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We provide the complete classification of all global analytic first integrals of the simplified
multistrain/two-stream model for tuberculosis and dengue fever that can be written as

ẋ = x(β1 − b − γ1 − β1x − (β1 − ν)y), ẏ = y(β2 − b − γ2 − (β2 + ν)x − β2y),

with β1, β2, b, γ1, γ2, ν ∈ R.
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1. Introduction

The nonlinear ordinary differential equations or simply the differential systems appear in
many branches of applied mathematics, physics, and in general in applied sciences. Since
generically the differential systems cannot be solved explicitly, the qualitative information
provided by the theory of dynamical systems is, in general, the best that one can expect to
obtain.

For a two-dimensional differential system the existence of a first integral determines
completely its phase portrait, i.e. the description of the domain of definition of the differ-
ential system as union of all the orbits or trajectories of the system. To provide the phase
portrait of a differential system is the main objective of the qualitative theory of the differ-
ential systems. Thus for two-dimensional differential systems one of the main questions is:
How to recognize if a given planar differential system has a first integral?

In this paper we characterize for a planar differential system depending on six parameters
what are the values of these parameters for which there exists a global analytic first integral.
For those systems having such a first integral it is possible to describe their phase portraits,
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and to understand all their qualitative dynamics. Moreover these integrable systems also
provide some information about the dynamics of the nearest systems. Now we shall present
the planar differential system whose integrability we shall study in this paper.

Incomplete treatment of patients with infectious tuberculosis may not only lead to
relapse but also to the development of antibiotic resistant, which is one of the most serious
health problems in our society. In this direction there are some different models. The dif-
ferential system studied here is the simplified multistrain model of [2] for the transmition
of tuberculosis and to the coupled two-stream vector-based model in [3]. This model has
been poorly studied up to now, in the sense that only the behavior of the dynamics near the
equilibrium points has been well understood, see [3]. Better contributions for understanding
the global dynamics of this model has been done in [7] from the viewpoint of symmetry
analysis and in [8] using the singularity analysis theory, where the authors identify some
combinations of parameters for which the system has a first integral. Our goal is to provide
a complete description of all global analytic first integrals that this system exhibits for
different sets of values of the parameters.

More precisely, the model which we want to discuss in detail was presented in [9] (see
Eq. (14)). This model is

ẋ=x(−b − γ1 + νy + β1z),
ẏ = y(−b − γ2 − νx + β2z),
ż =−b(z − 1) + γ1x + γ2y − (β1x + β2y)z,

(1)

where β1 and β2 represent the infection rates for the two strains in the case of the tuber-
culosis model and for the two vectors in the Dengue fever model, ν is the common contact
rate of infection, b is the common birth and death rate and γ1 and γ2 are the recovery
rates. This model is a caricature of the system in [2] and has two infections compartments
corresponding to the two infectious agents. The variables represent proportions of a con-
stant population which has been scaled to unity, that is, x + y + z = 1. Then imposing the
constraint z = 1 − x − y to our model (1) we get that the three-dimensional system (1)
becomes the two-dimensional system

ẋ= x(β1 − b − γ1 − β1x − (β1 − ν)y),
ẏ = y(β2 − b − γ2 − (β2 + ν)x − β2y),

(2)

in R2.
Our objective is to characterize the existence of global analytic first integrals of system

(2). Here a global analytic first integral or simply an analytic first integral is a non-constant
analytic function H : R2 → R whose domain of definition is the whole R2, and it is constant
on the solutions of system (2). This last assertion means that for any solution (x(t), y(t))
of (2) we have that

dH

dt
(x(t), y(t)) =

∂H

∂x
ẋ +

∂H

∂y
ẏ = 0.

We shall provide a full classification of the existence of global analytic first integrals for
system (2).
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Our main theorem is the following. The explicit expressions for the global analytic first
integrals can be found in the proof of the theorem. Along this paper N denotes the set
of positive integers, Z+ denotes the set of non-negative integers, Q+ denotes the set of
non-negative rational numbers and Q− denotes the set of negative rational numbers.

Theorem 1. The unique systems (2) having a global analytic first integral are the following
ones.

(a) β1 = 0, β2 − b − γ2 �= 0 with

(a.1) ν = 0 and b = −γ1;
(a.2) ν = 0 and β2 = 0 and (b + γ1)/(b + γ2) ∈ Q−;
(a.3) ν �= 0, β2 = 0, (b + γ1)/(−b − γ2) ∈ Q+ \ {0};
(a.4) ν(ν + β2) �= 0, b + γ1 = 0, β2 ∈ Q+.

(b) β1 = 0, β2 − b − γ2 = 0 with

(b.1) ν = 0 and b = −γ1;
(b.2) ν = 0 and β2 = 0;
(b.3) ν �= 0, b + γ1 = 0, β2/ν ∈ Q+;
(b.4) ν(b + γ1) �= 0, β2 = 0.

(c) β1 �= 0, β2 − b − γ2 = 0 with

(c.1) ν = 0 and β2 = 0;
(c.2) ν �= 0, β2 = 0, and β1 ∈ Q− ∪ {0};
(c.3) β2(β2 + ν) �= 0, β1 − b − γ1 = 0,

( β1

β2+ν , β1−ν
β2

) �= (1, 1) and β1−β2−ν
β2+ν , (1 − ν +

β1)
β1(β2+ν−β1)

β2(β2+ν) and β1−ν
β2

− β1

β2+ν have all the same signs.

(d) β1(β2 − β1 + ν)(β2 − b − γ2) �= 0, γ1 = −(b(p + q) + γ2q)/p, β2 = −β1p/q, ν =
β1(qq1 − pp1)/(qq1), with p, q, p1, q1 ∈ N and pp1 − qq1 ≥ 0.

The proof of Theorem 1 is given in Sec. 2.

2. Proof of Theorem 1

Note that system (2) is a special case of the quadratic Lotka–Volterra systems

ẋ= x(ax + by + c),
ẏ = y(Ax + By + C),

(3)

where a, b, c,A,B,C ∈ R. The existence of global analytic first integrals for system (3)
was been studied in [5]. The authors in [5] reduce the study of the 6 parameter family of
the quadratic Lotka–Volterra system (3) to the study of 12 subfamilies having 1, 2, 3 or
4 parameters. More precisely, for completeness of the paper, we provide the main results
concerning the global analytic integrability of system (3) in the appendix of the paper. The
strategy of the proof of Theorem 1 will be as follows: we will put system (2) in one of the
subfamilies of system (3) in Theorem 4 and then we will apply the results of Theorem 5.
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2.1. Preliminary results

In this section we introduce two auxiliary results that will be used through the paper. We
write Eq. (2) as the system

ẋ = f1(x, y), ẏ = f2(x, y). (4)

Let f(x, y) = (f1(x, y), f2(x, y)). We will denote by Df (0) the Jacobian matrix of system
(14) at (x, y) = (0, 0) and by Df the Jacobian matrix of system (14) at an arbitrary point
(x, y) that will be explicitly specified.

The following result is due to Poincaré (see [1]) and its proof can be found in [4].

Theorem 2. Assume that the eigenvalues λ1 and λ2 of Df at some singular point (x̄, ȳ)
do not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z+ with k1 + k2 > 0.

Then system (14) has no global analytic first integrals.

The following result was proved in [6].

Theorem 3. Assume that the eigenvalues λ1 and λ2 of Df at some singular point (x, y) =
(x̄, ȳ) satisfy that λ1 = 0 and λ2 �= 0. Then system (14) has no global analytic first integrals
if the singular point (x, y) = (x̄, ȳ) is isolated.

2.2. Proof of Theorem 1

We separate the proof into different cases.

Case 1: If β1(β2 − β1 + ν)(β2 − b − γ2) = 0. We consider different subcases.

Subcase 1.1: If β1 = 0, β2 − b− γ2 �= 0 and −β2 + β1 − ν arbitrary. Then doing the rescaling

(x, y, t) →
(

αx, βy,
t

β2 − b − γ2

)

in system (2) we obtain the system

ẋ = x

(
νβ

β2 − b − γ2
y − b + γ1

β2 − b − γ2

)
,

ẏ = y

(
− (β2 + ν)α

β2 − b − γ2
x − β2β

β2 − b − γ2
y + 1

)
.

(5)

We consider three subcases.

Subcase 1.1.1: ν = 0. Then system (2) becomes

ẋ = − b + γ1

β2 − b − γ2
x,

ẏ = y

(
− β2α

β2 − b − γ2
x − β2β

β2 − b − γ2
y + 1

)
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which is system (lv2) (see Theorem 4). We can take α = β = 1. In view of Theorem 5, we
have a global analytic first integral if and only if:

(1) b = −γ1 and in this case a global analytic first integral is H = x.
(2) β2 = 0 and b+γ1

b+γ2
= −p

q with p, q ∈ N. Then a global analytic first integral is H = xqyp.

Subcase 1.1.2: ν �= 0 and β2 + ν = 0. Note that β2 �= 0. Taking β = (β2 − b − γ2)/ν, system
(5) becomes

ẋ = x

(
y − b + γ1

β2 − b − γ2

)
, ẏ = y(y + 1),

which is system (lv3), after a redefinition of the parameters (see Theorem 4). In view of
Theorem 5, and since the coefficient of y2 in ẏ is 1, in this subcase there is no analytic first
integral.
Subcase 1.1.3: ν(β2 + ν) �= 0. Taking

α = −β2 − b − γ2

β2 + ν
and β =

β2 − b − γ2

ν
,

system (5) becomes

ẋ = x

(
y − b + γ1

β2 − b − γ2

)
, ẏ = y

(
x − β2

ν
y + 1

)
. (6)

We consider two subcases.

Subcase 1.1.3.1: b + γ1 �= 0.
We first assume b+γ1

β2−b−γ2
�∈ Q+. The eigenvalues of Df (0) are − b+γ1

β2−b−γ2
and 1. By the

hypotheses for any k1, k2 ∈ Z+ with k1 + k2 > 0 we have k1 − k2
b+γ1

β2−b−γ2
�= 0. Thus, by

Theorem 2 system (6) has no global analytic first integrals.
We assume that b+γ1

β2−b−γ2
∈ Q+ \ 0. We write it as b+γ1

β2−b−γ2
= p/q with p, q ∈ N. We

consider different subcases.

Subcase 1.1.3.1.1: β2 = 0. In this case system (6) becomes ẋ = x(y − p/q) and ẏ = y(x+ 1).
For this system it is easy to check that eq(x−y)xqyp is a first integral which is global analytic.
Subcase 1.1.3.1.2: β2

ν �∈ Q+. The eigenvalues of Df (0, ν/β2) are ν
β2

− p
q and −1. By the

hypotheses for any k1, k2 ∈ Z+ with k1 + k2 > 0 we have −k1 − k2(− ν
β2

+ p
q ) �= 0. Thus, by

Theorem 2 system (6) has no global analytic first integrals.
Subcase 1.1.3.1.3: β2/ν = p1/q1 with p1, q1 ∈ N. Assume now pp1−qq1 ≤ 0. The eigenvalues
of Df ((pp1 − qq1)/(qq1), p/q) are

λ1,2 =
−pp1

2qq1
± 1

2

√
(pp1)2

(qq1)2
+ 4

p

q2q1
(pp1 − qq1).

If pp1− qq1 = 0, then the eigenvalues of Df ((pp1 − qq1)/(qq1), p/q) are λ1 = −1 and λ2 = 0.
Therefore, since (x, y) = ((pp1 − qq1)/(qq1), p/q) is isolated, by Theorem 3 we get that
system (6) has no analytic first integrals.
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If pp1 − qq1 < 0, then the eigenvalues of Df ((pp1 − qq1)/(qq1), p/q) satisfy λ1λ2 =
p(qq1−pp1)

q2q1
> 0. Therefore, for any k1, k2 ∈ Z+ with k1+k2 > 0, we have that λ1k1+λ2k2 �= 0.

Thus by Theorem 2 we get that system (6) has no analytic first integrals.
It remains to study the case pp1 − qq1 > 0. System (6) becomes

ẋ = x

(
y − p

q

)
, ẏ = y

(
x − p1

q1
y + 1

)
. (7)

We will proceed by contradiction. Assume that F (x, y) is an analytic first integral of system
(7). Without loss of generality we can always assume that it has no constant term. Then
F (x, y) must satisfy

∂F

∂x
x

(
y − p

q

)
+ y

(
x − p1

q1
y + 1

)
∂F

∂y
= 0. (8)

We write

F (x, y) =
∑
k≥0

Fk(y)xk. (9)

We will prove by induction that

Fk(y) = 0 for k ≥ 0. (10)

Clearly, F0(y) satisfies (8) restricted to x = 0, that is,

y

(
−p1

q1
− y + 1

)
dF0

dy
= 0,

and since F has no constant term F0(y) = 0 and (10) is proved for k = 0. Now we assume
that (10) is true for k = N − 1 (with N ≥ 1) and we will prove it for k = N . In view of (9)
we have

F (x, y) = xNG(x, y) = xN
∑
k≥0

FN+k(y)xk,

where G(x, y) satisfies, after simplifying by xN ,

N

(
y − p

q

)
G + x

(
y − p

q

)
∂G

∂x
+ y

(
x − p1

q1
y + 1

)
∂G

∂y
= 0. (11)

Restricting (11) to x = 0 (since G(0, y) = FN (y)) we get

N

(
y − p

q

)
FN (y) + y

(
−p1

q1
y + 1

)
dFN

dy
= 0

that is

dFN

FN
= −

N
(
y − p

q

)
y
(−p1

q1
y + 1

) dy

which yields

FN (y) = KNy
Np
q (q1 − p1y)

N
p1q

(qq1−pp1), KN ∈ R.
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Since qq1 − pp1 < 0 and FN (y) must be global analytic it follows that KN = 0 and then
FN (y) = 0 which concludes the proof of (10).

Subcase 1.1.3.2: b + γ1 = 0. We obtain

ẋ = xy, ẏ = y(x − β2y + 1),

which is system (lv4) (see Theorem 4). In view of Theorem 5, it has a global analytic first
integral if and only if one of the following two conditions hold:

(1) β2 = 0 and a global analytic first integral is H = xex−y;
(2) β2 = p/q with p, q ∈ N and a global analytic first integral is H = xp(y− (q/p)− [q/(q +

p)]x)q.

Subcase 1.2: β1 = 0, β2 − b − γ2 = 0 and β2 + ν arbitrary. Then doing the rescaling
(x, y, t) → (αx, βy, γt) in system (3) we obtain the system

ẋ = x(νβγy − (b + γ1)γ),
ẏ = y(−(β2 + ν)αγx − β2βγy).

(12)

We consider three subcases.

Subcase 1.2.1: ν = 0. We take α = β = γ = 1 and we obtain the system

ẋ = −(b + γ1)x, ẏ = −β2y(x + y),

which is a particular case of system (lv2) (see Theorem 4). By Theorem 5 we have a global
analytic first integral if and only if:

(1) b + γ1 = 0, and a global analytic first integral is H = x.
(2) β2 = 0 and a global analytic first integral is H = y.

Subcase 1.2.2: ν �= 0 and b + γ1 = 0. Taking β = 1
ν , γ = 1 and α = 1 in Eq. (12) we get

ẋ = xy, ẏ = y

(
−(β2 + ν)x − β2

ν
y

)
,

which is a particular case of system (lv5) (see Theorem 4). By Theorem 5, we have a global
analytic first integral if and only if one of the following two conditions hold:

(1) β2 = 0 and a global analytic first integral is H = −(β2 + ν)x − y.
(2) β2 = pν/q with p, q ∈ N and a global analytic first integral is H = xp(−(β2 + ν)qx −

(p + q)y)q.

Subcase 1.2.3: ν(b + γ1) �= 0. Taking β = − b+γ1

ν and γ = − 1
b+γ1

in Eq. (12) we get

ẋ = x(y + 1), ẏ = y

(
β2 + ν

b + γ1
αx − β2

ν
y

)
.

We consider two subcases.

Subcase 1.2.3.1: β2 + ν = 0. Then

ẋ = x(y + 1), ẏ = y2
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which is a particular case of system (lv6) (see Theorem 4). By Theorem 5 it has no global
first integral.

Subcase 1.2.3.2: β2 + ν �= 0. Taking α = b+γ1

β2+ν we obtain

ẋ = x(y + 1), ẏ = y

(
x − β2

ν
y

)

which is system (lv7) (see Theorem 4). In view of Theorem 5 we have a global analytic first
integral if and only if β2 = 0 and then H = yey−x.

Subcase 1.3: β1 �= 0, β2 − b − γ2 = 0 and β1 − β2 − ν arbitrary. Then doing the rescaling
(x, y, t) → (αx, βy, γt) in system (2) we obtain

ẋ= x(−β1αγx + (ν − β1)βγy + (β1 − b − γ1)γ),
ẏ = y(−(β2 + ν)αγx − β2βγy).

We consider four different subcases.

Subcase 1.3.1: β2 + ν = 0. Then we take α = β = γ = 1 and we obtain the system

ẋ = x(−β1x − (β1 + β2)y + (β1 − b − γ1)),
ẏ = −β2y

2,

which is system (lv6) (see Theorem 4). In view of Theorem 5 it has a global analytic first
integral if and only if β2 = 0 and in this case a global analytic first integral is H = y.

Subcase 1.3.2: β2 +ν �= 0 and β2 = 0. Taking α = − 1
ν , γ = 1 and β = − 1

ν we get the system

ẋ = x

(
β1

ν
x − (ν − β1)y + (β1 − b − γ1)

)
, ẏ = xy,

which is system (lv8) (see Theorem 4). In view of Theorem 5 we have that it has a global
analytic first integrals if and only if one of the following conditions hold:

(1) β1 = 0 then a global analytic first integral is H = yb+γ1ex−νy.
(2) β1 = −p/q with p, q ∈ N then a global analytic first integral is

H = yp

(
p + q

q
(b + γ1 − β1) +

p

q
x +

p2

q2
x − p

q
(ν − β1)y

)q

.

Subcase 1.3.3: β2(β2 + ν) �= 0 and β1 − b − γ1 = 0. Taking α = − 1
β2+ν , γ = 1 and β = − 1

β2

we get that system (2) becomes

ẋ = x

(
β1

β2 + ν
x − ν − β1

β2
y

)
, ẏ = x(x + y),

which is the same as system (lv9) (see Theorem 4). In view of Theorem 5 it has a global
analytic first integral if and only if

( β1

β2+ν , β1−ν
β2

) �= (1, 1) and β1−β2−ν
β2+ν , (1−ν+β1)

β1(β2+ν−β1)
β2(β2+ν)

and β1−ν
β2

− β1

β2+ν have all the same signs, and a global analytic first integral is

H = x
|β1−β2−ν

β2+ν
|
y
|β1(β2+ν−β1)

β2(β2+ν)
|
(

β1 − β2 − ν

β2 + ν
x +

β2 − ν + β1

β2
y

)|β1−ν
β2

− β1
β2+ν

|
.
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Subcase 1.3.4: β2(β2 + ν)(β1 − b − γ1) �= 0. Taking γ = 1
β1−b−γ1

, α = −β1−b−γ1

β2+ν , and

β = −β1−b−γ1

β2
, we get

ẋ = x

(
β1

β2 + ν
x +

β1 − ν

β2
y + 1

)
, ẏ = y(x + y),

which is system (lv10) (see Theorem 4). In view of Theorem 5 we have no global analytic
first integrals.

Subcase 1.4: β1 �= 0, β2 − b− γ2 �= 0 and ν = β1 − β2. Then, doing the rescaling of variables

(x, y, t) →
(
−β2 − b − γ2

β1
x, βy, (β2 − b − γ2)t

)

in system (3) we obtain the system

ẋ= x

(
x − β2β

β2 − b − γ2
y +

β1 − b − γ1

β2 − b − γ2

)
,

ẏ = y

(
x − β2β

β2 − b − γ2
y + 1

)
.

(13)

We distinguish the following two subcases.

Subcase 1.4.1: β2 = 0. Then we obtain that system (13) becomes

ẋ =x

(
x +

β1 − b − γ1

−b − γ2

)
,

ẏ = y(x + 1)
(14)

which is system (lv11) (see Theorem 4), and by Theorem 5 we have no global analytic first
integrals.

Subcase 1.4.2: β2 �= 0. Taking β = −β2−b−γ2

β2
, system (13) goes over to the system

ẋ = x

(
x + y +

β1 − b − γ1

β2 − b − γ2

)
,

ẏ = y(x + y + 1).
(15)

We first consider the case in which β1−b−γ1

β2−b−γ2
�∈ Q−. In this case the eigenvalues of Df (0)

are β1−b−γ1

β2−b−γ2
and 1. By the hypotheses for any k1, k2 ∈ Z+ with k1 + k2 > 0, we have

k1 + k2
β1−b−γ1

β2−b−γ2
�= 0. Thus by Theorem 2 system (15) has no analytic first integrals.

Now we consider the case in which β1 − b− γ1 = 0. In this case the eigenvalues of Df (0)
are 1 and 0. Therefore, since (x, y) = (0, 0) is isolated, by Theorem 3 we get that system
(15) has no analytic first integrals.
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Finally, we consider the case β1−b−γ1

β2−b−γ2
∈ Q− \ {0}. Let β1−b−γ1

β2−b−γ2
= −p/q ∈ Q−. Then

system (15) becomes

ẋ= x(x + y − p/q),
ẏ = y(−(β2 + ν)x + y + 1).

(16)

The eigenvalues of Df (0,−1) are −1−p/q and −1. Thus, for any k1, k2 ∈ Z+ with k1+k2 > 0
we have k1(−1−p/q)−k2 �= 0. Thus by Theorem 2 system (16) has no analytic first integrals.
This concludes the proof of Theorem 1.

Case 2: If β1(β2 − β1 + ν)(β2 − b − γ2) �= 0, then making the rescaling of the variables

(x, y, t) →
(

β1 − b − γ1

−β2 + β1 − ν
x,

β1 − b − γ1

β2
y,

t

β1 − b − γ1

)
,

system (2) becomes

ẋ =x(−Bx + (C − 1)y + 1),
ẏ = y((1 − B)x − y + A),

(17)

with

A =
β2 − b − γ2

β1 − b − γ1
, B =

−β1

β2 − β1 + ν
, C = 1 − β1 − ν

β2
. (18)

We consider two subcases.

Subcase 2.1: β2(β1 − b− γ1) �= 0. In this case system (17) is of the form of system (lv1) (see
Theorem 4). Then by Theorem 5 it has a global analytic first integral if and only if

A = −p

q
, C − 1 =

p1

q1
and B =

qq1

p(p1 + q1)
,

with p, q, p1, q1 ∈ N and pp1 − qq1 ≥ 0, that is, if and only if (see (18)),

γ1 = −b(p + q) + γ2q

p
, β2 = −β1p

q
, ν =

β1(qq1 − pp1)
qq1

.

A global analytic first integral is

H = xpq1yqq1(pp1 + pq1 − qq1x + p1qy + qq1y)pp1−qq1.

Subcase 2.2: β2(β1−b−γ1) = 0. Doing the change of variables (x, y) �→ (y, x) it is immediate
to check that the expressions of β1 and β2 and γ1 and γ2 are interchanged. This change
of variables pass to a new system satisfying the condition of Case 1. So this case has been
studied and we do not obtain new cases of analytic integrability by checking it.
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Appendix

For the quadratic Lotka–Volterra systems (3) we have the following results (see [5] for their
proof).

Theorem 4. All the quadratic Lotka–Volterra systems (3) can be transformed via an affine
change of variables and a rescaling of the time to one of the following 12 systems:

(lv1) ẋ = x(ax + by + 1), ẏ = y((1 + a)x − y + C), with a(b + 1)C �= 0.
(lv2) ẋ = cx, ẏ = y(Ax + By + C), with A2 + B2 �= 0.
(lv3) ẋ = x(y + c), ẏ = y(By + 1).
(lv4) ẋ = xy, ẏ = y(x + By + 1).
(lv5) ẋ = xy, ẏ = y(Ax + By).
(lv6) ẋ = x(ax + by + c), ẏ = By2, with a2 + b2 + B2 �= 0.
(lv7) ẋ = x(y + 1), ẏ = y(x + By).
(lv8) ẋ = x(ax + by + c), ẏ = xy.
(lv9) ẋ = x(ax + by), ẏ = y(x + y).
(lv10) ẋ = x(ax + by + 1), ẏ = y(x + y).
(lv11) ẋ = x(x + c), ẏ = y(Ax + 1), with cA = 0.
(lv12) ẋ = x(x + y + 1), ẏ = y(Ax + y + 1).

Theorem 5. The unique Lotka–Volterra systems (3) having a global analytic first integral
H = H(x, y) are the following ones.

(a) Systems (lv1) with C = −p/q, b = p1/q1, a = −qq1/(p(p1 + q1)) with p, q, p1, q1 ∈ N

and pp1 − qq1 ≥ 0, then H = xpq1yqq1(pp1 + pq1 − qq1x + p1qy + qq1y)pp1−qq1.
(b) Systems (lv2) with:

(b.1) c = 0, then H = x;
(b.2) c > 0 and B = C = 0, then H = e−Axyc;
(b.3) c < 0 and B = C = 0, then H = eAxy−c;
(b.4) c/C = −p/q and B = 0 with p, q ∈ N, then H = eAqx/Cxqyp.

(c) Systems (lv3) with:
(c.1) c = B = 0, then H = xe−y;
(c.2) with c = 0, B = −p/q with p, q ∈ N, then H = xp(q − py)q;
(c.3) c = −p/q with p, q ∈ N and B = 0, then H = e−qyxqyp;
(c.4) c = −p/q, B = −p1/q1 with p, q, p1, q1 ∈ N and qq1 − pp1 ≥ 0, then H =

xp1qypp1(q1 − p1y)qq1−pp1.
(d) Systems (lv4) with:

(d.1) B = 0, then H = xex−y;
(d.2) B = −p/q with p, q ∈ N, then H = xp

(
y − q

p − q
q+px

)q
.

(e) Systems (lv5) with:
(e.1) B = 0, then H = Ax − y;
(e.2) B = −p/q with p, q ∈ N, then H = xp(Aqx − (p + q)y)q.

(f) Systems (lv6) with:
(f.1) B = 0. The analytic first integral is y;
(f.2) a = b = 0. The analytic first integral is x|B|;
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(f.3) a = 0, b > 0 and B < 0, then H = yb/xB ;
(f.4) a = 0, b < 0 and B > 0, then H = xB/yb.

(g) Systems (lv7) with B = 0, then H = yey−x.
(h) Systems (lv8) with:

(h.1) a = 0, then H = y−cex−by;
(h.2) a = −p/q with p, q ∈ N, then H = yp(−c − p

q c + p
q x + p2

q2 x − pb
q y)q.

(i) Systems (lv9) with (a, b) �= (1, 1) and a− 1, (1− b)a and b− a have all the same signs,
then H = x|a−1|y|a(1−b)|((a − 1)x + (b − 1)y)|b−a|.
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