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This paper introduces a new type of symmetry reductions called extended nonclassical symmetries that
can be studied for parameter identification problems described by partial differential equations. Including
the data function in the parameter space, we show that specific data and parameter classes that lead to
a reduced dimension model can be found. More exactly, since the extended nonclassical symmetries relate
the forward and inverse problems, the dimension of the studied equation may be reduced by expressing
the data and parameter in terms of the group invariants. The main advantage of these new symmetries
is that they may be incorporated into the boundary conditions as well, and, consequently, the dimension
reduction problem can be analyzed on new types of domains. Special group-invariant solutions or additional
information on the parameter can be obtained. Besides, in the case of the first-order partial differential
equations, this symmetry reduction method might be an effective alternative tool for finding particular
analytical solutions to the studied model, especially when the Maple subroutine pdsolve does not output
satisfactory results. As an example, we consider the nonlinear stationary heat conduction equation. Our
MAPLE routine GENDEFNC which uses the package DESOLV (authors Carminati and Vu) has been updated for
this propose and its output is the nonlinear partial differential equation system of the determining equations
of the extended nonclassical symmetries.

Keywords: Lie groups of transformations; classical symmetries; nonclassical symmetries; nonlinear partial
differential equations; parameter identification problems.

1. Introduction

One of the fastest developing research fields in the last few years is the area of inverse problems.
These problems occur frequently in engineering, mathematics, and physics. In particular, parameter
identification problems deal with the identification of physical parameters from observations of the
evolution of a system. They especially arise when the physical laws governing the processes are
known, but the information about the parameters occurring in equations is needed. In general, these
are ill-posed problems, in the sense that they do not fulfill Hadamard’s postulates for all admis-
sible data: a solution exists, the solution is unique, and the solution depends continuously on the
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356 N. Bı̂lă & J. Niesen

given data. Arbitrary small changes in data may lead to arbitrary large changes in the solution
(see, for example, [14] for more details). In this paper, we study the class of parameter identification
problems modeled by partial differential equations (PDEs) of the form

F (x, w(m), E(n)) = 0, (1.1)

where the unknown function E = E(x) called parameter, and the arbitrary function w = w(x)
called data are defined on a domain Ω ⊂ Rp (here w(m) denotes the function w together with its
partial derivatives up to order m. We shall assume that the parameter and data are analytical
functions. The PDE (1.1) sometimes augmented with certain boundary conditions is called the
inverse problem associated with a direct (or forward ) problem. The direct problem is the same
equation but the unknown function is the data (for which certain boundary conditions are imposed
as well). In general, the parameter must be positive and satisfy additional conditions [14].

Symmetry analysis theory has been widely used to study nonlinear PDEs. A remarkable number
of mathematical physics models have been successfully analyzed from this point of view. There is a
considerable body of literature on this topic (see, for example, [1, 5–8, 12, 13, 17–19, 21–25, 27–29]
and references from there). The notion of continuous groups of transformations (known today as Lie
groups of transformations) was introduced by Sophus Lie [21] who also applied them to the study
of differential equations. A classical Lie symmetry associated with a PDE is a (local) Lie group of
transformations acting on the space of the independent and dependent variables of the equation with
the property that it leaves the set of its solutions invariant. Additionally, the form or the equation
remains unchanged and special types of group-invariant solutions can be obtained. Lie’s method has
been applied extensively to various mathematical models described by PDEs and it has been proven
to be a powerful method for finding exact solutions to nonlinear PDEs. Subsequently, over the years,
other methods for seeking explicit solutions to nonlinear PDEs that cannot be obtained by applying
Lie’s method have been developed. For instance, Bluman and Cole [5] introduced the nonclassical
method which may lead to new classes of solutions but this depends on the differential structure of
the equation. A nonclassical symmetry (or conditional symmetry) is a (local) group transformations
that acts on the space of the independent and dependent variables of the equation with the property
that it leaves only a subset of the set of all analytical solutions invariant. Any classical symmetry
is a nonclassical symmetry but not conversely. The classical and nonclassical symmetries can be
used to reduce the dimension of a PDE by rewriting it in terms of the group invariants. Therefore,
special types of group-invariant solutions may be obtained. Sometimes the group-invariant solution
obtained from the reduced equation cannot be found explicitly but, even in this case, one can obtain
additional information on the studied model by applying symmetry reduction methods.

The aim of this paper is to introduce a class of symmetry reductions for parameter identification
problems of the form (1.1) that lead to a reduced dimension model. These transformations, called
extended nonclassical symmetries, apply to the case when the targeted data is known or belongs to
a specific class, such as the parameter identification problem discussed in [3]. By including the data
in the parameter space, we can find (or even predict) specific classes of data for which the dimension
of the equation can be reduced. Moreover, this technique will allow us to incorporate noninvari-
ant boundary conditions in invariant solutions extending the common case when the data and the
bounded domain Ω are invariant under the same symmetry reduction. The idea of including the
arbitrary functions in the set of the dependent variables (or in the set of independent variables if
these are constant) appears in the literature, for instance, in [7] and [23]. Surprisingly, the extended
classical symmetries have not been extensively exploited in the context of the symmetry reduction
methods. In [3], the problem of finding different types of symmetry reductions for parameter iden-
tification problems of type (1.1) has been discussed in details and, in particular, the equivalence
transformations associated with a mathematical model arising in car windshield design was ana-
lyzed (more details on equivalence transformations can be found in [22] and [25]). In this paper
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we will consider symmetry reductions associated with (1.1) regarded as a PDE in two unknown
functions: the parameter and the data. Therefore, Eq. (1.1) becomes a nonlinear PDE in w and
E. The group transformations obtained by applying the classical Lie method to (1.1) in which
both w and E are unknown functions will be called full or extended classical symmetries (we shall
name them differently to distinguish them from the classical symmetries associated with (1.1) in
which the unknown function is only E). Similarly, the symmetry reductions obtained by applying
the nonclassical method to (1.1) in which both w and E are viewed as unknown functions will be
called extended nonclassical symmetries. The latter group transformations also relate the forward
and inverse problems as the extended classical symmetries do. Notice that the extended classical
symmetries are solutions to an overdetermined linear PDE system while the extended nonclassical
symmetries are found by solving an overdetermined nonlinear PDE system (with less equations that
the first system). Any extended classical symmetry will be an extended nonclassical symmetry, but
not conversely. To the best of our knowledge, these two types of transformations have not been
studied so far in connection to parameter identification problems or PDEs depending on arbitrary
functions. The extended classical symmetries and their relationship with the equivalence transfor-
mations have been recently studied in [4] and [23]. Since a large amount of calculations are required,
we have updated our Maple package GENDEFNC [2] which uses the package DESOLV by Carminati
and Vu [9]. The GENDEFNC output is the nonlinear PDE system of the determining equations of
the extended nonclassical symmetries. Notice that GENDEFNC is based on a new method for finding
nonclassical symmetries which has been extended recently by Bruzón and Gandarias [8].

To exemplify the new type of symmetry reductions, we shall consider a mathematical model
arising in heat conduction, namely, the nonlinear stationary heat conduction equation given by

−div(E(x, y)∇w(x, y)) = 1 in Ω, (1.2)

where the unknown function E = E(x, y) is the parameter, the arbitrary function w = w(x, y) is the
data, and (x, y) ∈ Ω with Ω ⊂ R2 a bounded domain (here ∇w = (wx, wy) is the gradient of w).
The data function must also satisfy the Dirichlet boundary condition

w|∂Ω = 0. (1.3)

In 3D, the above problem is related to the heat conduction in a material occupying a domain Ω
whose temperature is kept zero at the boundary [14]. After sufficiently long time, the temperature
distribution w can be modeled by

−div(E(x, y, z)∇w(x, y, z)) = f(x, y, z) in Ω, (1.4)

where E is the heat conductivity and f represents the heat sources. For given E and f , the forward
problem is to find the temperature distribution w satisfying (1.4) and (1.3). Conversely, the inverse
problem is to determine E from (1.4) and (1.3) when w is known. While the direct problem is an
elliptic PDE for w, the inverse problem is a linear PDE (with variable coefficients) for E. On the
other hand, in the inverse problems approach, if the solution of the forward problem is unique for
each parameter E, the parameter-to-solution map associates with each parameter E the forward
problem solution. Since for the above problem the parameter-to-output map is nonlinear, (1.4) and
(1.3) is a nonlinear problem from this point of view. In addition, when w = w(E), a new dependent
variable can be introduced by using the Kirchoff transformation [30, p. 113]; if the heat conductivity
E = 1, then Eq. (1.4) becomes Poisson’s equation [15, p. 316]. For simplicity, in this paper, we
discuss the 2D case with the heat sources f = 1, i.e.,

wxEx + wyEy + E(wxx + wyy) = −1. (1.5)

Notice that, even though (1.5) is a linear PDE for E, the solution of the equation cannot be found
at a point (x0, y0) at which the partial derivatives of w are zero.
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The goal of our work is to apply symmetry reductions to inverse problems. The connection of
these two research fields is of current interest. In [3], a parameter identification problem arising
in industrial mathematics has been analyzed from the point of view of symmetry reduction the-
ory. Equation (1.5) that is considered in this paper merely serves as an example chosen to explain
the new class of symmetry reductions. In fact, this equation can be solved theoretically by using
the classical method of characteristics. However, solving the characteristic equations related to a
quasilinear PDE is not an easy task, especially if these are given by nonlinear ODEs. In this lat-
ter case, the output of the Maple PDE-solver pdsolve — which is the general solution of the
input PDE — may be almost unreadable or even null. As we explain in the last section, alterna-
tively, this problem might be overcome by seeking particular solutions invariant with respect to
this new kind of symmetry reductions related to (1.5). Nevertheless, it would be of further inter-
est to apply these symmetry reductions to other similar parameter identification problems modeled
by PDEs.

The paper is organized as follows. The extended classical symmetries related to (1.5) are presented
in Sec. 2 and the extended nonclassical symmetries are discussed in Sec. 3. We show that the
extended nonclassical symmetries are related to the Monge equation (3.19), the Monge-Ampère
equation (3.22), and the Abel ordinary differential equations (ODEs) of second kind (3.29) and
(3.37). The new symmetry reductions related to (1.5) are given by (3.27), (3.30), (3.35), (3.38), and,
respectively, (3.31) and (3.39) excepting the case when A(x, y) = (k1 − k3y + k4x)/(k2 + k3x + k4y).
In Sec. 4, several domains and data for which the PDE (1.5) can be reduced are discussed along
with a class of data that cannot be handled successfully by the Maple subroutine pdsolve.

2. Extended Classical Symmetries Related to (1.5)

Let us consider a one-parameter Lie group of transformations acting on an open set D ⊂ Ω×W×E ,
where W is the space of the data functions, and E is the space of the parameter functions, given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̃ = x + εΓ(x, y, w, E) + O(ε2),

ỹ = y + εΛ(x, y, w, E) + O(ε2),

w̃ = w + εΦ(x, y, w, E) + O(ε2),

Ẽ = E + εΨ(x, y, w, E) + O(ε2),

(2.1)

where ε is the group parameter. Let

V = Γ(x, y, w, E)∂x + Λ(x, y, w, E)∂y + Φ(x, y, w, E)∂w + Ψ(x, y, w, E)∂E (2.2)

be its associated general infinitesimal generator. Assume that E = E(x, y) and w = w(x, y) are
both dependent variables in (1.5). The transformation (2.1) is called an extended (or full ) classical
symmetry related to the PDE (1.5) if it leaves Eq. (1.5) invariant, i.e., w̃x̃Ẽx̃+w̃ỹẼỹ+Ẽ(w̃x̃x̃+w̃ỹỹ) =
−1. Note that the set of all analytical solutions of (1.5) will also be invariant. Thus, the criterion
for infinitesimal invariance is given by

pr(2)V(F )|F=0 = 0,

with F (x, y, w(2), E(1)) = wxEx + wyEy + E(wxx + wyy) + 1, where pr(2)V denotes the second order
prolongation of the vector field V [24]. Observe that this prolongation is determined by taking into
account that E and w are both dependent variables, exactly as one would proceed in finding the
classical Lie symmetries for a PDE without arbitrary functions. The order of the prolongation of
the vector field V is given by the highest leading derivative of the dependent variables. Applying the



Extended Nonclassical Symmetries 359

classical Lie method, we obtain the following infinitesimals⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ(x, y, w, E) = k1 − k3y + k4x,

Λ(x, y, w, E) = k2 + k3x + k4y,

Φ(x, y, w, E) = μ(w),

Ψ(x, y, w, E) = E(2k4 − μ′(w)),

(2.3)

where ki, i = 1, . . . , 4 are real constants and μ = μ(w) is an arbitrary function. Hence, the infinites-
imal generator (2.2) becomes

V =
4∑

i=1

kiVi + Vμ, (2.4)

where

V1 = ∂x, V2 = ∂y, V3 = −y∂x + x∂y,

V4 = x∂x + y∂y + 2E∂E , Vμ = μ(w)∂w − Eμ′(w)∂E .

We obtain the following result.

Proposition 1. There is an infinite dimensional Lie algebra of the extended classical symmetries
related to (1.5) spanned by the infinitesimal generators (2.4).

Therefore, the PDE (1.5) is invariant under translations in the x-space, y-space, rotations in the
(x, y)-space, and, respectively, scaling transformations in the (x, y, E)-space. For instance, we find
that (1.5) is invariant under translations in w-space if we choose μ = const., and that the equation
remains unchanged under scaling transformations in (w, E)-space if we choose μ(w) = w.

Furthermore, an extended classical symmetry (2.1) can be used to reduce the dimension of (1.5)
by augmenting this equation with{

Γ(x, y, w, E)wx + Λ(x, y, w, E)wy − Φ(x, y, w, E) = 0,

Γ(x, y, w, E)Ex + Λ(x, y, w, E)Ey − Ψ(x, y, w, E) = 0,

which is a first order PDE system defining the characteristics of the vector field (2.2). The above
relations are also called invariance surface conditions.

3. Extended Nonclassical Symmetries Related to (1.5)

Consider a one-parameter Lie group of transformations acting on an open set D ⊂ Ω×W×E , where
W is the space of the data functions, and E is the space of the parameter functions, given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̃ = x + εξ(x, y, w, E) + O(ε2),

ỹ = y + εη(x, y, w, E) + O(ε2),

w̃ = w + εφ(x, y, w, E) + O(ε2),

Ẽ = E + εψ(x, y, w, E) + O(ε2),

(3.1)

where ε is the group parameter. Let the following vector field

U = ξ(x, y, w, E)∂x + η(x, y, w, E)∂y + φ(x, y, w, E)∂w + ψ(x, y, w, E)∂E (3.2)

be the general infinitesimal generator related to (3.1). The transformation (3.1) is called an extended
nonclassical symmetry associated with the PDE (1.5) if this leaves the subset

SF,φ1,φ2 = {F (x, y, w(2), E(2)) = 0, φ1(x, y, w(1), E(1)) = 0, φ2(x, y, w(1), E(1)) = 0}
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of the set of all analytical solutions invariant, where{
φ1 := ξ(x, y, w, E)wx + η(x, y, w, E)wy − φ(x, y, w, E) = 0,

φ2 := ξ(x, y, w, E)Ex + η(x, y, w, E)Ey − ψ(x, y, w, E) = 0
(3.3)

represents the characteristics of the vector field U (or the invariant surface conditions). Here the
criterion for infinitesimal invariance is the following⎧⎪⎨

⎪⎩
pr(2)U(F )|F=0,φ1=0,φ2=0 = 0,

pr(1)U(φ1)|F=0,φ1=0,φ2=0 = 0,

pr(1)U(φ2)|F=0,φ1=0,φ2=0 = 0.

If η �= 0, one can assume without loss of generality that η = 1 (the case η = 0 is not discussed in
this paper), and, hence, (3.3) turns into{

wy = φ(x, y, w, E) − ξ(x, y, w, E)wx,

Ey = ψ(x, y, w, E) − ξ(x, y, w, E)Ex.
(3.4)

At the first step, we augment the original PDE with (3.4) and eliminate all the partial derivatives of
w and E with respect to y occurring in (1.5). Hence, by using (3.4) and its differential consequences,
we obtain

A1wxx + A2w
2
x + A3wxEx + A4wx + A5Ex + A6 = 0, (3.5a)

where the coefficients Ai = Ai(x, y, w, E), i = 1 . . . 6, are the following

A1 = E(ξ2 + 1),

A2 = 2Eξξw,

A3 = ξ2 + 2EξξE + 1,

A4 = −ξψ + E(ξξx − ξy − φξw − ψξE − 2ξφw),

A5 = −ξ(φ + 2EφE),

A6 = φψ + 1 − E(ξφx − φy − φφw − ψφE).

(3.5b)

Equation (3.5) has been obtained by using the GENDEFNC command

gendefnc(PDE, [w,E], [x,y], y, 3).

Since A1 �= 0, (3.5) may be regarded as an ODE in the unknown functions w and E (with y as a
parameter). At the second step, by using the GENDEFNC command

gendefnc(PDE, [w,E], [x,y], y)

we obtain the determining equations of the extended nonclassical symmetries. This is an overdeter-
mined nonlinear PDE system for the infinitesimals ξ = ξ(x, y, w, E) and φ = φ(x, y, w, E). Among
these equations, we get ξw = 0, ξE = 0, and φE = 0 which implies

ξ(x, y, w, E) = A(x, y), (3.6)

and

φ(x, y, w, E) = G(x, y, w), (3.7)
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where A and G are arbitrary functions. The substitution of the above functions into the remaining
equations yields

ψ(x, y, w, E) = EF (x, y, w), (3.8)

with F an arbitrary function of its arguments. By using the above relations, the determining system
is reduced to

F = −Gw +
2(Ax − AAy)

A2 + 1
, (3.9)

Gx − AGy − 2AAx − Ay(A2 − 1)
A2 + 1

G = 0, (3.10)

Gxx + Gyy + FyG + FGy + 2GGyw

+
2(Ax − AAy)

A2 + 1
(GGw + Gy + FG) − 2(AAx + Ay)

A2 + 1
Gx = 0, (3.11)

and

(A4 − 1)Axx + 4A(A2 + 1)Axy − (A4 − 1)Ayy − 2A(A2 − 3)A2
x

− 4(3A2 − 1)AxAy + 2A(A2 − 3)A2
y = 0, (3.12)

where A = A(x, y), G = G(x, y, w), and F = F (x, y, w) are the unknown functions.

Remark. The extended nonclassical symmetries do not leave the form of Eq. (1.5) invariant. More-
over, the nonclassical operators (3.2) do not form a vector space, still less a Lie algebra, as the sym-
metry operators do. Since every classical symmetry is a nonclassical symmetry but not conversely,
there exists a set of common solutions of the determining system of the extended nonclassical sym-
metries and the determining system of the extended classical symmetries. This common solution is
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ(x, y, w, E) =
Γ(x, y, w, E)
Λ(x, y, w, E)

=
k1 − k3y + k4x

k2 + k3x + k4y
,

φ(x, y, w, E) =
Φ(x, y, w, E)
Λ(x, y, w, E)

=
μ(w)

k2 + k3x + k4y
,

ψ(x, y, w, E) =
Ψ(x, y, w, E)
Λ(x, y, w, E)

=
E(2k4 − μ′(w))
k2 + k3x + k4y

,

(3.13)

where at least one of the constants k2, k3 or k4 is nonzero.
To solve the determining equations (3.9)–(3.12), we proceed as follows: Eqs. (3.10) and (3.11)

are analyzed in Subsec. 3.1, Eq. (3.12) is studied in Subsec. 3.2, and the solutions of the determining
equations (3.9)–(3.12) are given in Subsec. 3.3.

3.1. The infinitesimal φ = G(x, y, w)

First observe that (3.10) can be written in the following conservation form(
G

A2 + 1

)
x

−
(

AG

A2 + 1

)
y

= 0.

If A �≡ 0, then two cases may occur:

Case G1. Suppose G ≡ 0. In this case, (3.10) and (3.11) are both satisfied.

Case G2. If G �≡ 0, then there exists a potential function K = K(x, y, w) such that Kx =
AG/(A2 + 1) and Ky = G/(A2 + 1). These equations yields Kx = AKy whose general solution
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is K(x, y, w) = P (u, w), where P is an arbitrary function and u = u(x, y) is a solution of the
equation

ux = A(x, y)uy. (3.14)

From these relations we obtain

G = uy(A2 + 1)S, (3.15)

where S(u, w) denotes the partial derivative Pu(u, w). Thus, the solution of (3.10) is given by (3.15),
where u satisfies (3.14).

The substitution of (3.15) into (3.11) implies

q1(SuwS − SuSw + Suu) + q2Su + q3S = 0, (3.16)

where the coefficients qi are expressed in terms of A and uy as follows

q1 = u3
y(A2 + 1)3,

q2 = uy(A2 + 1)[3uyy(A2 + 1)2 + uy(5Ax + 3A3Ay + 3A2Ax + AAy)],

q3 = uyyy(A2 + 1)3 + uyy(A2 + 1)[(3A2 + 5)Ax + (3A2 + 1)AAy ]

+ uy[2A(A2 + 1)Axx + (A2 + 1)(A2 + 3)Axy + A(A2 + 1)2Ayy

− 2(A2 − 3)A2
x + 2A(A2 − 3)AxAy + (A4 − 1)A2

y].

In particular, the method of separation of variables applied to (3.16) implies solutions of the form
S(u, w) = p(u)μ(w), where p = p(u) satisfies the equation

q1puu + q2pu + q3p = 0 (3.17)

and μ = μ(w) is an arbitrary function of its argument.
To summarize, Eq. (3.11) has been reduced to (3.16), where A = A(x, y) satisfies (3.12) and

u = u(x, y) is a solution of (3.14).

3.2. The infinitesimal ξ = A(x, y)

In the following, we show that (3.12) can be reduced to a Monge–Ampère equation.

Case A1. For A ≡ 0, we obtain the trivial solution to (3.12).

Case A2. If A = k, with k �= 0, then the constant solution to (3.12) is found.

Case A3. Assume A is a nonconstant function. Then (3.12) can be rewritten as

B(B2 + 1)Bxx + (B2 − 1)(B2 + 1)Bxy − B(B2 + 1)Byy

−(3B2 − 1)B2
x − 2B(B2 − 3)BxBy + (3B2 − 1)B2

y = 0,

where B = (A + 1)/(A − 1). The conservation form of the above PDE is(
B(Bx + BBy)

(B2 + 1)2

)
x

−
(

Bx + BBy

(B2 + 1)2

)
y

= 0. (3.18)
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We distinguish the following two cases:

Case A3.1. If B = B(x, y) is a solution of the following Monge equation

Bx + BBy = 0, (3.19)

then (3.18) holds. Since the general solution of (3.19) is given implicitly by y − xB = ν(B), where
ν is an arbitrary function, the corresponding solution of (3.12) is

y − x
A + 1
A − 1

= ν

(
A + 1
A − 1

)
. (3.20)

Case A3.2. B = B(x, y) does not satisfy (3.19). It follows from (3.18) that there exists a potential
function T = T (x, y) such that ⎧⎪⎪⎨

⎪⎪⎩
Tx =

Bx + BBy

(B2 + 1)2
,

Ty =
B(Bx + BBy)

(B2 + 1)2
.

(3.21)

Since Tx cannot be identically zero, the above equations yield B = Ty/Tx and, by substituting it
into the first equation of (3.21) we have

TxTyTxx − (T 2
x − T 2

y )Txy − TxTyTyy + (T 2
x + T 2

y )2 = 0.

By using the following Legendre transformation [30, p. 353], H(a, b) + T (x, y) = xa + yb, where
Tx = a, x = Ha, Ty = b, and y = Hb, the above PDE turns into the following Monge–Ampère
equation

HaaHbb −H2
ab −

ab

(a2 + b2)2
Haa +

a2 − b2

(a2 + b2)2
Hab +

ab

(a2 + b2)2
Hbb = 0.

Furthermore, this can be reduced to the Monge–Ampère equation

VaaVbb − V 2
ab = − 1

(a2 + b2)2
, (3.22)

where

V (a, b) = H(a, b) − 1
2

arctan
(

a

b

)
. (3.23)

Special solutions to particular Monge–Ampère PDEs have been extensively analyzed in [27]. The
PDE (3.22) may be included in Case 17 [27, p. 458] or Case 20 [27, p. 460].

3.3. The determining equations of the extended nonclassical symmetries

We distinguish the following four cases:

Case 1. A ≡ 0 and G ≡ 0.

Proposition 2. If A ≡ 0 and G ≡ 0, the infinitesimal generator (3.2) becomes U = ∂y, which
implies the invariance of (1.5) with respect to translations in the Y -space.

This extended nonclassical symmetry is an extended classical symmetry that can be obtained
from (3.13) for μ = 0, k2 = 1, and ki = 0, where i = 1, 3, 4.

Case 2. Suppose A ≡ 0 and G �≡ 0. The PDE (3.10) takes the form Gx = 0 and it follows that
G = H(y, w). After substituting it into (3.9) and (3.11), we get F = −Hw and, respectively,

Hyy + HHyw − HyHw = 0, (3.24)
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where H is an arbitrary function. Notice that H �≡ 0 in the above equation. The following cases may
occur:
Case 2.1. Assume H = μ(w), where μ is an arbitrary function. Indeed, this is a particular solution
to (3.24).

Proposition 3. If A ≡ 0 and G = μ(w), where μ is an arbitrary function, the infinitesimal generator
(3.2) turns into

U = ∂y + μ(w)∂w − μ′(w)E∂E . (3.25)

The above extended nonclassical symmetry is, in fact, an extended classical symmetry and
corresponds to the case k2 = 1, and ki = 0, where i = 1, 3, 4 in (3.13).

Case 2.2. For Hy �≡ 0, the PDE (3.24) can be written in the following conservation form(
1

Hy

)
y

+
(

H

Hy

)
w

= 0.

After introducing the potential function g = g(y, w), we get gy = H/Hy, and gw = −1/Hy. Clearly,
gw �≡ 0. After eliminating Hy in these PDEs, we obtain H = −gy/gw. Next, substituting it into the
second equation, the following PDE results

gy(gy − y)w − gw(gy − y)y = 0. (3.26)

The following two cases occur:

Case 2.2.1. gy = y. It results g(y, w) = y2/2 + h(w), where h is an arbitrary nonconstant function
(otherwise, gw ≡ 0). Since H = −gy/gw, we get H = yμ(w), where μ = −1/h′.

Proposition 4. If A ≡ 0 and G = yμ(w), where μ is an arbitrary function, then the infinitesimal
generator (3.2) becomes

U = ∂y + yμ(w)∂w − yμ′(w)E∂E . (3.27)

The extended nonclassical symmetry generated by (3.27) is a new symmetry reduction for (1.5)
which cannot be obtained from (3.13).

Case 2.2.2. gy − y �≡ 0. Since Eq. (3.26) is the Jacobian of the functions g and gy − y, there exists
a function α such that

gy = y + α(g). (3.28)

In the above relation, w is viewed as a parameter. Equation (3.28) can be written as the following
Abel ODE of second kind (y + α(g))dy/dg = 1, for y = y(g). The canonical substitutions z = α(g)
and v = y + α(g) reduce the above ODE to its canonical form

vv′ − v = β(z), (3.29)

where v = v(z) and β = 1/(α′ ◦ α−1). A collection of the known cases of solvable Abel ODEs of the
form (3.37) is presented in [26, pp. 107–120] and new results can be found, for example, in [10]. Each
of these ODEs corresponds to an extended nonclassical symmetry related to (1.5), and, therefore,
to new symmetry reductions.

Proposition 5. If A ≡ 0 and G = −gy/gw, where g is a solution of (3.28), then the infinitesimal
generator (3.2) turns into

U = ∂y − gy/gw∂w + E(gy/gw)w∂E . (3.30)

Since g satisfies (3.26), the above vector field generates new symmetry reductions related to (1.5)
that are not extended classical symmetries.
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Case 3. A �≡ 0 and G ≡ 0. By (3.9), we obtain F = 2(Ax − AAy)/(A2 + 1).

Proposition 6. If A �≡ 0 is a solution of Eq. (3.12) and G ≡ 0, then the infinitesimal generator
(3.2) becomes

U = A(x, y)∂x + ∂y +
2(Ax − AAy)

A2 + 1
E∂E . (3.31)

Case 3.1. A = k, where k �= 0.

Proposition 7. If A = k, where k �= 0 is a constant, the infinitesimal generator (3.31) rewrites as
U = k∂x + ∂y.

Replacing μ = 0, k2 = 1, and ki = 0 with i = 1, 3, 4 in (3.13), we obtain that the symmetry
reduction generated by the above vector field is an extended classical symmetry.

Case 3.2. If A is a nonconstant function, then we distinguish two subcases:

Case 3.2.1. A is given implicitly by (3.20).

Case 3.2.2. The equation for A is reduced to the Monge–Ampère equation (3.22).
In the above two cases, the vector field (3.31) generates new symmetry reductions for (1.5) except

the case when A(x, y) = (k1 − k3y + k4x)/(k2 + k3x + k4y).

Case 4. A �≡ 0 and G �≡ 0.

Case 4.1. Assume A = k, where k �= 0. Without loss of generality, we consider the particular
solution u(x, y) = kx+ y of Eq. (3.14). Since uy = 1, the relation (3.15) yields G = (k2 +1)S, where
S is a nontrivial solution of Eq. (3.16) which rewrites as

Suu + SSuw − SuSw = 0. (3.32)

The following cases may occur:

Case 4.1.1. Suppose S = μ(w), where μ is an arbitrary function. In this case, (3.32) is satisfied
and (3.9) implies F = −μ′(w).

Proposition 8. If A = k with k �= 0 and G = (k2 + 1)μ(w), where μ is an arbitrary function, then
the infinitesimal generator (3.2) becomes

U = k∂x + ∂y + (k2 + 1)μ(w)∂w − (k2 + 1)μ′(w)E∂E . (3.33)

The above nonclassical operator generates an extended classical symmetry that can be obtained
from (3.13) for k1 = k/(k2 + 1), k2 = 1/(k2 + 1), k3 = 0, and k4 = 0.

Case 4.1.2. Suppose Su �≡ 0. Notice that (3.32) can be written in the conservation form(
1
Su

)
u

+
(

S

Su

)
w

= 0,

and, hence, there exists a potential function Q = Q(u, w) such that Qu = S/Su and Qw = −1/Su.
Eliminating S in the above system, we obtain S = −Qu/Qw, where

Qu(Qu − u)w − Qw(Qu − u)u = 0. (3.34)

We distinguish the following two cases:

Case 4.1.2a. Qu = u. In this case, Q(u, w) = u2/2 + p(w), where p is an arbitrary nonconstant
function (otherwise Qw ≡ 0). With the aid of S = −Qu/Qw, we get S(u, w) = uμ(w), where
μ = −1/p′ and u(x, y) = kx + y.
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Proposition 9. For A(x, y) = k (k �= 0) and G(x, y, w) = (k2 + 1)(kx + y)μ(w), where μ is an
arbitrary nonconstant function, the infinitesimal generator (3.2) rewrites as follows

U = k∂x + ∂y + (k2 + 1)(kx + y)μ(w)∂w − (k2 + 1)(kx + y)μ′(w)E∂E . (3.35)

The vector field (3.35) generates a new class of symmetry reductions for (1.5) which are not
extended classical symmetries.

Case 4.1.2b. Assume Qu − u �≡ 0. Since (3.34) is the Jacobian of Q and Qu − u, there exists a
function γ such that

Qu = u + γ(Q). (3.36)

In the above ODE, w is viewed as a parameter. Similar to Case 2.2.2, Eq. (3.36) can be reduced to
(u + γ(Q))du/dQ = 1, which is an Abel ODE of second kind for u = u(Q). Moreover, after using
the substitutions s = γ(Q) and V = u+γ(Q), the above ODE can be reduced to the canonical form

V V ′ − V = θ(s), (3.37)

where θ = 1/(γ′ ◦γ−1). This is an Abel equation of second kind for the unknown function V = V (s).
For each solution of (3.37), we obtain a nonclassical symmetry for (1.5). The solvable Abel ODEs
of the form (3.37) that are known so far are listed in [26, pp. 107–120]. More recent results can be
found, for instance, in [10].

Proposition 10. Assume A(x, y) = k with k �= 0 and G(x, y, w) = −(k2 + 1)Qu/Qw, where
u(x, y) = kx + y, and Q = Q(u, w) satisfies (3.34). Then the infinitesimal generator (3.2) becomes

U = k∂x + ∂y − (k2 + 1)Qu/Qw∂w + (k2 + 1)E(Qu/Qw)w∂E . (3.38)

Since Q satisfies (3.34), the above vector field generates new symmetry reductions related to
(1.5) that are not extended classical symmetries.

Case 4.2. Suppose A is a nonconstant function and G �≡ 0.

Proposition 11. If A is a nonconstant function satisfying Eq. (3.12) and G = uy(A2 + 1)S, where
u satisfies (3.14) and S is a nonzero solution of (3.16), the infinitesimal generator (3.2) is written as

U = A∂x + ∂y + uy(A2 + 1)S∂w + E

(
−uy(A2 + 1)Sw +

2(Ax − AAy)
A2 + 1

)
∂E . (3.39)

Two cases may occur:

Case 4.2.1. A is given implicitly by (3.20).

Case 4.2.2. The equation for A is reduced to the Monge–Ampère equation (3.22).

In the above two cases, the vector (3.39) generates new symmetry reductions that cannot be
obtained from (3.13) except when A(x, y) = (k1 − k3y + k4x)/(k2 + k3x + k4y).

Thus, we have found new symmetry reductions related to (1.5) and have shown that these are
given by (3.27), (3.30), (3.35), (3.38), and, respectively, (3.31) and (3.39) except when A(x, y) =
(k1 − k3y + k4x)/(k2 + k3x + k4y).
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4. Conclusion

In this paper we point out another systematic way of finding classes of symmetry reductions related
to parameter identification problems of the form (1.1). Similar to the study in [3], we emphasize
that the geometrical significance of the nonlinearity occurring between the data and parameter in
(1.1) can be reflected by the group analysis tool. Seeking domains (or classes of data) for which
the dimension of the problem can be reduced is not an easy task. Therefore, in this paper, we
discuss the extended nonclassical symmetries related to (1.5). Briefly, to determine these group
transformations, the data is included in the parameter space — a method that has been used before
but not in connection with symmetry reductions for parameter identification problems — and then
the nonclassical method is applied to the new nonlinear PDE.

For each given data w, Eq. (1.5) is a linear PDE in the unknown parameter E. The common
approach for solving first-order PDEs is the well-known method of characteristics which consists of
finding special curves called characteristic curves along which the PDE turns into an ODE system.
Sometimes, but by no means always, the characteristic curves can be found explicitly and the reduced
ODE can be solved, in which case the method of characteristics yields an analytic solution for the
PDE. On the other hand, the Maple pdsolve subroutine is a powerful tool for finding analytical
solutions to PDEs. This PDE solver is part of the PDEtools package (authors Cheb-Terrab and Von
Bülow) which has been first incorporated in Maple in 1997 (see [11] for more details). The pdsolve

routine currently recognizes a certain number of PDE families that can be solved by using standard
methods. For instance, for first-order PDEs, it includes the standard method of characteristics.
It should be pointed out that pdsolve fails or its output is almost unreadable for some classes
of linear or quasilinear PDEs for which the characteristic equations cannot be solved explicitly.
Surprisingly, the method of extended nonclassical symmetries can be successfully applied to handle
classes of PDEs for which Maple’s pdsolve output is indecipherable, e.g., when the data given by
(4.5). However, this comparison is not completely fair as pdsolve searches for the general solution
while our method provides only a particular solution. There are other interesting cases of data w in
which pdsolve’s output is null (e.g., for w(x, y) = x3 + y3 − 3xy) but this case will be addressed in
future work.

Let us summarize the methods of characteristics and of extended nonclassical symmetries in the
case of Eq. (1.5). Since a normal vector to the surface z = E(x, y) is (Ex, Ey,−1), the PDE (1.5)
is geometrically equivalent to the statement that the vector field (wx, wy,−EΔw − 1) is tangent to
the surface z = E(x, y) at every point. Thus, the graph z = E(x, y) of the solution E is a union of
integral curves of the vector field (wx, wy,−EΔw−1) (these integral curves are the characteristics of
the PDE (1.5)). In this context, the method of extended nonclassical symmetries lies in solving the
(quasilinear or linear) PDE system (3.4) and a reduced linear ODE (which is obtained by substituting
the solutions of (3.4) into the original PDE). Thus, instead of solving the characteristic equations
related to (1.5), we look for the characteristics of the PDEs (3.4) which might be easier to solve
than the original PDE. In other words, we seek the infinitesimal generator (3.2) whose projection
on the (x, y)-plane coincides with the projections of the vector fields (ξ, η, φ) and (ξ, η, ψ) on the
same plane. The latter two vector fields are tangent to the surfaces z = w(x, y) and z = E(x, y),
respectively. Consequently, the surfaces generated by the data w and the parameter E are unions of
integral curves of the vector fields (ξ, η, φ) and (ξ, η, ψ), respectively.

The extended nonclassical symmetries associated with the PDE (1.5) yield classes of data and
suitable domains for which the dimension of the problem can be reduced. Notice that these sym-
metry reductions generate new families of data that cannot be obtained by using the extended
classical symmetry approach. Since the homogeneous Dirichlet boundary condition (1.3) is imposed,
the data w must satisfy (3.4) and the boundary ∂Ω must be “compatible” with the symmetry
reduction as well. For instance, data of the form w(x, y) = −y2 + W (x) is invariant with respect
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Fig. 1. The graph of the data w(x, y) = (1/16)(−x3 + 8y3 + 6x2y − 12xy2 − 30x2 − 40xy) and the boundary
∂Ω = {(x, y)|w(x, y) = 0}.

to the nonclassical infinitesimal generator U = ∂y − 2y∂w, which is obtained from (3.27) by setting
μ(w) = −2. Next, we obtain that E(x, y) = Θ(x) and w(x, y) + y2 = W (x) are constant along the
lines x = const. In this case, the PDE (1.5) is reduced to W ′(x)Θ′(x) + (W ′′(x) − 2)Θ(x) = −1
if the problem is studied on a “compatible” domain whose boundary is, for instance, a circle, an
ellipse, a generalized Lamé curve x2p + y2 = 1 (p > 2), a Granville’s egg curve y2x2 = (x− b)(1−x),
where b �= 0, 1, or an elliptical curve — in particular, a Newton’s egg curve y2 = (x2 − 1)(x − a),
where a �= ±1. In all these situations, the parameter cannot be determined at the points (x0, y) for
which W ′(x0) = 0. Despite this fact, additional information about the parameter on the correspond-
ing domain can be obtained. Observe that the Maple ODE-solver dsolve/numeric cannot be used
when solving certain initial value problems associated with specific reduced ODEs. For instance, for
w(x, y) = −y2+x4(x2−1) we obtain the reduced ODE (6x5−4x3)Θ′+(30x4−12x2−2)Θ = −1. If this
is augmented with the initial condition Θ(0) = 1, then it cannot be solved numerically by applying
dsolve/numeric. This is due to the fact that zero is a singularity of the reduced ODE and, there-
fore, the existence and uniqueness theorem for first order initial value problems cannot be applied.
However, the analytical solution of the reduced ODE can be found by using the Maple ODE-solver
dsolve.

Next we will analyze a case of data for which the Maple pdsolve output is indecipherable. Similar
results might be obtained when the data is described by high order polynomial functions. Consider
the infinitesimal generator (3.35) with μ(w) = −1. According to (3.4), we have

w(x, y) =
1 − k4

2k2
x2 − 1 + k2

k
xy + W (z) and E(x, y) = Θ(z), where z = y − x

k
, (4.1)

and after substituting them into (1.5), we obtain the following reduced ODE

(W ′(z) + z)Θ′(z) +
(
W ′′(z) + 1 − k2

)
Θ(z) = − k2

k2 + 1
(4.2)

whose solution is given by

Θ(z) = C exp(−U(z)) − k2 exp(−U(z))
1 + k2

∫ z

z0

exp(U(s))
s + W ′(s)

ds, U(z) =
∫ z

z0

1 − k2 + W ′′(s)
s + W ′(s)

ds (4.3)
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Fig. 2. The graph of the parameter E(x, y) = Θ(z) with Θ(1/2) = 100 and Θ(5/7) = 300.

where C is a constant. For instance, for k = 2 and W (z) = (1/2)z3, the PDE (1.5) reduces to
(5/8)(2z + 3z2)Θ′(z) + (15/4)(z − 1)Θ(z) = −1. The general solution of this ODE is

E = Θ(z) =
1

15(2 + 3z)5
[128 + 1152z + 5184z2 + Cz3 − 1944z4 − 5184z3 ln(−z)], (4.4)

where z(x, y) = y − (1/2)x for z not equal to −2/3 or 0. Notice that E cannot be determined at the
singular points 0 and −2/3 of the reduced ODE. For Θ(1/2) = 100 and Θ(5/7) = 300, the graph of
the parameter is shown in Fig. 2. Consequently, for the data

w(x, y) =
1
16

(−x3 + 8y3 + 6x2y − 12xy2 − 30x2 − 40xy
)
, (4.5)

we obtain the exact solution of the PDE (1.5). This is to be contrasted with pdsolve’s output,
which is indecipherable. The parameter E(x, y) and the expression w(x, y) + (15/8)x2 + (5/2)xy

(depending on the data) are constant along the curves z(x, y) = c and, hence, the PDE (1.5) is
reduced to an ODE along these curves. Moreover, while the characteristic equations of this linear
PDE are given by a nonlinear ODE system, the characteristic equations of the PDEs in (3.4) are
linear and the reduced ODE (4.2) is linear as well.

To conclude, given a data function w, one should check its invariance in (3.4), where ξ, φ, and
ψ are discussed in Sec. 3. Next, from the second PDE in (3.4), the parameter should be obtained
in terms of the invariants of the symmetry reduction. At the end, substituting E and w into (1.5),
the dimension of the model should be reduced by one. It would be interesting for further research to
explore the applications of these results to the standard regularization methods used to investigate
ill-posed problems of type (1.1).
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