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We indicate how one can extend any dynamical system (namely, any system of nonlinearly coupled
autonomous ordinary differential equations) so that the extended dynamical system thereby obtained is
either isochronous or asymptotically isochronous or multi-periodic, namely its generic solutions are either
completely periodic with a fixed period or tend asymptotically, in the remote future, to such completely peri-
odic functions or are multi-periodic (or become multi-periodic only asymptotically, in the remote future).
In all cases the scale of the periodicity can be arbitrarily assigned. Moreover, the solutions of the extended
systems are generally well approximated by those of the original, unmodified, systems, up to a constant
rescaling of the independent variable (time), as long as their evolution is considered over time intervals
short with respect to the (arbitrarily assigned) periodicities characterizing the extended systems. Several
examples are displayed. In some cases the general solution of these dynamical systems is also exhibited; in
others, this is impossible inasmuch as the models being manufactured are extensions of dynamical systems
displaying chaotic evolutions, such as, for instance, the well-known Lorenz model of 3 nonlinearly coupled
ODEs.

Keywords: Dynamical systems; nonlinear ODEs; periodic systems; isochronous systems; asymptotically
isochronous systems; multiperiodic dynamical systems.

1. Introduction

In this paper we review a simple technique allowing to extend any dynamical system — namely,
any system of nonlinearly coupled autonomous Ordinary Differential Equations (ODEs) — so that
the extended system thereby obtained is either isochronous or asymptotically isochronous or multi-
periodic, namely its generic solution is either completely periodic (periodic in all its degrees of free-
dom) with a fixed period independent of the initial data, or tends asymptotically, in the remote
future, to such completely periodic functions, or is multi-periodic (as defined below), or acquires
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this property only asymptotically, in the remote future (this last case is merely outlined below).
In all cases the scale of the periodicity can be arbitrarily assigned. Moreover, the solutions of the
extended systems are generally well approximated by those of the original, unmodified, systems, up
to a constant rescaling of the independent variable (time), as long as their evolution is considered
over time intervals short with respect to the (arbitrarily assigned) periodicities characterizing the
extended systems. We then exhibit simple yet nontrivial examples of such isochronous or asymp-
totically isochronous or multi-periodic systems composed of a few nonlinearly coupled autonomous
ODEs. The basic idea behind the technique to manufacture such systems is not quite new [1–5],
but its extension to asymptotically isochronous, and especially to multi-periodic, systems is new,
and in any case the procedure reported below provides some new twists of it and allows to exhibit
rather neat models which, to the best of our knowledge, are novel and remarkable. Many other
analogous models can moreover be manufactured, once this simple technique is mastered; indeed
we expect that it shall become a standard tool used by researchers interested in the mathematical
modeling of phenomena displaying isochronous or periodic behaviors, and also by experimenters and
practitioners involved in manufacturing devices exhibiting such phenomenologies.

In the following Sec. 2 we identify a class of autonomous dynamical systems displaying such
behaviors — either isochronous or asymptotically isochronous or multi-periodic — and we then
describe how they can be manufactured starting from an arbitrary autonomous system of N ODEs
and extending it so that the generic solution of the extended system display such behaviors.
That treatment details our methodology to manufacture such systems, and it also clarifies the
similarities and differences among the approach introduced herein and previous treatments [1–5].
In Secs. 3, 4 respectively 5 we indicate how our treatment allows to manufacture isochronous,
asymptotically isochronous respectively multi-periodic dynamical systems, and in Subsecs. 3.1, 4.1
respectively 5.1 we report several neat, and apparently nontrivial, examples of isochronous, asymp-
totically isochronous respectively multi-periodic dynamical systems obtained in this manner. The
reader mainly interested to see quite simple instances of the dynamical systems yielded by our
technique is advised to have an immediate look at these three subsections. In Sec. 6 we dwell on
the similarities and differences among the behavior of the original systems and their extended —
isochronous or asymptotically isochronous or multi-periodic — versions; this is particularly interest-
ing when the original (unmodified) systems yield chaotic evolutions. A Sec. 7 entitled “Outlook”
concludes the paper: in it we tersely outline various generalizations of our methodology.

2. A Class of Systems Displaying Various Periodicity Behaviors, and How
to Manufacture Them

In this section we firstly define isochronous, asymptotically isochronous and multi-periodic dynamical
systems, and we identify a special class of such systems. We then describe a technique to extend any
autonomous dynamical system so that the extended dynamical system thereby obtained, while still
autonomous, belongs to that class, hence has the property to be either isochronous or asymptotically
isochronous or multi-periodic, according to the specific methodology employed to manufacture it.

2.1. Isochronous, asymptotically isochronous, multi-periodic dynamical systems

In this Subsec. 2.1 we firstly provide a definition of isochronous, asymptotically isochronous respec-
tively multi-periodic dynamical systems, and we then identify a special class of such systems.

Notation. For simplicity all quantities below are real, unless otherwise stated. The independent
variable is the time t, and differentiations with respect to this variable are denoted by superimposed
dots. Dependent variables are denoted by Latin letters (towards the end of this alphabet, such as
x, y, X . . . , often with a subscripted index); arbitrary (constant) parameters are denoted by Greek
letters (generally towards the beginning of this alphabet, such as α, β, γ, . . . , the exceptions being
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Ω and ω); and arbitrary constants (appearing in displayed general solutions) are denoted by upper
case Latin letters (towards the beginning of this alphabet, such as A, B, C . . .). Hence hereafter a
dynamical system is a set of, generally nonlinear, ODEs, written, say, in either one of the following
two ways:

ż = h(z, t), (1a)

or

żj = hj(z, t), j = 1, . . . , J. (1b)

Here and hereafter underlined quantities denote vectors, the dimensionality of which will be clear
from the context (for instance, in this case z is clearly a J-vector), and appended indices denote of
course the components of the corresponding vector; J is an arbitrary positive integer. The J-vector
h(z, t) is assumed to be given; whenever it does not feature any explicit time-dependence, h(z, t) ≡
h(z), the dynamical system is called autonomous.

Definition 2.1. A vector z(t; α), depending on the time t and on a set of parameters denoted by
the vector α (which need not have the same dimensionality as z), is isochronous (with period T ) if
all its components are periodic with the same period T (independent of α), namely for all time

z(t + T ; α) = z(t; α); zj(t + T ; α) = zj(t; α), j = 1, . . . , J. (2)

Here and hereafter whenever we mention a period such as T, we generally mean the primitive period;
of course this formula, (2), remains valid if T is replaced by any integer multiple of T .

Definition 2.2. A time-dependent J-vector z(t; α) is asymptotically isochronous if there exists an
isochronous J-vector z̃(t; α) such that

lim
t→+∞ ‖z(t; α) − z̃(t; α)‖ = 0. (3)

Here the symbol ‖ ·‖ denotes some convenient norm, which we shall not need to specify; for instance
the standard norm ‖z‖ = maxj=1,...,J |zj | will generally do. Of course this definition does not identify
uniquely the J-vector z̃(t; α). Clearly isochronous J-vectors are as well asymptotically isochronous,
but generally in the following when referring to the property of asymptotic isochrony we will have
in mind — without necessarily specifying this explicitly — quantities that possess this property
without possessing the stronger property of isochrony.

Definition 2.3. A J-vector z(t) is multi-periodic if each of its J components is a multi-periodic
function. A practical definition, appropriate in the context of our treatment, of a multi-periodic
function f(t) of the time t, is that f(t) be expressible as a function of a finite number of arguments
s� = sin[Ω�(t−t�)], and is continuous in all these arguments in the set characterized by the restrictions
|s�| ≤ 1. Such a multi-periodic function is clearly (a subcase of) an almost periodic function, whose
precise definition requires that it be the uniform in t limit of linear superpositions of a finite number
of continuous periodic functions f�(t), each of which is periodic with a different period T� = 2π/Ω�.

Let us recall — since this is useful for our purposes, see below — that an almost periodic function
can as well be characterized by the property that, given any arbitrary positive quantity ε, ε > 0,

there exist a “quasi-period” T (ε) such that, for all time t,

|f [t + T (ε)] − f(t)| < ε. (4)

Note incidentally that the additional requirement that the “quasi-period” T (ε) be a rational number
(in whichever units) would entail no significant restriction.

In the case of a J-vector z(t; α) depending on a set of parameters α an additional issue is whether
the periods T�, as defined above, do or do not depend on the parameters α, and also whether they
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are different for the different components zj(t; α) of the J-vector z(t; α). In the case in which neither
of these possible dependences is present — namely the periods T�, hence as well the overall quasi-
period T (ε), are the same for all the J components zj(t; α) of the J-vector z(t; α) and are moreover
independent of the parameters α; as is indeed generally the case for the multi-periodic dynamical
systems treated in this paper — one might call such vectors, and the corresponding dynamical
systems (see below), multi-isochronous, since clearly if all these periods T� are congruent the multi-
periodicity reduces to isochrony; but we prefer not to encumber the reader by introducing new
terminology. And of course in the following, when referring to this property of multi-periodicity,
we will generally have in mind — without necessarily specifying this explicitly — quantities that
possess this property without possessing the stronger property of isochrony.

Definition 2.4. A dynamical system is called isochronous, asymptotically isochronous respectively
multi-periodic if its generic solution is isochronous, asymptotically isochronous respectively multi-
periodic. This definition leaves open the possible existence of a subset of nongeneric solutions not
possessing the relevant property: they might be solutions that feature singularities at some specific
times. Such a subset of nongeneric solutions — which need not exist — should in any case have
positive codimension.

Note that the above definition of asymptotically isochronous system includes both the case of
standard limit cycles — provided all trajectories of the system under consideration approach limit
cycles all having the same period, which is of course the case if all trajectories are attracted to
a single limit cycle: for instance the van der Pol oscillator is, in our terminology, asymptotically
isochronous — as well as cases in which the isochronous limit orbits form a continuous set. In
fact, the examples we shall treat all belong to the latter class. This indicates that our examples
of asymptotically isochronous systems are, just as the isochronous systems themselves, nongeneric.
This is, of course, part of the reason for their interest.

Lemma 2.5 (“Transitivity”). If the J-vector Z(t) is globally defined, continuous and bounded —
i.e., each of its J components zj(t) is a continuous and bounded function of time for all time — and if
the scalar function τ(t) (is defined for all time and) is isochronous, asymptotically isochronous respec-
tively multi-periodic, then the J-vector z(t) = Z[τ(t)] is isochronous, asymptotically isochronous
respectively multi-periodic.

The proof of this Lemma is sufficiently obvious that we leave its details to be filled in by the
diligent reader — who shall take advantage, in the multi-periodic case, of the property associated
with the inequality (4).

Lemma 2.6. If the generic solution of the (autonomous) dynamical system

Ż = h(Z); Żj = hj(Z), j = 1, . . . , J (5a)

is, for all time, continuous and bounded, and the scalar function τ(t) (is defined for all time and)
is isochronous, asymptotically isochronous respectively multi-periodic, then the (nonautonomous)
dynamical system

ż = τ̇(t)h(z); żj = τ̇ (t)hj(z) (5b)

is isochronous, asymptotically isochronous respectively multi-periodic.

The proof of this Lemma 2.6 is an immediate consequence of the preceding Lemma 2.5, via the
observation that, if Z(t) is a solution of (5a), then

z(t) = Z[τ(t)]; zj(t) = Zj [τ(t)], j = 1, . . . , J

is a solution of (5b).
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2.2. How to manufacture autonomous dynamical systems that are either

isochronous, or asymptotically isochronous, or multi-periodic

As indicated above, our point of view is to start from an autonomous, but otherwise largely arbitrary,
dynamical system, say

Ẋ = h(X); Ẋn = hn(X), n = 1, . . . , N, (6a)

and modify it so that the modified system is either isochronous, or asymptotically isochronous or
multi-periodic. The clue of how to proceed is provided by the last result of the preceding Subsec. 2.1,
Lemma 2.6. Hence our first step is to modify the system (6a) to read

ẋ = τ̇(t)h(x); ẋn = τ̇ (t)hn(x), n = 1, . . . , N, (6b)

with the scalar function τ(t) either periodic with period T, or asymptotically periodic with the same
period, or multi-periodic. It is then plain that the general solution of this system reads

x(t) = X [τ(t)]; xn(t) = Xn[τ(t)], n = 1, . . . , N, (6c)

where X(τ) is the general solution of the system

X ′ = h(X); X ′
n = hn(X), n = 1, . . . , N, (6d)

which coincides with (6a), except that here the appended prime indicates of course differentiation
with respect to the variable τ of X(τ). Hence whenever h(X) is such that the solution of this system
of N nonlinear ODEs, (6d), exists globally — i.e., for all (real) values of the independent variable
τ — then clearly (6c) imply that x(t) inherits from τ(t) the property to be either isochronous with
period T, or asymptotically isochronous with the same period, or multi-periodic; hence the system
(6b) also possesses the corresponding property.

However, the system (6b) is not autonomous. To eliminate this “defect”, we perform the second
step of our treatment, replacing the system (6b) with the system

ẋ = ϕh(x); ẋn = ϕhn(x), n = 1, . . . , N, (7)

which is of course equivalent to (6b) provided the time-evolution of the scalar quantity ϕ is such
that, by setting

τ̇ (t) = ϕ, (8a)

with (merely for convenience)

τ(0) = 0, (8b)

one obtains a scalar function τ(t) having the desired property: either isochrony or asymptotic
isochrony or multi-periodicity.

There are now two options to obtain a quantity ϕ that qualifies for this purpose and makes the
modified system (7) autonomous. The first option is to identify a collective variable ϕ(x) that, as
a consequence of the very evolution entailed by the dynamical system (7), has a time evolution,
ϕ(t) ≡ ϕ[x(t)], such that, via (8), it defines a function τ(t) having the desired properties. This
is, by and large, the approach followed in previous papers, where various ways to identify such a
variable were analyzed in various contexts, mainly to manufacture isochronous systems [1–5]. A
second — perhaps more obvious — possibility is to treat ϕ as an additional dependent variable,
and to extend the system (7) by attaching to it a few additional ODEs involving ϕ and possibly
other, additional dependent variables, so as to guarantee that the time evolution of ϕ yield, via
(8), a function τ(t) having the desired properties. Specific instances of how to achieve this goal are
detailed in the following Secs. 3–5, where it will also be shown how a third step of our treatment —
consisting essentially in a change of the additional dependent variables, entangling them with the
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original variables — is quite convenient in as much as it allows to manufacture rather large classes
of extended dynamical systems having the required properties of isochrony, asymptotic isochrony or
multi-periodicity.

It will moreover be clear — for instance from the very simple instances explicitly displayed in
the following three Subsecs. 3.1, 4.1 and 5.1 — that in this manner it is possible to manufacture
systems having a rather neat look, therefore likely to become useful tools in the context of math-
ematical modeling. The large freedom to manufacture such models should be quite clear from our
treatment, see above and its developments presented below, where however we deliberately often
opt for simplicity rather than generality. A terse outline of possible generalizations is reported in
the last section.

3. Isochronous Systems

In this Sec. 3 we present a very simple way to implement the program outlined above, in order to
extend a quite general (autonomous) dynamical system involving N ODEs such as (6a), into an
isochronous system involving N +2 ODEs — defined according to Definition 2.4 with Definition 2.1.
A few examples are then presented in Subsec. 3.1.

We take as starting point the standard harmonic oscillator equations of motion:

ḟ1 = Ωf2, ḟ2 = −Ωf1, (9)

entailing of course

f1(t) = A cos(Ωt) + B sin(Ωt), (10a)

f2(t) = −A sin(Ωt) + B cos(Ωt). (10b)

Here and hereafter Ω is an arbitrary positive constant. These functions, f1(t) and f2(t), are of course
isochronous, with period

T =
2π

Ω
. (11)

But let us, temporarily, forget the explicit expressions, (10), detailing their time-evolution, consid-
ering rather these functions f1 and f2 as dependent variables characterized by the simple ODEs (9).

Next let us consider the general system of ODEs in N variables

ẋn = f1hn(x), n = 1, . . . , N, (12)

corresponding to (7) via the very simple assignment ϕ = f1, which via (8) entails for τ(t) the
expression

τ(t) = Ω−1{A sin(Ωt) + B[1 − cos(Ωt)]} (13a)

=
√

A2 + B2

Ω
{sin[Ω(t − t0)] + sin(Ωt0)}, (13b)

tan(Ωt0) =
B

A
. (13c)

The fact that this function is periodic with period T is of course plain. Hence the system of N + 2
ODEs constituted by (12) with (9) is generally isochronous with period T, indeed its general solution
is provided by the formulas (6c) and (10).

Our third step is to introduce the two functions y1(t) and y2(t) via the definitions

f1 = F1(x)y1, f2 = F2(x)y2, (14)

where we reserve the privilege to assign the two functions F1(x) and F2(x) at our convenience.
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The insertion of these definitions, (14), in (12) and (9) yields the following system of N + 2,
generally nonlinear, ODEs for the N + 2 dependent variables xn(t), y1(t) and y2(t):

ẋn = y1F1(x)hn(x), (15a)

ẏ1 = Ωy2
F2(x)
F1(x)

− y2
1

N∑
n=1

[
∂F1(x)
∂xn

hn(x)
]

, (15b)

ẏ2 = −y1
F1(x)
F2(x)

{
Ω + y2

N∑
n=1

[
∂F2(x)
∂xn

hn(x)
]}

. (15c)

Clearly the solution of the initial-value problem for this dynamical system is given by the formulas

x(t) = X [τ(t)]; xn(t) = Xn[τ(t)], n = 1, . . . , N, (16a)

y1(t) =
A cos(Ωt) + B sin(Ωt)

F1[x(t)]
, (16b)

y2(t) =
−A sin(Ωt) + B cos(Ωt)

F2[x(t)]
. (16c)

Here τ(t) is given by (13), while X(τ) is the solution of the ODE (6d) with the initial condition
X(0) = x(0) (see (16a) and (8b) or (13)), and the two constants A and B, see (13), (16b) and (16c),
are defined as follows:

A = F1[x(0)]y1(0), B = F2[x(0)]y2(0). (16d)

This solution shows clearly that, whenever h(X) is such that the solution of the system of N

ODEs (6d) exists globally — i.e., for all (real) values of the dependent variable τ — then clearly x(t)
is isochronous with period T . And this conclusion holds as well for the entire solution (16) of the
system of N +2 ODEs (15) — including also the two dependent variables y1(t) and y2(t) — provided
the possibility that y1(t) or y2(t) blow-up due to the vanishing at some time of F1(t) ≡ F1[x(t)] or
F2(t) ≡ F2[x(t)] can be excluded or disregarded. [The possibility that this be disregarded must be
discussed on a case-by-case basis, as indicated by the example of the dynamical system described
by the simple evolution ODE ẏ = Ω(1 + y2) with initial condition y(0) = 0, yielding the solution
y(t) = tan(Ωt), which is of course periodic (for all time t) with period T/2, see (11). But if some
phenomenological significance is associated with the dependent variable y, it might or it might not
make good sense when the value of this quantity becomes infinite. In the former case, one can then
conclude that this quantity displays a periodic evolution; in the latter this conclusion is not justified,
in as much as the model loses its phenomenological significance at the time T/4, when y(t) blows up].

Note that the conclusion about the isochrony of the system (15) remains valid even when the
solution of the system (6d) cannot be obtained in explicit form, as is generally the case whenever
the dynamical system (6a) yields a chaotic evolution (see Example 3.3 below). On the other hand
whenever the solution of the system (6d) can be obtained in explicit form, the formulas (16) provide
an explicit solution of the isochronous system (15) (see Examples 3.0, 3.1 and 3.2 below).

We leave as a simple exercise for the diligent reader to repeat the above treatment, but replacing
the role played in (12) by f1 with a linear combination of f1 and f2, or even allowing these two
functions to depend in a more complicated manner on both y1 and y2 than is entailed by (14); an
outline of this, and other, more general approaches is provided in the last section. And of course
the alert reader may now play and manufacture lots of isochronous systems, by inserting different
choices of the N + 2 functions hn(x), F1(x), F2(x) in (15): we display some neat examples in the
next subsection.



318 F. Calogero & F. Leyvraz

Before proceeding to report some examples let us also display the neater version of (15) corre-
sponding to the special case with F1(x) = F2(x) = F (x):

ẋn = y1F (x)hn(x), (17a)

ẏ1 = Ωy2 − y2
1

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (17b)

ẏ2 = −y1

{
Ω + y2

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]}

. (17c)

3.1. Examples of isochronous dynamical systems

The systems below (in this subsection) are all, for generic initial data, isochronous with period T ,
see (11). As it is clear from the above treatment, these examples are quite special cases of much
more general isochronous systems.

Example 3.0. 2 coupled first order evolution ODEs:

ẏ1 = Ωy2 + γy2
1 , ẏ2 = (−Ω + γy2)y1. (18)

This system obtains from (17) with N = 1 via the extremely simple assignment

F (x) = x, h(x) = −γ, (19)

whereby the second and third equations (17) get decoupled from the first. It can also be reformulated
as a single second-order ODE for the function y = y1:

ÿ + Ω2y = γ(3ẏy − γy3). (20)

The general solution of this system, (18), reads

y1(t) =
Ω cos[Ω(t − t0)]

γ{C − sin[Ω(t − t0)]} , (21a)

y2(t) = − Ω sin[Ω(t − t0)]
γ{C − sin[Ω(t − t0)]} , (21b)

with C and t0 two arbitrary constants whose values are determined, in the context of the initial-
value problem, by the initial data y1(0), y2(0). The isochronous character (with period T, see (11))
of this solution is plain; but of course this solution blows up periodically unless |C| > 1. In view of
its simplicity it is unlikely that this system is new.

Example 3.1. 3 coupled first-order evolution ODEs:

ẋ = γx2y1, (22a)

ẏ1 = Ωy2 − γxy2
1 , (22b)

ẏ2 = −(Ω + γxy2)y1. (22c)

This system of 3 first-order ODEs can be reformulated as a system of 2 ODEs (one of first-order
and one of second-order), for instance

ẋ = γx2y1, (23a)

ÿ1 + Ω2y1 = −3γxẏ1y1 − 2γ2x2y3
1 , (23b)
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or a single third-order ODE, for instance
...
x + Ω2ẋ − 3ẍẋx−1 + 2ẋ3x−2 = 0. (24)

This system obtains from (17) by the quite simple assignment

N = 1, F (x) = x, h(x) = γx. (25)

With this assignment of h(x) the ODE (6d) is trivially solvable. Hence the general solution of the
system (22) can be explicitly exhibited:

x(t) = C exp[γτ(t)], (26a)

y1(t) = C−1[A cos(Ωt) + B sin(Ωt)] exp[−γτ(t)], (26b)

y2(t) = C−1[−A sin(Ωt) + B cos(Ωt)] exp[−γτ(t)], (26c)

with τ(t) defined by (13). The 3 constants A, B and C are of course determined, in the context
of the initial-value problem, by the initial data x(0), y1(0), y2(0). The isochronous character of this
solution is plain.

Example 3.2. 4 coupled first-order evolution ODEs:

ẋ1 = x1x2y1, (27a)

ẋ2 = −βx2
1y1, (27b)

ẏ1 = Ωy2 − x2y
2
1 , (27c)

ẏ2 = −Ωy1 − x2y1y2. (27d)

This system of 4 coupled first-order ODEs can be replaced by a system of 2 second-order coupled
ODEs, for instance

ẍ1 =
(

ẋ1

x1
+

ẏ1

y1

)
ẋ1 − βx3

1y
2
1 , (28a)

ÿ1 + Ω2y1 = −3
(

ẏ1

y1

)
ẋ1 −

(
ẋ1

x1

)2

y1 + βx2
1y

3
1 . (28b)

These equations arise from (17) with N = 2 and the simple assignment

F (x) = x1, h1(x) = x2, h2(x) = −βx1. (29a)

With this assignment of h1(x) and h2(x) the linear system of 2 ODEs (6d) is trivially solvable.
Thereby the general solution of this model, (27), is easily seen to read as follows:

x1(t) = C cos[ωτ(t)] + D sin[ωτ(t)], (30a)

x2(t) = ω{−C sin[ωτ(t)] + D cos[ωτ(t)]}, (30b)

y1(t) =
A cos(Ωt) + B sin(Ωt)

C cos[ωτ(t)] + D sin[ωτ(t)]
, (30c)

y2(t) =
−A sin(Ωt) + B cos(Ωt)

C cos[ωτ(t)] + D sin[ωτ(t)]
, (30d)

with τ(t) defined again by (13). The 4 constants A, B, C and D are of course determined, in the
context of the initial-value problem, by the initial data x1(0), x2(0), y1(0), y2(0), while ω =

√
β. Of

course this constant ω is real (for definiteness, positive) only if β is positive; it is instead imaginary
if β is negative, but this does not spoil the real character of this solution (with A, B, C real and D
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imaginary), nor its isochrony with period T , see (11). On the other hand this solution is nonsingular
for all time t only if the denominator in the last two formulas never vanishes, which, if ω is real, is
only possible — for an appropriate range of values of the two constants C and D — provided the
two constants A and B satisfy the restriction

2
√

A2 + B2 <
πΩ
ω

, (30e)

see (13).
In the following we will generally omit to discuss the possibility that the solution of the model

under consideration experiences divergences, leaving this issue to be treated on a case-by-case basis
by the diligent reader.

Example 3.3. 5 coupled first-order evolution ODEs:

ẋ1 = −αx1(x1 − x2)y1, (31a)

ẋ2 = x1(βx1 − x2 − x1x3)y1, (31b)

ẋ3 = x1(x1x2 − γx3)y1, (31c)

ẏ1 = Ωy2 + α(x1 − x2)y2
1 , (31d)

ẏ2 = −Ωy1 + α(x1 − x2)y1y2. (31e)

The 2 first-order ODEs (31d) and (31e) can be replaced by the single second-order ODE

ÿ1 + Ω2y1 = 3α(x1 − x2)ẏ1y1 − α[(1 + α + β)x2
1 − 2(1 + α)x1x2 + αx2

2 − x2
1y1]y3

1 . (32)

This system obtains from (17) with N = 3 via the assignment

F (x) = x1, (33a)

h1(x) = −α(x1 − x2), (33b)

h2(x) = βx1 − x2 − x1x3, (33c)

h3(x) = x1x2 − γx3, (33d)

entailing that (6d) becomes the Lorenz system [6] (see (34) below), which is well-known to exhibit
chaotic behavior for suitable values of the parameters α, β and γ.

For Ω = 0 one can set y2 = 0 and y1 = 1/x1: indeed then (31e) is trivially satisfied, (31d)
coincides with (31a), while the 3 ODEs (31a), (31b) and (31c) coincide (up to notational changes)
with the 3 ODEs of the Lorenz model [6, 7],

X ′
1 = −α(X1 − X2), (34a)

X ′
2 = βX1 − X2 − X1X3, (34b)

X ′
3 = X1X2 − γX3. (34c)

Here the appended prime indicates of course differentiation with respect to the independent vari-
able τ .

The solution of our isochronous model (31) can be exhibited, but only in terms of the solutions
Xn(τ) of the Lorenz model (34) (with Xn(0) = xn(0), n = 1, 2, 3):

xn(t) = Xn[τ(t)], n = 1, 2, 3, (35a)

y1(t) =
A cos(Ωt) + B sin(Ωt)

x1(t)
, (35b)

y2(t) =
Ω{−A sin(Ωt) + B cos(Ωt)}

x1(t)
, (35c)
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again with τ(t) defined by (13). But let us emphasize that these formulas do not yield the solutions
of the model (31) explicitly, because the solutions Xn(τ) of the Lorenz model (34) are generally
unknown (except in very special cases), indeed the time evolution of the Lorenz model is generally
chaotic; but since these solutions exist, the formulas (35) reveal, via (13), the isochronous character
(with period T, see (11)) of the solutions of the model (31) apart from the possible appearance
of singularities: these may arise either through the vanishing of the denominators in the last two
formulas (35), as discussed above, see Example 3.2, or possibly due to singularities in the solutions
of the Lorenz system (34) when its independent variable τ evolves backwards. This latter possibility
is discussed in Sec. 6.

4. Asymptotically Isochronous Systems

In this Sec. 4 we show how to extend a quite general (autonomous) dynamical system involving N

ODEs such as (6a), into an asymptotically isochronous system involving N + 3 ODEs — defined
of course according to Definition 2.4 with Definition 2.2. Since the procedure is analogous to that
described in Sec. 3 to obtain an extended system which is isochronous, the following treatment is
terse. We display two alternative routes, both quite simple, yielding somewhat different results; the
alert reader will have no difficulty to devise additional ones (see also Sec. 7). A few simple examples
are then presented in Subsec. 4.1.

The first alternative we report uses as starting point the following 3 ODEs:

ḟ1 = Ωf2, (36a)

ḟ2 = −Ωf3, (36b)

ḟ3 = −ηf3 − Ωf2 − ηf1, (36c)

entailing of course

f1(t) = A cos(Ωt) + B sin(Ωt) + C exp(−ηt), (37a)

f2(t) = −A sin(Ωt) + B cos(Ωt) − C(η/Ω) exp(−ηt), (37b)

f3(t) = A cos(Ωt) + B sin(Ωt) − C(η/Ω)2 exp(−ηt). (37c)

Here and hereafter η (and of course Ω) are two positive constants, entailing — see Definition 2.2 —
that this solution is asymptotically isochronous with period T , see (11).

Let us now introduce the — clearly equally asymptotically isochronous — function

τ̃(t) = Ω−1{A sin(Ωt) + B[1 − cos(Ωt)]} + Cη−1[1 − exp(−ηt)], (38a)

such that
·
τ̃ = f1 (38b)

and τ̃ (0) = 0. We then proceed analogously to what we did above, see the treatment starting with
(12), where we of course replace now (14) with

fm = Fm(x)ym, m = 1, 2, 3. (39)

We thus get the following system of N + 3 coupled ODEs:

ẋn = y1F1(x)hn(x), (40a)

ẏ1 = Ωy2
F2(x)
F1(x)

− y2
1

N∑
n=1

[
∂F1(x)
∂xn

hn(x)
]

, (40b)



322 F. Calogero & F. Leyvraz

ẏ2 = −Ωy3
F3(x)
F2(x)

− y1y2
F1(x)
F2(x)

N∑
n=1

[
∂F2(x)
∂xn

hn(x)
]

, (40c)

ẏ3 = −ηy3 − Ωy2
F2(x)
F3(x)

− y1
F1(x)
F3(x)

{
η + y3

N∑
n=1

[
∂F3(x)
∂xn

hn(x)
]}

. (40d)

This derivation entails that this system is generally — for a large class of the 3 + N functions
F1(x), F2(x), F3(x) and hn(x) — asymptotically isochronous, with its general solution reading as
follows:

x(t) = X [τ̃(t)]; xn(t) = Xn[τ̃(t)], (41a)

y1(t) =
A cos(Ωt) + B sin(Ωt) + C exp(−ηt)

F1[x(t)]
, (41b)

y2(t) =
−A sin(Ωt) + B cos(Ωt) − C(η/Ω) exp(−ηt)

F2[x(t)]
, (41c)

y3(t) =
A cos(Ωt) + B sin(Ωt) − C(η/Ω)2 exp(−ηt)

F3[x(t)]
, (41d)

where of course X(τ) is the general solution of (6d) and τ̃(t) is defined by (38a). And clearly
this system is explicitly solvable whenever the system (6d) is itself explicitly solvable (see below
Examples 4.1 and 4.2).

Again, let us also display the neater form taken by this asymptotically isochronous system, (40),
in the special case with F1(x) = F2(x) = F3(x) = F (x):

ẋn = y1F (x)hn(x), (42a)

ẏ1 = Ωy2 − y2
1

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (42b)

ẏ2 = −Ωy3 − y1y2

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (42c)

ẏ3 = −ηy3 − Ωy2 − ηy1 − y1y3

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

. (42d)

The second alternative we report takes as starting point, in place of the system of 3 ODEs (36),
the following 3 ODEs:

ḟ1 = Ωf2, (43a)

ḟ2 = −Ωf1, (43b)

ḟ3 = η(1 − f2
3 ). (43c)

Note that the first 2 of these 3 ODEs coincide with the 2 (linear) ODEs (9), while the third is instead
nonlinear (yet also trivially solvable). The general solution of this system can of course be explicitly
displayed, for instance as follows:

f1(t) = C sin[Ω(t − t0)], (44a)

f2(t) = C cos[Ω(t − t0)], (44b)

f3(t) = tanh[η(t − t1)], (44c)
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where C, t0, t1 are 3 arbitrary constants that can be fixed in terms of the initial data. We moreover
introduce the function

τ̆ (t) = Ω−1[f1(t)f3(t) − f1(0)f3(0)]

=
C

Ω
{sin[Ω(t − t0)] tanh[η(t − t1)] − sin(Ωt0) tanh(ηt1)}, (45)

which is clearly asymptotically isochronous (and clearly such that τ̆(0) = 0); and we notice that the
first and third of the 3 ODEs (43) entail the formula

·
τ̆ = f2f3 + (η/Ω)f1(1 − f2

3 ). (46)

Hence we conclude that, for a largely arbitrary assignment of the N functions hn(x), the autonomous
system of N ODEs

ẋn = [f2f3 + (η/Ω)f1(1 − f2
3 )]hn(x), n = 1, . . . , N, (47)

is asymptotically isochronous provided the 3 functions f1, f2 and f3 evolve according to the system
(43). Then we replace the 3 dependent variables fm with the 3 new dependent variables ym via the
assignment (39). And we thereby obtain the following, asymptotically isochronous, system of N + 3
ODEs satisfied by the N + 3 dependent variables xn and ym:

ẋn = [y2y3F2(x)F3(x) + (η/Ω)y1F1(x)(1 − y2
3 [F3(x)]2)]hn(x), (48a)

ẏ1 = Ωy2
F2(x)
F1(x)

− y1

[
F2(x)F3(x)

F1(x)
y2y3 + (η/Ω)y1(1 − y2

3 [F3(x)]2)
] N∑

n=1

[
∂F1(x)
∂xn

hn(x)
]

, (48b)

ẏ2 = −Ωy1
F1(x)
F2(x)

− y2

[
F3(x)y2y3 + (η/Ω)y1

F1(x)
F2(x)

(1 − y2
3 [F3(x)]2)

] N∑
n=1

[
∂F2(x)
∂xn

hn(x)
]

, (48c)

ẏ3 = η
1 − y2

3 [F3(x)]2

F3(x)
− y3

[
y2y3F2(x) + (η/Ω)y1

F1(x)
F3(x)

(1 − y2
3 [F3(x)]2)

] N∑
n=1

[
∂F3(x)
∂xn

hn(x)
]

.

(48d)

This derivation entails that this system is generally — for a large class of the 3 + N functions
F1(x), F2(x), F3(x) and hn(x) — asymptotically isochronous, with its general solution reading as
follows:

x(t) = X[τ̆ (t)]; xn(t) = Xn[τ̆ (t)], (49a)

y1(t) =
C sin[Ω(t − t0)]

F1[x(t)]
, (49b)

y2(t) =
C cos[Ω(t − t0)]

F2[x(t)]
, (49c)

y3(t) =
tanh[η(t − t1)]

F3[x(t)]
, (49d)

where of course X(τ) is the general solution of (6d) and τ̆ (t) is defined by (45). And clearly this sys-
tem is explicitly solvable whenever the system (6d) is itself explicitly solvable (see below Examples 4.4
and 4.5).
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Again, let us also display the neater form taken by this asymptotically isochronous system, (48),
in the special case with F1(x) = F2(x) = F3(x) = F (x):

ẋn = {y2y3[F (x)]2 + (η/Ω)y1F (x)(1 − y2
3 [F (x)]2)}hn(x), (50a)

ẏ1 = Ωy2 − y1[F (x)y2y3 + (η/Ω)y1(1 − y2
3[F (x)]2)]

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (50b)

ẏ2 = −Ωy1 − y2[F (x)y2y3 + (η/Ω)y1(1 − y2
3 [F (x)]2)]

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (50c)

ẏ3 = η
1 − y2

3 [F (x)]2

F (x)
− y3[y2y3F (x) + (η/Ω)y1(1 − y2

3 [F (x)]2)]
N∑

n=1

[
∂F (x)
∂xn

hn(x)
]

. (50d)

In the following Subsec. 4.1 we report a few simple examples of asymptotically isochronous
systems, obtained via the technique described herein.

4.1. Examples of asymptotically isochronous systems

In this Subsec. 4.1 we exhibit several neat examples of asymptotically isochronous systems (and
some limit cases which are neither isochronous nor asymptotically isochronous, yet sufficiently neat
to deserve explicit mention): it is again clear from the above treatment that these examples are quite
special cases of much more general asymptotically isochronous systems. Hereafter η is an arbitrary
positive constant, η > 0 (but occasionally we will consider the limiting case with η = 0). The first half
of these examples obtain from (40) (in fact, from the simpler system (42)), and the subsequent ones
from (48) (in fact, from the simpler system (50)); indeed all of them via the very simple assignment

Fm(x) = x1, m = 1, 2, 3. (51)

And the assignments of the functions hn(x) are the same as for the analogous examples reported in
Subsec. 3.1.

Example 4.1. 3 coupled first-order evolution ODEs:

ẏ1 = Ωy2 + γy2
1 , (52a)

ẏ2 = −Ωy3 + γy1y2, (52b)

ẏ3 = −ηy3 − Ωy2 − ηy1 + γy1y3. (52c)

The general solution of this system reads as follows:

y1(t) =
AΩ cos(Ωt) + BΩ sin(Ωt) + Cη exp(−ηt)

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + C[1 − exp(−ηt)]} , (53a)

y2(t) =
−AΩ sin(Ωt) + BΩ cos(Ωt) − Cη(η/Ω) exp(−ηt)

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + C[1 − exp(−ηt)]} , (53b)

y3(t) =
AΩ cos(Ωt) + BΩ sin(Ωt) − Cη(η/Ω)2 exp(−ηt)

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + C[1 − exp(−ηt)]} . (53c)

The 3 constants A, B, and C are of course determined, in the context of the initial-value problem,
by the initial data y1(0), y2(0), y3(0). The asymptotically isochronous character of this solution is
plain, and the restriction

|A| + |B| + |C| < 1 (53d)

is clearly sufficient to exclude that, for t > 0, the 3 dependent variables ym(t) blow up. There is
however a two-parameter subset of solutions which are isochronous, namely those with C = 0.
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Example 4.1bis. 3 coupled first-order evolution ODEs:

ẏ1 = Ωy2 + γy2
1 , (54a)

ẏ2 = Ωy3 + γy1y2, (54b)

ẏ3 = −Ωy2 + γy1y3. (54c)

The general solution of this system reads as follows:

y1(t) =
AΩ cos(Ωt) + BΩ sin(Ωt) + c

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + ct} , (55a)

y2(t) =
−AΩ sin(Ωt) + BΩ cos(Ωt)

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + ct} , (55b)

y3(t) =
AΩ cos(Ωt) + BΩ sin(Ωt)

γ{1 − A sin(Ωt) + B[1 − cos(Ωt)] + ct} . (55c)

Here A, B, c are 3 arbitrary constants. The subset of solutions with c = 0 is clearly isochronous,
while the solutions with c �= 0 are neither isochronous nor asymptotically isochronous: they tend
asymptotically to the equilibrium configuration y1 = y2 = y3 = 0. This system is clearly the limiting
case of Example 4.1, with η = 0 (and Cη = c).

Example 4.2. 4 coupled first-order evolution ODEs:

ẋ = γx2y1, (56a)

ẏ1 = Ωy2 − γxy2
1 , (56b)

ẏ2 = −Ωy3 − γxy1y2, (56c)

ẏ3 = −ηy3 − Ωy2 − (η + γxy3)y1. (56d)

Hereafter we assume γ to be a nonvanishing real constant. The general solution of this system reads
as follows:

x(t) = D exp[γτ̃(t)], (57a)

y1(t) =
A cos(Ωt) + B sin(Ωt) + C exp(−ηt)

D
exp[−γτ̃(t)], (57b)

y2(t) =
[
−A sin(Ωt) + B cos(Ωt) − C

η

Ω
exp(−ηt)

] exp[−γτ̃(t)]
D

, (57c)

y3(t) =
[
A cos(Ωt) + B sin(Ωt) − C

η3

Ω2
exp(−ηt)

]
exp[−γτ̃(t)]

D
, (57d)

now with τ̃(t) defined by (38a). The 4 constants A, B, C and D are of course determined, in the
context of the initial-value problem, by the initial data x(0), y1(0), y2(0), y3(0). It is again plain that
these solutions are generally asymptotically isochronous, except for their subset with C = 0, which
are isochronous.

Example 4.2bis. 4 coupled first-order evolution ODEs:

ẋ = γx2y1, (58a)

ẏ1 = Ωy2 − γxy2
1 , (58b)

ẏ2 = −Ωy3 − γxy1y2, (58c)

ẏ3 = −Ωy2 − γxy3y1. (58d)
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This system is the limit case of Example 4.1 with η = 0. Accordingly, its general solution is given
by the general solution of Example 4.1 with η = 0 and τ̃(t) replaced by its limiting expression with
η = 0,

τ̃0(t) = Ω−1{A sin(Ωt) + B[1 − cos(Ωt)]} + Ct, (59)

see (38a). The subset of these solutions with C = 0 are isochronous, but those with C �= 0 spiral
away to infinity as t → ∞: more specifically, the dependent variable x(t) does so if γC > 0 while
the other 3 dependent variables ym(t) spiral to zero, and vice versa if γC < 0.

Example 4.3. 6 coupled first-order evolution ODEs. The first 3 ODEs of this model coincide with
the first 3 of the 5 ODEs (31), and the last 3 read as follows:

ẏ1 = Ωy2 + α(x1 − x2)y2
1 , (60a)

ẏ2 = −Ωy3 + αx1(x1 − x2)y1y2, (60b)

ẏ3 = −ηy3 − Ωy2 − [η − αx1(x1 − x2)y3]y1. (60c)

Note that also the first one of these 3 ODEs coincide with the fourth one of the 5 ODEs (31).

As in the case of Example 3.3 (see Subsec. 3.1), the solutions of this model can be formally
written in terms of the solutions Xn(t) of the Lorenz model (34) (with Xn(0) = xn(0), n = 1, 2, 3),
as follows:

xn(t) = Xn[τ̃(t)], (61a)

y1(t) =
A cos(Ωt) + B sin(Ωt) + C exp(−ηt)

x1(t)
, (61b)

y2(t) =
−A sin(Ωt) + B cos(Ωt) − C(η/Ω) exp(−ηt)

x1(t)
, (61c)

y3(t) =
A cos(Ωt) + B sin(Ωt) − C(η/Ω)2 exp(−ηt)

x1(t)
, (61d)

with τ̃ (t) defined by (38a). And (as in the preceding Example 4.2) the considerations made above
at the end of Example 3.3 (see Subsec. 3.1) are again applicable, up to obvious adjustments.

Example 4.4. 4 coupled first-order evolution ODEs:

ẋ = −γx[y2y3x + (η/Ω)y1(1 − y2
3x

2)], (62a)

ẏ1 = Ωy2 + γy1[xy2y3 + (η/Ω)y1(1 − y2
3x

2)], (62b)

ẏ2 = −Ωy1 + γy2[xy2y3 + (η/Ω)y1(1 − y2
3x

2)], (62c)

ẏ3 = η
1 − y2

3x
2

x
+ γy3[xy2y3 + (η/Ω)y1(1 − y2

3x
2)]. (62d)

The general solution of this system reads as follows:

x(t) = A − B sin[Ω(t − t0)] tanh[η(t − t1)], (63a)

y1(t) =
B sin[Ω(t − t0)]

A − B sin[Ω(t − t0)] tanh[η(t − t1)]
, (63b)
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y2(t) =
B cos[Ω(t − t0)]

A − B sin[Ω(t − t0)] tanh[η(t − t1)]
, (63c)

y3(t) =
tanh[η(t − t1)]

A − B sin[Ω(t − t0)] tanh[η(t − t1)]
. (63d)

Here of course A, B, t0 and t1 are 4 arbitrary constants which can be adjusted to fit the initial data
x(0) and ym(0), m = 1, 2, 3. The asymptotically isochronous character of this solution is plain; a
sufficient condition to exclude that this solution blow up is provided by the restriction |A| > |B|.
The two subsets of solutions obtained by setting t1 = ±∞ hence replacing the tanh functions with
∓1 are of course isochronous.

As a side observation (also useful for later reference) the diligent reader may check that the 3
quantities

Q1 = x2 (y2
1 + y2

2), (64a)

Q2 = x (1 + xy1y3), (64b)

Q3 =
arctanh(xy3)

η
− arctan(y1/y2)

Ω
, (64c)

provide 3, functionally independent, conserved quantities for this dynamical system, (62).

Example 4.5. 4 coupled first-order evolution ODEs:

ẋ = γx2[xy2y3 + (η/Ω)y1(1 − x2y2
3)], (65a)

ẏ1 = Ωy2 − γxy1[xy2y3 + (η/Ω)y1(1 − x2y2
3)], (65b)

ẏ2 = −Ωy1 − γxy2[xy2y3 + (η/Ω)y1(1 − x2y2
3)], (65c)

ẏ3 = η(x−1 − xy2
3) − γxy3[xy2y3 + (η/Ω)y1(1 − x2y2

3)]. (65d)

The general solution of this system reads as follows:

x(t) = A exp[γτ̆(t)], (66a)

y1(t) = C sin[Ω(t − t0)] exp[−γτ̆(t)], (66b)

y2(t) = C cos[Ω(t − t0)] exp[−γτ̆(t)], (66c)

y3(t) = tanh[η(t − t1)] exp[−γτ̆(t)], (66d)

with τ̆ (t) defined by (45). Here of course A, C, t0 and t1 are 4 arbitrary constants which can be
adjusted to fit the initial data x(0) and ym(0), m = 1, 2, 3.

Example 4.6. 6 coupled first-order evolution ODEs:

ẋ1 = −α(x1 − x2)x1[x1y2y3 + (η/Ω)y1(1 − x2
1y

2
3)], (67a)

ẋ2 = (βx1 − x2 − x1x3)x1[x1y2y3 + (η/Ω)y1(1 − x2
1y

2
3)], (67b)

ẋ3 = (x1x2 − γx3)x1[x1y2y3 + (η/Ω)y1(1 − x2
1y

2
3)], (67c)

ẏ1 = Ωy2 + α(x1 − x2)y1[x1y2y3 + (η/Ω)y1(1 − x2
1y

2
3)], (67d)

ẏ2 = −Ωy1 + α(x1 − x2)y2[x1y2y3 + (η/Ω)y1(1 − x2
1y

2
3)], (67e)

ẏ3 = η(x−1
1 − x1y

2
3) + α(x1 − x2)y3[x1y2y3 + ηy1(1 − x2

1y
2
3)]. (67f)
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As in the cases of Example 3.3 (see Subsec. 3.1) and of Example 4.4, the solutions of this model can be
formally written in terms of the solutions of the Lorenz model (34) (with Xn(0) = xn(0), n = 1, 2, 3),
as follows:

xn(t) = Xn[τ̆ (t)], (68a)

y1(t) =
C sin[Ω(t − t0)]

x1(t)
, (68b)

y2(t) =
C cos[Ω(t − t0)]

x1(t)
, (68c)

y3(t) =
tanh[η(t − t1)]

x1(t)
, (68d)

with τ̆ (t) defined by (45) and the 3, a priori arbitrary, constants C, t0 and t1 determined by the
initial data ym(0), m = 1, 2, 3, as well as x1(0). The two subsets of solutions corresponding to
t1 = ±∞ hence to the replacement of the function tanh with ∓1 in the last of these formulas and
in the definition (45) of τ̆(t) are of course isochronous.

5. Multi-Periodic Systems

In this Sec. 5 we show how to extend a quite general (autonomous) dynamical system involving N

ODEs such as (6a), into a multi-periodic, as well autonomous, system involving N + 4 ODEs —
defined of course according to Definition 2.4 with Definition 2.3. Since the procedure is analogous to
that described above in Secs. 3 and 4 to obtain isochronous and asymptotically isochronous systems,
the following treatment is quite terse. We report only one procedure, and display in Subsec. 5.1 only
two simple examples; the alert reader will have no difficulty to devise other analogous procedures
(possibly also using the hints provided in Sec. 7) as well as additional examples.

We take as starting point the standard equations of motion of two harmonic oscillators with
different frequencies — which shall have to be noncongruent in order that the extended dynamical
system we will manufacture be indeed multi-periodic and not isochronous.

So we start from the following 4 linear ODEs:

ḟ1 = Ωf2, ḟ2 = −Ωf1, (68e)

ḟ3 = λΩf4, ḟ4 = −λΩf3, (68f)

entailing of course

f1(t) = A cos(Ωt) + B sin(Ωt), (69a)

f2(t) = −A sin(Ωt) + B cos(Ωt), (69b)

f3(t) = C cos(λΩt) + D sin(λΩt), (69c)

f4(t) = −C sin(λΩt) + D cos(λΩt). (69d)

Here, as usual, Ω is an arbitrary positive constant (dimensionally, an inverse time), and λ is a positive
irrational number. The two functions f1(t) and f2(t) are of course periodic with period T , see (11),
while the two functions f3(t) and f4(t) are as well periodic but with the noncongruent period T/λ.

We then introduce the multi-periodic function τ̂ (t) via the very simple assignment

τ̂ (t) =
A sin(Ωt) + B[1 − cos(Ωt)]

Ω
+

(
μ

λ

)
C sin(λΩt) + D[1 − cos(λΩt)]

Ω
, (70a)

entailing τ̂ (0) = 0 and
.

τ̂ (t) = f1(t) + μf3(t). (71)

Here and hereafter μ is an arbitrary (nonvanishing) number.
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Next we set

ẋ = (f1 + μf3)h(x); ẋn = (f1 + μf3)hn(x), n = 1, . . . , N, (72)

so that the time evolution of x is multi-periodic; and we moreover set

fm = Fm(x)ym, m = 1, 2, 3, 4, (73)

thereby getting, via the insertion of these formulas in (72) and (69), the following system of N + 4
ODEs:

ẋn = [F1(x)y1 + μF3(x)y3]hn(x), (74a)

ẏ1 = Ω
F2(x)
F1(x)

y2 −
[
y1 + μ

F3(x)
F1(x)

y3

]
y1

N∑
n=1

[
∂F1(x)
∂xn

hn(x)
]

, (74b)

ẏ2 = −Ω
F1(x)
F2(x)

y1 − F1(x)y1 + μF3(x)y3

F2(x)
y2

N∑
n=1

[
∂F2(x)
∂xn

hn(x)
]

, (74c)

ẏ3 = λΩ
F4(x)
F3(x)

y4 −
[
F1(x)
F3(x)

y1 + μy3

]
y3

N∑
n=1

[
∂F3(x)
∂xn

hn(x)
]

, (74d)

ẏ4 = −λΩ
F3(x)
F4(x)

y3 − F1(x)y1 + μF3(x)y3

F4(x)
y4

N∑
n=1

[
∂F4(x)
∂xn

hn(x)
]

. (74e)

Clearly the general solution of this system reads as follows:

xn(t) = Xn[τ̂(t)], n = 1, 2, 3, (75a)

ym(t) =
fm(t)
Fm(x)

, m = 1, 2, 3, 4, (75b)

where Xn(τ) is the general solution of (6d), τ̂ (t) is defined by (70a) and the 4 functions fm(t) are
given by (69). The multi-periodic character of this general solution is plain — for a largely arbitrary
assignment of the N + 4 functions hn(x), n = 1, . . . , N and Fm(x), m = 1, 2, 3, 4.

We also report the somewhat neater form of the multi-periodic dynamical system (74) in the
special case when the 4 functions Fm(x) coincide, Fm(x) = F (x):

ẋn = F (x)(y1 + μy3)hn(x), (76a)

ẏ1 = Ωy2 − (y1 + μy3)y1

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (76b)

ẏ2 = −Ωy1 − (y1 + μy3)y2

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (76c)

ẏ3 = λΩy4 − (y1 + μy3)y3

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

, (76d)

ẏ4 = −λΩy3 − (y1 + μy3)y4

N∑
n=1

[
∂F (x)
∂xn

hn(x)
]

. (76e)

Two simple specific examples are presented below: the alert reader will have no difficulty in devising
many others.
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5.1. Examples of multi-periodic dynamical systems

In this Subsec. 5.1 we present, without any comment, two simple examples of autonomous dynamical
systems yielding multi-periodic evolutions.

Example 5.1. 5 coupled first-order evolution ODEs:

ẋ = γx2(y1 + μy3), (77a)

ẏ1 = Ωy2 − γx(y1 + μy3)y1, (77b)

ẏ2 = −Ωy1 − γx(y1 + μy3)y2, (77c)

ẏ3 = λΩy4 − γx(y1 + μy3)y3, (77d)

ẏ4 = −λΩy3 − γx(y1 + μy3)y4. (77e)

This system corresponds to (76) with N = 1, F (x) = x, h(x) = γx. Its general solution reads

x(t) = x(0) exp[γτ̂ (t)], (78a)

ym(t) =
fm(t)
x(0)

exp[−γτ̂(t)], m = 1, 2, 3, 4, (78b)

with τ̂ (t) defined by (70a) and the 4 functions fm(t) given by (69). The multi-periodic character of
this model is plain. Note that, for μ = 0, the subcase of this model characterized by y3 = y4 = 0
reduces to Example 3.1.

Example 5.2. 7 coupled first-order evolution ODEs:

ẋ1 = −αx1(x1 − x2)(y1 + μy3), (79a)

ẋ2 = x1(βx1 − x2 − x1x3)(y1 + μy3), (79b)

ẋ3 = x1(x1x2 − γx3)(y1 + μy3), (79c)

ẏ1 = Ωy2 + α(x1 − x2)(y1 + μy3)y1, (79d)

ẏ2 = −Ωy1 + α(x1 − x2)(y1 + μy3)y2, (79e)

ẏ3 = Ωy4 + α(x1 − x2)(y1 + μy3)y3, (79f)

ẏ4 = −Ωy3 + α(x1 − x2)(y1 + μy3)y4. (79g)

This model obtains from (76) via the assignment (33), and its general solution is given by the
formulas (75) with Xn(τ), n = 1, 2, 3, being the general solution of the Lorenz model (34), and of
course τ̂ (t) again defined by (70a) and the 4 functions fm(t) again given by (69). Note that, for
μ = 0, the subcase of this model characterized by y3 = y4 = 0 reduces to Example 3.3.

6. Comparisons

In this section we compare the behavior of the generic solutions of the extended — isochronous or
asymptotically isochronous or multi-periodic — models introduced above with those of their original
counterparts — with particular attention to the case when the corresponding original system features
a chaotic behavior. This question — that we consider quite interesting hence presumably worthy of
future elaborations — shall however be treated tersely here since it has already been discussed, in
the context of Hamiltonian systems, in previous papers [2, 9, 10].

A first issue concerns the fact that the original system does not move in the same space as
its extension: indeed the latter has 2, 3 or 4 degrees of freedom more than the former, depending
whether one is considering the isochronous, asymptotically isochronous or multi-periodic extension
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(as introduced above: see (15), or (40) and (48), or (74)). However in the extended systems we
constructed in Sec. 2 there are two kinds of dependent variables: the variables xn (with n = 1, . . . , N)
which essentially coincide with the original variables (although their time evolution is of course
different in the extended case), and the additional variables ym (with m = 1, 2 or m = 1, 2, 3 or
m = 1, 2, 3, 4). We may therefore project the extended dynamics on the xn variables. The result can
then be straightforwardly compared with the original dynamics.

To illustrate this comparison in the particularly interesting case in which the original, unmod-
ified dynamical system evolves chaotically we focus here on the specific such examples reported in
preceding sections, but we trust the reader to appreciate the general relevance of this discussion.
Let us refer, to begin with, to the isochronous dynamical system (31) treated as Example 3.3 in
Subsec. 3.1. The results obtained there (see (35a) with (13)) entail that the behavior of this system
can be described as follows. The initial data xn(0), n = 1, 2, 3, define, via the simple rule

Xn(0) = xn(0), n = 1, 2, 3 (80)

(entailed by the property τ(0) = 0, see (13)), initial data, hence a trajectory, for the Lorenz system
(34). The trajectory of the corresponding solution of the isochronous dynamical system (31) coincides
then with a piece of this trajectory of the Lorenz system (34), but traveled back and forth in time —
isochronously, with period T — starting from the same initial data. At this point one should mention
that, while the solution of the Lorenz model (for the interesting set of its 3 defining constants α, β, γ,

which is the case we always refer to) always exists (as a continuous function) for positive time, it need
not remain singularity-free for all negative time: this is therefore a potential source of singularity
that might spoil the isochronous character of some solutions of the model (31). In the following
discussion we confine our consideration to initial data — which certainly exist — that exclude this
from happening.

To continue our qualitative discussion of the comparative behavior of the solutions of the
isochronous system (31) and the Lorenz model (34) we now point out that the definition (13)
of τ(t) entails that, for t in the neighborhood of a generic time t̄,

τ(t) = U + V t + O

(
t − t̄

T

)
, (81a)

with the constants U and V defined as follows:

U ≡ U(t̄ ) = τ(t̄ ) − V t̄, (81b)

V ≡ V (t̄ ) = A cos(Ωt̄ ) + B sin(Ωt̄ ), (81c)

and the isochrony period T defined by (11). Hence the behavior of (31) and (34) only differ — over
time intervals much shorter than T, which, for the sake of this discussion, is now assumed to be
itself much larger than all the characteristic times of the Lorenz model (34) — by a constant time
rescaling and shift. Of course while, when the time rescaling constant V is positive, this behavior
of (31) can be considered to resemble that of the Lorenz model (34), when the rescaling constant
V is negative it resembles instead the time-reversed behavior of the Lorenz model; and each of
these two behaviors of the isochronous system (31) alternate within each period T, so that the
trajectories of this model, within each period T , shall alternatively approach and get away from
the strange attractor featured by the Lorenz model (34), this phenomenology being of course only
apparent if the period T is much larger than all the characteristic times of the Lorenz model. The
phenomenon worth emphasizing is that — under such circumstances, with T large with respect to
the characteristic times of the Lorenz system — this isochronous system will behave for quite some
time quite similarly to a typically chaotic system (as indeed the Lorenz model is known to be);
in spite of the overall regularity of its dynamical behavior, as entailed by its isochrony. Note that
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this situation can always be realized, since T can be chosen arbitrarily when manufacturing the
isochronous system (31).

The peculiarity of this finding has already been highlighted in Refs. [9, 10] — albeit in the different
context of the classical many-body problem characterized by original equations of motion that are
invariant under time-reversal: which is not the case here. Moreover in that case both the original
problem and its modified, isochronous version are Hamiltonian, so that the relevant discussion of this
phenomenology — as it were, forcing an isochronous evolution over an initially chaotic behavior —
was naturally framed in the context of the properties of integrability and superintegrability, and in
that context it was shown that any isochronous system is integrable indeed maximally superintegrable
(in fact it corresponds to a special instance of such systems: all confined solutions of maximally
superintegrable systems are completely periodic, but not necessarily all with the same period, as
is instead the case for isochronous systems) [9, 10]. In the present, more general context of (not
necessarily Hamiltonian) dynamical systems the issue is whether the system under consideration
does or does not have the maximal number of (functionally independent and globally defined)
constants of motion, namely N − 1 if N is the number of degrees of freedom of the system. We
refer for short to such systems as being characterized by a “maximally conserved” dynamics. Note,
however, that in the general (non Hamiltonian) case a maximally conserved dynamics need not
be periodic. Indeed one can show, along the same lines as the proof in [10] (but averaging the
trajectory over the entire time evolution), that all asymptotically isochronous systems of type (48)
yield a maximally conserved dynamics. This was explicitly pointed out at the end of Example 4.4
(see (64)). Note however that the fact that isochronous and asymptotically isochronous systems yield
a maximally conserved dynamics does not necessarily entail that their dynamics is “simple” (even
in the isochronous case!): the constants of motion may be very complicated functions that cannot
be exhibited explicitly, and obtaining the actual orbit requires moreover inversions that generally
entail additional complications. On the other hand, this complication cannot, for our isochronous
systems, be so large as to qualify the motion as chaotic: this follows from the observation that their
trajectories coincide with just a finite piece of the corresponding trajectory of the original system,
traveled periodically over and over, back and forth.

An analogous discussion can be made in connection with the asymptotically isochronous dynam-
ical systems treated as Examples 4.3 and 4.6 in Subsec. 4.1. It is indeed clear that the definition
(38a) of τ̃ (t) entails, in the neighborhood of a generic time t̄,

τ̃ (t) = Ũ + Ṽ t + O

(
t − t̄

T
,
t − t̄

T̃

)
, (82a)

with the constants Ũ and Ṽ defined as follows:

Ũ ≡ Ũ(t̄ ) = τ̃ (t̄ ) − Ṽ t̄, (82b)

Ṽ ≡ Ṽ (t̄ ) = A cos(Ωt̄ ) + B sin(Ωt̄ ) + C exp(−ηt̄ ), (82c)

and likewise the definition (45) of τ̆ (t) entails

τ̆ (t) = Ŭ + V̆ t + O

(
t − t̄

T
,
t − t̄

T̃

)
, (83a)

with the constants Ŭ and V̆ defined as follows:

Ŭ ≡ Ŭ(t̄ ) = τ̆ (t̄ ) − V̆ t̄, (83b)

V̆ ≡ V̆ (t̄ ) = C

{
cos[Ω(t̄ − t0)] tanh[η(t̄ − t1)] +

η sin[Ω(t̄ − t0)]
Ω cosh2[η(t̄ − t1)]

}
, (83c)

and T defined again by (11) while T̃ = 1/η.
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This clearly entails also in these cases the remarkable phenomenon discussed above: the behavior
of these systems, around a generic time, may resemble over long periods of time that of a chaotic
system (the Lorenz system (34)), yet their overall behavior becomes eventually quite regular.

Note moreover that the trajectories of these systems straddle again only a finite piece of a
corresponding trajectory of the Lorenz system (34), when t goes from zero to infinity. This is implied
by (61a) with (38a) and by (68a) with (45); a trajectory being again traveled back and forth over
time, albeit now not quite periodically.

This fact might suggest that also these modified systems are characterized by a maximally con-
served dynamics. But the following remark shows that this argument is not really relevant for the
system of Example 4.3. Indeed the conserved quantities, being time-independent, should exist for
all time (−∞ < t < +∞), and clearly when the time t spans this infinite interval, the corresponding
span of τ̃(t), see (38a), is semi-infinite rather than being finite. This counter-argument, however,
does not apply to the model of Example 4.6, because when the time t spans the entire interval from
−∞ to +∞, the quantity τ̆ (t) only spans the interval from −C to +C, see (45), which is always
finite (although it might be made arbitrarily large). Indeed in this case the maximal number of
conserved quantities can be manufactured following the same treatment as detailed in [10], except
that the formula defining the mean f̄ , modulated by the a priori arbitrary function f(z), over the
(periodic) orbit of the isochronous system, reading

f̄ =
1
T

∫ T

0

dt f [z(t)], (84a)

where the vector z includes all the degrees of freedom of the system and T is the isochrony period,
should be replaced by the following formula,

f̄ = lim
T̄→∞

{
1

2T̄

∫ T̄

−T̄

dt f [z(t)]

}
, (84b)

which makes sense also for nonperiodic trajectories but yields the same result as the previous one,
(84a), in the case of periodic trajectories with period T . Of course the construction of the constants
of motion is only given by this prescription in the phase space region in which the trajectories of
the system do not run into singularities, either due to the backward time-evolution in the Lorenz
model or to a vanishing of the coordinate x1(t), see (68).

The extension of this discussion to include the case of multi-periodic systems is left as a task for
the diligent reader, who is then advised to focus on the Example 5.2 and to note that in that case —
just as in the case of the Example 4.6 — the definition (84b) is adequate provided the trajectory of
the system does not run into singularities.

Let us end this section by re-emphasizing that, while for simplicity our presentation has been
focused on specific examples, the essence of our findings is easily seen to have an easily identifiable
general validity — both regarding the comparison of the time evolution of the extended systems
with those of the original, unmodified systems, and as well the maximally conserved character of the
time evolution of the extended systems (which is the case in an open, hence fully-dimensional, phase
space region of the extended models of Examples 4.6 and 5.2, but not in the case of the extended
model of Example 4.3).

7. Outlook

In this paper we have introduced a somewhat novel technique to extend an autonomous dynamical
system so that the extended autonomous system thereby obtained is either isochronous or asymp-
totically isochronous or multi-periodic, and it moreover generally entails, over times much shorter
than the (arbitrarily assigned) period or periods associated with the extended system, a dynamical
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evolution which differs from the original one only by a constant rescaling of the independent vari-
able (time). As already emphasized above, the examples exhibited in this paper are merely special
instances of those that can be manufactured via this methodology: the results reported herein open
therefore an ample vista of further investigations, both in the direction of applicable models, as well
as of models evoking a fundamental physical interest such as the classical many-body problem.

To give a glimpse of such possible developments let us now outline three generalizations, and
a variation, of the methods developed in Sec. 2 and more specifically in Secs. 3–5. For simplicity
we limit here our consideration to the case of isochronous systems; the alert reader will have no
difficulty to extend these considerations to the case of asymptotically isochronous and multi-periodic
systems, or for that matter to devise additional generalizations of our approach, rather obviously
suggested by the previous treatment, as well as by its generalizations outlined below.

Again, for simplicity and clarity, the three possible generalizations, and the variation, are outlined
below by focussing on representative examples.

(i) Consider the dynamical system of 4 ODEs in the 4 dependent variables x̄, ȳ1, ȳ2, z defined as
follows:

·
x̄ = γx̄2ȳ1F0(z)F1(z) − x̄F ′

0(z)Ḡ(x̄, ȳ1, ȳ2, z), (85a)

·
ȳ1 = Ω

F2(z)
F1(z)

ȳ2 − γx̄ȳ2
1F0(z)F1(z) − F ′

1(z)
F1(z)

ȳ1Ḡ(x̄, ȳ1, ȳ2, z), (85b)

·
ȳ2 = −Ω

F1(z)
F2(z)

ȳ1 − γx̄ȳ1ȳ2F0(z)F1(z) − F ′
2(z)

F2(z)
ȳ2Ḡ(x̄, ȳ1, ȳ2, z), (85c)

ż = Ḡ(x̄, ȳ1, ȳ2, z), (85d)

where

Ḡ(x̄, ȳ1, ȳ2, z) = δz{Ω[β1ȳ2F2(z) − β2ȳ1F1(z)] + αγx̄2ȳ1F
2
0 (z)F1(z) − γx̄ȳ1F0(z)F1(z)

× [β1ȳ1F1(z) + β2ȳ2F2(z)]}. (85e)

Here α, β1, β2, γ, δ and Ω are 6 arbitrary constants (for definiteness, Ω > 0), and F0(z), F1(z), F2(z)
are 3 arbitrary functions.

The starting point to arrive at this system, (85), is the system (22), complemented by the
assignments

x̄ = xF0(z); ȳm = ymFm(z), m = 1, 2, (85f)

and the ODE

ż = {αγx2y1 + β1[Ωy2 − γxy2
1 ] − β2[Ωy1 + γxy2

1 ]}δz, (86a)

which, via (22) and (86c), can clearly be re-written as follows:

ż =
·
τ̄ δz, (86b)

where

τ̄(t) = αx(t) + β1y1(t) + β2y2(t) − [αx(0) + β1y1(0) + β2y2(0)]. (86c)

And this clearly entails that the general solution of this system, (85), is provided by the following
formulae:

x̄(t) =
x(t)

F0[z(t)]
, (87a)

ȳm(t) =
ym(t)

Fm[z(t)]
, m = 1, 2, (87b)

z(t) = D exp[δτ̄(t)], (87c)
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with the 3 functions x(t), y1(t), y2(t) defined by (26) with (13). The 4 constants A, B, C and D

contained in these formulae (see (26) with (13) and (87c)) are arbitrary; in the context of the initial-
value problem, they are determined in terms of the 4 initial values x̄(0), ȳ1(t), ȳ2(t), z(0) (note that
the second line in the right-hand side of the formula (86c) defining τ̄ (t) has been introduced merely
for convenience, to cause τ̄(0) to vanish; it could of course be omitted, since its presence amounts
merely to a rescaling of the a priori arbitrary constant D, see (87c)). The isochronous character
of this general solution is plain. The diligent reader will verify that these formulae, (87), provide
indeed the general solution of the system (85), and shall thereby note the remarkable nature of
this solution, as evidenced for instance by the nested character of the formula (87c) providing the
explicit expression of the dependent variable z(t). It shall thereby be clear how the construction of
this system can be interpreted as the first step of an iterative procedure that might be continued.

(ii) Consider the N + 2 nonlinearly coupled ODEs satisfied by the N + 2 dependent variables
xn, y1 and y2, where n runs from 1 to N :

ẋn = [bG1(x, y1, y2) + cG2(x, y1, y2)]hn(x), (88a)

ẏ1 = [F1(x)]−1

{
G1(x, y1, y2) − y1[bG1(x, y1, y2) + cG2(x, y1, y2)]

N∑
n=1

∂F1(x)
∂xn

hn(x)

}
, (88b)

ẏ2 = [F2(x)]−1

{
G2(x, y1, y2) − y2[bG1(x, y1, y2) + cG2(x, y1, y2)]

N∑
n=1

∂F2(x)
∂xn

hn(x)

}
, (88c)

where b and c are two arbitrary constants, x denotes of course the N -vector having the N dependent
variables xn as its N components, the N functions hn(x) depend arbitrarily on the N components
xn of this N -vector, and the two functions Gm(x, y1, y2), m = 1, 2, of the N + 2 dependent variables
xn, y1, y2 are explicitly defined as follows,

G1(x, y1, y2) = −αy2
1 [F1(x)]2 + γy2

2[F2(x)]2 − αΩ2

4
, (89a)

G2(x, y1, y2) = y2F2(x)[−2αy1F1(x) + δy2F2(x)], (89b)

with α, γ and δ three arbitrary constants and the two functions F1(x), F2(x) of the N dependent
variables xn assigned arbitrarily.

The starting point to prove that the dynamical system (88) is isochronous with period T , see
(11), is the fact that the system of two ODEs

ḟ1 = −αΩ2/4 − αf2
1 + γf2

2 , ḟ2 = (−2αf1 + δf2)f2, (90)

is isochronous with period T , see (11), as implied by Proposition 4 of [5] (up to trivial notational
changes). This entails that the function

τ(t) = bf1(t) + cf2(t) (91a)

is equally isochronous, while clearly

τ̇ = b[−αΩ2/4 − αf2
1 + γf2

2 ] + c[(−2αf1 + δf2)f2]. (91b)

Hence if one couples the system (90) to the system of N ODEs

ẋn = τ̇hn(x), n = 1, . . . , N, (92)

with τ̇ defined by the preceding formula, one obtains an isochronous system of N + 2 ODEs. And it
is then a matter of trivial algebra to see that this system corresponds to the dynamical system (88)
via the assignment (14).
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(iii) As third example of generalization we report a more general version of the results of Secs. 2
and 3, amounting to the assertion that the following system of N + 2 ODEs is isochronous with
period T , see (11), where n runs from 1 to N and m is defined modulo 2:

ẋn = (c1F1 + c2F2)hn(x), (93a)

ẏm = (−1)mG−1

{
−Ω

2
∂(F 2

1 + F 2
2 )

∂ym+1
+ (c1F1 + c2F2)

N∑
n=1

[Gnmhn(x)]

}
. (93b)

Here the N functions hn(x) of the N dependent variables xn are arbitrary. The two functions
Fm ≡ Fm(x, y1, y2), m = 1, 2 of the N + 2 dependent variables xn, y1, y2 must be invertible with
respect to ym for all x, but can otherwise be chosen arbitrarily. The 1+2N functions G ≡ G(x, y1, y2),
Gnm ≡ Gnm(x, y1, y2) are defined as follows in terms of the two functions Fm(x, y1, y2) (which must
of course be assigned so that G(x, y1, y2) does not vanish):

G =
∂F1

∂y1

∂F2

∂y2
− ∂F2

∂y1

∂F1

∂y2
, (94a)

Gnm =
∂F1

∂xn

∂F2

∂ym+1
− ∂F2

∂xn

∂F1

∂ym+1
. (94b)

The isochrony of the general solution of this system of N + 2 ODEs is implied by the formulas

xn(t) = Xn[τ(t)], (95a)

Fm[x(t), y1(t), y2(t)] = fm(t), (95b)

τ̇(t) = c1f1(t) + c2f2(t). (95c)

Here the functions Xn(τ) are the solutions of the system (6d) (indeed (95a) coincides with (6c)),
while the two functions fm(t) are explicitly defined by (10), implying that

τ(t) = (c1A + c2B)
sin(Ωt)

Ω
+ (c1B − c2A)

1 − cos(Ωt)
Ω

, (95d)

where we have chosen the integration constant so that τ(0) = 0 implying Xn(0) = xn(0). These
formulae, (95), with A and B two arbitrary constants (to be fixed by the initial data), provide, in
somewhat implicit form, the general solution of the system (93), in terms of the general solution
Xn(τ) of the system (6d), thereby demonstrating the isochronous character of these solutions. And
we trust that the clue provided by the formulas written above is sufficient to indicate how they
have been derived, via a treatment quite analogous, if somewhat more general, than that detailed
in Secs. 2 and 3.

Clearly the isochronous system (93) — thanks to the large arbitrariness in the assignment of the
two constants cm and especially of the two functions Fm(x, y1, y2) of the N+2 dependent variables xn

and ym, as well as the arbitrariness in the assignments of the N functions hn(x) of the N dependent
variables xn — provides a wider scope for applications than the system (40), to which, as the diligent
reader will verify, it reduces for the special choice c1 = 1, c2 = 0, Fm(x, y1, y2) = Fm(x)ym, m = 1, 2.

The alert reader who will repeat this more general derivation will also notice that the isochronous
character of the system (93) might be preserved even in the more general case in which the func-
tions hn are allowed to depend also on the two dependent variables ym, although in that case the
connection of the solution of (93) with the solutions Xn(τ) of the system (6d) would have to be
replaced by a different, somewhat more complicated, relation than (95a).

Finally, a variation: let us indicate a way (out of many possible ones) to extend a largely arbitrary
dynamical system involving N dependent variables (such as (6d)) so that the extended (isochronous!)
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dynamical system thereby obtained features only N + 1 dependent variables (rather than N + 2 as
it is the case for (40) or its more general version (93)). Such a system reads as follows

ẋn = Ω{α2 − [F (x, y) − β]}1/2hn(x), (96a)

ẏ = Ω{α2 − [F (x, y) − β]}1/2

[
∂F (x, y)

∂y

]−1

·
{

1 −
N∑

n=1

[
∂F (x, y)

∂xn
hn(x)

]}
, (96b)

where n runs from 1 to N . Here the N functions hn(x) of the N dependent variables xn are arbitrary.
The function F (x, y) of the N + 1 dependent variables xn and y must be invertible with respect
to y but is otherwise largely arbitrary. The two constants α and β are also arbitrary, and the
determination of the square root appearing in the right-hand side of these ODEs must be assigned
so as to guarantee the smoothness of the time-dependence of the dependent variables xn(t) and y(t),
namely continuity of their time-derivatives — in addition to continuity of the functions themselves;
of course this also entails some conditions on the functions hn(x) and F (x, y).

The general solution of this system can be written in terms of the general solution Xn(τ) of the
corresponding system (6d) in the following form, which is somewhat implicit with respect to the
dependent variable y(t):

xn(t) = Xn(β + α sin[Ω(t − t0)]), (97a)

F [x(t), y(t)] = β + α sin[Ω(t − t0)]. (97b)

The isochronous character of this solution is clear, and its validity could be easily verified by direct
substitution, but let us outline for completeness how this isochronous system, (96), has been man-
ufactured. The starting point is the single evolution ODE

ḟ = Ω[α2 − (f − β)2]1/2, (98a)

where α and β are two arbitrary constants and the determination of the square root must again
be chosen so as to guarantee that the dependent variable, f ≡ f(t), depend smoothly on time, i.e.
it should not only be a continuous functions of time, but its time derivative should as well be a
continuous function of time. Hence the general solution of this ODE reads

f(t) = β + α sin[Ω(t − t0)], (98b)

with t0 an arbitrary constant the (real or imaginary) value of which can be adjusted to fit the initial
datum f(0). The isochronous character of f(t) is of course plain.

The subsequent procedure to manufacture an isochronous dynamical system is to write firstly

ẋn = Ω[α2 − (f − β)2]1/2hn(x), n = 1, . . . , N, (99)

and to then introduce a new dependent variable y ≡ y(t) by setting

f = F (x, y), (100)

where F (x, y) is a function of the N + 1 variables xn and y that we reserve the privilege to assign
later (at our convenience). It is then easily seen that one obtains in this manner just the dynamical
system (96), and it is moreover plain that this derivation justifies the assertions made above about
this system.

We end this paper, in which we indicated how to manufacture autonomous dynamical systems
which are either isochronous, or asymptotically isochronous or multi-periodic, by mentioning the pos-
sibility to also manufacture asymptotically multi-periodic systems, whose solutions approach multi-
periodic functions only asymptotically, at very large time. We feel that a precise definition of such
systems can be left as an easy task — presumably interesting and possibly relevant for applica-
tions — for the reader who has internalized the main ideas, and the techniques, detailed in this
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paper: who will easily devise procedures to manufacture such systems, and obtain explicit examples
of such systems — both explicitly solvable ones and others, arrived at by extending chaotic systems
hence generally not featuring explicit solutions.
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