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lowing Feigin and Fuchs, we compute the first cohomology of the Lie superalgebra (1) of

contact vector fields on the (1,1)-dimensional real or complex superspace with coefficients in the
superspace of linear differential operators acting on the superspaces of weighted densities. We also
compute the same, but osp(1|2)-relative, cohomology. We explicitly give 1-cocycles spanning these
cohomology. We classify generic formal osp(1]2)-trivial deformations of the K(1)-module structure

on

the superspaces of symbols of differential operators. We prove that any generic formal osp(1|2)-

trivial deformation of this K(1)-module is equivalent to a polynomial one of degree < 4. This work is
the simplest superization of a result by Bouarroudj [On s[(2)-relative cohomology of the Lie algebra
of vector fields and differential operators, J. Nonlinear Math. Phys. No. 1 (2007) 112-127]. Further
superizations correspond to osp(IN|2)-relative cohomology of the Lie superalgebras of contact vector

fiel

Ke
ple

ds on 1| N-dimensional superspace.

ywords: Superconformal algebra; cohomology; deformations; differential operators; orthosym-
ctic superalgebra; contact geometry; tensor densities.

1. Introduction

For motivations, see Bouarroudj’s paper [7] of which this work is the most natural superiza-

tion, other possibilities being cohomology of polynomial versions of various infinite dimen-

sional

“stringy” Lie superalgebras (for their list, see [21]). This list contains several infinite

series and several exceptional superalgebras, but to consider cohomology relative a “middle”

subsuperalgebra similar, in a sense, to s[(2) is only possible when such a subsuperalgebra

exists

which only happens in a few cases. Here we consider the simplest of such cases.
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374 I. Basdouri et al.

Let vect(1) be the Lie algebra of polynomial vector fields on K := R or C. Consider the
1-parameter deformation of the vect(1)-action on K[z]:
where X, f € K[z] and X' := %. This deformation shows that on the level of Lie algebras
(and similarly below, for Lie superalgebras) it is natural to choose C as the ground field.

Denote by Fy the vect(1)-module structure on K[z] defined by L* for a fixed \. Geo-
metrically, Fy = {fdz | f € K[z]} is the space of polynomial weighted densities of weight
A € C. The space F) coincides with the space of vector fields, functions and differential
1-forms for A = —1,0 and 1, respectively.

Denote by D,,,, := Homgig(F,,F,) the vect(1)-module of linear differential operators
with the natural vect(1)-action denoted L' (A). Each module D, ,, has a natural filtration
by the order of differential operators; the graded module S, , := grD, ,, is called the space of
symbols. The quotient-module D’,j’ L / D’,j;l is isomorphic to the module of weighted densities
F—v—k; the isomorphism is provided by the principal symbol map o}, defined by:

k i
0
A= aite) () o) = anlo)aa) o,
i=0
(see, e.g., [16]). Therefore, as a vect(1)-module, the space S, ,, depends only on the difference
B = pu— v, so that S, can be written as Sg, and we have

Sﬁ = @ .7'—/3,1{
k=0

as vect(1)-modules. The space of symbols of order < n is

Sg = @ fﬁ_k.
k=0

In the last two decades, deformations of various types of structures have assumed an ever
increasing role in mathematics and physics. For each such deformation problem a goal is to
determine if all related deformation obstructions vanish and many beautiful techniques were
developed to determine when this is so. Deformations of Lie algebras with base and versal
deformations were already considered by Fialowski in 1986 [12]. In 1988, Fialowski [13]
further introduced deformations whose base is a complete local algebra (the algebra is said
to be local if it has a unique maximal ideal). Also, in [13], the notion of miniversal (or
formal versal) deformation was introduced in general, and it was proved that under some
cohomology restrictions, a versal deformation exists. Later Fialowski and Fuchs, using this
framework, gave a construction for a versal deformation. Formal deformations of the vect(1)-
module &7 were studied in [1,5]. Moreover, the formal deformations that become trivial
once the action is restricted to s[(2) were completely described in [6].

According to Nijenhuis-Richardson the space H'(g; End(V)) classifies the infinitesimal
deformations of a g-module V' and the obstructions to integrability of a given infinitesimal
deformation of V are elements of H?(g; End(V)). More generally, if b is a subalgebra of g,
then the b-relative cohomology H'(g, h; End(V)) measures the infinitesimal deformations
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that become trivial once the action is restricted to h(h-trivial deformations), while the
obstructions to extension of any h-trivial infinitesimal deformation to a formal one are
related to H?(g, h; End(V)). Similarly, in the infinite dimensional setting, the infinitesimal
deformations of the vect(1)-module Sj are classified, from a certain point of view, by the
space

Hig(vect(1);D) = €D Hig(vect(1); Dgj5-0), (1.1)
0<ij<n

where D := D(n, 3) is the vect(1)-module of differential operators in Sj and where Hi o
denotes the differential cohomology; that is, only cochains given by differential operators
are considered. The s[(2)-trivial infinitesimal deformations are classified by the space

Hy(vect(1),s1(2):D) = @D Hig(vect(1), s1(2); Dy_j50)- (1.2)
0<i,j<n

Feigin and Fuchs computed H}q(vect(1); Dy /), see [11]. They showed that nonzero
cohomology Hl.q(vect(1); Dy y) only appear for particular values of weights that we call
resonant which satisfy X — A € N. Therefore, in formulas (1.1) and (1.2), the summations
are only over ¢ and j such that ¢ < j. Observe that, whatever the ground field K, the
resonant values belong to R.

Bouarroudj and Ovsienko [9] computed Hl.q(vect(1),51(2); Dy v), and Bouarroudj [8]
solved a multi-dimensional version of the same problem on manifolds.

In this paper we study the simplest super analog of the problem solved in [11,9, §]
namely, we consider the superspace K equipped with the contact structure determined
by a 1-form «, and the Lie superalgebra K(1) of contact polynomial vector fields on KU
We introduce the IC(1)-module §y of A-densities on K" and the K(1)-module of linear dif-
ferential operators, ®,,, := Homgig (F., §,), which are super analogues of the spaces ) and
D, u, respectively. The Lie superalgebra osp(1|2), a super analogue of s[(2), can be realized
as a subalgebra of K(1). We compute H}o(K(1); D, ) and Hi(K(1), 0sp(1]2); D, ) and
we show that, as in the classical setting, nonzero cohomology H(liiﬁ(lC(l); D) only appear
for resonant values of weights which satisfy N —\ € %N . So, the super analogue of the space
S is naturally the superspace (see [16]):

2n
1
6 = @Sﬁ_g, where n € §N.
k=0
We use the result to study formal deformations of the K(1)-module structure on &. Denote
by ® := D(n, ) the K(1)-module of linear differential operators in &j. The infinitesimal
deformations of the K(1)-module structure on &} are classified by the space

Hhie (K1) = @ Hha(K(1)D,_; 50,
0<i<j<2n

The osp(1|2)-trivial infinitesimal deformations are classified by the space

H(liiff(lc(l)voﬁp(lp);@) - @ H(liiff(lc(l)705P(1|2);©57%ﬂ,i)'

2
0<i<j<2n
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Here, we study only the generic formal osp(1|2)-trivial deformations of the action of (1)
on the space &j. In order to study the integrability of a given osp(1]2)-trivial infinitesimal
deformation, we need the description of osp(1]2)-invariant bilinear differential operators

Sr @8\ — Sy

2. Definitions and Notations
2.1. The Lie superalgebra of contact vector fields on K™

Let K" be the superspace with coordinates (x, 01,...,0,), where the 0; are odd indeter-
minates equipped with the standard contact structure given by the following 1-form:

o, = dr + Zn: 0;do;.
i=1

On Kz, 0] := K]z, 0y,...,0,], we consider the contact bracket
1 n
{F.G} = FG' = F'G = S(=1)"'") Y “n(F) - 7,(G), (2.1)
i=1

where 7; = 8@& - 91-% and p(F) is the parity of F.
Let Vectpol(Kl‘”) be the superspace of polynomial vector fields on K!I":

Vectpo (K'™) = {F()am + Z Fi0;
=1

F; € K[z, 6] for all z} ,

where 0; = 6%2' and 0, = 8%7 and consider the superspace K(n) of contact polynomial

vector fields on K!™. That is, K(n) is the superspace of vector fields on K™ preserving the
distribution singled out by the 1-form «,,:

K(n) = {X € Vectpo (K!I™) | there exists F € K[z, 6] such that Lx (o) = Foy,}.
The Lie superalgebra IC(n) is spanned by the fields of the form:

1 n
Xp =Fo, — 5 > (1P, (F)m;,  where F € K, 6)].
=1

In particular, we have KC(0) = vect(1). Observe that Lx, (o) = X1(F)a,. The bracket in
K(n) can be written as: [Xr, X¢| = X(r g}
2.2. The subalgebra osp(1|2)

In IC(1), there is a subalgebra osp(1|2) of projective transformations

0sp(1]2) = Span(X1, Xy, X, Xuo, Xy2);  (05p(1]2))5 = Span(X1, Xu, X,2) = s((2).
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2.3. The space of polynomial weighted densities on K1

From now on, n = 1 and we will denote a7 and 7; respectively by a and 7. We have
analogous definition of weighted densities in super setting (see [2]) with dz replaced by «.
The elements of these spaces are indeed (weighted) densities since all spaces of generalized
tensor fields have just one parameter relative K(1) — the value of X, on the lowest weight
vector (the one annihilated by Xjy). From this point of view the volume element (roughly
speaking, “dm%”) is indistinguishable from az.

Consider the 1-parameter action of K(1) on K[z, 8] given by the rule:

X, = Xp + \F, (2.2)

where F' = 9, F, or, in components:
p) A 1 A ;1
Lxp(G) = La, (90) + 591 + | Lyp,” (91) + Agob” + 5900 ) 0, (2.3)

where F' = a+b0,G = gy + 910 € K[z, §]. We denote this K(1)-module by §), the space of
all polynomial weighted densities on K!I' of weight :

$r = {f(@,0)* | f(=,0) € Klz,0]}. (2.4)
Obviously:

(1) The adjoint K(1)-module, is isomorphic to F_.
(2) As a vect(l)-module, §\ ~ F) ® H(}"M_%).

Any differential operator A on K!'! can be viewed as a linear mapping Fa — (AF)a# from
$x to §,,, thus the space of differential operators becomes a K(1)-module denoted D) ,, for
the natural action:

SP(A) = g 0 A— (—1)PAP A0 8} (2.5)

Proposition 2.1. As a vect(1)-module, we have
(@,\#)() ~ DA,M &) D)\+%’#+% and (Qx\,u)i ~ H(D)\+%“u &) D)\,,u+%)‘
Proof. It is clear that the map
©x 8y — F EBH(}“M%)
Fo i ((1— 00p) (F)(de)*, T(3p(F)(da)**2))
is vect(1)-isomorphism, see formulae (2.3). So, we deduce a vect(1)-isomorphism:
Prp O = Dap® D/\+§,u+§ & H<D,\,u+§) @ H<D,\+§,M)

A r—><p#vo<p;1,
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Here, we identify the vect(1)-modules via the following isomorphisms:

Homdiﬁ(fA,H(f#Jr%)) —>H(D)\,,u+%)’ AHH(HOA),
Homdiﬁ(H(]:)\Jr%),f#) —>H(D>\+%’#), A TI(AoIl),
Homdiﬁ(H(f)\+%),H(f#+%))—>D)\+%’#+%, A—TloAolIl

Note that the change of parity map II commutes with the vect(1)-action. U

Consider a family of vect(1)-modules on the space D(x1,...Am);u Of linear differential oper-
ators: A:Fy, ®---®Fy, — Fu. The Lie algebra vect(1) naturally acts on Dy, . x,.):;u (by
the Leibniz rule). We similarly consider a family of K(1)-modules on the space Dy, .
of linear differential operators: A:§y, @ - @ Fr,, — Spu-

Am )i

3. sl(2)- and osp(1|2)-invariant Bilinear Differential Operators

Proposition 3.1 (Gordon, [19]). There exist sl(2)-invariant bilinear differential
operators, called transvectants,

I Fr @ Fa— Frner,  (pda™, ¢da?) i JTN g, ¢)da™F
given by

']I?/\(Soa ¢) = Z Cl,jgo(l)(b(])?

0<i<k,i+j=k

where k € N and the coefficients c; j are characterized as follows:

) IfrAg{0, =5, —1,..., =5} then cij =TT, see (3.2).
(i) If T or XA € {0, —%, —-1,..., —%}, the coefficients c; ; satisfy the recurrence relation
i+ )i +27)cis1y + (G + 1) +20)eiger = 0. (3.1)
Moreover, the space of solutions of the system (3.1) is two-dimensional if 2\ = —s and
21 = —t with t > k — s — 2, and one-dimensional otherwise.

Gieres and Theisen [18] listed the 0sp(1]|2)-invariant bilinear differential operators, from
Sr®% to §,, called supertransvectants. Gargoubi and Ovsienko [17] gave an interpretation
of these operators. In [18], the supertransvectants are expressed in terms of supercovari-
ant derivative. Here, the supertransvectants appear in the context of the osp(1|2)-relative
cohomology. More precisely, we need to describe the osp(1]|2)-invariant linear differential
operators from K(1) to D y,—1 vanishing on osp(1]2). Thus, using the Gordan’s transvec-
tants and the isomorphism (2.6), we give, in the following theorem, another description and
other explicit formulas.
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Theorem 3.1. (i) There are only the following osp(1|2)-invariant bilinear differential oper-
ators acting in the spaces §y:

I Fr O Fa — Friask
(FaT,Ga) v JpN(F, G)a™ Mk,

where k € %N. The operators 32’)‘ labeled by semi-integer k are odd; they are given by

SNEG) = Y TN ((=1)PF @2 + (k] = HFOIRGY) — (27 + [K] — iyg(FD)GY)).
i+j=[k]

The operators 32’/\, where k € N, are even; set 36’/\(F, G) = FG and

WNEG) = 3 VO m(FO G = 3 T, FOGY,
i+j=k—1 i+j=k

where (¥) = slezl)@itl) g [k] denotes the integer part of k,k > 0, and

o=y (T (), (32)

Vi 7

(i) If 1, A € {0, —3,—1,..., —@}, then 32’)‘ is the unique (up to a scalar factor) bilinear
0sp(1|2)-invariant bilinear differential operator Fr @ Fx — Frirtk-
(ili) For k € (N +5), the space of osp(1|2)-invariant linear differential operators from

KC(1) to Dy a4k—1 vanishing on osp(1]2) is one dimensional.

Proof. (i) Let 7 : §, ® §\» — §, be an osp(1|2)-invariant differential operator. Using the
fact that, as vect(1)-modules,

3"T®3"/\2-7'—T®-7:>\@H(-7:T+%®.7:)\+%)EB}—T(X)H(]:)\JF%)EBH(]:TJF%)®.7:)\ (3.3)
and

§u = Fu @ TU(F,, 1),

we can deduce that the restriction of 7 to each component of the right-hand side of (3.3)
is a transvectant. So, the parameters 7, A and p must satisfy

1
w=A+7+k, where kegN.

AT

The corresponding operators will be denoted J,”. Obviously, if k is integer, then the opera-
tor 3£’>‘ is even and its restriction to each component of the right-hand side of (3.3) coincides
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(up to a scalar factor) with the respective transvectants:

J;’/\ c Fr @ Fx — Fus
T+ A+
Jo 707 :H(]:T+%)®H(]:/\+%) — Fus a4
T,)\‘i’% ( ) )
PR el -1,
T-‘rl,)\
J, 2 :H(fT+%)®fA—>H(fM+%).

If k is semi-integer, then the operator 3£’A is odd and its restriction to each component of the
right-hand side of (3.3) coincides (up to a scalar factor) with the respective transvectants:

(i 58T,
I 2’1 () @ I(Fy 1) = TI(F,, ), 55)
J[Tk’]A+§  Fr @ T(Fy 1) = Fu
\JE%’/\ TU(F, 1) @ F = Fu

More precisely, let Fa™ @ Ga* € §, @ §», where F = fo + 60f; and G = go + 0g1, with
fos f1, 90,91 € K[z]. Then if k is integer, we have

M) = a7 o o) a2y F 7 () + 0as ™ (osgn) + sy (fr, go)) o

and if k is semi-integer, we have .
I M, ) = [leT s *(fo,q1) + b2J (flag())

0373 (for00) + baTyy ™2 (. ) (3.7)

where the a; and b; are constants. The invariance of J ”T A with respect to Xy and X,¢ reads:
AT A kAT, ~THA k~T,A A
Sh o it — (-1 o eV =24 o dpt - (-1 otV =0, (3.8)

The formula (3.8) allows us to determine the coefficients a; and b;. More precisely, the
invariance property with respect to Xy and X4 yields

U e Tt ¥

@ =ap = a3 =aq, by=-—o b,

k 2
by=-———b and by=—(1+-—)by.
ST a1 e ( +2¢+k:—1> !

(ii) The uniqueness of supertransvectants follows from the uniqueness of transvectants.
(iii) In the non-super case, according to formulae (3.1), if 27 = —1 and k > 2, the space
of s[(2)-invariant bilinear differential operators F, @ F\ — Fririk iS two—dlmensmnal 1f

S

and only if 2\ = —s, where s € {k—1, k—2}. This space is spanned by J, > 273 and I, 3 2
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where
1 k) if s=k—1
Ik; ((pa(b) = (k) 1o(k=1) .
P\ + kp'd ifs=k—2
and
_1_s . .
T2 2= > eV,
itj=k, i>k—s+1
_1_s
where the coefficients ¢; ; satisfy (3.1). We see that only the operators J, *" ? vanish on

the space of affine functions, i.e., of the form p(z) = azx + b.
If k > 3, the space of sl(2)-invariant bilinear differential operators F_1 ® F\ — Fayr—1
is two-dimensional if and only if 2\ = —s, where s € {k — 1, k — 2, k — 3}. This space is

spanned by Jk_l’_5 and Ik_l’_i, where
wp) if s =Fk—1
s k _ .
Iy gy = { w0 g0t fomh=2

oo 1 gl k1) 4 k(k; 1)¢//¢(1f—2) fs— k3

and where

L) = Y el
i+j=k,i>3
We see that the operator Ik_l’_g does not vanish on s[(2), but the operator Jk_l’_g vanishes
on sl(2).

Now, if 7 = —1, —% and 2\ ¢ {1—Fk, 2—k, 3—k} with k > 3, the space of s[(2)-invariant
bilinear differential operators F, @ Fy — Friark is one-dimensional. But, in this case, we
see that the coefficients ¢; ; satisfying (3.1) are such that ¢; ; = 0if i < 2 for 7 = —1 and
iy =0ifi <1form=—1.

Thus, in the super setting, if 2k > 5, according to Eqs. (3.6) and (3.7), we see that the
space of osp(1|2)-invariant linear differential operator from /C(1) to D x4x—1 vanishing on

0sp(1|2) is one-dimensional. O

4. Cohomology

Let us first recall some fundamental concepts from cohomology theory (see, e.g., [15]). Let
g = g @ g7 be a Lie superalgebra acting on a superspace V = V5 @ Vi and let h be a
subalgebra of g. (If b is omitted it assumed to be {0}.) The space of h-relative n-cochains
of g with values in V' is the g-module

C"(g,h; V) := Homy(A"(g/h); V).

The coboundary operator 6, : C™(g,b; V) — C" (g, h; V) is a g-map satisfying 6,06, 1 = 0.
The kernel of §,,, denoted Z"(g, h; V'), is the space of h-relative n-cocycles, among them, the
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elements in the range of 0,1 are called h-relative n-coboundaries. We denote B"(g,h;V)
the space of n-coboundaries.

By definition, the n”* h-relative cohomology space is the quotient space
H"(g,h; V) = Z"(a,h:V)/B"(g,h; V).

We will only need the formula of §,, (which will be simply denoted d) in degrees 0 and 1:
for v € COg, b; V) =V, du(g) := (=1)PP) g . ¢ where

Vi={veV|h-v=0forall hch},
and for T € C'(g,h; V),
5(0)(g, 1) = (=1)P PV g - Y(h) — (~1)PWPDHON R (g) = Y([g,h]) for any g, € g.
According to the Zo-grading (parity) of g, for any T € Z!(g, V), we have
T="'+7"¢e Z g5 V)®Hom(g;,V)

subject to the following three equations:

Y ([91,92]) — g1 - Y'(g2) + g2 - X'(g1) =0 for any g1, 92 € gg, (4.1)
Y'(lg, b)) —g- Y"(h) + (=1)"Dh-Y'(g) =0 forany g € gy, h € g1, (4.2)
Y'([h1, ha]) = (=1)P0) (hy - X" (hg) + hy - Y"(h1)) = 0 for any hy, hy € g1 (4.3)

Formulas (4.1)-(4.3) show that HY(K(1);D,,) and H}g(vect(1); Dy ,) are closely
related. Similarly, H; (K(1), 0sp(1]2); Dy ) is related to Hiq(vect(1),s[(2); Dy ). There-
fore, for comparison and to build upon, we recall the description of H};¢(vect(1); D, ,,). Note
that HY;5(K(1), 0sp(1]2); D, ) is also computed by Conley, see [10].

4.1. Relationship between HYz(vect(1); Dy ) and Hiq(IC(1); D)

Feigin and Fuchs [11] calculated H¢(vect(1); Dy ;). The result is as follows

(K if u—A=0,2,3,4 for all A,

K? if A=0and p =1,

Hclhﬁ(nect(l);DA,M) ~JK ifA=0o0orA=—4and p— =35, (4.4)
++19

K if A= 5 2\/_

0 otherwise.

and 4 — A =6,

For X% € vect(1) and fda* € Fy, we write

d
Caxr+k (de> (fdz*) = Cariw(X, f)da .

The spaces Hlp(vect(1), Dy y1x) are generated by the cohomology classes of the following
1-cocycles:

OX, [)=X"f
Con(X, f)=X"f
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Con

)

(X, f)=X"f)

(X, f) = XOf+2x"f

(X, f) =XOf + X" f"

Copra(X, f) = =AXO 4 XW ' — 6XO) 7 — 4 X" fO)
(X, f) =
(X, )
(X, f)

)

Caat2

)

Ca+3

0075 ; 5)f 5X f// _|_ 10X(3)f(3) + 5X//f(4)
Ca1(X, f) = F4+22XO f 4 5x@ 7 _10x@) ) _5x7 )
Caarte(X, f) = 7>f BiX O~ XO f —5XW fO) 45X G p) 4 ox" )
(4.5)
where
5+ /19 22 + 5v/19 31+ 719 25 + 719
a1 = — 2 , Q1= — 4 ) 51 = 2 y M= 9
5—+/19 22 — 5v/19 31— 719 25 — 7V/19
CLQZ—T7 aQZ_fa ﬂQ:f’ ’YQZﬁ-

Now, let us study the relationship between any 1-cocycle of K(1) and its restriction to
the subalgebra vect(1). More precisely, we study the relationship between H};(K(1); Dy )
and H;¢(vect(1); Dy ;). According to Proposition 2.1, we see that Hl.q(vect(1); D, ) can
be deduced from the spaces H,q(vect(1); D) ,):

Hyg(vect(1); D) ) =~ Hig(vect(1); Dy ) & Hg (vect(1); D,\+2,M+ 1)
@ Hip(vect(1); (D, pt 1)) © Hg (vect(1); H(D,\+ W) (4.6

Moreover, the following lemma shows the close relationship between the cohomology spaces
H'(KC(1);D,,,) and H'(vect(1); Dy ,,).

Lemma 4.1. The I-cocycle Y of K(1) is a coboundary if and only if its restriction Y’ to
vect(1) is a coboundary.

Proof. It is easy to see that if T is a coboundary of K(1), then Y’ is a coboundary of
vect(1). Now, assume that Y’ is a coboundary of vect(1), that is, there exist A € D), such
that Y/ is defined by

T(Xg) = YA for all f € Kla].

By replacing T by T — §A, we can suppose that Y/ = 0. But, in this case, the map T must
satisfy the following equations

EX0(Xnp) — T([Xg, Xpg]) =0 for all g, h € K[z, (4.7)
2}5 T(Xny0) + £} T (Xno) =0 forall hy, hy € Kla]. (4.8)

Equation (4.7) expresses the nect(l)—invariance of the map T : H(]i%) x Fx — F,. There-
fore, if T is an even 1l-cocycle, then, according to Proposition 2.1, we can easily deduce
the expression of T from the work of P. Grozman [20]. More precisely, T has, a priori, the
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following form:

(alhfe)o/\_l ifu=A—-1
L / A .
azhg + a3 th +Af)0)a if =\

L, / A1 . 1
aq §hg + Mg )« lfuz)\+1’)\#0’_§
1 3 13
“hd - hd 3 i (O _(_13
T(Xpp)(Fat) = { ©° (2 g+ g)az if (A, ) ( 272>
1

(ae(hg/ +Wg)+ar <§hf” + h’f’) 9) a if (\p) = (0,1)
ag(hg” — h"g)o if (A, 1) = (—1,1)

/ 7 7 1 . 11
(aghg’ + aro(hf" — A" f)0)a2 if (A, p) = ~55
0 otherwise,

where a; € K, f,g € K[z] and F = f + gf. But, the map T must satisfy Eq. (4.8), so we
obtain a; = a4 = a5 = ag = 0,a3 = —2as, a7 = —2ag and a19 = —ag. More precisely, up to
a scalar factor, T is given by:

6((1 = 009)0;) if (A, p) = (0,1),

. 11
o Joeon0,) ﬁmm(ﬁﬁy
5(00p) if A= p,
0 otherwise.

Similarly, if T is an odd 1-cocycle, then, T has, a priori, the following form (see [20]):

(bihf + bohg)a*~2 ifp=\— -

(o (314 )

1 1
+ by (%hg’%— ()\+2) h’g) 9) oMz if =N+

3

rumwwﬁ=%<yﬂ+m0a3 mmm=@j)
@Mﬂ#ﬁﬂm@@ww)@aﬂwsz;Q

(bs(hg” — W'g)a’ it = (-1.5)

L0 otherwise,
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where b; € K. But, the map Y must satisfy Eq. (4.8), so we obtain bs = bg = 0,b1 = ba, bs =
by and b7 = 2bg. More precisely, up to a scalar factor, T is given by:

1
5(0p) if,u:)\+§,
1
o0 ifu=A—=
v () if p 5
1
5(Dp0y) if (A, ) = (—2, 1) ,
L0 otherwise.
This completes the proof. ]

The following lemma gives the general form of any 1-cocycle of K(1).

Lemma 4.2. Let T € Z3,4(K(1);Dx,). Up to a coboundary, the map Y has the following
general form

Y(Xp) =D (amp + Obmp)0 ()77, (4.9)

m,k
where the coefficients a, . and by, ;. are constants.

Proof. Since —7? = d,, the operator YT has the form (4.9), where, a priori, the coefficients
Uk and by, j, are functions (see [16]), but we will prove that, up to a coboundary, T is
invariant with respect the vector field X; = 9,. The 1-cocycle condition reads:

A, A,
LY (Xp)) — (~1)PFPO g (T(X)) — T([X1, Xp]) = 0. (4.10)
But, from (4.5), up to a coboundary, we have T(X;) = 0, and therefore Eq. (4.10) becomes
LY (Y (XF)) = T([X1, Xp]) =0
which is nothing but the invariance property of T with respect the vector field X;. U

Lemma 4.3. Any I-cocycle T € Zjg(K(1);Dy,) vanishing on osp(1]2) is osp(1]2)-
tmvariant.

Proof. The 1-cocycle relation of T reads:
(—1)p(F)p(T)£§‘<’ﬁT(Xg) _ (_1)p(G)(p(F)+p(T))SQZT(XF) — YT ([XF,Xg]) =0, (4.11)
where X, X¢ € K(1). Thus, if Y(Xp) =0 for all Xp € 0sp(1|2), Eq. (4.11) becomes
_1)P(E)p(Y) pAp _ —
(=PI ER T (Xe) — Y([Xp, Xa]) =0 (4.12)
expressing the osp(1]2)-invariance of Y. ]

Lemma 4.4 ([4] Lemma 3.3). Up to a coboundary, any I-cocycle Y € Z}(K(1);D) )
vanishing on sl(2) is osp(1]2)-invariant. That is, if T(X1) = Y(X,;) = T(X,2) = 0, then
the restriction of Y to osp(1|2) is trivial.
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Proof. Recall that, as s[(2)-module, the subalgebra osp(1|2) is isomorphic to s((2) @ a,
where a = Span(Xy, X,¢). Consider a linear operator A : @ — D, ,. By a straightforward
computation, we show that if A is sl(2)-invariant, then pu = A — % + k, where k € N and the
corresponding operator Ay has the following expression

Ak(Xﬁw(fdmA)::ak(hf%>+¢qzx4-k-1y/f%—ﬂ)<mﬁ—%+k, (4.13)
where
k(k — 1)(2A + &k — 1)(2A + k — 2)ay, = 0.

Now, consider T € Z14(K(1);D,,) such that T(X;) = T(X,) = Y(X,2) = 0. The
1-cocycle relations give, for all h, hi, he polynomial with degree 0 or 1 and g polynomial
with degree 0, 1 or 2, the following equations

EXIT(Xng) = ([ Xy, Xno]) = 0, (4.14)
S T (Xnao) + L30T (Xiny9) = 0. (4.15)

(1) If T is an even l-cocycle, then, according to Proposition 2.1, its restriction to a is
)\Jr%’#) and a — H(D)\’#Jr%). Equation (4.14) tell us
that these maps are sl(2)-invariant. Therefore, their expressions are given by (4.13). So, we
must have g = A +k = (A+3)— 3 +k (and then 4+ 3 = A — 2 + k + 1). More precisely,
using Eq. (4.15), we get (up to a scalar factor):

decomposed into two maps: a — II(D

0 if k(k — 1)(2A + k)(2A + k — 1) # 0
or k=1 and \¢ {O,—%},
Tlosp(1j2) = 5(0090F) if (\, 1) = (_2]“7 ;) ’
ok~ o0u0h) it (v = (1555 ) o

(2) Similarly, if YT is an odd 1-cocycle, we get:

0 if k(k — 1)(2A+ & — 1) £ 0,
. 1

6(0) 1fu—)\—§,
T =
02 ) 6(0p) ﬁu:A+;

1k k
k : Y ]
5000 it (0 ( . ,2).

Now, we can compute HY.(KC(1); D, ,,) and the osp(1|2)-relative cohomology Hl.q(K(1),
0sp(1|2); Dy ). Let T be any 1-cocycle over K(1). According to Proposition 2.1, we have

Tjoecir) € Hagr(vect(1); D) @ Hig (vect(1); Dy 1, 1) if T is even
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and
T ject) € Haygr (vect(1); 1Dy 4 1)) @ Haggr(vect(1); (D1 ) if T is odd.

We know that nonzero cohomology H}.q(vect(1); Dy y/) only appear if X' — A € N. Thus,
according to Lemma 4.1, the following statements hold:
(i) If p— A ¢ 3(N—1), then Hy5(K(1); D) = 0.
(ii) If o — X is integer, then H},;(K(1); D, ) is spanned only by the cohomology classes of
even cocycles.
(iii) If g — X is semi-integer, then HY:(K(1);D, ) is spanned only by the cohomology
classes of odd cocycles.

4.2. The space HYz(KC(1), 05p(1]2); D)

The main result of this subsection is the following:

Theorem 4.1. dimH}.(K(1),08p(1[2); Dy ,) = 1 if

u—)\:g and )\75—%,

pw—A=2 forall \

u—)\:g and X # —1,

p—A=3 and )\E{O,—g},
—7+/33

—A=4 d A=
W an 1

Otheruise, Hly (C(1), 05p(1[2): D1.,) = 0.
The corresponding spaces Hlyg(K(1),08p(1]2); D, , x) are spanned by the cohomology
’ 2

classes of Ty \ & = 3;11‘, where k € {3, 4, 5, 6, 8}.
b 2 E

Proof. Note that, by Lemma 4.1, the osp(1]2)-relative cocycles are related to its homolo-
gous in the classical setting, and by Lemma 4.3, they are supertransvectants. Bouarroudj
and Ovsienko [9] showed that

k=2 and A;é—%,

k=3 and \# —1,

K if { . _ 3
Hg (veet(1), s1(2): Dyas) =~ h=d and AZ =, (4.16)
k=5 and X=0,—4,
+1
k=6 and A—-#,

L0 otherwise.
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These spaces are generated by the cohomology classes of the following non-trivial sl(2)-
relative 1-cocycles, Ay \yr:

1
Axea(X, f) = XOf X # =0,

Aas(X, ) = XOF —2X@p yz 1,
3

2A+ 1 AN +1)
— x@ g 22T 2 x(@) L 22T T 5 (5) -2
Araea(X, f) = XO 7= LEmx W SELZXOf a £

Aos(X, f) = —3XO) /4 15X W " — 10X @) )
Agn(X,f) = 28X O f + 63X O 7 445X 1" 10X 5O,
Avearto(X, ) = XD f = 148,XO) ' — 126, X O £ — 2107, X £ 4 210X 4

where 71 = —24++/19 and 7 = —2—+/19. The a;, oy, 5; and 7; are those given in (4.5).

So, we see first that if 2(u — \) ¢ {3,...,13}, then by Lemma 4.1, the corre-
sponding cohomology H}:t(K(1),08p(1]2);D, ) vanish. Indeed, let T be any element of
ZLa(K(1),08p(1]2); D, ). Then by (4.16) and (4.6), up to a coboundary, the restriction of
T to vect(1l) vanishes, so T = 0 by Lemma 4.1. By the same arguments, if 2(z — \) > 9,
generically, the corresponding cohomology vanish.

For 2(u—M\) € {3,...,13}, we study the supertranvectant J 1/{\“ If it is a non-trivial 1-
cocycle, then the corresponding cohomology space is one—dlmensmnal otherwise it is zero.
To study any supertransvectant J,. ;‘ 1 satisfying 6(J #1’;‘+1) = 0, we consider the two
components of its restriction to bect( ) which we compare with A ,, and A/\+ jt 1 Or A/\Jr%,u

and A S depending on whether A—p is integer or semi—integer. For instance we show that

Js s a 1- cocycle. Moreover, it is non-trivial for A # —= since, for g, f € K|z], we have
2
fg (Xg)(f) = —0A) r12(9, f). More precisely, we get the following non-trivial 1-cocycles:
2
Tyap3(X6) (Fat) = (G Fa*2  for \ # —
Tyae s (Xa)(Fad) = (GO F = 39(C")F' — (1P OGEq(F)a* 3 for A # 1,
Tario(Xe)(Fat) = <§)\G —1)POqy(G"p(F )) o 2 for all A,
gy 2A+1 (@)= (3)\= (3) v
Tars(Xg)(Fat) = (GRE) — —— ((=D)PRGE)nF) + GOF)
L ARAT 1)G(4)F> M for A=0,—2,
Tarra(Xe)(Fo?) ( (G m(E") 2“; a1y + 60 F)
A+ +1 _ _
+! )é L1 @nc ) + 269 F)
A+ 11)é2/\ + 1)G(5)F> A for ) — —7i4\/§
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4.3. The space H;5 (IC(1); D)
Theorem 4.2. dimH}.;(K(1);D,,) =1 if

pw—A=0 for all A,
u—)\:g for all A,
pw—A=2 forall A
u—)\:g for all A,
p—A=3 and )\E{O,—Z},
p—A=4 and )\:_722\/%.

dim H},5 (K(1); D, 1) = 2. Otherwise, Hyg(K(1);D,,,,) = 0.
2
The spaces H(liiff(lC(l);’D)\,#) are spanned by the cohomology classes of the 1-cocycles
Ty, given in Theorem 4.1 and by the cohomology classes of the following 1-cocycles:

(T (Xe)(Fat) = G'Fa?,
Ty 1 (X6)(F) = 7(G)Faz,
To1 (X6)(F) = (G F)az,
T 1 (Xe)(Fa™2) = (§(G")F +7(G)F + (-1 OG"7(F))a,
| T3 (X6)(Fa™) = (=1)"C/(G"7(F) + 2G"7(F")) + 27(G")F' +7(G') F")ars.

)

Proof. First, we recall the structure of the space H},q(0sp(1]2); D5 ) computed in [6]:

K if A= p,
1—-k

k
Haig(0p(112), Da0) = K2 if A= =, =1, ke N\{0}, (4.17)

0 otherwise.

Note that Hle(K(1),08p(1]2);D5,) C Hig(K(1),D),). Moreover, if u # A, then
by (4.17) and Lemma 4.4 we can see that Hi(KC(1), 08p(1]2); D, ) = Hlig(K(1); D),

except for
{6 (1)- (4223} o

Indeed, let T be any non-trivial element of Z1(K(1),D,,) where p # A If (A, pu) #
(155, %) where k € N\ {0} then, by (4.17), we can see that Y josp(1j2) 18 trivial, therefore,
we deduce by using Lemma 4.3 that the 1-cocycle T defines a non-trivial cohomology class
in HYq(K(1),05p(1]2); Dy ). If (A, p) = (5%, %) where k € N\ {0} then, by (4.4), we can
see that, up to a coboundary, generically the 1-cocycle Y vanishes on vect(1) and then we
conclude by using Lemma 4.4 since s[(2) C vect(1).
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Thus, we need to study only the case = A together with the singular cases (4.18).
According to Proposition 2.1, if u — A is integer, then

H(ljiff(nec,‘(l)§®/\,u) = Hcliiff(ned( ) D)\ u) S3) Hdlff(ned(l) D)\+2,#+ )
and if 4 — A is semi-integer, then
Hijigr (vect(1); D 1) = Hyyqr (vect(1); Dy, 1))@ Hjiqr (vect(1); Dy 4 1))-

Thus, we deduce Hi¢(vect(1); D) ,) from (4.4).
Now, let T be a 1-cocycle from K(1) to D), that is, T is even. The map Tyecr) is a
1-cocycle of vect(1). So, up to a coboundary, we have (here o, 5 € K)

q)A,/\OT\Uect(l) = OZC,\)\ —|—5C)\+%’)\+%. (4.19)

By Lemma 4.1, the 1-cocycle T is non-trivial if and only if (o, 3) # (0,0). By Lemma 4.2,
we can write

T (Xpg) = me KhFeam 4 Zb chBopom,

m,k m,k

where the coefficients by, ;, and Bmk are constants. Moreover, the map T must satisfy the
following equations

T([Xg, Xngl) = LX) (Xng) — X0 T(Xy),

. (4.20)
T([(Xnio, Xnzo]) = £x) T (Xnop) + th T (Xn,0).

We solve Egs. (4.19) and (4.20) for «,f3, bk,m,gm’k. We prove that Hl (K (1);D, ) is
spanned by the non-trivial cocycle T ) corresponding to the cocycle

o (Caa+ C>\+%,>\+%)

via its restriction to vect(1), see (4.5).
For the singular cases (4.18), by the same arguments as above, we get:

(i) Hyg(K(1);D, 1) is spanned by the non-trivial cocycles Y, 1 and To 1 corresponding,
2 2 2
respectively, to the cocycles @all olIlo(—Cp,1) and @all ollo(C11 —Cp,y), via their
’2 ’2

restrictions to vect(1).
(ii) Hyq(K(1);D_1 ;) is spanned by the non-trivial cocycle T 1, corresponding to the
27 27

11
272

cocycle &} (e Cil’%) via its restriction to vect(1).

27 5
(iii) HYg(K(1);D_, 3) is spanned by the non-trivial cocycle Y 18 corresponding to the
’2
cocycle <I>j sollo (Cf%
2

s — 3C_12) via its restriction to nect(l)
(iv) Hge(K(1);D_ s 5) = Hye(K(1);D_y5) = 0. m



Cohomology of the Lie Superalgebra of Contact Vector Fields on K! 391

5. Deformation Theory and Cohomology

Deformation theory of Lie algebra homomorphisms was first considered with only one-
parameter of deformation [14, 23, 26]. Recently, deformations of Lie (super)algebras with
multi-parameters were intensively studied (see, e.g., [1, 3,5, 6, 24, 25]). Here we give an
outline of this theory.

5.1. Infinitesimal deformations and the first cohomology

Let po : g — End(V') be an action of a Lie superalgebra g on a vector superspace V' and let
h be a subalgebra of g. When studying h-trivial deformations of the g-action pg, one usually
starts with infinitesimal deformations:

p=po+t7T, (5.1)

where T : g — End(V) is a linear map vanishing on h and ¢ is a formal parameter with
p(t) = p(T). The homomorphism condition

[p(x), p(y)] = p([z,y]), (5.2)

where x,y € g, is satisfied in order 1 in ¢ if and only if T is a h-relative 1-cocycle. That is,
the map Y satisfies

(=17 D [po(2), Y ()] — (~L)PW PP [po (), T ()] — T ([, y]) = 0.

Moreover, two bh-trivial infinitesimal deformations p = pg +¢ Y, and p = pg +t Lo, are
equivalents if and only if Ty — Y5 is h-relative coboundary:

(Y1 = To)(w) = (~1)P P D pg(2), A] := 6A(x),

where A € End(V)" and § stands for differential of cochains on g with values in End(V) (see,
e.g., [15,23]). So, the space H!(g, h; End(V)) determines and classifies infinitesimal defor-
mations up to equivalence. If dim H! (g, h; End(V)) = m, then choose 1-cocycles Y1,..., Ty,
representing a basis of H'(g, h; End(V)) and consider the infinitesimal deformation

m
p= P0+Zti T, (5.3)
i=1

where t1,...,t,, are independent parameters with p(t;) = p(1;).

Since we are interested in the osp(1[2)-trivial deformations of the K(1)-action on &7,
we consider the space H}.+(K(1), 0sp(1]2); End(&})) spanned by the classes T/\J\_%, where
k=3,4,5and 2(B—\) € {k,k+1,...,2n} for generic 5. Any infinitesimal osp(1|2)-trivial
deformation of the K(1)-module &7 is then of the form

EXF = SXF + Sggﬂ, (5.4)

where £x,. is the Lie derivative of S5 along the vector field X defined by (2.2), and

1
’gg{;:Z Z tA,A+§TA,>\+§(XF)7 (5.5)
X k=345
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where the Exayk are independent parameters with p(t/w\_%) = p(TA,/\Jr%) and 2(8 — \) €
{k,k+1,...,2n}.

5.2. Integrability conditions and deformations over
supercommutative algebras

Consider the supercommutative associative superalgebra with unity C|[[t1,. .., ;)] and con-
sider the problem of integrability of infinitesimal deformations. Starting with the infinites-
imal deformation (5.3), we look for a formal series

P:P0+Zti'fi+ztitjﬂg‘)+'“a (5.6)
=1 i

2) (3
z(j)7pz('jl)c7 e

p(tit;), (pgj,)c) p(titjty), ... such that the map

where the higher order terms p

are linear maps from g to End(V) with p(pl(?) ) =
p:0—Clltr, ... tn]) © End(V), (5.7)

satisfies the homomorphism condition (5.2).

Quite often the above problem has no solution. Following [14] and [1], we will impose
extra algebraic relations on the parameters ti,...,t,,. Let R be an ideal in C|[[ty,...,t]]
generated by some set of relations, and we can speak about deformations with base

A =C[[t1,...,tm]]/R, (for details, see [14]). The map (5.7) sends g to A ®@ End(V').

Setting
Pt =P — Po, P ZtThp Zttjpz]7"‘7

we can rewrite the relation (5.2) in the following way:

(@), po()] + [po(x), 01 ()] — e[z, y) + Y [0 (@), o) ()] = 0. (5.8)
1,5 >0

The first three terms are (d¢¢)(x, y). For arbitrary linear maps 1,72 : g — End(V'), consider
the standard cup-product: [y1,72] : 9 ® g — End(V') defined by:

[y, 72l (@, y) = (~)PODCOIPED [, (1), 90 ()] + ()PP [ya (), ()] (5.9)

The relation (5.8) becomes now equivalent to:

1
opr + 5[[%, et] =0, (5.10)
Expanding (5.10) in power series in t1, ..., %, we obtain the following equation for pk):
1 L
(k) 4+ = (QJNG))
o0 +35 > .V =0. (5.11)
i+j=k

The first non-trivial relation dp(?) + %[[p(l),p(l)]] = 0 gives the first obstruction to inte-
gration of an infinitesimal deformation. Thus, considering the coefficient of ¢;¢;, we get

1
5oy + [0 T,1=0. (5.12)
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It is easy to check that for any two 1-cocycles 1 and 72 € Z!(g, h; End(V)), the bilinear map
[v1,72] is a b-relative 2-cocycle. The relation (5.12) is precisely the condition for this cocycle
to be a coboundary. Moreover, if one of the cocycles 1 or 7, is a bh-relative coboundary,
then [v1,72] is a h-relative 2-coboundary. Therefore, we naturally deduce that the operation
(5.9) defines a bilinear map:

H'(g, b; End(V)) ® H'(g, h; End(V)) — H2(g, h; End(V)). (5.13)

All the obstructions lie in H?(g, h; End(V)) and they are in the image of H! (g, h; End(V))
under the cup-product.

5.3. FEquivalence

Two deformations, p and p’ of a g-module V over A are said to be equivalent (see [14])
if there exists an inner automorphism ¥ of the associative superalgebra A @ End(V') such
that

Vop=p and ¥() =1,

where I is the unity of the superalgebra A @ End(V).

The following notion of miniversal deformation is fundamental. It assigns to a g-module
V' a canonical commutative associative algebra A and a canonical deformation over A. A
deformation (5.6) over A is said to be miniversal if

(i) for any other deformation p’ with base (local) A’, there exists a homomorphism ¢ :
A" — A satisfying (1) = 1, such that

p=®ld)op.
(ii) under notation of (i), if p is infinitesimal, then 1) is unique.

If p satisfies only the condition (i), then it is called versal. This definition does not depend
on the choice 1-cocycles Y1, ..., YT,, representing a basis of H!(g, b; End(V)).

The miniversal deformation corresponds to the smallest ideal R. We refer to [14] for a
construction of miniversal deformations of Lie algebras and to [1] for miniversal deformations
of g-modules. Superization of these results is immediate: by the Sign Rule.

6. Integrability Conditions
In this section we obtain the integrability conditions for the infinitesimal deformation (5.4).

Proposition 6.1. The second-order integrability conditions of the infinitesimal deforma-
tion (5.4) are the following:

Exarstags s = 0, where 2(3—\) € {10,...,2n}. (6.1)
To prove Proposition 6.1, we need the following lemmas:
Lemma 6.1. Consider a linear differential operator b: K(1) — Dy ,. If b satisfies
IO)(X,Y)=b(X)=0 forall X € osp(1]2),

then b is a supertransvectant.
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Proof. For all X, Y € K(1) we have

S(O)(X,Y) = (1RO R (b(Y)) — (—1)PICLIPOD gt (h(X)) — b([X, Y]).
Since 0(b)(X,Y) = b(X) = 0 for all X € osp(1|2) we deduce that

(— 1P e (B(Y)) — b([X, Y]) = 0.

Thus, the map b is osp(1]2)-invariant. ]
Lemma 6.2. The map By i5 = [[T/\+2,A+57 T/\,A+§]] is a non-trivial osp(1|2)-relative
2-cocycle for A # 0, —1, —%, —g.

Proof. First, observe that for A = —1, —%, the map B x5 is not defined (see Theorem 4.1).
The map Bj 15 is the cup-product of two osp(1|2)-relative 1-cocycles, so, By y45 is a
0sp(1]2)-relative 2-cocycle: By yy5 € Z2(K(1),08p(1]2); Dy r+5). This 2-cocycle is trivial if
and only if it is the coboundary of a linear differential operator

bar+s : K(1) = Daass

vanishing on osp(1]2). Consider by yy5 as a bilinear map F_1 ® §x — §r45. So, according
to Lemma 6.1 and Theorem 3.1, the operator by y45 coincides (up to a scalar factor) with
the supertransvectant J, LA But, by a direct computation, we have, up to a multiple

Byars(Xgy, Xgo)(Fo*) = (91798 — g1 g8)(2A fo — (27 +9) f10)a*5,
3 @) @ 3 <)\(2)\+3)(>\2+6)\+8)
91 95 )

0@ ) (Xg1, Xop)(F) = (91”03 5 fo

2
L @20+ 3)§§>\ + 28X + 45) f19> oM,

where g1,92 € [ | and F = fy + f10 € K[z,0]. Therefore, the restrictions of the maps
By 45 and 6(Jg 12) 0 vect(1) x vect(1) are linearly dependant if and only if

A+ 1)(2X + 7)(2X + 9)(4X + 9) = 0.

7 9 9

Thus, the maps By 45 and 6(Jg L ’\) are linearly 1ndependent for A # 0,1, —5,—5,—7.

Besides, we check that the maps B_ 9 11 and (3¢ b 4) are also linearly independent
4

although their restrictions to vect(1) x nect( ) are linearly dependant. Finally, for A = 0, —g,

we check that B) y;5 coincides (up to a scalar factor) with §(Jg L )‘) This completes the

proof. U

Remark 6.1. The map By ;5 : K(1) ® K(1) — D) 45 is a non-trivial 2-cocycle, so,
H2:4 (K (1), 05p(1]2); Dxxt5) # 0 while H3,4 (vect(1),5((2); Dy vy5) = O for generic  (see [7]).
Hence, for the second cohomology, the analog of Lemma 4.1 is not true.
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Proof of Proposition 6.1. Assume that the infinitesimal deformation (5.4) can be inte-
grated to a formal deformation:

£x, = &x, + 24 + 25 +

The homomorphism condition gives, for the term S&QL Mot in ty,uty,s, the following

equation

52X v ) = [Ty Tl (6.2)

For arbitrary A, the right-hand side of (6.2) yields the following 2-cocycles:

Bt = [[Taps aps Tangsl : K1) @ K(1) = Diass,s

By = [[TH 5470 Ty >\+%]] K1) @ K1) — DA+ T

E/\,M-% [Ty o, a1 Ta 2] K1) @ K(1) — Dra+ T

Byxata = [[TA+ A A,A+g]] (1) @ K(1) — Dxatas

Byasa = [Tz aa Tangs]: K1) @ K(L) = Danga, (6.3)
Bata = [Tagronta, Tansa] 1 K(1) @ K(1) = Darga,

Byars =[xz e Taags]: K @KQ) =Dy 5y,

E/\,M-% [Tai2a09 Tante] : K1) @ K(1) =Dy \y9,

Bxats = [[T,\+ PUEY ,\,,\+g]] P (1) @ K(1) — D ays.

The necessary integrability conditions for the second-order terms £3 are that each
2-cocycle By ytk, where 2k = 6,7,8,9,10, must be a coboundary of a linear differential
operator by x4k : K(1) — D a4k, vanishing on osp(1]2). More precisely, as in the proof of
Lemma 6.2, the operator by yyx coincides (up to a scalar factor) with the supertransvectant

I +1 Clearly,

Baa+s = Banata =3B, Byyyr =B By =B
and, by a direct computation, we check that

Bya+3(Xey, Xa,)(Fat) = (=2(=1)" V(G n(Gy) F)a*?,

2\ _ —
By se1(Xay, Xa,) (o) = (((—1)P<G1>G§3>n<az> — (e Gy F

3

(PO GL(F >) oM,



396 I. Basdouri et al.

Byaa(Xey, Xa,)(For) = (—20 (1P @@ m(as) + n(@)mas) F
+ (—1PE (1 Epan G - aPnay))(F)
+6(—1)P PG (G F ),
Bwﬁg&%xawa>—(?&A+a«—wﬂmGPm09>—mGPxﬁbF
+ 2GS — ()P (GG
+ 21+ 1)(~)PCD Gan(GE) + (G )Gy F)
+ A+ DEENG = (1P G n(GE))F

GO CL(E Qaﬂé

where G1,Go, F € K[z, ]. Besides, we can see that

A(2) +5) (2/\ + 3)

OBaass = 06(37Y),  where ¢, = 1 )

_ 6A+9 [2A+ 4
arB, AT T 5(3g )\)a where o) = : < ) )
2

3
N A2 TA+2 (22X +4
BaBares = 635", wherem—ﬁ< ) )
_ 3AN+6 [2\+5
’yAB/\M_gfé( %/\), where v, = 5 ( 5 )

Now, by Lemma 6.2, B) 45 is a non-trivial osp(1|2)-relative 2-cocycle, so, its coefficient
must vanish, that is, we get the first set of necessary integrability conditions:

Equations (6.4) are the unique integrability conditions for the 2nd order term £(). Under
these conditions, the second-order term £2) can be given by

2) —1 ~—1A
£® = — ZC,\ b2 aratart3ds
/\

-1 ~—
- Za,\ (tA+g,>\+%t>\,)\+g - t)\+2,>\+gt/\,>\+2)\5%
A

1
—1 1A
- Z By (twr Satabantd T s apabaags + 3t/\+2 A4t /\+2> J5

- Z%\ t,\+5 BUR 1 W 15,\Jr2,,\+gt/\,x\+2)3;7
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To compute the third term £3), we need the following two lemmas which we can check

by a direct computation with the help of Maple.

Lemma 6.3.
—1A+3 T

]]+ )\+3 [[ )\)\Jr%]])a

(1 )f)\ 15( % ) (C}Tl[[T)\+3’)\+%,J4
3+ e [[T/\+3,/\+5,321’/\]]

1 —1 32 —
(2) a3 % Mgzl = 617>\a>\1[[TA+Z,A+5"5%
+€3 )\5(361 )\)7

1A
]

wlo |

~—LA+E —1 ~—1,\ - ~
[35 T, ,\+g]] = €100 [[T,\+4,A+£7155 [+enay [[TM- ALl

3) g1
R
+ €600 o[ ) 2 Toasal,

_ A~—1N A 1A+2
(4) a3 [Tap 104690 ] = eaBy o35 7 TA>\+2]]+58)\0‘>\+5[[J9 “ Tzl

+ €9\ 5(3’; ’ )a
—1 ~—1,A42 — ~—1,A _ =13
LIS Taage] = €008y [[T,\+47>\+L23,d5 1+ 611,,\5/\%[[65 2 T/\,A+3]]

where
A+ 1) (2N +9) (A +2)

AT O T 3)2N2 3N —17)
o BB +)
22T 9N+ 3)(2A2 + 31 — 17)’
48
€ =
AT XN 32N +3)(2X + 5)(2A2 + 3X — 17)
L @249+ 3)(2A2 + A +2)
AT T A+ TRAF 1)(2X2 + 13X + 17)
o 32X\ +9)(2) + 3)?
AT 220 + )2 + 1)(2A2 + 13X + 17)
o 32A+T)
0A T TN ¥ 13A + 17)°
o 5(6A% + 33X + 17)(2\2 + 15X 4 24)
AT TN+ 5)(A+2)(2A — 3)(2A2 + 13X + 13)”
- (2A+9)(2A +5)(A + 7)(2A% + 11X + 4)
AT 9N+ 5)(2X — 3)(A + 2)(2A2 + 13X + 13)’
o 60
P2 T 2N+ 3)(2X — 3)(A + 3)(A + 4)(2A2 + 13X + 13)
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A+5)(A+2)(2X%2 +7TA +2)

€10 =~ O+ 4)2(\ + 1) ’
(202 + 17X + 32)
€1, — — 9\ 4 3
(A+4)
. (2PN +5)
AT T NF 920+ 1)
3 2
£y = 1—6A(A+4)(2A+3)(2A+5)< Ag“").

Lemma 6.4. Each of the following systems is linearly independent

~— T ~— LA ~—T\
(1) ([[T,\+g,,\+5ﬂ59 [ [ a3, ,\+5,d4 ]] [ 21y 2], 636 7)),

~—1 1 1A ~—1 A7 A= LA
(2) ([[T/\+4/\+11 3571, [[T,\+2,/\ 1L, J% ]] [[Je 2  Taasa]s [T A3+ g [ [34 2

~ ~ LA+3
A )\+3]] [[T)\+4,/\+6a \55 1’)\]]7 [[\55 1’)\+2a T/\,)\-‘r?]]a [[\59 s

/\
\/
—~
|=|
>’

T

[ S]]
>
T
b
(]

m"" \ w

>’
|=I
el

?

>

il

N
'—%

Tyaes ]] 6(37‘”»,

)

_ =12 o1 "l
CN(RSWPRVETI: g N S SWVIES N R SV RV o RGP}
~ —1A+2 —1,\
(5) (Ir ,\+g,,\+7v\5111 I, [3 u : T,\)\Jr 5], 5(\581 ))-

Now, we are in position to exhibit the 3rd order integrability conditions.

Proposition 6.2. The 3rd order integrability conditions of the infinitesimal deforma-
tion (5.4) are the following:

(a) For2(8—\) € {10,...,2n}:

Eaars(eratasarstygs as + (1 =€)tz \ystas a 1) =0,
bt (62,/\t,\+g,A+5t,\+g,,\+g - (1+ 62,/\)15/\+3,/\+5t,\+g,,\+3) =0,

bt Iarstareatitaa+2 = 0.
(b) For2(B—X) €{11,...,2n}:
tA+4,A+%tA+§,A+4tA,A+§ - tA7A+§tA+37A+%tA+%A+3 =0,

baratll (B(1 + € bz apalangs + Ex2.a+4ta12)

teantogstir i utazaer =0,

" oAy ¢ —t ¢
A Il 3 A3 AT NS A2 A+ IAA+2

Tesataiant g s apatariz =0,
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1
€6 Iaae2 (tA+4,A+1;tA+§,A+4 + gtA+§,A+1;tA+§,A+§>
Fiaare(baz apubioat = bhyaarubapa ) =0
(c) For2(f—A) e {12,...,2n}:

Erg ez arobaags = o obaae) =0,
Eaogs (rantstags apa = T agetars apz) =0,

Exrarts(Btxys apalaags T30 apabaags T brzatatante) =0,

1
Ex+2 ((1 - 67,/\)tx+%,)\+6t>\+2,>\+g + t)\+g,)\+6t)\+2,>\+g + §t>\+4,/\+6t/\+27>\+4
Terataiarebariaritanis =0,
Es,AtA+g,,\+6(t,\+g,,\+gt,\,,\+g - t,\+2,,\+gt/\,/\+2)

+ (tA+4,/\+6t>\+g,>\+4 - t)\+%,>\+6t)\+g,>\+g)t>\,)\+g = 0.

(d) For2(B—X\)e€{13,...,2n}:

1
batant s <tA+§,A+4tA,A+§ T s apaliags + <§ - 510,>\> t)\+2,>\+4t>\,)\+2>

=+ 610,AtA,/\+2t,\+g,,\+L§t,\+2,,\+g =0,

bxats (tx+4,,\+1§t,\+g,,\+4 + 3tx+§,x+1§t,\+g,x+§>
Fenabiat2(tag g ap3taioar9 — baanseiiraasa) =0,
Epgar s (s apotaaes T (@20 = Dty o5 9tat2)
—eizabaataly g a2 = 0.
(e) For2(8—\) € {l4,...,2n}:
g atrharzat 2tz =t sthio irthy sy e =0

Proof. Considering again the homomorphism condition, we compute the 3rd order term
£3) which is a solution of the Maurer—Cartan equation:

5(2) = _%([[2(1)72(2)]] +[e®, gOY), (6.5)

The right-hand side of (6.5) together with Eq. (6.1) yield the following maps:

~—TA —1 a3
QAJH,-% - (Pl(t) [[T/\+37)\+%7 Jg ]] + wl(t) [[154 2 TA,A-;—%]] : ]C<1) ® ’C<1) - CD)\,/\—i-%’

— =143
Mags = wa(t) [[T)\+%’)\+57\5%1’)\]] + 9 (t) [[d% 2, T)\’)\+g]] K1) @ K1) — DA r+5
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Qaags = P2(8) [Taranas: 33+ Do) [37M2 Taoge] : K1) @ K(1) — Dargs,

1,35 M+ s (t) [35

QA,)\JF% = 53(15) [[T)\+% P 7351’)\]] + ¢3( ) [[\591 At T/\ >\+2]] ’C(l) ® ’C(l) - 9)\,)\+%7

raY — ~—17>\ A ~717)‘+g
QA,,\+L21 = p3(1) [[TM-S,/\-;-%a Ja J

—1 )\+
Qg = @3(t) [Tyt ’

, Ty )\+§]] (1) @ K(1) — 9)\,)\+L217
T/\,A—s-g]] K1) @ K(1) — Q,\7>\+%7

1A
*2 > Taaps] K1) @ K1) = Daass,

Q/\,)\+6 ()04(t) [[T)\+9 )\+6"511 ]] + ¢4( ) [[
Qs = Pa(t) [Trrante Iz A+ u(t) [35" ATy A2 K(1) @ K(1) — Dy ave,

_ —12+2
a0 I g 3 T+ 0a O 13, 712 T 5] K1) © K1) = Do,

Qra+6

o —1,2+3
Qpts = st [y pangins 351+ 0s(0) [35777 0, 5] K1) @ K(1) = Dy 5,00

QA,M—? = ‘55(75) [[TA+37>\+13 JTll A]] + 1/’ (1) [[ 11 A2 , T >\+2]] ’C(l) ® ’C(l) - CDA,/\_,’_?,

1
QD47 = w6(t) [[T,\+9 ,\+7ﬂ511 M+ () [ u *s TA,,\+g]] FK(1) @ K(1) — Dy

where

p1(t) = (3 Myps, PR LW BWEISWWE 3

Ui(t) = CA+3t,\+3 PURLWE BUEL PSS

pa(t) = aj’! brz stz apzhags — baaagrzhase),
¢2( ) )\+3 (t)\+3 )\+5t,\+ A3 t)\+g7)\+5t>\+g,,\+%)t,\7>\+g7
&2(75) - C)T t)\+3,)\+5t,\+%7)\+3t)\7,\+%7

" ~1
Po(t) = CHthg A5iateat IEAN+2)

1
—1
w3(t) = By apanru <tA+§,A+4tA,A+§ T s apalaags + gt)\+2,>\+4t>\,>\+2> :

Ps(t) = /8)\+3t/\ A2 <tA+3 aei b aes T a2 apa T 50 ] A+11tA+3,A+;> ;
pa(t) = ay tA+§,A+%(tA+§,A+gtA,A+§ — baoaritarea),
J(t):ail t (ty, 7\, 1t 7 —1 ut )
3 AF2PAAFZUNL T A+ L A2 A+ T AHA N+ EAE2,044);
— _ =1
P3(t) = G tagsar ity s aistyags,
P3(t) = ,\+o 5Eatan+ s xpalaags

ea(t) =7, tA+§,A+6(tA+§,A+§tA,A+§ — baoarstarea),
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_ -1
ha(t) = Tt (Eatantolngs apa = Exp T arebars ar1)iaag s

~ 1
Pa(t) = By tratrante (tA+§,,\+4t,\,A+g Thsapabaaes + 3t>\+2,/\+4t>\,/\+2> ;

o —1

Pa(t) = By atar+2 (tA+;,>\+6t>\+2,/\+; Ths2arebaront T §t>\+4,>\+6t>\+2,)\+4> ,
Za(t) = ay 't (t t —t tart2)

P4 A I AH6NNAFE AT A NS A2 2+ 2 AAF2 )

_ -1
Ya(t) = o s (Baraprotar s apa — D g arelar s a2 tane 2
_ n—1
ps5(t) = Oy trpang s (t)\+g,)\+4t)\,)\+g s apabiaes 3tA+2,A+4tA,A+2> :

_ 51 +
Us(t) = 5,\+gt/\,k+% (tA+4,A+123tA+§,A+4 + 3t/\+3,/\+1§t/\+§,,\+3> ,
= (1) — A1
P5(t) =y Ea+2 a+13 (t)\+g,>\+gt)\,>\+g - tA+2,>\+%t/\v>\+2)’
@Z(t): ot (ty, 9y, 13t 9 —t 13t )
5 Mar2t A2 0 9 A1 1800204+ 9 — D+ B IA2.04+4);
(t) =~y 't (tyo5 yooty yos —t taai2)
%6 T DA+ N3 a1 900+ 3 — Dz 20AN+2),

_ -1
be(t) = QVEDVEE DY BNE VS pes s

Now, the same arguments, as in the proof of Proposition 6.1, show that we must have:

AT
Q)\,/\—i-g :wl(t)é(J 1 ),

)
~ A1
Daass + Daags = w2(B)(J5 7).
~ — A1)
QA,M—% + Q,\)\-s-%1 + Q/\,M—l—; - w3(t)5(dljl7 )
2

Qare + Daars + s = wa()d@5

Qa1 + ﬁ/\,H? = “’5(75)5(3%5

Qanir = we(t)6(35 ),

where wy, ..., ws are some functions. So, by Lemma 6.3 and Lemma 6.4, we obtain for the
nonzero @;(t), @;(t), @;, i (t), ¥ (t),v;(t) and w;(t) the following relation:

axpa(t) + 61,,\%%1/}2@) =0,
Oaps(t) + eanbyys¥a(t) = 0,
ax+2¥s(t) + €600, 39s(t) =0,
3P4 (t) + esaanBa(t) =0,
Barsts(t) + en 25 (t) = 0,

wa(t) = €9 ranpy(t),

wi(t) = &1 G (t) = f;lC,\Jrg”(ﬂl (t).

O@a(t) + eanay, sa(t) =0,
axps(t) +esaByy393(t) =0,
Brtata(t) + ez nandy(t) = 0,
Brgs(t) + €10 pmrrats(t) = 0,
NP5 (t) + e Tarats(t) =0,

wa(t) = €3 x5 9a(h),
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Therefore, we get the necessary integrability conditions for £3). Under these conditions,
the third-order term £®) can be given by:

® =3 ¢! 1A
=2 8 husar bz apshog s Ju
X

~—1,)

+ Z eIt at5ta g3 xrs — I arstas 3 e D)iaags 3o
B

R
+ E :69,/\ t,\+g,,\+6(t,\+g,,\+gt,\,,\+g - t,\+2,,\+gt/\,/\+2)157 : n
)

Proposition 6.3. The 4th order integrability conditions of the infinitesimal deforma-
tion (5.4) are the following:
(a) For2(8—\) € {12,...,2n}:

YEBIFUVEPFELIWE BEE LUWEE Bl

(b) For2(8—\) € {13,...,2n}:

bt Bz arstar g arztaaes =0,
Et 3 arstaar it ar3ias s =0,

bt gartaas i3 amstaars = 0.

(c) For2(f—\) € {14,...,2n}:

DU B VEPEEIVE PUELWEE Rt

Eaar 3ty st atriataass = 0,
a2ty I U agrtarzar i =0,
DREELVE BUE L WEIWE JWESWRIE Y
Eaarstarsartia T agstags gz =0,

Er i aprbarant By xpatyars + haatatante) = 0.

(d) For2(B—X)e€{l5,...,2n}:

st st iasats =0,
boardhasar B I agstar g gz =0,
s s apabare s 8trrars =0,
Epu bz g u(tyys xorty s —fgarrtarte) =0,
Ep it ap1stagang i (Bhys sy gl a3 T Dz aralaag2) =0,

Erpoar 5ty T sty ar 1y s — boar1haat2) = 0.
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(e) For2(8—\) € {16,...,2n}:

eraxtare sty T are(tags ap 1l = b ziant2)

Fhars apstars ap s (s ap9taaes = hgoa i) =0,
€16 Eareatstry T a6ty s ap 1l = b ziaat2)

Fiaaatyy 1 (bt a ity o nt = Expaayutarza) =0,
(U4 e n) Exve sl T ape = a1t agstay o)

X (s arztangs —taaaritartz) =0,

eisatxre sl T a6(tays arztaags — hoarrtarte)

Tt arsbarans <tA+§,A+4tA,A+g + 3tk+2,/\+4t,\,x+2>

T2 arsbarant s (tA+§,A+4tA,A+§ T s arabaars 3tA+2,A+4tA,A+2> = 0.
(f) For2(B—\) € {17,...,2n}:

t>\,>\+gt)\+6,>\+%7t>\+4,/\+6t)\+g,>\+4 =0,
bxpts apartyyo s ias(Byys oty nys =g agatant2) =0,
Eroar i T are(taes apThaes — hpaar 1) = 0,

Expts aparty gy tyys ngty s T 3805 s afiag s T Oz atatang2)0.
(g) For2(B—X) € {18,...,2n}:

by asolar g ar13(tyys xpoty s =g ayatarya) = 0.

To prove Proposition 6.3, we need the following two lemmas which we can check by a
direct computation with the help of Maple.

Lemma 6.5. We have

~—LA+4 — -1+ 1\
J5 ’ I

~— 1A 1 17~ ~—1,
»Js ]]“‘614,)\05 9V [[Jg yJ 11
A5 2

A1) 1 a1
o [Tarents, J7 71 = e3n Byia By [ h
2

11 ga—LAE 1 ~—TA42
TesAQy Y, [3.7 2,39 7]+ €60 €9042 [J7 ; Taatal
2 2 2

+ €17, 5(39_1’/\),

where

€9 2A+3)2A +5)(2A + 9 (A + 2)(A +3) (A +5)(2A% + TA + 2)
B X (2A% + 23\ + 62)(16A* + 24003 + 103422 + 1005\ + 300)
AT 360N + 4)(2X + 7)(32A6 + 7845 + T156AT + 20576)% + 539612 + 40281\ + 11760)
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€or (2X +3) (2 + 5)(2A — 5)(2A + 9)(A — (A + 2)(A + T)(A + 9)
(A + 4)(32X6 + 784X 4+ 71561 + 2957673 + 5396112 + 40281\ + 11760)’

a2 =3)2A+ DA+ 3)(2A+6)(2A + 23)(A+2) (A + 5)(A+ 10)
AT T 20 4 7) (3206 4 T84N5 4 T156A% 4 2957603 + 5396122 + 40281\ + 11760)

€9 (2A + 3) (A + 2) (325 + 65675 + 4756 + 1410423 + 14901\
+ 7059\ + 240)

€14\ =

€ = — ,
1A €9.x+2(2A + 11) (A + 6) (32X + 784A% + T156A* + 2957673 + 5396112
+ 40281\ + 11760)
€9.x (2A +5)(2X + 9) (2 + 6) (A + 5)(16A* + 240A3 + 1034A2 + 1005\ + 420)
€17\ = —

(2A 4+ 11)(2A + T) (A + 4) (X + 6)(32X% + 784N% + 71561 + 295763 + 539612
+ 40281\ + 11760).
Lemma 6.6. Each of the following systems is linearly independent
—1,\ A—L A3 ~—1,2 —LA+
(1) (5(1571 ) C)\+3C)\ [[ bAT y Uy ! ]] +€)\ [[ ,\+ A+60 1511 ]] +§>\+3[[ 11 2 T/\ >\+3]])
~—T1,2+3

~—1,\ LA+ ~—1,\
(2) (5(1515 ), [34 2n59 I, [[T,\+5,>\+§n56 ]], [[T,\+2,,\+13 \511 ]] C,\ 0‘,\+3 [3 9 )

321’/\]] €342 [[3;7“% Taarzls

3) (5(3;,,\),[[3%1,/\%73%1,,\]]; [[341A+4’3g1,A]]7 [[351A+3,321,,\]]7 [[3(;1”\”,’1‘,\,,\”]],
a9 217 3%11/\ [Cassasr 35 ),

(4) (5(3%71,/\), [[35—1,A+%73g1,A]], [[391/\4-4,35—1,/\]]7 [[3% 3,321,/\]]7 [[T/\+6>\+1°7J71/\]]7
[[3(;1,/\+%7T/\7>\+%]],63’)\[[T/\+5>\+107d6 A+ €ons % [[3 PE Tyl

() (6™, I35 .31, ﬂsg“*% Ly L 0 T,

(6) (@™, [[3;1’”%,3?]], 355 I T a] e 370D,

(1) (6@, [ 2,307

Proof of Proposition 6.3. The fourth order integrability conditions of the infinitesimal
deformation (5.4) follow from Lemma 6.5 and Lemma 6.6 together with Proposition 6.1 and
Proposition 6.2 and arguments similar to those from the proof of Proposition 6.2. Under
these conditions, the fourth-order term £* can be given by:
4 ~—T,A
£ = —e17, Exvo sl ae(tays arztanes = honr1baat2)dg 7 O

Proposition 6.4. The 5th order integrability conditions of the infinitesimal deforma-
tion (5.4) are the following:

(a) For2(8—\) € {19,..., 2n}:

t,\+8,,\+gt/\+6,/\+8t,\+g,,\+6(t,\+g,,\+gtx,,\+g - t)\+2,)\+%t/\7>\+2) =0,
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(b) For2(8 — ) € {20,...,2n}:
t>\+8,)\+10t>\+6,)\+8t,\+%,,\+6(t>\+g,,\+%t)\,,\+% - t,\+27>\+%t)\,)\+2) =0,
Exatatrrsariotyy 1ty gtz xp ity g7 = bgag ntar2ata) =0,
(c) For2(f—A) e{21,...,2n}:
Expsarztbareatsia T ape(bags a1t s = taaasztaa2) =0,

Ersar 213 st g3 (s argtaoaes — Baepsgbiase) =0,

bt a2 bhrear T arebarsarg =0

To prove Proposition 6.4, we need the following lemma which we can check by a direct
computation.

Lemma 6.7. Each of the following systems is linearly independent:

|
—

ATy A1 A6 ~—TA JEY
0(J 21 )’a)\i6€97>\ [[dg + y J7 1- €17,\ [[T)\+8,)\+L29adg D,
2 NI A6 ~—TA

(
AT a1 A42 Y _
53N 3 2, Toaaral, @ralTareatio Jg ] + IBieon [35 7703770,
~—1 A ~—LAS 1A ~—1A+3 —1 pa—1,A46 ~—1,)
5(15 )7 [[157 2715% ]]7 [[159 27T>\,/\+g]]7 69)\7)\4%6[[15% - J7 ]]_617,)\

~—TA
T)\+8,>\+2—217‘59 D-

Proof of Proposition 6.4. Using the same arguments as in proof of Proposition 6.2
together with Lemma 6.7, Proposition 6.2 and Proposition 6.3, we get the necessary integra-
bility conditions for £(°). Under these conditions, it can be easily checked that §(£(™)) =0
for m =5,6,7,8. ]

The main result in this section is the following theorem.

Theorem 6.1. The conditions given in Propositions 6.1,6.2,6.3,6.4 are necessary and suf-
ficient for the integrability of the infinitesimal deformation (5.4). Moreover, any formal
0sp(1]2)-trivial deformation of the K(1)-module & is equivalent to a polynomial one of
degree < 4.

Proof. Of course these conditions are necessary. Now, we show that these conditions are
sufficient. The solution £ of the Maurer-Cartan equation is defined up to a 1-cocycle and
it has been shown in [14, 1]that different choices of solutions of the Maurer—Cartan equation
correspond to equivalent deformations. Thus, we can always reduce £m) for m =5,6,7,8,
to zero by equivalence. Then, by recurrence, the terms £m) for m > 9, satisfy the equation
5(£0™) = 0 and can also be reduced to the identically zero map. U

Remark 6.2. There are no integrability conditions of any infinitesimal osp(1|2)-trivial
deformation of the K(1)-module & if n < 5. In this case, any formal osp(1|2)-trivial
deformation is equivalent to its infinitesimal part.
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7. Examples

We study formal osp(1]2)-trivial deformations of K(1)-modules &Y, for some n € %N and
for arbitrary generic A € K. For n < 5, each of these deformations is equivalent to its
infinitesimal one, without any integrability condition.

Example 7.1. The K(1)-module &3 ;.

Proposition 7.1. The K(1)-module &3 5 admits siz formal osp(1|2)-trivial deformations
with 18 independent parameters. These deformations are polynomial of degree 3.

Proof. In this case, any osp(1]2)-trivial deformation is given by
a (1) (2) (3)
Lxp _SXF+£XF+£ + £5 (7.1)
where
1) —
S SPVE Y SETE R URT Y SPET RSN SWUE- I SVERWEY SUS W
Fhgiaes Tartags Hogi s T togs Thass Tapiags s Toariaes
S VERVEA SUSPVE S SVE BUPE SWE SUEE 3 SV BV SUEPVE S SVEBUFE SUE P
VTS VR SUPSWR S VT PEVE PEC SRV RN SUTSVE R SUESWE I st JWE- S UPE SUE SUW
T arg Tapsarg s s Tavsogs Thasar? Taraar +isass Toata s

S VR SVER SUL SR

DI L
£ = S b3 sty 29a
I

o |

2

-1 ~
S, (tys 8 i Tt = upayy Tlops2)d
v

1 ~—1Ll,e
- Z’B ( e+3, eral e+l +ieys ,z-:+4tz-: e+3 + 3t5+2 etale 5+2> Js

)

-1 ~
- ZW (te+g,e+gte,e+g - te+2,e+§t&€+2)‘5

0
; )

i -1
B9 =28 tesergter 3 ensleoer3 S

“1
R POREPEEWE BUEE SVESWEL WEBWE ) SSWE N P

with g€ INA+ LA+ LA+ 3 A+ 2L v e NA+ LA+ LA+ 3 e e (AA+ 1 A+1) and
e {\+ %} The following equations

btz barzaes =0, (7.2)
bt s (€100 43, LV BT Ry (1- 61,A)tA+§,A+5tA+g,A+g) =0, (7.3)
taars(@atyt xpstays st — (L en) sty s as) =0, (7.4)
bz atstareat itz =0 (7.5)
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are the integrability conditions of the infinitesimal deformation. The formal deforma-
tions with the greatest number of independent parameters are those corresponding to
t)\’)\+%t)\+g’)\+5 = t)\+%’)\+5t)\+2’>\+%t>\j,\+2 = t>\,>\+% = 0. So, we must kill at least three
parameters and there are six choices. Thus, there are only six deformations with eighteen
independent parameters. Of course, there are many formal deformations with less than
eighteen independent parameters. The deformation QXF Lxp + 2( ) + S( ) + S( )

is the miniversal osp(1]2)-trivial deformation of &3, with base A = [] /R Where
t = (tA,A+%’ ...) is the family of all parameters given in the expression of £M and R

is the ideal generated by the left-hand sides of (7.2)—(7.5). ]

11

Example 7.2. The K(1)-module (‘5/\2+11

Proposition 7.2. The K(1)-module GEQ admits 36 osp(1|2)-trivial deformations with
17 independent parameters. These deforma?fions are polynomial of degree 3.

11
Proof. Any osp(1]2)-trivial deformation of & )\2+11 is given by

5l
£x, = &x, + 2§ + 25 + ), (7.6)

where

W =ty yes Toarz + ez Doz + 63 Taaes Tt age Tarlage
Tt Taptogs Fhut xis Tt ogs Hhgaaes oo T hiaes Toariass
o D Fhag s Targos gt Targoan s T hrgara Targars
Fhaaar T Togoart Th2ara Taveata T8 o009 Tapong s s via Togs g
+t,\+§ A2 T,\+§ A + t/\+§ M5 T,\+§ A5 T Eags, A T/\+3 A T a3 a5 Tagsaes
R YESVETE SUESUENE S SWE SVEN SUESWE R S VESWET I SWESWE

Fhpaart Toapaas s
@) _ Z -1 ~—Lp
L= Cu tu+%,#+3t#,u+%‘j4
n

_1 ——
- E :au V+g,1/+7tu v+3 _tu+2,u+%tl’ﬂ/+2)dg

1

—1 ~—1Ll,e

- Z’BE <t5+g,s+4ts,s+g + ts+2,s+4ts e+3 + 3t et2,e+4le 5+2> Js
€

ZW (g5 oy toos — te+2,z+gtu+2)t‘%7

3) _ 1 ~—10
Zfe boysergtord ersloersJu

~—1,
+ 2634 <tL+3’L+5tL+§,L+ tL+5,L+5tL+2, +1 7)t LL+3‘56
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with p € AA+ L A+LA+3A+2 043 v e DA+ 5 A+ LA +3 0+2 e €
AMA+ A+ LA+3H € {A A+ 5, A+ 1} and ¢ € {\, A+ 3}. The integrability conditions
of this infinitesimal deformation vanishing of the following polynomials, where in the first
four lines p € {\, A+ 3}

bppu 3t 3 s

L e T T

b3 (€1, but3put5lyt 3 ys (I —erp)t, 1 LUPE) JYR: S 4 0,

t#,#Jr% (62““ t#+%,“+5t#+%,#+% - (1 + 62,#) t#+3,u+5t#+%,“+3)a

BUVELWE PURILSWE PWE?

Exrartillngs apalyag s (7.7)

Eaa il (3(1 +€40) bz apalaags + txr2aralart2) + €an BUVELIWE SWEEL W PWE

€5,
b+t ((1 +t3 )t,\+ Sa+Itaatd tA+2,/\+gtA,/\+2> Tesalirant iz apabarg s

1
€6, t/\,A+§ <t/\+4,A+121tA+§,A+4 + 3 tA+§,A+%tA+S,A+§
RS GVE SUETUNTSWE Sl SUPSWEIEEBENIE

These deformations are with 24 parameters ¢,, which are subject to conditions (7.7).

Obviously, we can construct many osp(1]2)-trivial deformation of & 2+11 with indepen-
2
dent parameters. But, to have the greatest number of independent parameters, we see that

we must kill at least seven parameters, that is, we put

boats Thatae=boa+2 =0 and ¢, st 5 5=t 7 5t io,4Ttuprz =0

where = A or \ + % So, there are 36 possible choices of such parameters. O
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