + (−rx2 − sx3)χ1,

for some polynomials ρ1, χ1. Let h2 = ρ1 + χ1. Then, h̃1 = (rx1 − sx3)h̃2 and f̃ = x1(rx1 − sx3)h̃2.
We have

∂̃h1

∂x1
= (rx1 − sx3)

∂̃ρ1

∂x1
+ rρ̃1 + (rx1 − sx3)

∂̃χ1

∂x1
, (4.4)

∂̃h1

∂x2
= (rx1 − sx3)

∂̃ρ1

∂x2
+ (rx1 − sx3)

∂̃χ1

∂χ2
− rχ̃1. (4.5)

Substituting for g∂h1
∂x1

, g∂h1
∂x2

from Eqs. (4.4) and (4.5) respectively in Eq. (4.3) we obtain

−x1(rx1 − sx3)

(
(rx1 − sx3)

(
∂̃ρ1

∂x1
+

∂̃χ1

∂x1

)
− (rx1 − sx3)

(
∂̃ρ1

∂x2
+

∂̃χ1

∂x2

)
+ r(ρ̃1 + χ̃1)

)

= (−(α1 + β1 − 1)rx1 + (γ1 + γ2 − 1)sx3)h̃1

and simplifying further we have

−x1(rx1 − sx3)

(
∂̃h2

∂x1
− ∂̃h2

∂x2

)
= (−(α1 + β1 − 2)rx1 + (γ1 + γ2 − 1)sx3)h̃2. (4.6)

The term −(α1 + β1 − 2)rx1 + (γ1 + γ2 − 1)sx3 is not a constant multiple of (rx1 − sx3), and so
(rx1 − sx3)|h̃2. Continuing in the same way we find that f̃ is divisible by an infinity of powers of
(rx1−sx3), which is a contradiction. Therefore we must have f̃ = 0. This implies that f = (x1+x2)f1,
for some polynomial f1, and the proof of the proposition is completed.

Corollary 1. Suppose that r, s, t are nonzero, s = t, and let r\s = q1. Let f be a homogeneous
Darboux polynomial of degree m. With the same assumptions as in Proposition 11 we have

f = xi
1x

j
2x

k
3(x1 + x2)lI, (4.7)

where I is a first integral and i, j, k, l are non-negative integers.

Proof. Note first that if γ(f) = 0 then by Proposition 8 it follows that we must have α1 = β1 = 0
and f = xα2

3 I. If γ(f) 	= 0 and f does not have the form (3.11) (which is (4.7) with l = 0), then by
Proposition 12 we have f = (x1 + x2)f1 for some polynomial f1, and

L(f1) = (αx1 + βx2 + (γ − s)x3)f1.

Repeating this procedure a finite number of steps, we find that f has the form (4.7).

Remark 4. Similar results hold when r = s and r = −t. It can be seen that if r = s then x2 +x3 is
a linear Darboux polynomial with cofactor −rx1. Under conditions analogous to the ones we have
used in this section, we have f = xi

1x
j
2x

k
3(x2 + x3)lI. Similarly, if r = −t then x1 + x3 is a linear

Darboux polynomial with cofactor rx2, and we have f = xi
1x

j
2x

k
3(x1 + x3)kI.
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5. Examples

5.1. The KM-system

We give a complete description of Darboux polynomials for the case of the KM system (r = 1, s = 0,
t = 1):

ẋ1 = x1x2

ẋ2 = −x1x2 + x2x3 (5.1)

ẋ3 = −x2x3.

The Hamiltonian description of system (1.1) can be found in [9] and [8]. We will follow [8] and
use the Lax pair of that reference. The Lax pair in the case n = 3 is given by

L̇ = [B, L],

where

L =

⎛⎜⎜⎜⎝
x1 0

√
x1x2 0

0 x1 + x2 0
√

x2x3√
x1x2 0 x2 + x3 0
0

√
x2x3 0 x3

⎞⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1
2
√

x1x2 0

0 0 0
1
2
√

x2x3

−1
2
√

x1x2 0 0 0

0 −1
2
√

x2x3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is an example of an isospectral deformation; the entries of L vary over time but the eigenvalues
remain constant. It follows that the functions Hi = 1

i TrLi are constants of motion. We note that

H1 = 2(x1 + x2 + x3)

corresponds to the total momentum and

H2 =
3∑

i=1

x2
i + 2

2∑
i=1

xixi+1.

Using (1.3) we define the following quadratic Poisson bracket, {xi, xi+1} = xixi+1, i = 1, 2, and
{x1, x3} = 0. For this bracket det L = x2

1x
2
3 is a Casimir and the eigenvalues of L are in involution.

Taking the function H1 = x1 + x2 + x3 as the Hamiltonian we obtain Eqs. (5.1). Therefore the
system has a Casimir given by F = x1x3 and a constant of motion x1 + x2 + x3 corresponding to
the Hamiltonian. Note that H2 = H2

1 − 2F .
In the following Tables 1–3, we present all Darboux polynomials of degree ≤ 3 and the corre-

sponding cofactors.



Darboux Polynomials for Lotka–Volterra Systems in Three Dimensions 351

Table 1. Linear Darboux polynomials
and corresponding cofactors.

Darboux polynomial Cofactor

1 x1 x2

2 x2 −x1 + x3

3 x3 −x2

4 x1 + x2 + x3 0

Table 2. Quadratic Darboux polynomials and corresponding cofactors. Note that (10) is a sum of
two first integrals, and thus a first integral; c1, c2 are constants.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 x2
1 2x2 6 x2x3 −x1 − x2 + x3

2 x2
2 −2x1 + 2x3 7 x1(x1 + x2 + x3) x2

3 x2
3 −x2 8 x2(x1 + x2 + x3) −x1 + x3

4 x1x2 −x1 + x2 + x3 9 x3(x1 + x2 + x3) −x2

5 x1x3 0 10 c1(x2
1 + x2

2 + x2
3 + 2x1x2

+ 2x2x3) + c2x1x3

0

Table 3. Cubic Darboux polynomials and corresponding cofactors; c1, . . . , c6 are constants.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 x3
1 3x2 9 x2

2(x1 + x2 + x3) −2x1 + 2x3

2 x3
2 −3x1 + 3x3 10 x2

3(x1 + x2 + x3) −2x2

3 x3
3 −3x2 11 x1x2(x1 + x2 + x3) −x1 + x2 + x3

4 x2
1x2 −x1 + 2x2 + x3 12 x2x3(x1 + x2 + x3) −x1 − x2 + x3

5 x2
2x1 −2x1 + x2 + 2x3 13 c1x1(x2

1 + x2
2 + x2

3 x2

+ 2x1x2) + c2x2
1x3

6 x2
2x3 −2x1 − x2 + 2x3 14 c3x2(x2

1 + x2
2 + x2

3 + 2x1x2 −x1 + x3

+ 2x2x3) + c4x1x2x3

7 x2
3x2 −x1 − 2x2 + x3 15 c5x3(x2

1 + x2
2 + x2

3 + 2x1x2 −x2

+ 2x2x3) + c6x2
3x1

8 x2
1(x1 + x2 + x3) 2x2

5.2. Periodic KM-system

The periodic KM-system (r = 1, s = −1, t = 1) is given with the same equations (1.1) plus a
periodicity condition xi = xi+n. In the case n = 3 we obtain:

ẋ1 = x1x2 − x1x3

ẋ2 = −x1x2 + x2x3

ẋ3 = x1x3 − x2x3.

We give a different type of Lax pair for this system from [1].

L =

⎛⎝ 0 x1 1
1 0 x2

x3 1 0

⎞⎠
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B =

⎛⎝ 0 0 x1x2

x2x3 0 0
0 x3x1 0

⎞⎠ .

It follows that the functions Hi = 1
i TrLi are constants of motion. We note that H1 = 0,

H2 = x1 + x2 + x3 and H3 = 1 + x1x2x3. As expected the function H2 = x1 + x2 + x3 plays the role
of the Hamiltonian with respect to the Poisson bracket (1.3) while F = x1x2x3 is a Casimir.

In the following Tables 4–6, we present all Darboux polynomials of degree ≤ 3 and the corre-
sponding cofactors.

Table 4. Linear Darboux polynomials
and corresponding cofactors.

Darboux polynomial Cofactor

1 x1 x2 − x3

2 x2 −x1 + x3

3 x3 x1 − x2

4 x1 + x2 + x3 0

Table 5. Quadratic Darboux polynomials and corresponding cofactors.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 x2
1 2x2 − 2x3 6 x2x3 −x2 + x3

2 x2
2 −2x1 + 2x3 7 x1(x1 + x2 + x3) x2 − x3

3 x2
3 2x1 − 2x2 8 x2(x1 + x2 + x3) −x1 + x3

4 x1x2 −x1 + x2 9 x3(x1 + x2 + x3) x1 − x2

5 x1x3 x1 − x3 10 (x1 + x2 + x3)2 0

Table 6. Cubic Darboux polynomials and corresponding cofactors; c1, c2 are constants.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 x3
1 3x2 − 3x3 11 x2(x1 + x2 + x3)2 −x1 + x3

2 x3
2 −3x1 + 3x3 12 x3(x1 + x2 + x3)2 x1 − x2

3 x3
3 3x1 − 3x2 13 x2

1(x1 + x2 + x3) 2x2 − 2x3

4 x2
1x2 −x1 + 2x2 − x3 14 x2

2(x1 + x2 + x3) −2x1 + 2x3

5 x2
1x3 x1 + x2 − 2x3 15 x2

3(x1 + x2 + x3) 2x1 − 2x2

6 x2
2x1 −2x1 + x2 + x3 16 x1x2(x1 + x2 + x3) −x1 + x2

7 x2
2x3 −x1 − x2 + 2x3 17 x1x3(x1 + x2 + x3) x1 − x3

8 x2
3x1 2x1 − x2 − x3 18 x2x3(x1 + x2 + x3) −x2 + x3

9 x2
3x2 x1 − 2x2 + x3 19 x1x2x3 0

10 x1(x1 + x2 + x3)2 x2 − x3 20 c1(x3
1 + x3

2 + x3
3 + 3x2

1x2 + 3x2
1x3 0

+ 3x2
2x1 + 3x2

2x3 + 3x2
3x1

+ 3x2
3x2) + c2x1x2x3

5.3. The case s = t (r = 5, s = t = 1)

ẋ1 = 5x1x2 + x1x3

ẋ2 = −5x1x2 + x2x3

ẋ3 = −x1x3 − x2x3.
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Table 7. Linear Darboux polynomials
and corresponding cofactors.

Darboux polynomial Cofactor

1 x1 + x2 x3

Table 8. Quadratic Darboux polynomials and corresponding cofactors.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 x1(x1 + x2) 5x2 + 2x3 4 (x1 + x2)2 2x3

2 x2(x1 + x2) −5x1 + 2x3 5 (x1 + x2)(x1 + x2 + x3) x3

3 x3(x1 + x2) −x1 − x2 + x3 — — —

Table 9. Cubic Darboux polynomials and corresponding cofactors.

Darboux polynomial Cofactor Darboux polynomial Cofactor

1 (x1 + x2)3 3x3 9 x1x3(x1 + x2) −x1 + 4x2 + 2x3

2 x1(x1 + x2)2 5x2 + 3x3 10 x2x3(x1 + x2) −6x1 − x2 + 2x3

3 x2(x1 + x2)2 −5x1 + 3x3 11 x1(x1 + x2)(x1 + x2 + x3) 5x2 + 2x3

4 x3(x1 + x2)2 −x1 − x2 + 2x3 12 x2(x1 + x2)(x1 + x2 + x3) −5x1 + 2x3

5 x2
1(x1 + x2) 10x2 + 3x3 13 x3(x1 + x2)(x1 + x2 + x3) −x1 − x2 + x3

6 x2
2(x1 + x2) −10x1 + 3x3 14 (x1 + x2)(x1 + x2 + x3)2 x3

7 x2
3(x1 + x2) −2x1 − 2x2 + x3 15 (x1 + x2)2(x1 + x2 + x3) 2x3

8 x1x2(x1 + x2) −5x1 + 5x2 + 3x3

We list in Tables 7–9 all linear, quadratic, and cubic Darboux polynomials of the above system
which do not have the form (3.11), and their corresponding cofactors.
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