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The article deals with local symmetries of the infinite-order jet space of C∞-smooth curves in R
m+1 (m ≥ 1).

Transformations under consideration are the most general possible: they need not preserve the distinction
between dependent and independent variables and the order of derivatives may be arbitrarily changed.
Unlike the common prolonged point and Lie’s contact transformations, they destroy the finite-order jet
spaces.

Keywords: Infinite order jet space; automorphisms of jet space; higher order symmetries of jets.
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Automorphisms of various structures belong to the most important subjects of mathematical theo-
ries. In the theory of (partial) differential equations, this area rests on the famous Lie’s and Cartan’s
methods of infinitesimal transformations or moving frames. Such methods are as a rule applied in
a certain finite-order jet space of a given order and it follows that all automorphisms which change
the order of derivatives are omitted. In other words, the most general automorphisms of differential
equations cannot be included if the common classical methods are mechanically applied.

We restrict ourselves to the extremely modest task, to the most general automorphisms of trivial
(empty) systems of ordinary differential equations, that is, to the general automorphisms of the
family of all C∞-smooth curves in a finite-dimensional space. Our task is precisely formulated in
Introduction below. For better clarity, it may be also described as follows. The common (prolonged)
point or Lie’s contact transformations preserve the finite-order jet spaces, see the left-hand figure.
On the contrary, the right-hand scheme elucidates the new transformations. It should be noted that
in comparison with rather narrow and well-aranged (pseudo-)group of classical point and Lie’s con-
tact transformations, there exists an immense amount of generalized automorphisms with peculiar
properties and the overall group composition structure looks rather mysterious.
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In a certain sense, our article can be related to moving frame method by Cartan. We intend
to deal with the method of generalized (or: Lie–Bäcklund) infinitesimal symmetries in subsequent
paper.

The article is self-contained. We restrict ourselves to the local theory on certain open subsets of
generic points, i.e., some closed and nowhere dense subsets of exceptional points are omitted.

1. Introduction

1.1. Transformations of smooth curves

Our reasonings start in the space R
m+1 (m = 1, 2, . . .) with coordinates x, wi (i = 1, . . . , m) and we

are interested in the family of C∞-smooth curves

wi = wi(x) (i = 1, . . . , m) (1.1)

where the definition domains (open intervals of R) are not specified. (More precisely: we deal with
germs of curves.) Our transformations will be locally defined by equations

x̄ = F (x, . . . , wj
s, . . .), w̄i = F i(x, . . . , wj

s, . . .) (i = 1, . . . , m) (1.2)

where wj
s = dswj/dxs should be substituted. Here F, F i are C∞-smooth functions, each depending

on a finite number of arguments

x, wj
s (j = 1, . . . , m; s = 0, 1, . . .). (1.3)

By virtue of formulae (1.2), a given curve (1.1) in R
m+1 is transformed into a curve

w̄i = w̄i(x̄) (i = 1, . . . , m) (1.4)

again lying in R
m+1 and this is achieved as follows.

A given curve (1.1) is inserted into (1.21) with the result

x̄ = F

(
x, . . . ,

dswj

dxs
(x), . . .

)
= F(x). (1.5)

Then, assuming

F ′(x) = DF

(
x, . . . ,

dswj

dxs
(x), . . .

)
�= 0

(
D =

∂

∂x
+

∑
wj

s+1

∂

∂wj
s

)
, (1.6)

Eq. (1.5) can be inverted as x = F̄(x̄) by using the implicit function theorem and we obtain the
desired functions

w̄i(x̄) = F i

(
F̄(x̄), . . . ,

dswj

dxs
(F̄(x̄)), . . .

)
(i = 1, . . . , m) (1.7)

by using (1.22).
The obvious identities

F̄(F(x)) = x, F̄ ′(x̄)F ′(x) = 1, F̄ ′(x̄)DF

(
x, . . . ,

dswj

dxs
(x), . . .

)
= 1 (1.8)

appearing on this occasion will be soon referred to.

1.2. The prolongation procedure

Formulae

w̄i
r = F i

r(x, . . . , wj
s, . . .) (i = 1, . . . , m; r = 0, 1, . . .)
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for the transformed higher order derivatives w̄i
r = drw̄i/dx̄r can be obtained as well. Assume that

they are known for a certain r. (In particular F i
0 = F i if r = 0 and we denote w̄i

0 = w̄i.) Then

w̄i
r+1(x̄) =

d

dx̄
w̄i

r(x̄) =
d

dx̄
F i

r

(
F̄(x̄), . . . ,

dswj

dxs
(F̄(x̄)), . . .

)

= DF i
r(x, . . . , wj

s, . . .)F̄ ′(x̄) =
DF i

r(x, . . . , wj
s, . . .)

DF (x, . . . , wj
s, . . .)

by using (1.8).
Altogether taken, we have the infinite system

x̄ = F (x, . . . , wj
s, . . .), w̄i

r = F i
r(x, . . . , wj

s, . . .) (i = 1, . . . , m; r = 0, 1, . . .) (1.9)

subjected to the recurrence

F i
r+1 =

DF i
r

DF

(
D =

∂

∂x
+

∑
wj

r+1

∂

∂wj
r

)
(1.10)

where DF �= 0 is supposed. At this place, functions F �= const. and F i = F i
0 can be quite arbitrarily

chosen and then the total system (1.9) satisfying (1.10) is uniquely determined.

1.3. Invertible transformations

We will be interested in such equations (1.9) that can be locally inverted by appropriate C∞-smooth
formulae

x = F̄ (x̄, . . . , w̄j
s, . . .), wi

r = F̄ i
r(x̄, . . . , w̄j

s, . . .) (1.11)

(i = 1, . . . , m; r = 0, 1, . . .) analogous to formulae (1.9). If this is possible, we shall see later that the
recurrence

F̄ i
r+1 =

D̄F̄ i
r

D̄F̄

(
D̄ =

∂

∂x̄
+

∑
w̄j

r+1

∂

∂w̄j
r

)
(1.12)

and the inequality D̄F̄ �= 0 are automatically satisfied. It follows that curves (1.4) are conversely
transformed into curves (1.1).

1.4. Definition

We speak of morphism (1.9) if the recurrence (1.10) holds true and of automorphism (1.9) if moreover
the inverse (1.11) exists.

Our task is to investigate the automorphisms, in particular an algorithm for explicit calculation
of all automorphisms will be proposed as the concluding achievement of this article.

1.5. Example

We omit the common point transformations

x̄ = F (x, w1, . . . , wm), w̄i = F i(x, w1, . . . , wm) (i = 1, . . . , m)

(abbreviations wi = wi
0, w̄

i = w̄i
0) which are (locally) invertible if and only if the Jacobi determinant

is nonvanishing. Instead, we mention automorphisms of quite other kind.
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Theorem 1. Let f(x̄, w̄1
0 , . . . , w̄

m
0 , x, w1

0 , . . . , wm
0 ) be a function of 2m + 2 independent variables

mentioned. Suppose that the system

f = 0, Df = 0, . . . , Dmf = 0
(

D =
∂

∂x
+

∑
wj

s+1

∂

∂wj
s

)
(1.13)

admits a certain solution

x̄ = F (x, w1
0 , . . . , wm

m), w̄i
0 = F i

0(x, w1
0 , . . . , w

m
m) (i = 1, . . . , m) (1.14)

and moreover the system

f = 0, D̄f = 0, . . . , D̄mf = 0
(

D̄ =
∂

∂x̄
+

∑
w̄j

s+1

∂

∂w̄j
s

)
(1.15)

admits a certain solution

x = F̄ (x̄, w̄1
0 , . . . , w̄

m
m), wi

0 = F̄ i
0(x̄, w̄1

0, . . . , w̄
m
m) (i = 1, . . . , m) (1.16)

by applying the implicit function theorem. If Eqs. (1.14) and (1.16) are regarded as transformations
of curves, they are inverse one to the other. (Alternatively: prolongations of Eqs. (1.14) and (1.16)
provide mutually inverse automorphisms.)

For the particular case m = 1, this is the classical Lie’s contact transformation. We state a tricky
proof only for the case m = 2, however, it may be easily carried over the case of general m.

Proof. Let us consider a curve (1.1) where m = 2. The transformed curve (1.4) is defined by
Eq. (1.14) which are equivalent to identities (1.13), by definition. We shall see that identities
(1.13) imply (1.15) and therefore imply (1.16). Altogether (1.14) implies (1.16). Quite analogously,
Eqs. (1.16) clearly imply (1.14), so we indeed have an automorphism.

Passing to the proper proof, we begin with Eq. (1.131) which reads

f(x̄, w̄1
0(x̄), w̄2

0(x̄), x, w1
0(x), w2

0(x)) = 0 (x̄ = F(x))

by using (1.5). Consequently

d

dx
f(· · ·) = D̄f(· · ·)F ′(x) + Df(· · ·) = 0

identically. Then (1.132) implies D̄f(· · ·) = 0 identically. Analogously

d

dx
Df(· · ·) = D̄Df(· · ·)F ′(x) + D2f(· · ·) = 0

therefore D̄Df(· · ·) = DD̄f(· · ·) = 0 by using (1.133). In the same manner

d

dx
D̄f(· · ·) = D̄2f(· · ·)F ′(x) + DD̄f(· · ·) = 0

and therefore D̄2f(· · ·) = 0 identically. The proof is done.

Continuing with m = 2 and more explicit formulae in order to transparently illustrate the
Theorem 1, then the function

f = w̄2
0 − w2

0 + w1
0x̄ + w̄1

0x

represents the simplest possible choice. The system

f = 0, Df = −w2
1 + w1

1x̄ + w̄1
0 = 0, D2f = −w2

2 + w1
2x̄ = 0

admits the solution

x̄ =
w2

2

w1
2

, w̄1
0 = w2

1 + w1
1

w2
2

w1
2

, w̄2
0 = w2

0 − (w1
0 + w1

1x)
w2

2

w1
2

− w2
1x
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and the system

f = 0, D̄f = w̄2
1 + w1

0 + w̄1
1x = 0, D̄2f = w̄2

2 + w̄1
2x = 0

provides the inversion

x = − w̄2
2

w̄1
2

, w1
0 = −w̄2

1 + w̄1
1

w̄2
2

w̄1
2

, w2
0 = w̄2

0 − (w̄1
0 − w̄1

1x̄)
w̄2

2

w̄1
2

− w̄2
1x̄

where w1
2 �= 0, w̄1

2 �= 0 is supposed. More interesting is the choice

f = (x̄ − x)2 + (w̄1
0 − w1

0)
2 + (w̄2

0 − w2
0)

2 − r2 (r = const. > 0).

Then the result can be expressed in nice geometrical terms. For this aim, let P : {x, w1
0(x), w2

0(x)} ⊂
R

3 denote the original curve. The transformed curve P̄ is determined by the equations with scalar
products

(P̄ − P)2 = r2, (P̄ − P)
dP

dx
= 0, (P̄ − P)

d2
P

dx2
+

(
dP

dx

)2

= 0.

Employing the Frenet formulae, two transformed curves

P̄± : {x̄, w̄1
0(x̄), w̄2

0(x̄)} ⊂ R
3, P̄± = P +

1
κ

N ±
√

r2 − 1
κ2

B

can be obtained if rκ > 1. Here κ, N, B are the curvature, unit normal and unit binormal of curve P.

In a certain sense, we have obtained two notable curves “parallel at the distance r” to the original
curve P. The transformation is involutive if the ± branches are appropriately composed since the
function f behaves symmetrically with respect to variables x, w1

0 , w
2
0 and x̄, w̄1

0 , w̄
2
0 .

2. The Technical Background

2.1. General invertible mappings

Passing to the general theory, let us introduce the infinite-dimensional space M(m) equipped with
coordinates x, wj

s (j = 1, . . . , m; s = 0, 1, . . .), see also (1.3). We will study C∞-smooth mappings m
of open subsets of the space M(m) into M(m) given by formulae

m∗x = F (x, . . . , wj
s, . . .), m∗wi

r = F i
r(x, . . . , wj

s, . . .) (2.1)

(i = 1, . . . , m; r = 0, 1, . . .) in terms of coordinates. We are interested in such mappings (2.1) that
admit the inverse m̄ (= m−1) given by analogous formulae

m̄∗x = F̄ (x, . . . , wj
s, . . .), m̄∗wi

r = F̄ i
r(x, . . . , wj

s, . . .) (2.2)

as above. In the invertible case, both mappings m∗ and m̄∗ provide a local automorphism of the
algebra of differential forms on M(m), of course.

2.2. On the jet structure

We introduce the contact module Ω of all differential 1-forms

ω =
∑

ai
rω

i
r (ωi

r = dwi
r − wi

r+1dx, finite sum)

with arbitrary C∞-smooth coefficients locally defined on M(m) and recall the vector field

D =
∂

∂x
+

∑
wj

s+1

∂

∂wj
s

(infinite sum).
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The obvious identities

ω(D) = D�ω = 0, LfDω = fLDω, LDωi
r = ωi

r+1, LDΩ ⊂ Ω,

dωi
r = dx ∧ ωi

r+1, df = Dfdx +
∑ ∂f

∂wj
s

ωj
s

with ω ∈ Ω, f an arbitrary function and LD = D�d + dD� the Lie derivative will be frequently
employed. So we obtain the congruence

m∗ωi
r = dF i

r − F i
r+1dF ∼= (DF i

r − F i
r+1DF )dx (mod Ω)

for every mapping (2.1). It follows that the requirements

F i
r+1 =

DF i
r

DF
, m∗ωi

r ∈ Ω (fixed i and r) (2.3)

are equivalent. Denoting by m∗Ω the module of all forms
∑

ai
rm

∗ωi
r (finite sum), it follows that the

total recurrence (1.10) is equivalent to the inclusion

m∗Ω ⊂ Ω (2.4)

of modules. Continuing in this direction, assume

m∗ωi
r =

∑
aij

rsω
j
s (finite sum) (2.5)

in accordance with the inclusion (2.4). Then

m∗dωi
r = m∗(dx ∧ ωi

r+1) = dF ∧ m∗ωi
r+1

∼= DFdx ∧ m∗ωi
r+1,

dm∗ωi
r
∼=

∑
Daij

rsdx ∧ ωj
s +

∑
aij

rsdx ∧ ωj
s+1 (mod Ω ∧ Ω)

and so we have obtained the important recurrence

DFm∗ωi
r+1 =

∑
Daij

rsω
j
s +

∑
aij

rsω
j
s+1 = LD

∑
aij

rsω
j
s = LDm∗ωi

r (2.6)

for the contact forms.

2.3. On the invertible case

In accordance with Sec. 1.4, we speak of a morphism m if the inclusion (2.4) holds true and of
an automorphism m if moreover the (both left- and right-) inverse m̄ exists.

Lemma 1. The inverse m̄ of a morphism m again is a morphism.

Proof. We wish to prove m̄∗Ω ⊂ Ω. So let ω ∈ Ω and assume the congruence m̄∗ω ∼= fdx

(mod Ω). Then

ω = m∗m̄∗ω ∼= m∗(fdx) (mod m∗Ω) hence (mod Ω)

by using (2.4). So we have

ω ∼= m∗(fdx) = m∗f · dF ∼= m∗f · DFdx (mod Ω).

It follows that m∗f = 0 hence f = 0 identically and we are done.

Consequence 1. If m is automorphism then m∗Ω = Ω.

Proof. Clearly m∗Ω ⊂ Ω, m̄∗Ω ⊂ Ω but the latter inclusion reads Ω ⊂ m∗Ω.
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2.4. Digression

For every mapping (2.1) with the inverse (2.2), the images m∗Z and m̄∗Z of any vector field Z

defined by

(m∗Z)f = m̄∗(Zm∗f), (m̄∗Z)f = m∗(Zm̄∗f)

make a good sense. In particular, if m is an automorphism, then both vector fields m∗D, m̄∗D are
multiples of D. (Hint: they satisfy ω(m∗D) = ω(m̄∗D) = 0 for all ω ∈ Ω.) Then the identities

(m̄∗D)m∗x = m∗Dx = 1, (m̄∗D)x = m∗Dm̄∗x

with m∗x = F, m̄∗x = F̄ imply

m̄∗D =
1

DF
D, m̄∗D = m∗DF̄ · D, DF · m∗DF̄ = 1.

This provides a simple alternative proof of recurrence (2.6) on one line

1
DF

LD(m∗ωi
r) = Lm̄∗D(m∗ωi

r) = m∗LDωi
r = m∗ωi

r+1,

alas, only for the invertible case.

2.5. The main result

Theorem 2 (Invertibility Theorem). Let m be a morphism such that ωi
0 ∈ m∗Ω for all i =

1, . . . , m. Then m is an automorphism.
Alternatively saying, by virtue of recurrence (2.6), m is automorphism if all forms ωj

0 (j =
1, . . . , m) can be expressed as finite linear combinations of forms

m∗ωi
r =

(
1

DF
LD

)r

m∗ωi
0 (i = 1, . . . , m ; r = 0, 1, . . .)

or, equivalently, of more appropriate forms

�i
r = Lr

Dm∗ωi
0 =

∑ (
r

k

)
Dr−kaij

0sω
j
s+k (i = 1, . . . , m; r = 0, 1, . . .)

not depending on the factor 1/DF.

Note 1. A very close interrelation between forms m∗ωi
r and �i

r is expressed by the formulae

�i
0 = m∗ωi

0, �i
1 = DFm∗ωi

1, �i
r = DrFm∗ωi

1 + · · · + (DF )rm∗ωi
r (r ≥ 2)

which follow from the trivial recurrence �i
r+1 = LD�i

r (r ≥ 0). Consequently both families of forms
m∗ωi

r and �i
r can be taken for generators of module m∗Ω. The invertibility theorem can be expressed

by saying that a morphism m is invertible if and only if the forms m∗ωi
r (hence the forms �i

r) generate
module Ω, see the point (ι) below. In this case, they provide even a basis of Ω, see (ιιι) below.

The proof is lengthy and consists of five steps which are of independent interests and will be also
referred to later.
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2.6. Towards the proof

We shall see in (ι) that the assumption in the Main Theorem implies the equality Ω = m∗Ω, morever
it follows from (ιιι) that the inverse m−1 does exist (as a mere abstract mapping) and finally (ιν)
implies that the inverse is in fact a true morphism. This concludes the proof.

(ι) A simple reasoning. Assume

ωi
r =

∑
aj

sm
∗ωj

s ∈ m∗Ω (fixed i and r, finite sum).

Then

ωi
r+1 = LDωi

r =
∑

Daj
sm

∗ωj
s +

∑
aj

sDFm∗ωj
s+1 ∈ m∗Ω (2.7)

by using recurrence (2.6). It follows that the primary assumption ωi
0 ∈ m∗Ω implies even the

inclusion ωi
r ∈ m∗Ω for all r, therefore Ω ⊂ m∗Ω and the equality m∗Ω = Ω is obvious. Let us

reformulate this simple reasoning in terms of filtrations for future needs.

(ιι) Some filtrations and gradations. We introduce the submodules Ωl ⊂ Ω of all differential forms
ω =

∑
ai

rω
i
r (sum over all i and r ≤ l) of order l at most. Then

Ω∗ : · · · ⊂ Ω−1 = 0 ⊂ Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω = ∪Ωl (2.8)

is a filtration. Analogously, let Ω̄l ⊂ Ω be the submodule of all differential forms ω =
∑

ai
rm

∗ωi
r

(sum over all i and r ≤ l). Then

Ω̄∗ : · · · ⊂ Ω̄−1 = 0 ⊂ Ω̄0 ⊂ Ω̄1 ⊂ · · · ⊂ Ω = ∪Ω̄l (2.9)

again is a filtration (which follows from the equality Ω = m∗Ω). In particular, we have (locally)
Ω0 ⊂ Ω̄S if S is large enough and then

Ωl ⊂ Ω̄l+S (l = 0, 1, . . .) (2.10)

as follows from Eq. (2.7).
We also introduce the gradation Nl = Ω̄l/Ω̄l−1. Then the mapping LD : Ω̄l → Ω̄l+1 defined by

Eq. (2.7) naturally induces the morphism LD : Nl → Nl+1 of modules denoted by the same letter.
Recurrence (2.6) implies that the morphism is surjective if l ≥ 0 whence

dim N0 ≥ dim N1 ≥ · · · ≥ dim NK = dim NK+1 = · · · (2.11)

is stationary if K is large enough.

(ιιι) On the bijectivity of m. Bijectivity of m is clearly equivalent to the bijectivity of m∗, even to
the bijectivity of the restriction m∗ : Ω → Ω. (Hint: Ω together with dx generate the module of all
differential forms on M(m), use moreover m∗dx ∼= DFdx (mod Ω) where DF �= 0 is supposed.) We
have proved in (ι) that m∗ : Ω → Ω is surjective. We shall prove that it is even bijective, therefore
the (abstract) inverse m−1 exists. As a by-product, the linear independence of differential forms is
preserved after applying m∗.

Passing to the proof, let us employ inclusion (2.10) which provides the inequality

(l + 1)m = dim Ωl ≤ dim Ω̄L+l = dim N0 + · · · + dim NL+l.

If l is taken large enough, the inequality together with (2.11) imply m = dimNK = dimNK+1 = · · · .

On the other hand, clearly m ≥ dimN0 ≥ dimNK whence dimNl = m for all l.
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Now we recall the surjection m∗ : Ωl → Ω̄l and therefore the naturally induced surjection

m∗ : Ωl/Ωl−1 → Ω̄l/Ω̄l−1 = Nl (l ≥ 0) (2.12)

of gradations. However,

dim Ωl/Ωl−1 = m = dim Nl (l ≥ 0), (2.13)

therefore (2.12) is even a bijective mapping between gradations. We recall two filtrations (2.8, 2.9) of
module Ω. By virtue of well-known principle of algebra, we conclude that m∗ : Ω → Ω is a bijective
mapping (even between filtrations Ω∗ and Ω̄∗).

(ιν) On the inverse morphism. In order to determine the inverse morphism m̄ (= m−1) in explicit
terms, we may start with inclusion (2.10) which is expressed by certain identities

dwi
r − wi

r+1dx =
∑

bij
rsm

∗ωj
s =

∑
bij
rs(dF j

s − F j
s+1dF ) (2.14)

and with the congruence dF ∼= DFdx (mod m∗Ω) which gives

dx =
1

DF
dF +

∑
bj
s(dF j

s − F j
s+1dF ). (2.15)

Identities (2.14, 2.15) together imply that we (locally) deal with certain composed functions

x = F̄ (F, . . . , F j
s , . . .), wi

r = F̄ i
r(F, . . . , F j

s , . . .) (2.16)

which are uniquely determined since differentials dF, . . . , dF i
s , . . . are linearly independent. Com-

paring (2.16) with Eqs. (2.1) and (2.2), it follows that we have just obtained explicit formulae for
the inverse morphism m̄.

(ν) Note. In fact only the existence of functions F̄ , F̄ i
0 (i = 1, . . . , m) cause the main difficulties since

the remaining functions F̄ i
r with r ≥ 0 follow from the recurrence (1.10). In particular there exists

a common definition domain for all functions F̄ , F̄ i
r (i = 1, . . . , m; r = 0, 1, . . .).

Consequence 2. A morphism m is automorphism if and only if m∗Ω = Ω.

3. Examples

3.1. Three-dimensional space

We shall more systematically deal with curves in R
3, hence m = 2. The notation in the space M(2)

will be simplified as follows. Coordinates and contact forms:

x, yr = w1
r , zr = w2

r , ηr = ω1
r , ζr = ω2

r ,

equations of morphisms:

m∗x = F (x, . . . , ys, zs, . . .),

m∗yr = Gr(x, . . . , ys, zs, . . .), m∗zr = Hr(x, . . . , ys, zs, . . .),
(3.1)

and the inverse morphisms:

m̄∗x = F̄ (x, . . . , ys, zs, . . .),

m̄∗yr = Ḡr(x, . . . , ys, zs, . . .), m̄∗zr = H̄r(x, . . . , ys, zs, . . .).
(3.2)

Formulae (2.5) will be needed only for the particular case r = 0 and we denote

m∗η0 = a0η0 + b0ζ0 + · · · + aSηS + bSζS ,

m∗ζ0 = A0η0 + B0ζ0 + · · · + ASηS + BSζS

(3.3)
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with appropriate S ≥ 0, where either aS �= 0 or bS �= 0 may be supposed without any loss of
generality. Then

m∗ηr = · · · + 1
(DF )r

(aSηS+r + bSζS+r),

m∗ζr = · · · + 1
(DF )r

(ASηS+r + BSζS+r)
(3.4)

by using recurrence (2.6) with the vector field

D =
∂

∂x
+

∑
yr+1

∂

∂yr
+

∑
zr+1

∂

∂zr
.

We state only the top order terms in (3.4), more precise formulae will be necessary case by case.
We wish to determine such morphisms (3.1) that the inverse (3.2) exists. The algorithm consists

of two parts. In the easier algebraic part, requirements on the coefficients ai, bi, Ai, Bi (i = 1, . . . , m)
in (3.3) ensuring the inclusion η0, ζ0 ∈ m∗Ω and therefore ensuring the invertibility are determined.
In the subsequent analytic part, the method (ιν) of Sec. 2.6 is applied in order to determine functions
F, G0, H0 in transformation formulae (3.1).

We shall thoroughly discuss the cases S = 0 and S = 1, but only particular results will be stated
if S ≥ 2.

3.2. The zeroth-order case

Assume S = 0 in Eqs. (3.3) and (3.4). This will provide the simplest invitation into the substance
of our method.

(ι) The algebra. We have

m∗ηr = · · · + 1
(DF )r

(a0ηr + b0ζr), m∗ζr = · · · + 1
(DF )r

(A0ηr + B0ζr)

for all r, see formulae (3.4). In invertible case, η0 and ζ0 should be expressed in terms of all forms
m∗ηr,m∗ζr. This is obviously possible if and only if

� = det
(

a0 b0

A0 B0

)
�= 0

which is supposed from now on.

(ιι) The analysis. We have

m∗η0 = dG0 − G1dF = a0η0 + b0ζ0,

m∗ζ0 = dH0 − H1dF = A0η0 + B0ζ0.
(3.5)

In principle two subcases are (locally, on open subsets) possible. Either differentials dF, dx, dy0, dz0

are linearly independent (subcase C) or not (subcase P). In the first subcase C, we may suppose

G0 = G(F, x, y0, z0), H0 = H(F, x, y0, z0).

In the second subcase P , clearly

F = F (x, y0, z0), G0 = G(x, y0, z0), H0 = H(x, y0, z0)

and we deal with the common point transformation which need not any comments.

(ιιι) On the subcase C. Inserting

dG0 = GF dF + DGdx + Gy0η0 + Gz0ζ0

into (3.51), then identities GF = F1, DG = 0, Gy0 = a0, Gz0 = b0 easily follow. Analogously
HF = H1, DH = 0, Hy0 = A0, Hz0 = B0 follows from (3.52). In particular we have two linear
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equations

DG = Gx + y1Gy0 + z1Gz0 = 0, DH = Hx + y1Hy0 + z1Hz0 = 0

with nonvanishing determinant � whence

y1 =
1
� (HxGy0 − GxHy0), z1 =

1
� (HxGz0 − GxHz0).

This is a contradictory system for the function F. Subcase C cannot be realized.

3.3. The first-order case

Assume S = 1 in Eqs. (3.3) and (3.4). The general method will apply with only little additional
effort.

(ι) The algebra. We suppose

m∗η0 = a0η0 + b0ζ0 + a1η1 + b1ζ1,

m∗ζ0 = A0η0 + B0ζ0 + A1η1 + B1ζ1

(3.6)

where a1 �= 0 or b1 �= 0 may be assumed for certainty. Then

m∗ηr = · · · + 1
(DF )r

(a1ηr+1 + b1ζr+1),

m∗ζr = · · · + 1
(DF )r

(A1ηr+1 + B1ζr+1)

as the top order terms are concerned. In contrast with the zeroth-order case, necessarily

det
(

a1 b1

A1 B1

)
= 0

in the invertible case. (Hint: otherwise both η0 and ζ0 cannot be calculated in terms of all forms
m∗ηr,m∗ζr .) So we assume A1 = ca1, B1 = cb1 from now on. Then

μ0 = m∗ζ0 − c · m∗η0 = c0η0 + d0ζ0 ∈ m∗Ω (c0 = A0 − ca0, d0 = B0 − cb0)

and (roughly saying) one of the forms η0, ζ0 is lying in m∗Ω (modulo the other). Continuing, we
introduce the form

μ1 = LDμ0 = Dc0η0 + Dd0ζ0 + c0η1 + d0ζ1 ∈ m∗Ω

and analogous arguments as above imply that necessarily c0 = ua1, d0 = ub1 in the invertible case.
Assuming this, we introduce the form

ν0 = μ1 − um∗η0 = (Dc0 − ua0)η0 + (Dd0 − ub0)ζ0 ∈ m∗Ω.

If μ0, ν0 are linearly independent, both forms η0 and ζ0 can be expressed in terms of these forms
and we have the invertible case.

The independence is equivalent to the inequality

det
(

c0 Dc0 − ua0

d0 Dd0 − ub0

)
= u2 det

(
a1 Da1 − a0

b1 Db1 − b0

)
�= 0. (3.7)

Summarizing the achievements, we have the final formulae

m∗η0 = a0η0 + b0ζ0 + a1η1 + b1ζ1,

m∗ζ0 − c · m∗η0 = u(a1η0 + b1ζ0)
(3.8)

with inequality (3.7) in the invertible case.
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(ιι) The analysis. Inserting

m∗η0 = dG0 − G1dF, m∗ζ0 = dH0 − H1dF

into identity (3.8), we conclude that two subcases are possible. Either differentials dF, dx, dy0,

dz0, dy1, dz1 are linearly independent (subcase C) and then

G0 = G(F, x, y0, z0, y1, z1), H0 = H(F, G0, x, y0, z0), (3.9)

or, they are dependent (subcase P) and then we may assume

F = F (x, y0, z0, y1, z1),
G0 = G0(x, y0, z0, y1, z1), H0 = H(F, G0, x, y0, z0)

(3.10)

without loss of generality.

(ιιι) On the subcase C. Inserting (3.9) into (3.8) we obtain the identities

GF = G1, DG = 0, Gy0 = a0, Gz0 = b0, Gy1 = a1, Gz1 = b1,

HF + HGGF = H1, DH = 0,

(HG − c)Gy0 + Hy0 = ua1 , . . . , (HG − c)Gz1 = 0

with abbreviation G = G0 and some symmetrical formulae omitted. Since either Gy1 �= 0 or Gz1 �= 0,

we have HG = c and the identities simplify to

GF = G1, DG = 0, HF + HGGF = H1, DH = 0 (3.11)

with the compatibility requirement

Hy0Gz1 = Hz0Gy1

which is satisfied as a consequence of (3.114). (Hint: direct verification.)

Summary C. “A not too special” function H can be arbitrarily chosen and then the automorphism
m is determined. In more detail, let H(F, G0, x, y0, z0) be such a function that the equation

(DH)(F, G0, x, y0, z0, y1, z1) =
∂H
∂x

+ y1
∂H
∂y0

+ z1
∂H
∂z0

= 0

determines a function G0 = G(F, x, y0, z0, y1, z1) by using the implicit function theorem. Analogously
assume that the equation

(DG)(F, x, y0, . . . , z2) =
∂G
∂x

+ y1
∂G
∂y0

+ · · · + z2
∂G
∂z1

= 0

determines a function F = F (x, y0, . . . , z2). The inequality (3.7) is “in general” satisfied. The
remaining equations (3.111,3) may be regarded as a prolongation formulae.

One can check that inequality (3.7) is satisfied if

rank

(
Hy0 Hy0y0 Hy0z0

Hz0 Hz0y0 Hz0z0

)
= 2

by a routine verification.
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(ιν) A notice. This result was already obtained in Sec. 1.5. Indeed, let us choose

f(x̄, w̄1
0 , w̄

2
0 , x, w1

0 , w
2
0) = H(x̄, w̄1

0 , x, w1
0 , w

2
0) − w̄2

0

in terms of the original notation. The automorphism was defined by equations

f = H− w̄2
0 = 0, Df = DH = 0, D2f = D2H = 0

in Sec. 1.5. Our automorphism m is defined by

(m∗z0 =) m∗w2
0 = H0 = H, DH = 0, DG = 0.

The first and the second of the equations are clearly identical. The last equations D2H = 0 and
DG = 0 are equivalent. (Hint. We have the identity

K(F,G(F, x, w1
0 , w2

0 , w
1
1, w

2
1), x, w1

0 , w2
0, w

1
1 , w

2
1) = 0 (K = DH)

for the function G. Here F is a mere parameter whence the equation

DK(· · ·) + KG(· · ·)DG = 0

is identically satisfied. Since KG = (DH)G �= 0 is assumed, we are done.) Altogether taken, our
morphism m in the subcase C is identical with the automorphism of Sec. 1.5.

(ν) On the subcase P. Inserting (3.10) into (3.8) we obtain the identities

DG = G1DF, Gy0 − G1Fy0 = a0, . . . , Gy1 − G1Fy1 = a1, . . . (3.12)

HF DF + HGDG + DH = H1DF, (3.13)

HF Fy0 + HGGy0 + Hy0 = H1Fy0 + ca0 + ua1, . . . (3.14)

HF Fy1 + HGGy1 = H1Fy1 + ca1, . . . (3.15)

with abbreviation G = G0. Indications to the system (3.12)–(3.15) are as follows.

1. Identities (3.15) and (3.12) provide the linear equations

(HF − H1 + cG1)Fy1 + (HG − c)Gy1 = 0, (HF − H1 + cG1)Fz1 + (HG − c)Gz1 = 0

and it follows that either of the requirements

det
(

Fy1 Gy1

Fz1 Gz1

)
= 0, HF − H1 + cG1 = HG − c = 0 (3.16)

must be satisfied.

2. Requirement (3.162) implies (3.161) and this may be proved as follows. Assuming (3.162) then
(3.13, 3.14) simplify as

DH = 0, Hy0 = u(Gy1 − G1Fy1), Hz0 = u(Gz1 − G1Fz1)

(direct verification) whence

det

(
Hy0 Gy1 − G1Fy1

Hz0 Gz1 − G1Fz1

)
=

1
DF

det

(
Hy0 Gy1DF − Fy1DG

Hz0 Gz1DF − Fz1DG

)
= 0

by employing (3.121). The top order terms in DF, DG provide the identity

det
(Hy0 z2

Hz0 −y2

)
· det

(
Fy1 Gy1

Fz1 Gz1

)
= 0

and this implies (3.161).
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3. Assuming (3.161), then either of the possibilities

F = F (x, y0, z0), (G0 =)G = G(F, x, y0, z0) (3.17)

must be taken into account.

4. Suppose (3.171). Then the composed functions (3.10) can be replaced with the more convenient

F = F (x, y0, z0), (G0 =)G = G(x, y0, z0, y1, z1), H0 = H(G, x, y0, z0). (3.18)

Assuming (3.18), identities (3.124,5) and (3.151,2) give

HGGy1 = cGy1 , HGGz1 = cGz1

whence c = HG. Employing moreover (3.122,3) and (3.141,2), we obtain

Hy0 = (H1 −HGG1 −HF )Fy0 + uGy1 , Hz0 = (H1 −HGG1 −HF )Fz0 + uGz1

where H1 − HGG1 − HF = DH/DF may be inserted by using (3.121, 3.13). Altogether we obtain
the system

Hy0 =
DH
DF

Fy0 + uGy1 , Hz0 =
DH
DF

Fz0 + uGz1

which provides the differential equation

(Hy0DF − Fy0DH)Gz1 = (Hz0DF − Fz0DH)Gy1 (G = G0) (3.19)

for the function G0. In more detail, Eq. (3.19) reads

(A + Bz1)Gz1 + (C + By1)Gy1 = 0 (G = G0) (3.20)

where

A = Hy0Fx − Fy0Hx, B = Hy0Fz0 − Fy0Hz0 , C = Fz0Hx −Hz0Fx.

5. Suppose (3.172). Then the simple composed functions

F = F (x, y0, z0, y1, z1), G0 = G(F, x, y0, z0), H = H(F, x, y0, z0) (3.21)

can be introduced instead of (3.10). Identities (3.12)–(3.15) cannot be mechanically applied since
G0 is a composed function here, however, the equations

(GF − G1)DF + DG = 0, (HF − H1)DF + DH = 0,

(GF − G1)Fy0 + Gy0 = a0, Hy0 − cGy0 = u(GF − G1)Fy1 ,

(GF − G1)Fz0 + Gz0 = b0, Hz0 − cGz0 = u(GF − G1)Fz1 ,

(GF − G1)Fy1 = a1, HF − H1 = c(GF − G1),

(GF − G1)Fz1 = b1

(3.22)

can be obtained with a little effort. It follows that DG = cDH and then the differential equation

(Hy0DG − Gy0DH)Fz1 = (Hz0DG − Gz0DH)Fy1 (3.23)

quite analogous to (3.19) appears.

Summary P. Assuming (3.18), functions F,H can be in principle arbitrarily chosen and we have
differential equation (3.19) for the remaining function G0. Assuming (3.20), we may choose functions
G,H and then F satisfies differential equation (3.23).
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(νι) A few notices. We will not discuss inequality (3.7) since this is a mere routine task. Differential
equations (3.19) and (3.22) can be explicitly resolved. For instance, general solution G of Eq. (3.19)
written in the alternative transcription (3.20) is given by either of the implicit equations

(A + Bz1)U = (C + By1)V (if B �= 0), Cz1 − Ay1 = W (if B = 0)

where U, V, W may be arbitrary functions of variables G, x, y0, z0. Recall that A, B, C are given
functions of the same variables. Even very simple solutions are rather instructive, for instance the
solution

m∗x = x, m∗y0 = y0 + λz1, m∗z0 = z0 (λ ∈ R)

depending on parameter λ with the obvious inverse

m̄∗x = x, m̄∗y0 = y0 − λz1, m̄∗z0 = z0 (λ ∈ R)

is a one-parameter group. On the other hand, analogous solution

m∗x = x, m∗y0 = y0 + λ2y1 + λz1, m∗z0 = λy0 + z0 (λ ∈ R)

with the inverse

m̄∗x = x, m̄∗y0 = y0 − λz1, m̄∗z0 = z0 − λy0 + λ2z1

does not provide a group and it seems that this automorphism with a fixed parameter λ cannot be
included into any one-parameter group except the trivial case λ = 0.

Equation (3.23) can be explicitly resolved, as well. The resulting automorphisms (especially the
prolongations) are more involved. We state the simplest example

m̄∗x = x + λ
y1

z1
, m̄∗y0 = y0, m̄∗z0 = z0 λ ∈ R

with the inverse

m̄∗x = x − λ
y1

z1
, m̄∗y0 = y0, m̄∗z0 = z0.

This is a one-parameter group.

3.4. The second-order case

Assuming S = 2, our approach applies but a thorough discussion is rather lengthy. So we will
indicate only few particular results in order to point out some new aspects currently appearing if
S ≥ 2.

(ι) The algebra. We recall formulae (3.3) which read

m̄∗η0 = a0η0 + b0ζ0 + · · · + a2η2 + b2ζ2, m̄∗ζ0 = A0η0 + B0ζ0 + · · · + A2η2 + B2ζ2

where either a2 �= 0 or b2 �= 0 is supposed. Using (3.4), it follows easily that A2 = ca0, B2 = cb0 in
the invertible case. So we may introduce the first-order form

μ1 = m̄∗ζ0 − c m̄∗η0 = c0η0 + d0ζ0 + c1η1 + d1ζ1 ∈ m∗Ω

where ci = Ai − cai, di = Bi − cbi (i = 0, 1). Let us omit the “residual” subcase where c1 = d1 = 0
identically. Clearly

μr+1 = Lr
Dμ1 = · · · + c1ηr+1 + d1ζr+1 ∈ m∗Ω (r = 0, 1, . . .).

In the invertible case, both forms η0, ζ0 can be expressed in terms of forms m∗ηr and m∗ζr (r =
0, 1, . . .). Using (3.41) with S = 2, it follows that necessarily

c1 = ua1, d1 = ub1 (3.24)
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hence

μ2 − um∗η0 = (Dc0 − ua0)η0 + (Dd0 − ub0)ζ0 + (Dc1 + c0 − ua1)η1 + (Dd1 + d0 − ub1)ζ1

again is a first-order form in m∗Ω. Since either c1 �= 0 or d1 �= 0, we conclude that

Dc1 + c0 − ua1 = vc1, Dd1 + d0 − ub1 = vd1 (3.25)

in the invertible case. We introduce the zeroth-order form

ν0 = μ2 − um∗η0 − vμ1 = (Dc0 − ua0 − vc0)η0 + (Dd0 − ub0 − vd0)ζ0 ∈ m∗Ω

and let us consider form

ν1 = LDν0 = · · · + (Dc0 − ua0 − vc0)η1 + (Dd0 − ub0 − vd0)ζ1 ∈ m∗Ω.

It easily follows that

Dc0 − ua0 − vc0 = wc1, Dd0 − ub0 − vd0 = wd1 (3.26)

in the invertible case. We obtain the zeroth-order form π0 = ν1 −wμ1 ∈ m∗Ω. Linear independence
of forms ν0, π0 is expressed by

det

(
Dc0 − ua0 − vc0 D(Dc0 − ua0 − vc0) − wc0

Dd0 − ub0 − vd0 D(Dd0 − ub0 − vd0) − wd0

)
�= 0 (3.27)

and this ensures the invertibility of the morphism m. Summarizing the achievements, we have the
final formulae

m̄∗η0 = a0η0 + b0ζ0 + · · · + a2η2 + b2ζ2,

m̄∗ζ0 − c m̄∗η0 = c0η0 + d0ζ0 + c1η1 + d1ζ1

with coefficients satisfying (3.24, . . . , 3.27) in the invertible case.

(ιι) The analysis. In this article, we mention only the subcase C where differentials dF, dx,

dy0, . . . ,dz2 are linearly independent. Then

G = G(F, x, y0, z0, y1, z1, y2, z2), H = H(F, G, x, y0, z0, y1, z1)

(abbreviation G = G0) may be assumed and identities

GF = G1, DG = 0, Gy0 = a0, . . . ,Gz2 = b2 (3.28)

HF = H1 + HGG1, DH = 0, Hy0 = c0, . . . ,Hz1 = d1 (3.29)

immediately follow. Identities (3.281, 3.291) are a mere prolongation formulae. Assuming function H
for known, identity (3.292) reads

Hx(·) + y1Hy0(·) + · · · + z2Hz1(·) = 0, (·) = (F, G, x, y0, . . . , z1) (3.30)

and determines the composed function G = G. (We suppose DHG �= 0 here.) With this function G,

identity (3.282) reads

Gx(··) + y1Gy0(··) + · · · + z3Gz2(··) = 0, (··) = (F, x, y0, . . . , z2) (3.31)

and determines the remaining function

m∗x = F (x, y0, z0, . . . , y3, z3)

by using the implicit function theorem. (We suppose DGF �= 0.) So, altogether taken, our task
is to determine such function H that requirements (3.24)–(3.27) are satisfied if functions G, F are
determined from equations (3.30) and (3.31).
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(ιιι) Auxiliary calculations. We will express derivatives of functions G, F in terms of function H. Let
us begin with the identity (3.30) that is,

(DH)(F,G(F, x, y0 , . . . , z2), x, y0, . . . , z2) = 0.

It follows that derivatives of function G satisfy

KF + KGGF = 0, KGDG + DK = 0,

KGGy0 + Ky0 = 0, . . . ,KGGz2 + Kz2 = 0

where

KF = D(HF ), KG = D(HG), DG = 0,

Ky0 = D(Hy0), Ky1 = D(Hy1) + Hy0 , Ky2 = Hy1 , . . . ,Kz2 = Hz1

may be substituted. Analogously (3.31) reads

(DG)(F (x, y0, . . . , z3), x, y0, . . . , z3) = 0

and this implies the identities

DGF DF + D2G = 0, DGF Fy0 + D(Gy0) = 0, . . . , DGF Fz3 + Gz2 = 0

determining derivatives of F.

(ιν) Fundamental requirements. Employing identities (3.28), (3.29) and (ιιι), requirements (3.24)–
(3.27) on coefficients a0, . . . , b2 and c0, . . . , d1 can be expressed only in terms of function H. We state
the final result.

Requirement (3.24) reads

Hy1 + u
Hy1

HG
= 0, Hz1 + u

Hz1

HG
= 0

whence u = −KG = −DHG. Analogously (3.25) turns into the system(
Hy1F −Hy1G

KF

KG

)
DF = vHy1 ,

(
Hz1F −Hz1G

KF

KG

)
DF = vHz1

for the unknown v with the compatibility condition

det

(
Hy1FKG −Hy1GKF Hy1

Hz1FKG −Hz1GKF Hz1

)
= 0 (3.32)

and requirement (3.26) consists of two linear equations (not written here) for the function w with
the compatibility condition

det

(
(Hy0FHz1 −Hz1FHy0)KG − (Hy0GHz1 −Hz1GHy0)KF 1

(Hz0FHy1 −Hy1FHz0)KG − (Hz0GHy1 −Hy1GHz0)KF 1

)
= 0. (3.33)

We shall not discuss inequality (3.27) here. Altogether taken, we have derived two equations (3.32)
and (3.33) for the function H and both are of the special kind

AKF = BKG (K = DH) (3.34)

where coefficients A, B are expressed in terms of derivatives of function H.
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(ν) A particular final result. First of all, Eq. (3.34) is satisfied if A = B = 0 identically. Assume this
for both requirements (3.32) and (3.33). Then (3.32) provides the condition

rank

(
Hy1 Hy1F Hy1G

Hz1 Hz1F Hz1G

)
= 1

which is satisfied if H is a composed function

H = h(F, G, x, y0, z0, k) where k = k(x, y0, z0, y1, z1).

With this result, (3.33) provides the system(
hy0

hk

)
F

kz1 =
(

hz0

hk

)
F

ky1 ,

(
hy0

hk

)
G

kz1 =
(

hz0

hk

)
G

ky1 (3.35)

for the functions h and k. The system is compatible if

hy0

hk
= l

(
x, y0, z0, k,

hz0

hk

)

is a composed function. However, Eqs. (3.35) with given h should have a solution k independent of
parameters F, G. This is satisfied if

l = a(x, y0, z0, k)
hz0

hy0

+ b(x, y0, z0, k)

is a linear function of argument hz0/hy0.

Summary, particular case of C. Let h = h(F, G, x, y0, z0, k) be a solution of the equation

hy0 = a(x, y0, z0, k)hz0 + b(x, y0, z0, k)hk.

Let moreover k = k(x, y0, z0, y1, z1) be a solution of the equation

a(x, y0, z0, k)kz1 = ky1

equivalent to the system (3.35). Then the composed function

H = h(F, G, x, y0, z0, k(x, y0, z0, y1, z1))

together with implicit equations (3.30) and (3.31) determine an automorphism. Here a, b may be in
principle quite arbitrary functions and we suppose the “general case” where HG �= 0,GF �= 0 and
inequality (3.27) are satisfied.

Quite explicit illustrative examples can be easily found, however, they do not look very instruc-
tive. For instance, if a and b are supposed constant, then

h = (ay0 + z0)G + (by0 + k)(F + x), k = ay1 + z1

may be chosen here but we omit the resulting clumsy transformation formulae.

(νι) Concluding note. Equation (3.34) is of independent interests. We have already discussed the
case A = B = 0 identically. One can easily check that the cases A = 0, B �= 0 or A �= 0, B = 0 do not
give any automorphism. (Hint: KG = DHG = 0 implies HG = a(F ), H = a(F )G + b(x, y0, . . . , z1)
and then the Eq. (3.292) expressed by DH = Db = 0 does not determine the desired composed
function G = G.) The remaining case AB �= 0 is rather interesting, however, we can state only brief
indications here.
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First of all, (3.34) is satisfied if

HF = h(F, G, x, y0, z0, g) where g = HG (3.36)

and moreover the identities

Ahg = B, Dh = hx + y1hy0 + z1hz0 = 0 (3.37)

hold true (direct verification). Employing this result, (3.372) should determine a certain function
g = HG, then f = HF is determined by (3.36). Assuming the compatibility fG = HFG = HGF = gF ,

the desired function

H =
∫

fdF + gdG =
∫
HF dF + HGdG

follows by integration.
However, the compatibility causes the main difficulties. It is expressed by

hGDhG − hGDhG = DhF . (3.38)

(Hint. Use the identities

fG = hG + hGgG, DhF + DhGgF = 0

following from (3.36), (3.372).) The equation (3.38) must be a consequence of (3.372). Together with
(3.371), this provides the final system of equations (not written here) for the function h.

4. The Main Algorithm

4.1. Preliminaries

Let us return to the Invertibility Theorem of Sec. 2.5. We propose a universal algorithm for the
verification of the assumption of this theorem, namely of the inclusion ωi

0 ∈ m∗Ω. This is a purely
algebraical problem.

For this aim, we recall the submodules Ωl ⊂ Ω (l = 0, 1, . . .) with generators ωi
r (i = 1, . . . , m;

r = 0, . . . , l) introduced in (ιι) of Sec. 2.6. Then m is invertible if and only if Ω0 ⊂ m∗Ω. This
inclusion will be investigated by using the alternative generators

�i
r = Lr

Dm∗ωi
0 =

∑ (
r

k

)
Dr−kaij

0sω
j
s+k (i = 1, . . . , m; r = 0, 1, . . .)

of module m∗Ω, see Note 1 in Sec. 2.5. The algorithm consists of four arrangements A, B, C, D which
are successively and repeatedly applied. Assuming the inclusions

�i
0 = m∗ωi

0 =
∑

aij
0sω

j
s ∈ ΩS (i = 1, . . . , m, sum over s ≤ S), (4.1)

the algorithm will be “of the length mS” at most.
The idea of the algorithm can be elucidated as follows. Let the left-hand figure schematically

describe the initial localization of forms �i
0 ∈ m∗Ω in filtration Ω∗.

�1 � �

�2 �

�3 �

LD
�1

�� �

�2

�3
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We repeatedly apply LD. Then the forms Lk
D�i

0 should cover all the module Ω including also the
lower order elements. This implies that the top order summands of forms 1, 2, 3 cannot be linearly
independent and permits to replace, e.g., the form 3 with a certain linear combination � ∈ m∗Ω
of lower order, see the right-hand figure. The procedure is repeated again and again. After a finite
number of steps, we obtain even some forms of module m∗Ω lying in Ω0. If the final forms are
linearly independent, we have the invertible case, otherwise the invertibility fails.

4.2. The formal procedure

Let us turn to thorough exposition. Assume (4.1).

A. The sequence �1
0, . . . , �

m
0 is permuted to ensure the nondecreasing order of terms (A mere technical

measure which can be omitted in particular examples.) In more detail, we introduce the permutation
�1(0), . . . , �m(0) of sequence �1

0, . . . , �
m
0 such that the order of �i(0) is K if the inequality I(K − 1) <

i ≤ I(K) is satisfied where

−1 = I(−1) ≤ I(0) ≤ · · · ≤ I(S) = m

is a certain sequence of integers. We shall occasionally denote

�i(0)K = �i(0) =
∑

Ai j
00ω

j
0 + · · · +

∑
Ai j

0Kωj
K (4.2)

for better clarity of the order. (Coefficients Ai j
0s differ from ai j

0s by a mere permutation with respect
to i).

B. Module m∗Ω(m) is generated by all forms �i
r = Lr

D�i
0, hence by all forms Lr

D�i(0). In particular,
we mention generators

LS−K+r
D �i(0)K = · · · +

∑
Ai j

0Kωj
S+r (4.3)

which are exactly of the order S + r. Assuming S > 0 (the case S = 0 is trivial), it follows that in
the invertible case, the determinant of the top-order coefficients necessarily vanishes :

det

⎛
⎜⎜⎜⎝

Ai01
0 0 · · · Ai0m

0 0

Ai1 1
0 1 · · · Ai1m

0 1

· · ·
AiS1

0 S · · · AiSm
0 S

⎞
⎟⎟⎟⎠ = 0

0 ≤ i0 ≤ I(0),

I(0) < i1 ≤ I(1),

. . .

I(S − 1) < iS ≤ I(S).

(Hint. Otherwise forms (4.3) with r = 0, 1, . . . are linearly independent and of large order S + r.)
It follows that all forms ωi

s of lower order s, in particular forms ωi
0, cannot be expressed as linear

combination of forms Lr
D�i(0) hence of forms Lr

D�i
0 = �i

r, see the left-hand figure. On the contrary,
assuming the top order dependences, some lower order forms can be included, see the right-hand
schema with the form � defined by (4.5).) Therefore there exists a nontrivial linear dependences,∑

ci0A
i0j
0 0 +

∑
ci1A

i1j
0 1 + · · · +

∑
ciS AiSj

0 S = 0 (j = 1, . . . , m) (4.4)

among the rows.

C. We choose a fixed identity (4.4). Assuming ciK+1 = · · · = ciS = 0 but the summand
∑

ciK AiK j
0 K

nonvanishing, let moreover cIA
I j
0 K �= 0 for a certain indice I (where I(K − 1) < I ≤ I(K)) and

appropriate j (j = 1, . . . , m). Clearly K > 0 in the invertible case. We introduce the form

� =
∑

ci0LK
X�i0(0)0 +

∑
ci1LK−1

X �i1(0)1 + · · · +
∑

ciK �iK (0)K (4.5)

which is of the order less than K by virtue of (4.4).
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D. The form �I(0)K = �I(0) of the order K is replaced by the lower order form �. We obtain the
forms

�1(0), . . . , �I−1(0), �, �I+1(0), . . . , �m(0) ∈ m∗Ω (4.6)

which overtake the role of the primary family �1
0, . . . , �

m
0 in the step A above.

The procedure is repeated.

A. Forms (4.6) are permuted to obtain sequence �1(1), . . . , �m(1) of nondecreasing order (only the
localization of � is changed). Analogously to (4.2) we denote

�i(1)K = �i(1) =
∑

Ai j
10ω

j
0 + · · · +

∑
Ai j

1Kωj
K

for better clarity, where the order of �i(1)K is exactly K.

B. Module m∗Ω is generated by the forms Lr
D�i(1) and we determine linear dependence analogous

to (4.4) among the top-order coefficients Ai j
1K .

C. A fixed dependence leads to a lower-order form in m∗Ω analogous to the form (4.5).

D. Some of the forms �i(1) can be replaced with the relevant form � and we obtain sequence
�1(2), . . . , �m(2) of nondecreasing order (the following step A), and so on.

One should remember: in every particular step, the forms �1(k), . . . , �m(k) are linearly indepen-
dent in the invertible case. The algorithm does finish. Either the desired dependences in B do not
exist for a certain step and we deal with the noninvertible case, or the orders of forms �i(k) cannot
be already reduced (being of the order zero). In the latter case, the final forms

�1(k), . . . , �m(k) ∈ m∗Ω ∩ Ω0

either are linearly independent therefore generate Ω0 and we have the invertible case or, they are
linearly dependent which implies the noninvertibility. The number of reductions is clearly mS at
most which is the “length of the algorithm”.

4.3. Concluding example

The algorithm can be employed for explicit construction of invertible systems. For instance, let us
deal with the particular case S = 1 and general m ≥ 1, hence

m∗ωi
0 = �i

0 =
∑

aij
00ω

j
0 +

∑
aij
01ω

j
1. (4.7)

Assuming the dependences

c1
1a

1j
01 + · · · + c1

ma1j
0m = 0 (j = 1, . . . , m; c1

1 �= 0)

among top-order coefficients, we introduce the form

�1 =
∑

c1
i �

i
0 =

∑
A1jωj

0 (A1j =
∑

c1
i a

ij
00). (4.8)

Then �1
0 is replaced by this �1 of the zeroth-order. Assuming the dependences

c2
1A

1j + c2
2a

1j
01 + · · · + c2

ma1j
0m = 0 (j = 1, . . . , m; c2

2 �= 0)

we introduce the form

�2 = c2
1LD�1 +

∑
i>1

c2
i �

i
0 =

∑
A2jωj

0

(
A2j = c2

1DA1j +
∑
i>1

c2
i a

ij
00

)
.

Then �2
0 is replaced by �2, and so on until we arrive to the resulting forms �1, . . . , �m of zeroth order.
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Let us summarize. Assuming the invertible case, we have the zeroth-order forms �1, . . . , �m defined
by (4.8) and the finite recurrence

�k+1 =
∑
i≤k

ck
i LD�i +

∑
i>k

ck
i �i

0 =
∑

Ak+1 jωj
0 (4.9)

(where ck
k �= 0 is supposed for k = 1, . . . , m) which are linearly independent.

The coefficients Akj , ck
i satisfy the identities

Akj =
∑
i<k

ck
i Aij +

∑
i≥k

ck
i aij

00,
∑
i<k

ck
i Aij +

∑
i≥k

ck
i aij

01 = 0 (4.10)

where j = 1, . . . , m and ck
k �= 0 (k = 1, . . . , m) is supposed. In the opposite direction, if we wish to

write down an invertible system, then coefficients ck
i (with ck

k �= 0) and aij
00 may be arbitrarily chosen.

Functions Akj and the remaining coefficients aij
01 can be determined and invertibility is ensured if

det(Akj) �= 0.

This is the algebraic part of the invertibility problem and we shall not deal with the analytic part
since the general mechanisms of calculations were already illustrated in Secs. 3.2–4.1 above. In gen-
eral, it is interesting to note that the subcase C with independent differentials dF, dx, dw1

0, . . . ,dwm
1

cannot be realized if S = 1 and m > 2 but we omit the proof here.

5. Comments

The true setting of our task rests upon the forgotten Cartan’s idea to develop the theory of differ-
ential equations in the absolute sense, without any preferred hierarchy of variables and additional
structures. Alas, the actual investigations are as a rule carried out in the rigid finite-order jet spaces,
see [6, 10] and extensive literature therein. Then, due to the Lie–Bäcklund theorem [1, 5], only the
prolonged point symmetries and Lie’s contact transformations (for the case of one dependent vari-
able) are admitted.

Some more general transformations adapted to special differential equations occasionally appear
even in the classical literature. We recall the Laplace substitutions ū = ux + au in the theory of
equations uxy + aux + buy + cu = M [4] and differential substitutions ū = g(x, u, ux, . . . , ux...x)
applied to evolutional equations [7–9, 11]. However, these are unsufficient and particular exceptions.

Our approach employs a somewhat unusual calculus in R
∞ treated in [2] and it can be applied

even to the case of several independent variables [3]. We believe that it will be useful in the revised
theory of symmetries and equivalences of differential equations and variational integrals.
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