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Novikov superalgebras are related to the quadratic conformal superalgebras which correspond to the Hamil-
tonian pairs and play fundamental role in the completely integrable systems. In this note, we divide Novikov
superalgebras into two types: N and S. Then we show that the Novikov superalgebras of dimension up to
3 are of type N .
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1. Introduction

A Novikov super algebra A is a Z2-graded vector space A = A0 + A1 with a bilinear product
(u, v) �→ u ◦ v for any u ∈ Ai, v ∈ Aj , w ∈ A satisfying

(u ◦ v) ◦ w − u ◦ (v ◦ w) = (−1)ij((v ◦ u) ◦ w − v ◦ (u ◦ w)), (1.1)

(w ◦ u) ◦ v = (−1)ij(w ◦ v) ◦ u. (1.2)

The even part of a given Novikov superalgebra is what is said to be a Novikov algebra introduced
in connection with the Poisson brackets of hydrodynamic type [4] and Hamiltonian operators in the
formal variational calculus [7–9, 20, 21].

The supercommutator

[u, v] = u ◦ v − (−1)ijv ◦ u, for any u ∈ Ai, v ∈ Aj (1.3)

makes any Novikov superalgebra A a Lie superalgebra denoted SLie(A) in what follows. The passage
from a Novikov algebra A to a Lie algebra denoted Lie(A) is analogous.

The notion of Novikov superalgebra was introduced in [15], as a particular case of Lie-super-
admissible algebra (Gerstenhaber called them Z2-graded pre-Lie algebras [10]). Novikov superalge-
bras are also related to the quadratic conformal superalgebras [16].

For the notion of conformal superalgebra, see [11] (we do not touch priority questions here). Con-
formal superalgebras are related to the linear Hamiltonian operators in the Gel’fand–Dikii–Dorfman
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theory ([5–9]) and play an important role in quantum field theory [11] and vertex operator superalge-
bra theory [11, 17]. Recall that a conformal superalgebra � = �0⊕�1 (we denote it (�, ∂, Y +(·, z)))
is a Z2-graded C[∂]-module with a Z2-graded linear map Y +(·, z) : � → hom(�,�[z−1]z−1) for any
u ∈ �i, v ∈ �j satisfying

Y +(∂u, z) =
dY +(u, z)

dz
; (1.4)

Y +(u, z)v = (−1)ijRe sx
ex∂Y +(v,−x)u

z − x
; (1.5)

Y +(u, z1)Y +(v, z2) = (−1)ijY +(v, z2)Y +(u, z1) + Re sx
Y +(Y +(u, z1 − x)v, x)

z2 − x
, (1.6)

where Re sz(zn) = δn
−1 for n ∈ Z. The even part �0 is a conformal algebra. The definition of

conformal superalgebra in the above generating-function form is equivalent to the definition in [11],

where the author used a component formula with Y +(u, z) =
∑∞

n=0
u(n)z

−n−1

n! .
A quadratic conformal superalgebra is a conformal superalgebra which is a free C[∂]-module over

a Z2-graded subspace V , i.e.,

� = C[∂]V (∼= C[∂] ⊗C V ), (1.7)

such that the equation

Y +(u, z)v = (w1 + ∂w2)z−1 + w3z
−2 for any u, v ∈ V (1.8)

holds, where w1, w2, w3 ∈ V . A quadratic conformal superalgebra corresponds to a Hamiltonian
pair in [7], which plays a fundamental role in the theory of completely integrable systems. A super
Gel’fand–Dorfman algebra is a Z2-graded vector space A = A0 + A1 with two operations [·, ·] and ◦
such that (A, [·, ·]) is a Lie superalgebra, (A, ◦) is a Novikov superalgebra, and the relation

[w ◦ u, v] − (−1)ij [w ◦ v, u] + [w, u] ◦ v − (−1)ij [w, v] ◦ u − w ◦ [u, v] = 0 (1.9)

holds for any u ∈ Ai, v ∈ Aj , w ∈ A. It was shown in [16] that there is a one-to-one correspon-
dence between quadratic conformal superalgebras and super Gel’fand–Dorfman algebras. It was also
pointed out in [16] that (A, [·, ·], ◦) is a super Gel’fand–Dorfman algebra for any Novikov superalgebra
(A, ◦) and the supercommutator [·, ·] relative ◦.

In this paper, we divide Novikov superalgebras into two types: N and S. We show that the
Novikov superalgebras of dimension ≤ 3 are of type N . The full structure theory is yet to be
developed; we hope that our answer will help.

The paper is organized as follows. In Sec. 2, we divide Novikov superalgebras into two types:
N and S. The Novikov superalgebras of type N are both Lie-super-admissible algebras and Lie-
admissible algebras. Let A = A0 +A1 be a Novikov superalgebra. Then the two algebraic structures
coincide if A1A1 = 0. We also show that A1A1 �= 0 if A is of type S. In Sec. 3, we show that the
Novikov superalgebras of dimension ≤ 3 are of type N .

Throughout this paper we assume that the algebras are finite-dimensional over C. Obvious proofs
are omitted.

2. Novikov Superalgebras: Types N and S

First, we give some examples of Novikov superalgebras.

Example 2.1. Let A be an associative supercommutative superalgebra and D a left A-module.
Then A = D ⊕ A is a Novikov superalgebra if the product is defined by

(d1 + a1) ◦ (d2 + a2) = (−1)ija2d1 + a1a2 for any d1 + a1 ∈ Ai, d2 + a2 ∈ Aj .
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Example 2.2. Let A be an associative supercommutative superalgebra. Let d be its even derivation
and c ∈ A0. Then the product defined by

u ◦ v = ud(v) + cuv for any u, v ∈ A

determines the structure of a Novikov superalgebra on the space A.

The former two examples are from [16], but we have omitted the details inessential for the purposes
of our article.

Example 2.3. Let A = A0 + A1 be a Z2-graded vector space with dim A0 = dim A1 = 1. Let {e}
be a basis of A0 and {v} a basis of A1. Define a multiplication on A by setting vv = e (we give only
nonzero products). Then A is a Novikov superalgebra and the Lie superalgebra SLie(A) is defined
by [v, v] = 2e. At the same time, A is a Novikov algebra under the above product and the Lie algebra
Lie(A) is abelian.

Example 2.4. Let A = A0 +A1 be a Z2-graded vector space with dim A0 = 1 and dim A1 = 2. Let
{e} be a basis of A0 and {u, v} be a basis of A1 such that the nonzero products are given by

uv = −vu = e.

Then A is a Novikov superalgebra and the Lie superalgebra SLie(A) satisfies

[x, y] = 0 for any x, y ∈ A,

which can be regarded as an abelian Lie algebra. At the same time, A is a Novikov algebra under
the above product, but the Lie algebra Lie(A) is not abelian since [u, v] = 2e.

Example 2.5. Let A = A0 + A1 be a Novikov superalgebra satisfying A1A1 = 0. Then the Lie
superalgebra SLie(A) satisfies

[u, v] = 0,

[x, y] = −[y, x],

[w, [x, y]] = [[w, x], y] − [[w, y], x],

[w, [u, v]] = 0,

where u, v ∈ A1, w ∈ A and either x or y belongs to A0. Under the above product SLie(A) can also
be regarded as a Lie algebra with the parity forgotten. We also have

(wu)v = 0, (uv)w − u(vw) = 0

for any u, v ∈ A1, w ∈ A. The definitions imply that A is a Novikov algebra.

Definition 2.6. Let A = A0 + A1 be a Novikov superalgebra with multiplication (u, v) �→ uv. If A

is also a Novikov algebra with respect to the same product and superstructure forgotten, then A is
called a Novikov superalgebra of type N , otherwise A is said to be of type S.

By Definition 2.6, Novikov superalgebras in Examples 2.3–2.5 are of type N . For Novikov alge-
bras, see [1–3, 12–14, 18, 19, 22].

Proposition 2.7. Let A = A0 +A1 be a Novikov superalgebra. If A1 = 0 or A0 = 0, then A1A1 = 0
and A is of type N . In particular, 1-dimensional Novikov superalgebras are of type N .

Proposition 2.8. Let A = A0 + A1 be a Novikov superalgebra of type S. Then A1A1 �= 0.

Proposition 2.9. Let A = A0 + A1 be a Novikov superalgebra with dimA1 = 1. Then A is of
type N .
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Remark 2.10. Let A = A0 + A1 be a Novikov superalgebra. Then A is a Lie-super-admissible
algebra. If A is of type N , then A is both a Lie-super-admissible algebra and a Lie-admissible
algebra. By Example 2.5, these two structures coincide if A1A1 = 0. If A is of type N satisfying
A1A1 �= 0, then these two algebraic structures on A are different.

3. The Novikov Superalgebras of dim ≤ 3 are of Type N

Proposition 3.1. Any 2-dimensional Novikov superalgebra is of type N .

Proposition 3.2. Let A = A0 + A1 be a 3-dimensional Novikov superalgebra of type S. Then
dimA1 = 2.

Proof. Assume that A = A0 + A1 is a 3-dimensional Novikov superalgebra of type S. By Proposi-
tions 2.7 and 2.9, we know that dimA1 = 2.

The following discussion is based on the modules over Novikov algebras. The notion of a module
over a Novikov algebra was introduced in [12], but a more explicit definition was given in [18]. A
module M over a Novikov algebra A is a vector space endowed with two linear maps LM , RM : A →
EndF(M) for any x, y ∈ A satisfying

LM (xy) = RM (y)LM (x), (3.1)

RM (xy) − RM (y)RM (x) = [LM (x), RM (y)], (3.2)

RM (x)RM (y) = RM (y)RM (x), (3.3)

[LM (x), LM (y)] = LM ([x, y]). (3.4)

Let {e1, e2, . . . , en} be a basis of M . Let α be a linear transformation on M with the matrix (aij)n
i,j=1

in the basis {e1, e2, . . . , en}.
If A is 1-dimensional with a basis {e}, then Eqs. (3.3) and (3.4) are satisfied. Let M be a module

with a basis {v1, v2}. Let L and R be the matrices of LM (e) and RM (e), respectively. If ee = 0, then
by Eqs. (3.1) and (3.2) we have

RL = 0, R2 = −LR. (3.5)

If ee = e, then by Eqs. (3.1) and (3.2) we have

RL = L, R2 = R + L − LR. (3.6)

Claim 3.3. If ee = 0, then R2 = 0.

Proof. Assume that detR �= 0. Then L = 0 and R2 = 0. It is a contradiction. Hence detR = 0. If
R2 �= 0, then R =

(
a 0
0 0

)
for some a �= 0. It follows that L =

(
0 0
b c

)
. Then R2 =

(
a2 0
0 0

)
= −LR =

−
(

0 0
ac 0

)
. Hence a = 0. So we have R2 = 0.

Claim 3.4. If ee = e and LR �= RL, then L =
(

a 0
0 0

)
for some a �= 0.

Proof. If LR �= RL, then detL = 0. It follows that L =
(

0 0
1 0

)
or L =

(
a 0
0 0

)
for some a �= 0. For

the former case, R =
(

0 0
b 1

)
. Then R2 = R. Hence LR = L = RL. It is a contradiction. That is,

L =
(

a 0
0 0

)
for some a �= 0.
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Proposition 3.5. In the above notations the classification of two-dimensional modules over one-
dimensional Novikov algebras is given in the following table:

Type A L R Type A L R

T1 ee = 0

„
0 0
0 0

« „
0 0
0 0

«
T2 ee = 0

„
1 0
0 a

« „
0 0
0 0

«

T3 ee = 0

„
0 0
1 0

« „
0 0
0 0

«
T4 ee = 0

„
1 0
1 1

« „
0 0
0 0

«

T5 ee = 0

„
0 0
a 0

« „
0 0
1 0

«
T6 ee = 0

„
0 0
a 1

« „
0 0
1 0

«

T7 ee = e

„
0 0
0 0

« „
0 0
0 0

«
T8 ee = e

„
a 0
0 0

« „
1 0
0 0

«

T9 ee = e

„
a 0
0 a

« „
1 0
0 1

«
T10 ee = e

„
a 0
1 a

« „
1 0
0 1

«

T11 ee = e

„
a1 0
0 a2

« „
1 0
0 1

«
T12 ee = e

„−1 0
0 0

« „
1 b
0 1

«

a1 �= a2 b �= 0

Proof. Assume that A is a 1-dimensional Novikov algebra and M is a 2-dimensional A-module
with a basis {v1, v2} and the two linear maps LM and RM . Then there exists a basis {e} of A such
that ee = 0 or ee = e. Let L and R be the matrices of LM (e) and RM (e), respectively.

(I) ee = 0. By Claim 3.3, R2 = 0. Then there exists another basis of M (also denoted by
{v1, v2}) such that R =

(
0 0
1 0

)
or R =

(
0 0
0 0

)
. If R =

(
0 0
0 0

)
, then there exists another basis of M

(also denoted by {v1, v2}) such that L =
(

a1 0
0 a2

)
or L =

(
a 0
1 a

)
. If L =

(
a 0
1 a

)
, replacing e by e

a

and v2 by v2
a for a �= 0, we can take a = 1. If R =

(
0 0
1 0

)
, then by the first part of Eq. (3.5), we

have L =
(

0 0
a b

)
. Replacing e by e

b and v2 by av2
b for b �= 0, we can set b = 1.

(II) ee = e. If RL �= LR, then L =
(

a 0
0 0

)
for some a �= 0 by Claim 3.4. Furthermore R =

(
1 b
0 c

)

for some b �= 0. By the second part of Eq. (3.6), we have a = −c = −1. If LR = RL, then R2 = R by
Eq. (3.6). Hence there exists another basis of M (also denoted by {v1, v2}) such that R =

(
0 0
0 0

)
,

or R =
(

1 0
0 0

)
, or R =

(
1 0
0 1

)
. By the first part of Eq. (3.6), if R =

(
0 0
0 0

)
, then L = RL =

(
0 0
0 0

)
.

Similarly, if R =
(

1 0
0 0

)
, then L =

(
a b
0 0

)
. So b = 0 by LR = RL. If R =

(
1 0
0 1

)
, then there

exists another basis of M (also denoted by {v1, v2}) such that R =
(

1 0
0 1

)
and L =

(
a1 0
0 a2

)
, where

a1 �= a2, or L =
(

a 0
0 a

)
, or L =

(
a 0
1 a

)
.

Proposition 3.6. Let A = A0 + A1 be a 3-dimensional Novikov superalgebra satisfying A1A1 �= 0.
If dimA1 = 2, then A0A0 = A0A1 = A1A0 = 0.

Proof. By assumption, A1 is a 2-dimensional A0-module. For the type T 2 in Proposition 3.5,

(v1v1)v1 = 0 =⇒ v1v1 = 0,

(v2v1)v1 = 0 =⇒ v2v1 = 0,

a �= 0, (v1v2)v2 = 0 =⇒ v1v2 = 0.

a = 0, (ev1)v2 = −(ev2)v1 =⇒ v1v2 = 0,

a �= 0, (v2v2)v2 = 0 =⇒ v2v2 = 0,

a = 0, (v2v2)v1 = −(v2v1)v2 = 0 =⇒ v2v2 = 0.
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That is, A1A1 = 0. We similarly show that A1A1 = 0 for the other cases, except T 1. Since A1A1 �= 0,
we see that A0A0 = A0A1 = A1A0 = 0.

Proposition 3.7. Any 3-dimensional Novikov superalgebra is of type N .

Proof. Assume that A = A0 + A1 is a 3-dimensional Novikov superalgebra of type S. By Proposi-
tions 2.8 and 3.2, A1A1 �= 0 and dimA1 = 2. Then A0A0 = A0A1 = A1A0 = 0 by Proposition 3.6.
It follows that A is of type N , which is a contradiction.

Theorem 3.8. The Novikov superalgebras of dimension up to 3 are of type N .

Proof. The theorem follows from Propositions 2.7, 3.1 and 3.7.

Remark 3.9. Since the Novikov superalgebras of type N are essentially Novikov algebras, there is
a method to give the classification of the Novikov superalgebras of type N based on the classification
of Novikov algebras. That is, we look for a grading for any Novikov algebra. But then we need to
do it case-by-case. Moreover, the classification in higher dimensions is also an open problem, in
particular, the classification of 4-dimensional Novikov algebras has not been finished yet. Then this
method does not work for the Novikov algebras of dimension > 3.

Acknowledgments

We are grateful of the referees and the editors for their valuable comments and suggestions. Also we
would like to acknowledge Professor Bai C M for his helpful suggestions.

References

[1] C. M. Bai and D. J. Meng, The classification of Novikov algebras in low dimensions, J. Phys. A: Math.
Gen. 34 (2001) 1581–1594.

[2] C. M. Bai and D. J. Meng, On the realization of transitive Novikov algebras, J. Phys. A: Math. Gen.
34 (2001) 3363–3372.

[3] C. M. Bai and D. J. Meng, The realization of non-transitive Novikov algebras, J. Phys. A: Math. Gen.
34 (2001) 6435–6442.

[4] A. A. Balinskii and S. P. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras and Lie
algebras, Soviet Math. Dokl. 32 (1985) 228–231.

[5] I. M. Gel’fand and L. A. Diki, Asymptotic behaviour of the resolvent of Strum–Liouville equations and
the algebra of the Korteweg–deVries equations, Russian Math. Surveys. 30 (1975) 77–113.

[6] I. M. Gel’fand and L. A. Diki, A Lie algebra structure in a formal variational calculation, Funct. Anal.
Appl. 10 (1976) 16–22.

[7] I. M. Gel’fand and I. Y. Dorfman, Hamiltonian operators and algebraic structures related to them,
Funktsional. Anal. i Priložen. 13 (1979) 13–30.
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