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We discuss nonlocal symmetries and nonlocal conservation laws that follow from the systematic
potentialisation of evolution equations. Those are the Lie point symmetries of the auxiliary systems,
also known as potential symmetries. We define higher-degree potential symmetries which then lead
to nonlocal conservation laws and nonlocal transformations for the equations. We demonstrate
our approach and derive second degree potential symmetries for the Burgers’ hierarchy and the
Calogero–Degasperis–Ibragimov–Shabat hierarchy.

Keywords: Nonlocal symmetries; conservation laws; linearisation; integrable hierarchies; nonlinear
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1. Introduction

The concept of nonlocal symmetries of partial differential equations and its relations to local
Lie point symmetries of its associated auxiliary systems was introduced by Bluman, Kumei
and Reid [3] and are known as potential symmetries. We point out that more general type
of potential symmetries were introduced earlier by Krasil’shchik and Vinogradov (see [13]
and [20]).

In the present paper our starting point is based on potential symmetries as intro-
duced in [3] and [2]. We define higher-degree nonlocal symmetries for evolution equations
by introducing further auxiliary system by higher-degree potentialisations. This leads to
nonlocal conservation laws for the given evolution equations and to nonlocal transforma-
tions between the evolution equations and its potentialised equations. We demonstrate our
approach by considering the well-known Burgers’ hierarchy and the so-called Calogero–
Degasperis–Ibragimov–Shabat hierarchy [5,12,19,4]. Both of these hierarchies are known
to be linearisable (see e.g. [4,7,16]. See also [18] for a discussion on nonlocal symmetries
of the Calogero–Degasperis–Ibragimov–Shabat equation). We show that the linearisations
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490 N. Euler & M. Euler

of the two hierarchies follow directly from their second potentialisations. An interesting
and unexpected result of our investigation is that second-degree potential symmetries (as
defined by Definition 2.1) exist only for the first members of both the Burgers’ and the
Calogero–Degasperis–Ibragimov–Shabat hierarchies.

On the notation: Throughout this paper Da[p] denotes the total derivative-operator of
the dependent variable p(a, b) with respect to the independent variable a, where subscripts
of p denote partial derivatives:

Da[p] :=
∂

∂a
+ pa

∂

∂p
+ paa

∂

∂pa
+ pab

∂

∂pb
+ p3a

∂

∂paa
+ · · · . (1.1)

The formal inverse-operator of Da[p] is denoted by D−1
a , such that

D−1
a ◦ Da[p]ϕ = Da[p] ◦ D−1

a ϕ = ϕ. (1.2)

Moreover

Dn
a [p]ϕ = Dn−1

a [p] ◦ Da[p]ϕ, n ∈ N . (1.3)

If the dependence of the operator Da[p] on p is obvious, we write just Da instead of Da[p].

2. Preliminaries and Higher-Degree Potential Symmetries

Consider an nth-order evolution equation of the general form

ut = F (x, u, ux, uxx, u3x, . . . , unx). (2.1)

Assume that (2.1) is a symmetry-integrable evolution equation [10], i.e. (2.1) admits a
hereditary recursion operator R[u] such that

[LF [u], R[u]] = Dt[u]R[u], (2.2)

where LF [u] is the linear operator

LF [u] :=
∂F

∂u
+

∂F

∂ux
Dx +

∂F

∂uxx
D2

x + · · · . (2.3)

Assume further that the hierarchy of symmetry-integrable evolution equations can be
presented in the form

ut = Rn[u]ux, n ∈ N , (2.4)

such that (2.1) corresponds to the first member of the hierarchy (2.4) with n = 1. The
conserved current, Φt, for (2.1) must satisfy the relation [11,1]

Λ = Ê[u] Φt, (2.5)

where Λ denotes an integrating factor for (2.1), i.e.

Ê[u](Λut − ΛF (x, u, ux, uxx, . . . unx)) = 0. (2.6)

Here Ê[u] is the Euler operator

Ê[u] :=
∂

∂u
− Dt ◦ ∂

∂ut
− Dx ◦ ∂

∂ux
+ D2

x ◦ ∂

∂uxx
− D3

x ◦ ∂

∂u3x
+ · · · . (2.7)
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For the flux, Φx, we state

Proposition 2.1. Let Λ be an integrating factor for the evolution equations (2.1) and
assume that the corresponding conserved current, Φt, admits the dependence

Φt = Φt(x, u, ux, uxx, u3x). (2.8)

Then the flux, Φx, for (2.1) is given by

Φx = −D−1
x (ΛF ) − ∂Φt

∂ux
F − ∂Φt

∂uxx
DxF − ∂Φt

∂u3x
D2

xF

+ FDx

(
∂Φt

∂uxx

)
− FD2

x

(
∂Φt

∂u3x

)
+ (DxF )Dx

(
∂Φt

∂u3x

)
. (2.9)

The hierarchy (2.4) admits the same integrating factor, Λ, as the first member of the hier-
archy (for n = 1) and hence the same corresponding current, Φt. The flux, Φx, for the
hierarchy, (2.4), for all n ∈ N then takes the fom

Φx(x, u, ux, . . . ;n) = −D−1
x (ΛRn[u]F ) − ∂Φt

∂ux
Rn[u]F − ∂Φt

∂uxx
Dx(Rn[u]F )

− ∂Φt

∂u3x
D2

x(Rn[u]F ) + (Rn[u]F )Dx

(
∂Φt

∂uxx

)
− (Rn[u]F )D2

x

(
∂Φt

∂u3x

)

+ Dx(Rn[u]F )Dx

(
∂Φt

∂u3x

)
, (2.10)

where we assume the dependence of Φt as stated in (2.8).

Remark. The proof of Proposition 2.1 is straightforward, namely by integrating the
conservation law

(DtΦt + DxΦx)|ut=Rn[u]ux
= 0 (2.11)

of the hierarchy (2.4) with respect to x, that is

Φx = −D−1
x (DtΦt)|ut=Rn[u]ux

.

Assume now that the evolution equation (2.1) admits a conserved current, Φt
1, and flux,

Φx
1 . Following [3] a first potential variable v is then defined by the auxiliary system:

vx = Φt
1(x, u, ux, . . .) (2.12a)

vt = −Φx
1(x, u, ux, . . .). (2.12b)

We name system (2.12a)–(2.12b) the first auxiliary system of (2.1). Assume further that
(2.12b) can be expressed in terms of the first potential variable v, i.e. (2.12b) becomes by
(2.12a) the first potential equation of the general form

vt = G(x, vx, vxx, . . . , vnx) (2.13)

which may again admit a conserved current, Φt
2, and flux, Φx

2 . A further potential w is then
introduced for (2.13), and named the second potential for (2.1), by the second auxiliary
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system

wx = Φt
2(x, v, vx, . . .) (2.14a)

wt = −Φx
2(x, v, vx, . . .). (2.14b)

The corresponding potential equation for (2.13) is then obtained from (2.14a) and (2.14b),
which we assume to have the general form

wt = H(x,wx, wxx, . . . , wnx). (2.15)

We name (2.15) the second potential equation for (2.1).
We now introduce the following

Definition 2.1. The Lie point symmetry generators

Z = ξ1(x, t, u, v)
∂

∂x
+ ξ2(x, t, u, v)

∂

∂t
+ η1(x, t, u, v)

∂

∂u
+ η2(x, t, u, v)

∂

∂v
(2.16)

of the first auxiliary system (2.12a)–(2.12b) for (2.1), i.e.

vx = Φt
1(x, u, ux, . . .)

vt = −Φx
1(x, u, ux, . . .),

are defined as the first-degree potential symmetries of (2.1) if the infinitesimals ξ1, ξ2 and
η1 depend essentially on the first potential variable v, that is

(
∂ξ1

∂v

)2

+
(

∂ξ2

∂v

)2

+
(

∂η1

∂v

)2

�≡ 0 (2.17)

The second-degree potential symmetries of (2.1) are defined by the Lie point symmetry
generators of the combined first- and second-auxiliary systems (2.12a)–(2.12b) and (2.14a)–
(2.14b), that is the Lie point symmetry generators of the form

Z = ξ1(x, t, u, v, w)
∂

∂x
+ ξ2(x, t, u, v, w)

∂

∂t
+ η1(x, t, u, v, w)

∂

∂u

+ η2(x, t, u, v, w)
∂

∂v
+ η3(x, t, u, v, w)

∂

∂w
(2.18)

for the system

vx = Φt
1(x, u, ux, . . .)

vt = −Φx
1(x, u, ux, . . .)

wx = Φt
2(x, v, vx, . . .)

wt = −Φx
2(x, v, vx, . . .),

where the infinitesimals ξ1, ξ2, η1 and η2 depend essentially on the second potential variable
w, that is

(
∂ξ1

∂w

)2

+
(

∂ξ2

∂w

)2

+
(

∂η1

∂w

)2

+
(

∂η2

∂w

)2

�≡ 0. (2.19)
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It should be clear that Definition 2.1 can easily be extended to mth-degree potential
symmetries.

3. The Burgers’ Hierarchy

Consider the Burgers’ equation in the form

ut = uxx + 2uux. (3.1)

It is well known that (3.1) admits only one local integrating factor and one local conservation
law (see e.g. [15]), where

Λ = 1, Φt
1 = u, Φx

1 = −(ux + u2). (3.2)

Equation (3.1) admits the recursion operator [14]

R[u] = Dx + u + uxD−1
x ◦ 1 (3.3)

and the Burgers’ hierarchy then takes the form

ut = Rn[u]ux, n = 1, 2, . . . . (3.4)

We remark that a general class of linearisable second-order evolution equations and its
recursion operators, for which the Burgers’ hierarchy is a special case, was reported in [8]
and [7].

3.1. Nonlocal conservation laws and linearisation

We prove the following

Proposition 3.1. The Burgers’ hierarchy (3.4),

ut = Rn[u]ux, n = 1, 2, . . . ,

with R given by (3.3) admits the first potentialisation of the form

vt = Pn[vx] vx, n = 1, 2, . . . , (3.5)

where

P [vx] = Dx[vx] + vx, (3.6)

and the second potentialisation

wt = w(n+1)x, n = 1, 2, . . . , (3.7)

where

vx = u (3.8a)

vt = Pn[u]u, n = 1, 2, . . . , (3.8b)

wx = ev (3.8c)

wt = Dn
x [v] ev , n = 1, 2, . . . , (3.8d)
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and

P [u] = Dx + u. (3.9)

The corresponding nonlocal conserved current, Φt, and flux, Φx, for hierarchy (3.4) are

Φt = e
R

u dx (3.10a)

Φx = −Dn
x [u](e

R
u dx), n = 1, 2, . . . (3.10b)

and the linearising transformation that transforms (3.4) in (3.7) is

wx = e
R

u dx. (3.11)

Proof. By Proposition 2.1 the hierarchy (3.4) admits the following integrating factor, Λ,
conserved current, Φt

1, and flux, Φx
1 :

Λ = 1 (3.12a)

Φt
1(u) = u (3.12b)

Φx
1,n = −D−1

x (Rn[u]ux), n = 1, 2, . . . , (3.12c)

where R is the recursion operator, (3.3). It is easy to verify that

D−1
x (Rn[u]ux) = Pn[u]u, n = 1, 2, . . . , (3.13)

where P is defined by (3.9). The first auxiliary system for the Burgers’ hierarchy (3.4) is
then defined in terms of a potential variable v in the form (3.8a)–(3.8b), i.e.

vx = u

vt = Pn[u]u, n = 1, 2, . . . ,

and the first potential hierarchy of the Burgers’ hierarchy, (3.4), becomes (3.5), i.e.

vt = Pn[vx] vx, n = 1, 2, . . . .

The first potential hierarchy, (3.5), admits the following integrating factor, Λ, conserved
current, Φt, and flux, Φx:

Λ = ev (3.15a)

Φt
2(v) = ev (3.15b)

Φx
2,n = −D−1

x (evPn[vx] vx), n = 1, 2, . . . . (3.15c)

By the relation

D−1
x (evPn[vx] vx) = Dn

x [v] ev , n = 1, 2, . . . , (3.16)

the second auxiliary system of the Burgers’ hierarchy (3.4) is then defined in the form
(3.8c)–(3.8d), i.e.

wx = ev

wt = Dn
x [v] ev , n = 1, 2, . . . ,
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so that the second potential hierarchy becomes

wt = Dn
x [w]wx ≡ w(n+1)x, n = 1, 2, . . . .

The nonlocal transformation (3.11) follows directly from (3.8a) and (3.8c), namely the well
known Cole–Hopf transformation (see e.g. [15]). The nonlocal conserved current (3.10a)
and flux (3.10b) follows directly by expressing (3.8c)–(3.8d) in terms of the original
variable u.

3.2. Potential symmetries of the Burgers’ hierarchy

We now turn our attention to the symmetry properties of the auxiliary systems (3.8a)–
(3.8b) and the combined auxiliary system (3.8a)–(3.8d). Firstly we discuss in detail the
cases n = 1 and n = 2.

Case n = 1: The first auxiliary system (3.8a)–(3.8b) of hierarchy (3.4) with n = 1 is

vx = u (3.18a)

vt = ux + u2 (3.18b)

and the first potential equation has the form

vt = vxx + v2
x. (3.19)

By Definition 2.1 the first-degree potential symmetries of (3.1) are the Lie point symmetries
of (3.18a)–(3.18b). We obtain

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(3.20a)

Z4 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, Z5 = 2t

∂

∂x
− ∂

∂u
− x

∂

∂v
(3.20b)

Z6 = 4xt
∂

∂x
+ 4t2

∂

∂t
− 2(x + 2tu)

∂

∂u
− (2t + x2)

∂

∂v
(3.20c)

Z∞ = e−v

(
∂f

∂x
− uf(x, t)

)
∂

∂u
+ f(x, t)e−v ∂

∂v
, where ft − fxx = 0. (3.20d)

The first-degree potential symmetries (3.20a)–(3.20d) were firstly obtained by Vino’gradov
and Krasil’shchik [20]. The second auxiliary system (3.8c)–(3.8d) for hierarchy (3.4) with
n = 1 is

wx = ev (3.21a)

wt = vxev (3.21b)

and the second potential equation for hierarchy (3.4) with n = 1 has the form

wt = wxx. (3.22)
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Following Definition 2.1 the second-degree potential symmetries of the Burgers hierarchy
(3.4) for n = 1 are the Lie point symmetries of the combined auxiliary systems (3.18a)–
(3.18b) and (3.21a )–(3.21b), i.e. the Lie point symmetries of the system

vx = u (3.23a)

vt = ux + u2 (3.23b)

wx = ev (3.23c)

wt = vxev. (3.23d)

We obtain the following second-degree potential symmetries of (3.4) for n = 1:

Z1 =
∂

∂t
, Z2 =

∂

∂x
(3.24a)

Z3 = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
+ w

∂

∂w
, Z4 = w

∂

∂w
+

∂

∂v
(3.24b)

Z5 = 2t
∂

∂x
− (2 − uwe−v)

∂

∂u
− (x + we−v)

∂

∂v
− xw

∂

∂w
(3.24c)

Z6 = 2xt
∂

∂x
+ 2t2

∂

∂t
− (2x + 2tu + we−v − xuwe−v)

∂

∂u
(3.25a)

−
(

3t +
1
2
x2 + xwe−v

)
∂

∂v
−

(
tw +

1
2
x2w

)
∂

∂w
(3.25b)

Z∞ = e−v

(
u

∂f

∂x
− ∂2f

∂x2

)
∂

∂u
− e−v ∂f

∂x

∂

∂v
− f(x, t)

∂

∂w
, (3.25c)

where ft − fxx = 0.

Case n = 2: The first auxiliary system (3.8a)–(3.8b) of hierarchy (3.4) with n = 2 is

vx = u (3.26a)

vt = uxx + 3uux + u3 (3.26b)

and the first potential equation has the form

vt = v3x + 3vxvxx + v3
x. (3.27)

The first-degree potential symmetries of (3.1) are then

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(3.28a)

Z4 = x
∂

∂x
+ 3t

∂

∂t
− u

∂

∂u
(3.28b)

Z∞ = e−v

(
∂f

∂x
− uf(x, t)

)
∂

∂u
+ f(x, t)e−v ∂

∂v
, (3.28c)

where ft − f3x = 0.
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The second auxiliary system (3.8c)–(3.8d) for hierarchy (3.4) with n = 2 is

wx = ev (3.29a)

wt = vxxev + v2
xev (3.29b)

and the second potential equation for hierarchy (3.4) with n = 2 has the form

wt = w3x. (3.30)

The second-degree potential symmetries of the Burgers’ hierarchy (3.4) for n = 2 would
follow from the Lie point symmetries of the combined auxiliary systems (3.18a)–(3.18b) and
(3.21a )–(3.21b), i.e. the Lie point symmetries of the system

vx = u (3.31a)

vt = uxx + 3uux + u3 (3.31b)

wx = ev (3.31c)

wt = vxxev + v2
xev. (3.31d)

We obtain the following Lie point symmetries of system (3.31a)–(3.31d):

Z1 =
∂

∂t
, Z2 =

∂

∂x
(3.32a)

Z3 = x
∂

∂x
+ 3t

∂

∂t
− u

∂

∂u
+ w

∂

∂w
, Z4 = w

∂

∂w
+

∂

∂v
(3.32b)

Z∞ = e−v

(
u

∂f

∂x
− ∂2f

∂x2

)
∂

∂u
− e−v ∂f

∂x

∂

∂v
− f(x, t)

∂

∂w
, (3.32c)

where ft − f3x = 0.

It is clear that the above Lie point symmetry generators are not potential symmetries of
second degree for the third-order Burgers’ equation (3.27). The same happens for the case
n = 3, i.e., second-degree potential symmetries for the Burgers’ hierarchy appear only for
the case n = 1, namely the Burgers’ equation (3.1).

From the above patterns in the symmetry generators we allow ourselves the following

Supposition 3.1. There exist no second-degree potential symmetries for the Burgers’ hier-
archy (3.4) for n > 1 and the maximum set of first-degree potential symmetries for the
hierarchy (3.4) for all natural numbers n > 1, is given by the following Lie symmetry
generators:

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(3.33a)

Z4 = x
∂

∂x
+ (n + 1)t

∂

∂t
− u

∂

∂u
(3.33b)

Z∞ = e−v

(
∂f

∂x
− uf(x, t)

)
∂

∂u
+ f(x, t)e−v ∂

∂v
, (3.33c)

where ft − f(n+1)x = 0.
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3.3. Reciprocal-Bäcklund transformations of the Burgers’ hierarchy

With the general expressions of the conserved current, (3.12b), and flux, (3.12c), together
with the relation (3.13) for the Burgers’ hierarchy (3.4), we use the opportunity to transform
the hierarchy by a reciprocal-Bäcklund transformation (see e.g. [17] and [6]) and hence
present a transformed Burgers’ hierarchy. The following two Propositions give the result for
both the Burgers’ hierarchy (3.4) and the potential Burgers’ hierarchy (3.5):

Proposition 3.2. Under the reciprocal-Bäcklund transformation

R :

⎧⎪⎨
⎪⎩

dy(x, t) = Φt
1dx − Φx

1,ndt

dτ(x, t) = dt

U(y, τ) = u

(3.34)

with

Φt
1 = u, Φx

1,n = −Pn[u]u (3.35)

the Burgers’ hierarchy

ut = Rn[u]ux, where R[u] = Dx[u] + u + uxD−1
x ◦ 1, (3.36)

transforms to the hierarchy

Uτ = {UDy[U ] − Uy}{Pn[U ]U}, (3.37)

where

P [U ] = UDy[U ] + U. (3.38)

Proposition 3.3. Under the reciprocal-Bäcklund transformation

R :

⎧⎪⎨
⎪⎩

dy(x, t) = Φt
2dx − Φx

2,ndt

dτ(x, t) = dt

V (y, τ) = v

(3.39)

with

Φt
2 = ev, Φx

2,n = −Dn
x [v]ev , (3.40)

the potential Burgers’ hierarchy

vt = Pn[vx] vx, where P [vx] = Dx[vx] + vx, (3.41)

transforms to the hierarchy

Vτ = {Dy[V ] − Vy}{(eV Dy[V ])neV }. (3.42)

We give some explicit examples of the equations (3.37) and (3.42):
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Under the reciprocal-Bäcklund transformation (3.34)–(3.35) the Burgers’ hierarchy
(3.36) with n = 1 transforms to

Uτ = U2Uyy + U2Uy (3.43)

and for n = 2 we obtain

Uτ = U3U3y + 3U3Uyy + 3U2UyUyy + 3U2U2
y + 2U3Uy. (3.44)

Under the reciprocal-Bäcklund transformation (3.39)–(3.40) the potential Burgers’ hierar-
chy (3.41) with n = 1 transforms to

Vτ = e2V (Vyy + V 2
y ) (3.45)

and for n = 2 we obtain

Vτ = e3V (V3y + 6VyVyy + 4V 3
y ). (3.46)

4. The Calogero–Degasperis–Ibragimov–Shabat Hierarchy

The third-order evolution equation

ut = u3x + 3u2uxx + 9uu2
x + 3u4ux (4.1)

is known as the Calogero–Degasperis–Ibragimov–Shabat equation and is a well-known C-
integrable evolution equation which can be linearised by a nonlocal transformation [19,4,16].
In [16] we derived a second-order nonlocal recursion operator for (4.1), namely

R[u] = D2
x + 2u2Dx + 10uux + u4

+ 2
(

uxx + 2u2ux + 2ue−2
R

u2 dx

∫
e2

R
u2 dx u2

x dx

)
D−1

x ◦ u

− 2ue−2
R

u2 dxD−1
x ◦

[
(uxx + 2u2ux)e2

R
u2 dx + 2u

∫
e2

R
u2 dx u2

x dx

]
(4.2)

and also reported some nonlocal symmetries that follow from this recursion operator.
In terms of the recursion operator (4.2) a local Calogero–Degasperis–Ibragimov–Shabat
hierarchy of C-integrable evolution equations can be presented in the form

ut = Rn[u]ux, n = 1, 2, . . . . (4.3)

Equation (4.1) then corresponds to (4.3) with n = 1. For n = 2 the second member of
hierarchy (4.3) is

ut = u5x + 5u2u4x + 40uuxu3x + 25uu2
xx + 50u2

xuxx + 10u4u3x

+ 120u3uxuxx + 140u2u3
x + 10u6uxx + 70u5u2

x + 5u8ux. (4.4)

We now investigate the nonlocal symmetry structure in the sense of its first- and second-
degree potential symmetries and obtain the corresponding nonlocal conservation laws. We
show that the linearisations of (4.1) and (4.4) follow directly from the second potentialisation
of (4.1) and (4.4), respectively.
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4.1. Nonlocal conservation laws and linearisation of the

Calogero–Degasperis–Ibragimov–Shabat hierarchy

The results for the first and second members of the hierarchy (4.3) are given by the following
two propositions:

Proposition 4.1. The Calogero–Degasperis–Ibragimov–Shabat equation (4.1),

ut = u3x + 3u2uxx + 9uu2
x + 3u4ux,

admits a first potentialisation of the form

vt = v3x − 3
4

v2
xx

vx
+ 3vxvxx + v3

x (4.5)

and second potentialisation of the form

wt = w3x, (4.6)

where

vx = u2 (4.7a)

vt = 2uuxx − u2
x + 6u3ux + u6 (4.7b)

wx = evv1/2
x (4.7c)

wt = ev

(
1
2
v−1/2
x v3x − 1

4
v−3/2
x v2

xx + 2v1/2
x vxx + v5/2

x

)
. (4.7d)

The corresponding nonlocal conserved current, Φt, and flux, Φx, are

Φt = ue
R

u2 dx (4.8a)

Φx = −(uxx + 4u2ux + u5)e
R

u2 dx (4.8b)

and the linearising transformation that transforms (4.1) to (4.6) is

wx = ue
R

u2 dx. (4.9)

For the second member of the Calogero–Degasperis–Ibragimov–Shabat hierarchy we
have

Proposition 4.2. The second Calogero–Degasperis–Ibragimov–Shabat equation (4.4),

ut = u5x + 5u2u4x + 40uuxu3x + 25uu2
xx + 50u2

xuxx + 10u4u3x

+ 120u3uxuxx + 140u2u3
x + 10u6uxx + 70u5u2

x + 5u8ux,

admits a first potentialisation of the form

vt = v5x + 5vxv4x − 5
2
v−1
x vxxv4x + 10v2

xv3x + 5vxxv3x + 5v−2
x v2

xxv3x

− 5
4
v−1
x v2

3x − 35
16

v−3
x v4

xx − 5
2
v−1
x v3

xx +
25
2

vxv2
xx + 10v3

xvxx + v5
x (4.10)
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and second potentialisation of the form

wt = w5x, (4.11)

where

vx = u2 (4.12a)

vt = 2uu4x − 2uxu3x + u2
xx + 10u3u3x + 50u2uxuxx + 20u5uxx + 70u4u2

x

+ 20u7ux + u10 (4.12b)

wx = evv1/2
x (4.12c)

wt = ev

(
1
2
v−1/2
x v5x − v−3/2

x vxxv4x + 3v1/2
x v4x − 3

4
v−3/2
x v2

3x +
9
4
v−5/2
x v2

xxv3x

+ 2v−1/2
x vxxv3x + 7v3/2

x v3x − 15
16

v−7/2
x v4

xx +
15
2

v1/2
x v2

xx + 8v5/2
x vxx + v9/2

x

)
. (4.12d)

The corresponding nonlocal conserved current, Φt, and flux, Φx, are

Φt = ue
R

u2 dx (4.13a)

Φx = −(u4x + 26uuxuxx + 6u2u3x + 8u3
x + 44u3u2

x

+ 14u4uxx + 16u6ux + u9)e
R

u2 dx (4.13b)

and the linearising transformation that transforms (4.4) to (4.11) is

wx = ue
R

u2 dx. (4.14)

In order to derive the auxiliary systems for the Calogero–Degasperis–Ibragimov–Shabat
hierarchy, (4.3), we need the integrating factors of this hierarchy and the integrating factors
of the corresponding potential hierarchy. For the first two members of the hierarchy the
integrating factors are given by the following

Lemma 4.1. The third-order Calogero–Degasperis–Ibragimov–Shabat equation, (4.1), and
the fifth-order Calogero–Degasperis–Ibragimov–Shabat equation, (4.4), admit only one inte-
grating factor, Λ, namely

Λ(x, u, ux, . . .) = u. (4.15)

For the first potentialisation of (4.1), namely for the third-order potential equation (4.5),
the complete set of integrating factors of second-order are

Λ(x, v, vx, vxx) = a(x)evv−3/2
x vxx + 2a(x)evv1/2

x − 2evv−1/2
x

da

dx
, (4.16)

where

d3a

dx3
= 0, (4.17)

and for the first potentialisation of (4.4), namely for the fifth-order potential equation (4.10),
the complete set of integrating factors of second-order are

Λ(x, v, vx, vxx) = a(x)evv−3/2
x vxx + 2a(x)evv1/2

x − 2evv−1/2
x

da

dx
, (4.18)
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where

d5a

dx5
= 0. (4.19)

To prove Lemma 4.1 we just verify (2.6).
Lemma 4.1 tempts us to make the following

Supposition 4.1. All first potentialisations of the Calogero–Degasperis–Ibragimov–Shabat
hierarchy, (4.3), for all n ∈ N admit the following complete set of integrating factors of
second order :

Λ(x, u, ux, uxx; n) = a(x)evv−3/2
x vxx + 2a(x)evv1/2

x − 2evv−1/2
x

da

dx
, (4.20)

where

dna

dxn
= 0. (4.21)

Remark on the proof of Proposition 4.1 and Proposition 4.2:

For the linearisations of (4.1) and (4.4) in (4.6) and (4.11), respectively, we make use of the
integrating factor

Λ = evv−3/4
x vxx + 2evv1/2

x , (4.22)

which corresponds to the case a(x) = 1 in Lemma 4.1. If one uses instead the explicitly
x-dependent integrating factors, the resulting linear equations also depend explicitly on x.

4.2. Potential symmetries of the Calogero–Degasperis–Ibragimov–Shabat

hierarchy

We now study the symmetry properties of the auxiliary systems for the Calogero–
Degasperis–Ibragimov–Shabat hierarchy (4.3).

Case n = 1: The first-degree potential symmetries of the first member of the hierarchy
(4.3), i.e. (4.1), are given by the Lie point symmetries of the first auxiliary system (4.7a)–
(4.7b). We obtain

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(4.23a)

Z4 =
1
3
x

∂

∂x
+ t

∂

∂t
− 1

6
u

∂

∂u
, Z5 = ue−2v ∂

∂u
− e−2v ∂

∂v
. (4.23b)

The second-degree potential symmetries of the first member of the hierarchy (4.3) are given
by the Lie point symmetries of the combined auxiliary system (4.7a)–(4.7d). We obtain

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂w
(4.24a)

Z4 =
1
3
x

∂

∂x
+ t

∂

∂t
− 1

6
u

∂

∂u
+

1
6
w

∂

∂w
, Z5 =

∂

∂v
+ w

∂

∂w
(4.24b)
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Z6 =
(

1
2
e−v − uwe−2v

)
∂

∂u
+ we−2v ∂

∂v
+

1
2
x

∂

∂w
(4.24c)

Z7 = ue−2v ∂

∂u
− e−2v ∂

∂v
. (4.24d)

Case n = 2: The first-degree potential symmetries of the second member of the hierarchy
(4.3), i.e. (4.4), are given by the Lie point symmetries of the first auxiliary system (4.12a)–
(4.12b). We obtain

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(4.25a)

Z4 =
1
5
x

∂

∂x
+ t

∂

∂t
− 1

10
u

∂

∂u
, Z5 = ue−2v ∂

∂u
− e−2v ∂

∂v
. (4.25b)

The complete set of Lie point symmetries of the auxiliary system (4.12a)–(4.12d) are

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂w
(4.26a)

Z4 =
1
5
x

∂

∂x
+ t

∂

∂t
− 1

10
u

∂

∂u
+

1
10

w
∂

∂w
, Z5 =

∂

∂v
+ w

∂

∂w
(4.26b)

Z6 = ue−2v ∂

∂u
− e−2v ∂

∂v
. (4.26c)

We note that the second member of the hierarchy (4.4) does not admit second-degree
potential symmetries.

We allow ourselves the following

Supposition 4.2. There exist no second-degree potential symmetries for the Calogero–
Degasperis–Ibragimov–Shabat hierarchy, (4.3), for n > 1 and the maximum set of first-
degree potential symmetries for the hierarchy (4.3) is given by the following Lie symmetry
generators:

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂v
(4.27a)

Z4 =
1
n

x
∂

∂x
+ t

∂

∂t
− 1

2n
u

∂

∂u
, Z5 = ue−2v ∂

∂u
− e−2v ∂

∂v
, (4.27b)

for all natural numbers n > 1.

5. Concluding Remarks

We have introduced second-degree potential symmetries in Definition 2.1 and studied the
Burgers’ hierarchy and the Calogero–Degasperis–Ibragimov–Shabat hierarchy. We obtained
second-degree potential symmetries only for the first members of the hierarchies. Nonlocal
conservation laws and nonlocal transformations which linearise the hierarchies were obtained
through the second potentialisations. It would be interesting to investigate higher-degree
potential symmetries further for other symmetry-integrable hierarchies and linearisable hier-
archies as well as for systems of evolution equations. Preliminary calculations show that
systematic potentialisation of some symmetry-integrable equations, such as the Krichever–
Novikov equation, lead to interesting auto-Bäcklund transformations for the equations.
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A complete description of the potentialisation for a class of Krichiver–Novikov equations is
given in [9].
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