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Invariant linearization criteria for square systems of second-order quadratically nonlinear ordinary differ-
ential equations (ODEs) that can be represented as geodesic equations are extended to square systems of
ODES cubically nonlinear in the first derivatives. It is shown that there are two branches for the linearization
problem via point transformations for an arbitrary system of second-order ODEs and its reduction to the
simplest system. One is when the system is at most cubic in the first derivatives. One obtains the equiva-
lent of the Lie conditions for such systems. We explicitly solve this branch of the linearization problem by
point transformations in the case of a square system of two second-order ODEs. Necessary and sufficient

conditions for linearization to the simplest system by means of point transformations are given in terms
of coefficient functions of the system of two second-order ODEs cubically nonlinear in the first derivatives.
A consequence of our geometric approach of projection is a rederivation of Lie’s linearization conditions
for a single second-order ODE and sheds light on more recent results for them. In particular we show here

how one can construct point transformations for reduction to the simplest linear equation by going to the
higher space and just utilizing the coefficients of the original ODE. We also obtain invariant criteria for the
reduction of a linear square system to the simplest system. Moreover these results contain the quadratic
case as a special case. Examples are given to illustrate our results.

Keywords: Invariant criteria; second-order systems; linearization; geometric approach; Lie algebras.

1. Introduction

A linearization problem involves the study of families of equations that are reducible via admissible
transformations, which can be point, contact or more general, to linear equations. Lie [12] presented
linearizability criteria, obtaining both algebraic and practical criteria, for a single second-order
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ODE to be transformable to a linear equation via invertible changes of both the independent and
dependent variables.

Lie [12] proved that necessary and sufficient conditions for a second-order ODE, " = E(z,y,y'),
to be linearizable by means of invertible point transformations are that the ODE be at most cubic
in the first derivative, viz.

Y+ Es(z,9)y" + Ex(z,y)y? + E1(z,y)y’ + Eo(z,y) =0 (1.1)

and the coefficients Ey to Fs5 satisfy the over-determined system

1 2
_§Ely + §E2”” + be — EyEs,

by = ng — b2 + bE2 — E1E3 + €E3,

by =

(1.2)
ex = Eoy +€* —eEy — bEy + EgFs,

2 1
€y = gEly — §E2:E — be + E‘olag7

where b and e are auxiliary variables and the suffices x and y here and hereafter refer to partial
derivatives. Since the classic work of Lie there has been continuing interest in this topic. We, inter
alia, rederive the Lie conditions (1.2) geometrically by projections.

Tressé [21] also studied the linearization problem for scalar second-order ODEs. He deduced two
relative invariants of the equivalence group of point transformations, the vanishing of both of which
gives necessary and sufficient conditions for linearization of Eq. (1.1). These conditions are equivalent
to the Lie conditions (1.2) (see Mahomed and Leach [15]) and can be given as the compatibility of
(1.2) as

3(E1E3)w - Elyy + 2E21y - 3(EOE3)y + E2E1y —2F5Fy, — 3E3,, — 3E3E0y =0,

(1.3)
3(EoEs), + 2E14y — 3Eoyy — Foyy — E1Eoy +2E1 Fyy — 3(E0E2)y + 3EgFE3,: = 0.

Note that under the interchange of E3 by —FEy, Es by —FE; and x by y, these conditions imply
each other. Equations (1.3) provide practical criteria for linearization of Eq. (1.1) by point transfor-
mations. These conditions were also derived by the Cartan equivalence method (see Grissom et al.
[9]) as well as recently using a geometric argument in Ibragimov and Magri [10]. The reader is also
referred to the review of various approaches in Mahomed [13]. Linearization via point and other
than point transformations is of great interest and has been investigated in several works (see, e.g.
(2, 4, 8, 11, 16, 1820, 23]).

The algebraic criteria of linearization of systems of second-order ODEs by means of point transfor-
mations have been considered in Wafo and Mahomed [23]. Practical criteria for quadratic nonlinear
systems of second-order ODEs have been researched recently as well (see Mahomed and Qadir [17]).
In this paper our intention is to extend these results to cubically nonlinear in the first derivatives
square systems of second-order ODEs using geometric methods developed earlier (see Feroze et al.
[5]). As a by-product of our approach we rederive the Lie conditions (1.2). Moreover we present
practical criteria in terms of coefficients for cubically nonlinear in the first derivatives systems of
second-order ODEs to be linearizable by point transformations. As a consequence we provide prac-
tical criteria for the class of linear second-order system of two ODEs to be reducible to the simplest
system. Our results subsume the linearization criteria for the quadratic case.

The outline of this paper is as follows. In the next section we present mathematical preliminaries.
In Sec. 3 we give an alternative method for obtaining the Lie conditions (1.2) as well as an alternate
method for the construction of linearizing transformations for scalar second-order ODEs. Then in
Sec. 4 we derive practical criteria for linearization for a system of two second-order ODEs cubically
nonlinear in the first derivatives. Herein we state the relevant result for the reduction of linear square



Systems of Cubically Nonlinear Second-Order 285

systems to the simplest system. Our theorem also contains the quadratically nonlinear equations
as a corollary. In the next section we provide examples that amply illustrate our results. Finally in
Sec. 6 we present a brief summary and conclusion.

2. Preliminaries

We firstly present some preliminaries. The system of geodesic equations is
P4 Thdlik =0, i k=1,...,n, (2.1)

where the dot refers to total differentiation with respect to the parameter s and I‘; i are the Christoffel
symbols, which depend upon the z* and are given in terms of the metric tensor as

Uik = 59" (9jmk + kg = Gik.m)- (2.2)

The Christoffel symbols are symmetric in the lower pair of indices and have n?(n + 1)/2 elements.
The Riemann curvature tensor is

Rijkl = Fj‘hk - Fj‘k,l + FinkF}? - F:nll_‘;nkﬂ (2.3)
which is skew-symmetric in the lower last two indices and satisfies

A necessary and sufficient condition for a system of n second-order quadratically nonlinear ODEs
for n dependent variables of the form (2.1) to be linearizable by point transformation and admit
sl(n + 2,R) symmetry algebra is that the Riemann tensor vanishes [1, 16], i.e.

Practical criteria and the construction of point transformations are given in [17]. In particular for
a system of two geodesic equations, (2.1), one has the linearization conditions (admittance of the
sl(4,R) symmetry algebra) on the coefficients given by

ay — by +be —cd =0,
by — ¢z + (ac — b?) + (bf — ce) =0,

(2.6)
dy — ez — (ae —bd) — (df —€*) =0,
(b+ fla = (a+e)y,
where the Christoffel symbols are
I'y=-a, Ti,=-b Ti=—¢ T% =-d T =—e T%=—F (2.7)
Now Eq. (2.2) together with (2.7) on setting g11 = p, g12 = ¢ = g21 and gao = r yield
ps = —2(ap + dg),
gz = —bp— (a+e€)g —dr,
re = —2(bq + er),
(2.8)

py = —2(bp + eq),
gy = —cp—(b+ f)g—er,
ry = —2(cq + fr).
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The construction of the linearization point transformations is as follows (see [17]). One invokes
ou’ ou?
Gab(x) = %@gzj(u% (2.9)
where x = (z!,...,2"), u = (u',...,u") with the requirement that g;;(u) be the identity matrix.
For the case of two variables we need to solve the equations

2 2 _ _ 2
Uy TV =D;  Uglly +VgVy = ¢, Uy +V

= (2.10)
for which we have set (z',2%) = (z,y), (u',u?) = (u,v), g11 = p, g12 = ¢ = g21 and goo = 7 in (2.9).
Following Aminova and Aminov [1] we project the system down by one dimension and write the

geodesic equations (2.1) as
2" + Aper b’z + Bf}cmb/mcl + ngb’ +D*=0, a=2,...,n, (2.11)

where the prime now denotes differentiation with respect to the parameter z' (in [1] 2™ is used as

the parameter) and the coefficients in terms of the I'f s are

Ape = —T4., Bp. =T4. =260y, Cf=2T% —6Ty, D*=T%, abc=2,...n,
(2.12)

where we have used the notation T(a) = (Tap + Tha)/2. It is straightforward to deduce (2.11) and
(2.12). Indeed insert

and its derivatives

d2xa . 12 dl‘a 1

a ..
+ﬁﬂf, &:2,...,71,

r = T.]jlz T

into system (2.1). These directly yield (2.11) and (2.12) after cancellation of #!”. Note that in
projecting down the Christoffel symbols there is degeneracy which results from the reduction of the
range of the indices so that I'l; and I'}; appear in the same combinations in C{ and Bf.,, respectively.
Consequently the set of coefficients A, B, C, D have n fewer elements than the coefficients F;k

3. Rederivation of the Lie Conditions

We invoke Egs. (2.11) and (2.12) for n = 2. We also use (2.7) in identifying the F}ks with the
coefficients a to f of the system of two geodesic equations which projects to (2.11). Thus we have
(setting (2!, 2%) = (2,y))

Y + Es(x,y)y"® + B2 (2, y)y” + E1(,9)y + Eo(z,y) =0, (3.1)
where
B3 = Agp =Ty =c,
By = B3y =13, — 20, = —f + 20,
By =C3=2T% -T], = 2 +a,
FEy=D?=T% = —d.

(3.2)

To rederive the Lie conditions (1.2) we use the system of two geodesic equations (2.1) from which
Eq. (3.1) arises projectively. Hence we utilize the conditions (2.6) which are conditions for a flat
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space. This requires that the coefficients a to f be in terms of the E;s. From (3.2) we have

a=F+ 26,
c= E3u
(3.3)
d= _EO7
f=2b— B,

where we have chosen b and e as yet arbitrary. These are constrained by the relations (2.6). We
substitute (3.3) into (2.6). Equations (2.6) then yield

Eiy +2ey — by +be + EzEy = 0,
by — B3y + E1Es3 + eE3 + b — bEy = 0,

(3.4)
Eoy +e; +eEy + e —bEy + EgEy =0,
3[)1 - 3€y - E21 - Ely =0.
The first and last equations of (3.4) are easily seen to be equivalent to
1 2
b, = ——Ely + —Fy, — be — E‘().Eg7
3 3
) ) (3.5)
€y = §E21 — gEly — be — E()Eg.

When one replaces e by —e the second and third equations of (3.4) as well as Eq. (3.5) are precisely
the Lie conditions (1.2). Hence we have provided an alternative derivation of the Lie conditions
(1.2) by viewing Eq. (3.1) in one higher space dimension and looking at the flat space requirement
there. If we had projected the system of two geodesic equations to a single ODE of the form (3.1)
by using x? instead of !, then by interchanging Es by —Ey, Es by —E; and z' = z by 22 = 3, the
coefficients (3.2) imply the coefficients of the projected equation with independent variable z2. We
state the following theorem.

Theorem 1. A necessary and sufficient condition that the scalar second-order ODE (3.1) has
sl(3,R) symmetry algebra is that there is a corresponding system of two geodesic equations of the
form (2.1), from which it is projected, that admits the sl(4,R) symmetry algebra.

Furthermore one can construct linearizing point transformations for (3.1) that satisfy (1.3) by
resorting to the corresponding system of two geodesic equations from which (3.1) arises by projection.
This is done by using the relations (2.10). This approach also results in the determination of at least
one metric as a bonus. This method uses the coefficients of the equation which is linearizable and a
transformation is then constructed via the relations (2.10). We consider two examples to illustrate
this.

1. When one uses (3.3), the simple nonlinear equation

v+ -y =0 (3.6)
has corresponding a to f values,
a=—-142e, c=1, d=0, [f=2b
The substitution of these values into Eq. (2.6) results in an overdetermined system of first-order
equations for b and e which has solution

o (y) expx
=, e = —_— Y,
a(y) + expx a(y) + expx

where o« satisfies the ODE «” — a = 0. The simplest solutions thus arise for & = 0 and these
correspond to b = 0 and e = 1. With these values inserted in a to f we obtain from (2.8) particular
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solutions for p, ¢ and r given by
p=r=-exp(2y —2z), q=—exp(2y—2x).

When one invokes (2.10), a linearizing point transformation to the simplest second-order ODE is
ep(~a+y), v=rep(-z—y)
u= —exp(—z , v=—exp(—z—1y),
/2 P Y /2 p Y
where u is the new independent variable.
2. When one uses (3.3), the familiar nonlinear ODE (see, e.g. [14])
y' +3yy +y’ =0
has
a=3y+2, c=0, d=—y> f=2b
These and the choices b = 1/y and e = —y satisfy (2.6). A particular solution of (2.8) is then
p=1+2" =22y~ +y 2 g=1+a)y -2y, r=y(1+a?).
After solution of (1.1) a point transformation that linearizes the original ODE to the simplest
second-order equation then is
1 1
U=x— —, =3 2 (E7
Y 2 Y
where v is taken as the new independent variable. This transformation was previously obtained

in [14] by mapping generators to canonical forms. We have presented another way to find such
transformations.

4. Linearization Conditions for Square Systems

Encouraged by the success in obtaining the Lie conditions (1.2) by projection and then going back
to the geodesic equations, we pursue similar conditions and practical criteria for linearization for a
system of two second-order ODEs in a similar manner. Consequently, we study (2.11) for linearization
via point transformations by resorting to a system of three geodesic equations (2.1). Before we do
so we need firstly to understand what is meant by linearization for systems of ODEs. A system
of two second-order linear ODEs can possess 5, 6, 7, 8 or 15 point symmetries (see [7, 22]). The
maximal symmetry algebra, si(4,R), is reached for the simplest system. Here we consider practical
linearization criteria in terms of the coefficients for a system of two cubically nonlinear second-order
ODEs of the form (2.11) having the symmetry algebra si(4,R). The quadratically nonlinear case
was treated in [17]. Also algebraic criteria for systems of second-order ODEs have been found in [23].
We once again invoke Egs. (2.11) and (2.12) but now for n = 3. We therefore have

22" 4 Agy(2?)? 4 2493(2*") 20 + Asza® (2%)? + B2y (2?)? + 2B§3$2/x3/
+ B%(2%)? + C22¥ + C22% + D* =0,
2"+ Azg(x2/)2x3/ + 2A23x2/(x3/)2 + Agg(l’sl)s + Bgz($2/)2 + 2B§3$2/x3/
+ B3(2*)? + C32¥ + 3% + D* =0
with coefficients
Ape = T4, Bj, =T§. —250Ty,, Cf =2If, —§Ty, D*=T%, abc=23  (42)

There is arbitrariness of two Cristoffel symbols for given coefficients of a 2 x 2 (quadratic) system
of second-order ODEs. For the 3 x 3 (quadratic) system there is arbitrariness of three coefficients.



Systems of Cubically Nonlinear Second-Order 289

These correspond to the “auxiliary variables” in the Lie linearizability criteria. As such we can write
the other Christoffel symbols in terms of the coefficients and any three Cristoffel symbols that we
choose. We select I'l,, T'?, and I'3; as arbitrary. We solve for the 15 I'¢ s of (4.2) in terms of the 15
coefficients Ape, B, C¢, D® as well as I'l,, I'?, and I's;. We only write down the I'{s in which the
arbitrary elements appear. They are

F%l = 2F%2 - 0223

1
1 3 3
I3 = §(F33 — Bgs),
1 2

= 2l + Bay,

—
[NV \)
[ V)

|

2 Jp— 2 3 (4.3)
I35 = §(F33 + 2B33 — Bis),
1 1
Iy =TT, + 503? - 50227
ng = Fiz + B§3~
The others can be read from Eq. (4.2).

The flat space requirements for the corresponding system of three geodesic equations (2.1) are
now imposed by means of the vanishing of the Riemann tensor, viz. (2.5). They are (let (2!, 22, 2%) =

(2,y,2))
(F;‘?,)w - (Fé‘l)z + anll—‘% - FinBani =0, (4.4)
(Tha)y = (Tha)= + Dol = T35 = 0,

(F;‘z)x - (F;‘l)y +T} 75 — Finzrﬁ =0,

which provide 27 conditions. Only 24 of them are linearly independent due to the identity (2.4).
To see these equations in terms of the coefficients of the 3 x 3 system (4.1) we make the
implicit summation over repeated indices explicit and use the above relations (4.3) to replace the
Christoffel symbols which still leaves us with the “auxiliary variables”. The details are given in
the Appendix. A general algorithm for an n x n system along with a computer code to implement
it is given in reference [6].

These are the 24 conditions, (6.1) to (6.3), given in the Appendix that arise from the vanishing
of the Riemann tensor as given in (4.4). They are the integrability conditions of Lie-type for the
F§k. We find that there are 7 equations in (6.1) to (6.3) which are independent of the F;k The
other 17 contain first-order partial derivatives of the T, . Of these, I'f, , and T, , appear once
each, I'§3 . occurs three times and the rest twice each. Therefore, apart from the 7 conditions
which are independent of the I‘;k and given solely in terms of the coefficients of the system, there
arise a further 8 conditions on the coefficients upon equating the respective I';, . Hence we have
15 conditions or constraint equations on the coefficients. Now the I which appear once each do
not result in linearly independent equations as can easily be checked by equating them with the
corresponding ij that were discarded. The resultant two equations that occur in this manner are
linearly dependent. Thus the '}, , and T'}, , are spurious. It is thus opportune to state the following
theorem.

Theorem 2. A necessary and sufficient condition for the system of two cubically nonlinear ODFEs
y// + Aggy/?’ + 2A23y’2z' + A33y’z’2 + B%an 4 2B§3y12/ + B§32I2 4 022y/ + ng/ + D2 _ 0’
2 Agoy)? 2 + 203y 2 + A3z + Bagy? + 2By 2 + B2+ CSy' + O3 + D? =0,
(4.5)
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where the prime denotes differentiation with respect to the independent variable x and the coeffi-
cients are in general functions of x,y, z, to be linearizable via point transformations to the simplest
system of two second-order ODEs is that its coefficients satisfy the following fifteen conditions on
the coefficients functions of (4.5), viz.

L 3 3, L, 1o 23 313

5021 -Dy+ iOSOz + 10202 — D*Bj5, — D°B55 =0,

1 1 1 1 1
B3y, — 5033, — ApD? + 503332 + 503332 - 5022332 - 533303 =0,

1

1 4 2 2 1

Bg?)z -
1 1 1
ich - D? 4 icgcg’ + iC%O% — B3,D? - B2,D? =0,

s 1 2 I oy 1o o 1o 5 1 5 o
B33, — §C3z — D" Ass + 503333 - 532303 - 533303 + 533302 =0,
—Aggy + Aogs — Ao B3s — Agg B3y + Agg B3, + A3 B3, = 0,
—Assy + Ags. — Ago B3y — A3 B3y + A3 B3 + A33Bis =0,

5 5 1 3 1.3 9 3 , 1 g 2 13
—Aozy + 6A2302 + §A3302 - ngsz + B33 Byy + 603A23 — B33Bs3

2
3

1
3

2

B3, + 3

1
BgSy + B%2z - §C§A22 =0,

1 1
—Aszzs + 50221433 + 5143303 — B3y, + B3y, — B3, B3y + By Byy — B3y Bis + B3y By = 0,

1 1 2 1 5
B3y, + §C22y - 503333 + D*Ag; — §D3A23 - §C§B§2 + 635305’

2
3

1 1 1
+B§3w - 7C§‘z + 703?333 - 7022B§3 = 07
2 2 2
1 1
— Aoy + 50221422 - BSQB§3 + BSSy - BSQZ + 332333 + 333333 + §C§A22 - 333332 =0,

1 1 1 1
D2 + B3,D* + D3B3, — D3B3, + §C§w - 50221 - D3+ 1Cg,?cg; - icgc; — B3,D* =0,

4 1 5 2 4 2
—2A53, + —ngy + = A9302 + S Ag3C3 + ZC2Ag9 — =B, — O3 Azs
3 3 3 3 3 3
2 2
+2B3, B33 — 2B3; B35 — §B§3y + §B§2z =0,

1 1 1 1
B%gm + §C§y — 2D2A23 + 50%3%3 + 50&332 + 505’333
1
- 5353022 — B3,C5 — C3, — D*A33 =0,
1 1
B3, + Bl 4, — 3B, + (3B + B3,CY - BR,C3 — 103 — Loz, —2pvan —o
(4.6)

Proof. The proof follows from the preceding discussions. For, if the system of two equations (4.5)
are linearizable by point transformation to the simplest system, then its coefficients can be written
in terms of F§.k as in Eq. (4.2) which in turn gives rise to the integrability conditions of Lie-type on
the F;k and hence (4.6). Conversely, if the coefficients of the system of Eq. (4.5) satisfy the fifteen
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constraint conditions on the coefficients given by the relations (4.6) which is a consequence of the
conditions of Lie-type (6.1) to (6.3), then the coefficients of the system (4.5) can be written in terms
of the I‘;k and the corresponding geodesic equations in three-space are linearizable as well as the
projected equations (4.5).

Corollary 1. The system of two quadratically nonlinear ODFEs

y" + By + 2By'Y + B2, = 0, )
2"+ Bi,y'? + 2B,y 2 + B3,2? =0, '

where the By, s are functions of y and z and the dot denotes total derivative with respect to x, is
linearizable by point transformations to the simplest system of two equations if and only if the Bj.s
satisfy the four conditions on the coefficients given by

—B3,Bis + B§3y — B3y, + B3, B3y + B33 B3y — Bis B3y =0,

dpe 4 252 2

§B§3y - §B§3z +2B3,B3; — 2B3; B35 — 3B§3y + 3B§2z =0,
1 2 1 2 (4.8)
_§B§3z + B33 B3y — B33 B3s — gB%3y + §B§3y + §B§2z =0,
_B§3y + B33, — B3, B33 + B33 B3 — B33 Bis + B33 Bis = 0.
Remark. If one sets B3, = —a, B3y = —b, B3, = —c, B3, = —d, B3; = —e and Bj; = —f, one gets

precisely the conditions (2.6). Hence Theorem 2 naturally contains the linearizability criteria for the
quadratic case.

Corollary 2. The system of two ODEs linear in the first derivatives

y"+ O3y’ + G54 + D* =, (4.9)
2+ O3y + C32' + D* =0, '

where the prime refers to differentiation with respect to x and the Ci's are independent of y and z, is
linearizable by point transformations to the simplest system of two equations if and only if the Cy's
and D®s satisfy the three conditions on the coefficients, viz.

1 1 1
50 + 70305 + ;C3C5 = Dy,
Lo  Loa 1o o 4.10
§C3ZE+ZCSC3+ZCSC2_DZ’ ( . )
1 1 1 1
5 Che = 504, +;CHC — [C3C3 = D - D,

We have provided practical criteria, necessary and sufficient conditions, for equations of the form
(4.5) to be linearizable via point transformations to the simplest system. The question naturally
arises if there are more general equations than (4.5) that can be linearizable to the simplest system.
Indeed there are more general systems of two second-order ODEs which can be linearized.

The most general system of n — 1 second-order ODEs linearizable is given by

J}xj” + G};jxk/xj// + A;kllexk/xl/ + A;klexk/ + szj/ +E'=0, i=2,...,n, (4.11)
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where the prime refers to total differentiation with respect to 2!, the coefficient functions are depen-
dent upon z',..., 2" and are given by

1T 1 7 1 7
Jj = XX = XX,
T 1 7 1 7
ki = XX — XX
7 _ 1 7 1 7
Afpy = XX — X 5. X7,

. ) , . , (4.12)
Ay =2X) X" -2 X X+ XU XY - XL XY,
O =2X1 XY —2X 5, X5 + XX - X5 XD,
E'=X X", - X, XY, i kl=2,...n,
in which
X' =XxYat 2™, XP=XY2,. . 2", i=2,...,n, (4.13)

are invertible transformations. It is certainly not difficult to obtain (4.11). This is done by the
substitution of (4.13) into the free particle system

This after routine calculations yields (4.11) with the coefficients satisfying (4.12). Equation (4.11)
is the most general system of n — 1 equations point transformable to the simplest system (4.14).
Equation (4.11) has n(n — 1)(n? + 6n — 1) /6 coefficients.

Equation (4.11) can be written in normal form in terms of at most cubic first-order derivatives as

"+ Azklmj/zk/ml/ + B;kmj/zk/ + C’;xj/ +D'=0, ij4kl=2,...,n, (4.15)
provided
;clm = J]Z'A?clm + GinjBiN
k= JiByy + G,
¢ = J;IC]JC + G;'Cij, (4.16)
E' = J;D7,
G Aty = 0.

Relations (4.16) can be obtained by solving for the second derivative in terms of the first-order
derivatives and inserting these into Eq. (4.11). The last equation of (4.16) tells us that not all the
Al coefficients are independent. As a matter of fact, if we replace these by Ay in (4.15), it turns
out that this relation in (4.16) is now identically satisfied. What transpires is that the quartic term

disappears automatically due to G7; being skew symmetric in the lower indices and 2?2/ " appearing
symmetrically. One also needs then to adjust the relation (4.16a) in the latter case by

fim = JhAmm + Gh B, (4.17)

The remaining equations of (4.16) are the same.

There are two branches of the linearization problem by point transformations for a system of
n—1 second-order ODEs. One is the general form (4.11) owing to the arbitrariness of the coefficients
A;‘kl' The other is the form, (2.11), in which the cubic coefficients are fewer in number. In the case
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of two second-order ODEs, Eq. (4.5), we have obtained explicit linearization criteria as encapsulated
in Theorem 2 and in terms of their corollaries.

In the general equation (4.11) there are (n — 1)n(n?+6n — 1) /6 coefficients while for (2.11) there
are (n — 1)n(n + 2)/2 independent coefficients. It would be of interest to find practical criteria for
the reduction of Eq. (4.11) to the simplest system via point transformations for n = 3. Of course it
is of great interest to do this for the general system, (4.11), for n > 4.

If one has a system of the form (4.11) with known coefficients which is reducible to the free
particle system (4.14) by point transformations, then one can utilize (4.12) to construct a linearizing
point transformation. Also we can obtain linearizing point transformations for system (2.11) if it is
linearizable to the simplest system (4.14) by invoking (4.12) together with (4.16).

In particular one can find linearizing point transformations for the system (4.5) in a similar
manner by solving the system (4.16).

Instead of using the system (4.12) in order to construct a linearizing point transformation there
are other ways as noted earlier. One is to go to the higher space, once one has the coefficients
at hand, and use (2.9) for which g;j(u) must be the identity matrix in which we may set u' to
be the independent variable. Yet a third approach is that of mapping symmetry generators of the
linearizable system, if known, to the free particle generators.

5. Examples

We present examples to illustrate our results. We have y and z as the dependent variables. Also
the prime below denotes differentiation with respect to x. Moreover we have included one example
that does not satisfy our linearization criteria, but belongs to the more general class (4.11) which is
linearizable.

1. Consider the anisotropic oscillator system

v +wi(z)y =0,

2"+ wa(x)z = 0. (5:1)

The coefficients of system (5.1) satisfy the conditions (4.10) provided w; = wy. Hence in order for
the system (5.1) to be reducible to the free particle system one must have isotropy.
2. The simple linear system

y/I+Z=0,

2 4+2=0 (52)

does not satisfy conditions (4.10). Thus this system is not transformable pointwise to the free particle
system. This system does not have a first-order Lagrangian formulation as well [3].
3. For the quadratic system,

y//_y/+y/2:0’ -
2= +2%=0 (5:3)

all conditions (4.8) are satisfied. Therefore the system (5.3) is reducible to the simplest system.
A point transformation that does the job is

u=expr, vV=expy, w =expsz, (5.4)

where u is the independent variable. This can be constructed by going to the higher space as we
have illustrated for scalar ODEs in Sec. 3.
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4. Consider the cubically nonlinear system

1 T oz
y//_’_Ey/_’_yQ_’_ <_+_2> y/3 :O7
v (5.5)
" 1 / 2 i T L 2

2 —Z 42ty + -+ 5 |y 2 =0.
€ y vy
For the system (5.5) all conditions (4.6) hold. A linearizing point transformation to the simplest
system is

u=Inzy, v=expy, w=exp(y+z2), (5.6)

in which u is the independent variable.
5. Finally the system

12 2

dy22y"? + 4y 2y’ 2 + 2222y + Sxyzy?y 4 2ayPy 2% 4+ 2wyl ay 2 = vty + 2xyP 22y

1,1 1,11 2,12 11 i

Y’ +azy'y’ +ayy” — a2y —xyzy' 2y =y 2y )2y oy + 2wy 4wy,
(5.7)

is not of the form given in Theorem 2. It is of the form given in (4.11) and is linearizable by means
of the point transformation

u=uxexp(yz), v=u1xy’2% w=y, (5.8)

where u is the independent variable.

6. Concluding Remarks

Aminova and Aminov [1] had provided a procedure of projecting down one dimension from a system
of n geodesic equations to n — 1 nonlinear in the first derivatives ODEs. Separately we had provided
[17] linearizability criteria for a square quadratically nonlinear system. These were used together
to derive linearizability criteria for a single cubically nonlinear equation by projecting down from a
system of two quadratically nonlinear equations. This provided an alternate method to prove Lie’s
general result for linearizability of a single nonlinear equation. It led naturally to an extension of the
linearization criteria via point transformations from a scalar second-order ODE as obtained by Lie
[12] to a system of two cubically nonlinear ODEs of the form (4.5). These provided necessary and
sufficient conditions for reduction to the simplest system and hence the symmetry algebra si(4,R)
for equations of the form (4.5). Moreover Theorem 2 provides criteria for the reduction of linear
systems of two equations to the free particle system.

Lie had demonstrated [12] that only cubically nonlinear scalar equations of order two are lin-
earizable in general. It could have been hoped that the projection procedure would provide the
complete solution of the linearizability problem for the system of two nonlinear ODEs. That hope
is doomed from the start as there are five classes of systems of two cubically nonlinear equations
that are linearizable by point transformations which have different symmetry algebras. Moreover the
maximum symmetry algebra class of such systems of two equations is one branch of the linearization
problem via point transformations as the general class is represented by (4.11). Why do we get a
unique class in the former case and five in the latter? Furthermore how many distinct classes should
there be for a system of n cubically nonlinear ODEs?

We start by noting that the projection procedure and linearizability can be equally well adopted
for an arbitrary system of n quadratically nonlinear second-order ODEs reduced to n — 1 cubically
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nonlinear second-order ODEs. There are two branches for the linearization problem for systems
admitting the maximal algebra for n > 3. There are enormous computational complications that
arise. One would need an algebraic computational code to deal with larger systems. A code has
indeed been prepared to construct the metric coefficients given the Christoffel symbols [6]. That can
be extended to treat the linearization of larger systems. Indeed one can obtain the equivalent of the
Lie conditions for systems of n > 3 equations. Note that the number of scalar equations given by
the linearizability requirement (2.5) is n*. However the number of linearly independent components
of the Riemann tensor is N(n) = n?(n? — 1)/12. To see the enormous reduction it is worth giving
the first four values of n* and N(n): 2* = 16, N(2) = 1; 3* = 81, N(3) = 6; 4* = 256, N(4) = 20;
5% = 3125, N(5) = 50. As pointed out in [6], not every system of second-order (quadratic) ODEs
can be related to a metric. There is a further set of compatibility conditions required. For the
4 x 4 (quadratic) system there are four compatibility conditions that arise from the four auxiliary
variables. For an nxn (quadratic) system there are n auxiliary variables which lead to n compatibility
conditions. Thus for an n x n (quadratic) system the total number of conditions that correspond
to (4.4) is n?(n? — 1)/12 + n. Therefore for n = 5 we obtain 55 equations. Now observe that in
projecting down from the system of n dependent variables to n — 1 variables the Christoffel symbols
are reduced from n?(n + 1)/2 by n to give (n — 1)n(n + 2)/2 independent coefficients. Since we
now have n — 1 equations, each with its own cubic function, there are (n — 1)n/2 cubic coefficients
for the reduced system. If the number of coefficients left over after losing n equals the number of
coefficients of the reduced system, we can determine one set of coefficients in terms of the other. The
two expressions are obviously equal for n = 2 and the former is greater than the latter for n > 2.
The coefficients of the cubic system can be determined uniquely in terms of the quadratic system
for n = 2, i.e. for a scalar cubically nonlinear system. For larger systems there are infinitely many
ways to write the former in terms of the latter. Hence there is a unique solution to the linearizability
problem only for the scalar cubically nonlinear equation and many solutions for systems of cubically
nonlinear systems!

The second question remains and has in fact been compounded. It is known that there are
five and not infinitely many distinct classes. Why? The point is that all distinct ways of writing
the cubic system coefficients in terms of the quadratic system coefficients do not give independent
criteria as there are transformations permissible from one definition to another. The point is to
determine those that are distinct. Another way of looking at what we have done is to note that we
have asked that the original system correspond to a system of geodesic equations in flat space. Then
the projection gives the reduced system, which must also be of geodesics in an (n — 1)-dimensional
flat space. Even if the original geodesics were curved, the projected geodesics could correspond to
straight lines. For example, if the original space was a sphere and one projects along the plane
containing the geodesic to a plane perpendicular to it, the resulting projected curve would be a
straight line.

The minimal dimension of the symmetry algebra for a system of n second-order ODEs to be
linearizable by point transformation is 2n 4 1. The maximum dimension of the symmetry algebra is
(n+1)(n+ 3) which corresponds to sl(n + 2,R). The other submaximal symmetry algebras besides
that of dimension 2n + 1 range from 2n + 2 to (n + 2)?/2 for n even and [(n + 2)* + 1]/2 for
n odd. Thus for n = 2 we have the minimum dimension to be 5 and other submaximal algebra
dimensions are 6, 7 and 8. The maximum dimension for n = 2 is 15. For n = 3 the minimum
dimension is 7 and the next to maximum is 13. The maximum is 24. Thus for this case there
are 8 classes. Generally, for n = 2m, the number of classes is 2m? + 3 and for n = 2m — 1 it is
2m? — 2m + 4.

It would be important to find ways of providing the linearizability criteria for the cases of the
other symmetry algebras.
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Appendix

We take j = 1 in the third set of (4.4) as the three dependent equations and discard them. The
invocation of the first set of nine equations of (4.4) gives

1 1 1
icgw - D + 10;03 + 102203 — D?B3, - D*B3, =0,

1 1 1 1 1
B3, — icg)y — A D? + 503352 + 505’332 - 5022332 - 533303 =0,

1 1 1
F%Zy = —Agpe — Agol'3y + C3 A + '], B3, + T1,T1, + §B§2F§3 - §B§2B§3 + 50314237

1 1 1
I3, = D; + DT, + T, — ZO??CS —T1,C3 + B3,D* + D*B35 — iDng?’ + §D3F§3,
2 1o 2 12 Lsns 1 g
Iy, = _53221 + gCQy + Il + 1021—‘33 - 102333

2 1 1
+D2A22 + §D3A23 — 60%332 + 63%3037

2 1 1 1
Ty, = —53521 + 50221, + T, + EOSF:;?, - iOSB??:?) + D*Ag,
1 s L orns  1os 3
+ 3D Ay — SC3BS, + L BHCS

1 1 4 2 2 1
B33, — 53321 + 60229 - §D3A23 - §B§’20§ + §B§36‘§’ - §C§’y =0,

I35, = —2As3, + B3, — 2095 Aoz + A3 C3 4 2T, B3y + T35 — I, B3,
+ T3, B3; — B3, B3, + A22C3 + Ag3C3
I3, . = —2B3;, + B33, + C3, + 2D*Ag3 — C3 B33 4+ C3T}, — 1, B33 + C3 B3, + B3,C3

1

1 1 1
— B3;C5 — 509?3533 + 53523022 + §O§F§3 - 5022F§3 + IT35TT,.

The second set of nine equations of (4.4) yields
1 1 1 1
Ty, = =B, + §C’§’Z + D% Ags — 503333 + iCSB??:?) + icgrgza

1 1
- 505’333 + 5022333 + I3l

1
Tly ., = —Asse — ATy + A3C3 +T1,B3s + §F§3333

1 1 1 1
irgsrb - 53523333 - §B§3F12 + 51433037

1

1 1 1
F%Q,z = _ic?::)z + 50221' + Dg + 7F§3D3 + )

1 1
. - teses - Lo

1
+ 16'22022 +T3,I%, — C3T%, + B3 D* + T, D%,
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1 1 1 1
I3, , = —B3, +2A3D? - §C§B§3 + §B§3O§ +C3, + §C§F12 + ZC§F§3

1 1 1 1 1
— O35y + JT53TT, — T B3;C5 + O3 B35 — - BT, + Ay D?,
4 2 4 4 2
1 1 1
50331 - D?+ chcg + chcg — B3,D? -~ B2,D? =0,
B2, — 102 - D%A 10233 _lpe c? — Lpe cs g C2=0
330 — 5032 33+2333 5 P23t 23334‘2332—7
1
T35, = Bis, — 4B3;, + 643D — 203 BS; + 2B3;,C5 + 205, + C3T}, + §C§F§3
1 o3 302 Llog g 1 o5 9 3 2 3
- §O2F33 + 33l — §B33C3 + 502 Bjs — B3y + 2A33D7,
3 L g 1 o 2 2 ort L Loans L oons
35, = §Csz + §sz — Bjs, + 243D + C3115 + 503F33 - §C2F33
1 1
+T3,03; — 503?3??:3 + 50223??:3 — B33, + 2433D°,
1 1
I3, = —2A433, + B3y, — 243307, + C5 Asz + 2", B33 + 51—%31—%3 - §B§3B§3

+ A230§ + A33C§'.
(6.2)

The last set of the nine equations of (4.4) result in six independent conditions
1 1 1
Ty, = =B, + B3y, + §O§A23 — B3y B3s + §B§2B§3 + §B§2F§3

1 1
— B33B3; + 1,y — §O§’A22 + 50221422 — AT, + B33 B3y + B3Iy,

1 1 1 1 1
I, = =Bjs, + ECSA?B — B33B3, — EC§A23 + EC22A23 — Ag3l'}y + B33 B3 — 533335,’3
1 2 1 2

3
e — 2 Lo 1 1 13 2 3 2 I o
+ §B23F33 + Bjsle — 5333F12 + §F12F33 + §B23y - §B33y - §B22z + 503142%

4 2 2 2
I3, = ng’sz + §C§’A33 — 2B B3, — §C§’Az3 + §C§A23 — 249317, + 2B3; B3y
3 13 3 13 2 11 3 1 13, 22 1 s 2 1
— B3B3 + Bysl'sg + 2B531'y — Bigl'yy + I'ipl'ss + §B23y - ngsy - §B222 + 503 Ao,
1
I35 . = 2B3;, — 2B3s, + Bis, — 243377, + 2B3, B33 + 2B3;T1, + §F§3F§3
1
+ C3 Ags — 2B33 B33 + 2B3; B3 — §B§'3B§3 — 2B33 B3,
— Aosy + Aso, — Asa B3y — Ag3 B3y + As3 B3, + A33 B3, = 0,
— Assy + Aoz, — A2a B3y — Ag3 B3y + As3 B3, + A33 B3, = 0,
(6.3)
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