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In [Y. Kifer, Averaging in difference equations driven by dynamical systems, Asterisque 287 (2003)
103–123] a general averaging principle for slow-fast discrete dynamical systems was presented. In
this paper we extend this method to weakly coupled slow-fast systems. For this setting we obtain
sharper estimates than in the mentioned paper.
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1. Introduction

Averaging methods is a collective name for the different methods that have been developed
to approximate the solutions of dynamical systems with two (or more) time scales. Such
systems are also referred to as slow-fast dynamical systems as some of the variables evolve
slowly while the other ones evolve rapidly. In general these two subsystems are interdepen-
dent, i.e. they are fully coupled to each other. This is for example the standard case in
slow-fast Hamiltonian systems. The problem with slow-fast systems is that in general it is
very hard to resolve their exact dynamics. This is why averaging methods are useful. The
main idea behind averaging is to approximate (often only to first order) the evolution of
the slow variables by replacing the exact contribution of the fast variables by their average
contribution. This average contribution is computed as space averages over the fast phase
space for fixed (or frozen) slow variables. A key point in the justification of the averaging
principle is to prove that the time average of the fast dynamics converges sufficiently fast
to its space average. Once the average contribution of the fast variables has been computed
it is substituted into the equations of motion of the slow variables to obtain the averaged
equations of motion of the slow dynamics. Solving this equation, which is now independent
of the fast variables, gives the averaged slow dynamics.

Averaging methods had been used for a long time before they were put on a formal
footing in the 20th century [2]. The methods have typically been tailored for the particular
problem at hand. The methods strongly depended on the form of the fast subsystem. For
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an introduction to averaging problems and results we refer to e.g. [16, 13, 9]. Anosov [1] was
the first to investigate fully coupled systems

dX

dt
= εϕ(X,Y, ε),

dY

dt
= f(X,Y, ε),

(1.1)

where Y belongs to a d-dimensional compact space. Under suitable assumptions, including
the unperturbed fast dynamics (ε = 0) being ergodic on almost every fibre, Anosov derived
an averaging method for this system. The proof involves replacing time averages of the fast
dynamics with space averages. In order to justify this replacement it is crucial to understand
how fast the time average of f converges to the space average of f . This is dealt with by
studying the rate of “ergodization” [14] on subsets of the space of initial conditions and the
amount of time the trajectories of (1.1) spend there. We make use of similar subsets in our
proof and refer to it as “the set of slow ergodization”.

Over the last decade Kifer has written several papers with new results for systems of
the general form (1.1). First in the time discrete setting [10],

Xε(n + 1) − Xε(n) = εϕ(Xε(n), Y ε(n), ε),

Y ε(n + 1) = f(Xε(n), Y ε(n), ε),
(1.2)

and later in the time continuous setting (1.1), see [9,11]. In these papers Kifer gives sufficient
conditions for the averaging principle to hold. For the averaging principle to work, there is a
crucial condition (concerning the rate of ergodization of the unperturbed fast system) which,
unfortunately, is difficult to check. Kifer proves, in [9–11] and using a different method in [12]
that this condition is met if the unperturbed fast motion for each frozen slow variable, that
is f = f(Xε(0), Y ε(n), 0), is hyperbolic. Kifer also verifies that his general averaging theory
yields Neishtadt’s [15] optimal averaging results for multifrequency systems. Hence for the
time continuous setting Kifer shows that his general theory works in the already known cases
of Anosov and Neishtadt, and for the time discrete case he proves the analogous results.
Recently Dolgopyat [4] proved that the averaging principle works if the unperturbed fast
motion is uniformly partially hyperbolic, which Kifer had conjectured.

The system we investigate in this paper is of the same type as (1.2), but we replace the
right-hand side of the first equation by εG(Xε) + ε2Φ(Xε, Y ε, ε) to weaken the coupling.
We find, using the method developed by Kifer [10], that we can make finer estimates for
the difference between the true and averaged slow dynamics (Theorem 1).

As a motivating example we note that the system

X(n + 1) − X(n) = εG(X(n)) + ε2Φ(X(n), Y (n), ε)

Y (n + 1) = f(Y (n)) + εg(X(n), Y (n), ε)
(1.3)

falls into the class of systems we are studying. Compared to [15] this system has more
complicated fast dynamics and as opposed to [5] we allow for fast systems which are not
only diagonal. System (1.3) fits within the framework of Anosov [1], compare (1.1), but we
are able to give a sharper upper bound for the approximation in this case.
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We have to impose a number of conditions on the system we are considering to prove
the averaging principle in the weakly coupled setting. Most of these conditions are quite
standard but one of the conditions, Condition 1, is not. This is the same condition Kifer uses
on the set of points in the phase space for which the time average of the unperturbed fast
map converges too slowly to its ergodic average. The condition on the rate of convergence is
stated in terms of the coupling parameter ε in the full dynamics. It is hard to verify whether
any given system satisfies Condition 1. In Sec. 3 we present three classes of examples where
Condition 1 can be verified.

For one of these examples we can strengthen the averaging theorem by sharpening some
of the estimates in the proof, that is, if the unperturbed fast map is cohomologous to
zero then we can give an upper bound on the rate of convergence (as ε → 0) between
the slow component of the true solution and the averaged solution. We use a result from
Kachurovskii’s survey paper [8] on rates of convergence in ergodic theorems to prove our
result. We note that despite having the rate of convergence in the ergodic theorem we are
not able to extend the time scale for which the approximation given by the averaging theory
is valid. This suggests that in general the averaging principle cannot be pushed further in
this direction.

Let us also mention that, in general, if an averaging method applies to the problem it is
not valid for all initial conditions, see [9] for a discussion. For an explicit example of where
the exact trajectory deviates from the averaged solution at the fastest rate possible, see [7]
and [3] where slow-fast Hamiltonian systems are studied under the assumption that the fast
dynamics spends most of its time close to periodic orbits.

The outline of this paper is as follows. We start by considering an example in Sec. 2
which illustrates how the proof of the main theorem works. In Sec. 3 we state the problem,
the conditions that need to be satisfied and the main result. This is followed by some
examples where the theorem is applicable. The section is concluded with a theorem for the
cohomologous case mentioned above. In Sec. 4 and 5 the main result and the cohomologous
case are proved respectively.

2. A First Approach

In this section we use first principles to give an understanding of the general mechanism of
averaging. Furthermore this example clearly highlights which estimates we have to improve
to push the results further, which we will do in the subsequent sections of this paper.

Our main tool is the following lemma of Gronwall type.

Lemma 1. Let b ≥ 0 and an ≥ 0 for all n ∈ N. If zn ≤ an +b
∑n−1

k=1 zk and an is increasing,
then zn ≤ an(1 + b)n−1.

The proof is elementary and goes by induction. Similar discrete Gronwall type of inequal-
ities can be found in e.g. [6] (Lemma 4.20 therein).

Consider the equation

X(n + 1) = X(n) + εG(X(n)) + ε2Φ(X(n), Y (n)), (2.1)

where Y (n) is given by some dynamical system. Suppose we approximate it with the
following equation

X(n + 1) = X(n) + εG(X(n)) + ε2Φ(X(n)), (2.2)
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where, for now, Φ is a function Φ : R
n → R

n. (Φ will later play the role of averaged Φ.)
We now estimate the size of the error. The assumptions we make on the system are that
X(n) ∈ R

n and Y ∈ M a d-dimensional compact Riemannian manifold, that G,Φ,Φ
are bounded by L and that G,Φ, f are Lipschitz in all their arguments with Lipschitz
constant L.

We are interested in estimating the difference between the true slow dynamics X(n)
and the approximated slow dynamics X(n). Let the initial condition be (X(0), Y (0)) and
choose X(0) = X(0), then the nth iterates of this point can be written as

X(n) = X(0) + ε
n−1∑
k=0

G(X(k)) + ε2
n−1∑
k=0

Φ(X(k), Y (k)) (2.3)

and

X(n) = X(0) + ε
n−1∑
k=0

G(X(k)) + ε2
n−1∑
k=0

Φ(X(k)) (2.4)

respectively. Using the assumptions that G is Lipschitz and Φ and Φ are bounded the
difference between the true dynamics and the approximated dynamics can be estimated by

|X(n) − X(n)| ≤ εL
n−1∑
k=1

|X(k) − X(k)| + ε22Ln. (2.5)

Next we want to apply Lemma 1, hence let

zn = |X(n) − X(n)|,
b = εL,

an = 2ε2Ln,

from which it is clear that b > 0 and an is an increasing sequence. Hence the lemma is
applicable to (2.5) and we get

zn ≤ (1 + εL)n−12ε2Ln. (2.6)

That is

|X(n) − X(n)| ≤ ((1 + εL)
1

εL )Lε(n−1)2ε2Ln ≤ eLε(n−1)2ε2Ln. (2.7)

Hence, for all 0 ≤ n ≤ T
ε we have

|X(n) − X(n)| ≤ 2εLTeLT , (2.8)

and

lim
ε→0

|X(n) − X(n)| = 0. (2.9)

This is as far as first principles take us without even specifying what the averaged system
looks like (only assuming that Φ is bounded). In the next section we strengthen this result by
sharpening the estimate of the second term on the right-hand side of (2.5) making it O(ε3).
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3. Set-Up of the Problem and Results

Consider a discrete dynamical system Z(n + 1) = F (Z(n)) on a manifold M. Suppose that
there is a separation of timescales on which the variables Z(n) evolve. Call the slow variables
X(n) and the fast variables Y (n), i.e. Z(n) = (X(n), Y (n)). Assume that the manifold M
can be decomposed to a direct product of a slow and fast space M = {(x, y) : x ∈ R

d, y ∈
M}, where M is an m-dimensional compact Riemannian manifold with Riemannian metric
dM . Let (Xε

x,y(n), Y ε
x,y(n)) = Fn

ε (x, y) be the nth iterate of an initial point (x, y) defined by
the following difference equations{

Xε(n + 1) − Xε(n) = εϕ(Xε(n), Y ε(n), ε)

Y ε(n + 1) = f(Xε(n), Y ε(n), ε),
(3.1)

where

ϕ(Xε(n), Y ε(n), ε) = G(Xε(n)) + εΦ(Xε(n), Y ε(n), ε), (3.2)

with the initial condition Xε(0) = x, Y ε(0) = y and where ε ∈ R is a small positive
parameter, ϕ : M → R

d, f : M → M . We will refer to the map F as the full map, the
dynamics on M as the fast dynamics and the dynamics on R

d as the slow dynamics. The
form (3.2) of ϕ(Xε(n), Y ε(n), ε) gives us a weak coupling between the fast and the slow
systems. A word on the notation in what follows: let f(x, y) = fx(y) = f(x, y, 0) and let
ϕ0(x, y, 0) = G(x) + εΦ(x, y, 0) = G(x) + εΦ(x, y).

We have to make a number of assumptions on the system described by (3.1) to prove
the averaging theorem. First we assume that the functions G(x),Φ(x, y, ε) and f(x, y, ε)
are Lipschitz in all their arguments, with Lipschitz constant L. Also assume that G(x) and
Φ(x, y, ε) are bounded by the constant L, where L > 2 is independent of ε. Let μx be a
family of probability measures on M depending measurably on x, and define

ϕ(x, ε) :=
∫

M
ϕ0(x, y, 0)dμx(y) = G(x) + ε

∫
M

Φ(x, y, 0)dμx(y), (3.3)

and

Φ(x) =
∫

M
Φ(x, y, 0)dμx(y). (3.4)

From this it follows that ϕ(x, ε) = G(x) + εΦ(x). Using these space averages we can define
the set of points where the space average of the perturbation deviates more than δ from
the time average calculated over n time steps.

Remark 1. We will assume that the fast system with a fixed slow variable has good
ergodization properties. These properties depend strongly on the choice of the measure μx.
Therefore dependence on x could be essential for Condition 1.

In the case where μx depends on x we have to make the following assumption on the
perturbation Φ ∣∣∣∣Φ(x) −

∫
M

Φ(x, y)dμz(y)
∣∣∣∣ ≤ L2|x − z| ∀x, z ∈ R

d. (3.5)
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Definition 1. (The set of slow ergodization) Let the set of slow ergodization E(n, δ) be
given by

E(n, δ) =

{
(x, y) :

∣∣∣∣∣ 1n
n−1∑
k=0

Φ(x, fk
xy) − Φ(x)

∣∣∣∣∣ > δ

}
. (3.6)

Finally we have to impose a condition on the measure of the set of slow ergodization of
system (3.1). The idea behind the condition is that in the proof of our averaging theorem
we divide the time interval of length n = T

ε into sections each of length nε
0, giving us

N(ε) ∈ N such sections and, possibly, a remainder r of length less than nε
0. On each of these

sections we want to replace the time average by a space average. Therefore we assume that
the measure of the set of slow ergodization E(nε

0, δ) and its N(ε) preimages tend to 0 as
ε → 0. More formally, let n = nε

0N(ε) + r, where 0 ≤ r < nε
0 and nε

0 ≤ (log 1
ε )1−α for some

α ∈ (0, 1). Let K ⊂ R
d be compact.

Condition 1. Let nε
0 be an integer-valued function such that nε

0 ≤ (log 1
ε )1−α for some

α ∈ (0, 1). Assume that for any T, δ > 0

max
k=1,...,

⌊
T
nε
0

⌋μ{(x, y) ∈ K × M : F
knε

0
ε (x, y) ∈ E(nε

0, δ)} → 0, (3.7)

as ε → 0, where dμ(x, y) = dμx(y)dl(x) and l is the Lebesgue measure on R
d.

It is not straightforward to check that this last assumption is fulfilled. We provide some
examples later in this section.

Remark 2. For notational purposes we define a sequence dT,K(nε
0, δ) which tends to 0 as

ε → 0. We use this sequence to bound the expression in (3.7) from above.

Now we are ready to state the main theorem.

Theorem 1. Suppose that the Lipschitz and boundedness assumptions on the functions in
(3.1) hold as well as (3.5). Assume that Condition 1 is satisfied. Then for any T > 0 and
any compact set K ⊂ R

d such that (3.7) holds

lim
ε→0

∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμx(y)dl(x) = 0, (3.8)

where Xε
x(n) is the solution of the averaged equation

Xε(n + 1) − Xε(n) = εϕ(Xε(n), ε), Xε(0) = x, (3.9)

and ϕ is defined by (3.3).

Before we consider some examples where this theorem is applicable we state some
remarks on the assumptions required by the theorem.

Remark 3. Condition 1 is simplified to

μ{(x, y) ∈ K × M ∩ E(nε
0, δ)} ≤ dK(nε

0, δ), (3.10)

if the full map Fn
ε (x, y) preserves the measure dμ(x, y) = dμx(y)dl(x) above. For example,

this is the case if the map is symplectic and the measure given by the symplectic form



Averaging in Weakly Coupled Discrete Dynamical Systems 471

coincides with the measure dμ(x, y) = dμx(y)dl(x). In general the symplectic form Ω =∑
ωij(z)dzi ∧ dzj may depend on z = (x, y).

Remark 4. To satisfy (3.7) we are looking for pairs of functions (ϕ, f) that have a rate of
ergodization (using the terminology of [14]) that matches the length of the interval nε

0. The
rate of convergence in the ergodic theorems depends on both ϕ and f, not only on either
of these. See [8].

Remark 5. Note that (3.5) follows automatically if the measure on the fast space is inde-
pendent of x, that is μx = μ0 for ∀x.

Remark 6. The assumption on Lipschitz continuity in ε may be weakened in the following
way. If system (3.1) satisfies this Lipschitz condition

|ϕ(x, y, ε) − ϕ(z, v, 0)| + dM (f(x, y, ε), f(z, v)) ≤ L(ε + |x − z| + dM (y, v)) (3.11)

|Φ(x, y, ε) − Φ(z, v, 0)| + dM (f(x, y, ε), f(z, v)) ≤ L(ε + |x − z| + dM (y, v)) (3.12)

for ∀x, z ∈ R
d and ∀ y, v ∈ M, and where L > 2 is independent of ε then Theorem 1 is still

valid.

Here follow some classes of examples for which the above assumptions can be verified.

Example. Consider a system (3.1) where the slow system has the form

ϕ(Xε(n), Y ε(n), ε) = G(Xε(n)) + εα(Xε(n), ε) + εβ(Y ε(n), ε), (3.13)

and the fast system is given by

f(Xε(n), Y ε(n), 0) = γ(Y ε(n)). (3.14)

Assume that system (3.1) is measure-preserving. Assume also that γ(Y ε(n)) is ergodic
with f -invariant measure μ0. In this case (3.5) follows automatically by Remark 5 since
the unperturbed fast system is independent of x and consequently the ergodic measure
of the fast space is also independent of x. Now consider the following estimate, which
comes from the definition of the set of slow ergodization (3.6), and let us rewrite it
using (3.13)∣∣∣∣∣ 1n

n−1∑
k=0

Φ(x, fk
x y) − Φ(x)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
k=0

(α(x, 0) + β(fk
x y, 0)) −

∫
M

(α(x, 0) + β((y), 0))dμ0(y)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
k=0

β(fk
x y) −

∫
M

β((y), 0)dμ0(y)

∣∣∣∣∣ . (3.15)

Since F is volume-preserving, condition (3.7) is replaced by (3.10). Next, the special form
of the fast system (3.14) gives us fk

xy = γky , hence the set of slow ergodization E(nε
0, δ) is
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the set of all points (x, y) satisfying∣∣∣∣∣∣ 1
nε

0

nε
0−1∑

k=0

β(fk
x y) −

∫
M

β(y)dμ0(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑

k=0

β(γky) −
∫

M
β(y)dμ0(y)

∣∣∣∣∣∣ > δ. (3.16)

The Birkhoff Ergodic Theorem, e.g. [17], implies∣∣∣∣∣ 1n
n∑

k=0

β(γky) −
∫

M
β(y)dμ0(y)

∣∣∣∣∣ → 0 a.e. y as n → ∞. (3.17)

Since nε
0 → ∞ as ε → ∞, there is a sequence d(nε

0, δ) such that

μ0(Ey(nε
0, δ)) = μ0

⎧⎨⎩y ∈ M :

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑

k=0

β(γky) −
∫

M
β(y)dμ0(y)

∣∣∣∣∣∣ > δ

⎫⎬⎭ < d(nε
0, δ), (3.18)

and d(nε
0, δ) → 0 as ε → 0. Consequently

μ{(x, y) ∈ K × M ∩ E(nε
0, δ)} =

∫
K

μ0(Ey(nε
0, δ))dl(x) < d(nε

0, δ) · l(K), (3.19)

and (3.10) is satisfied as required. All other assumptions are relatively easy to verify and
the averaging principle of Theorem 1 applies to the map with ϕ, f of the form (3.13) and
(3.14).

Next follows another class of examples where we can apply our averaging mechanism,
but first we introduce the concept of equidistribution.

Definition 2. A sequence {bn} of real numbers is said to be equidistributed on an interval
(a, b) if for any subinterval (c, d) ⊂ (a, b) we have

lim
n→∞

#({b1, b2, . . . , bn} ∩ (c, d))
n

=
d − c

b − a
,

where #(A) denotes the cardinality of A.

The definition of equidistribution generalizes to the d-dimensional torus as follows.

Definition 3. Let {xn} be a sequence of vectors where xn ∈ T
d = (0, 1)d ∀n ∈ N. {xn} is

said to be equidistributed on the unit torus T
d if for any subset

S = (a1, b1) × (a2, b2) × · · · × (ad, bd) ⊂ T
d

we have

lim
n→∞

#({x1, x2, . . . , xn} ∩ S)
n

= (b1 − a1)(b2 − a2) · · · (bn − an),

where #(A) denotes the cardinality of A.

The following theorem by Weyl [18] (Satz 3) gives an algebraic method to check whether
a sequence is equidistributed.



Averaging in Weakly Coupled Discrete Dynamical Systems 473

Theorem 2 (Weyl’s Theorem). Let {bn} be a sequence of vectors, where bn ∈ R
d ∀n ∈

N. Then {bn} is uniformly distributed modulo 1 (or equidistributed in T
d, the d−dim torus)

if and only if ∀ l ∈ Z
d\{0} we have

lim
N→∞

1
N

N−1∑
j=0

e2πil·bj = lim
N→∞

1
N

N−1∑
j=0

e2πi(l1bj,1+l2bj,2+···+ldbj,d) = 0. (3.20)

Now, let us consider the sequence yl defined by the unperturbed fast map, yl = f l
x(y) =

f l(x, y, 0). We construct a class of examples for which Theorem 1 is applicable using Weyl’s
theorem.

Proposition 3. Let the fast manifold M = T
d. Consider system (3.1). Suppose that the

function Φ(x, y) is a trigonometric polynomial in y. Also assume that fx preserves the
Lebesgue measure on T

d and that yl is equidistributed on T
d for a.e. y. Finally assume that

the full map F preserves the Lebesgue measure on R
d×M . Then F satisfies the assumptions

of Theorem 1.

Proof. Let us consider the set of slow ergodization E(nε
0, δ) defined by (3.6). Now we show

that the expression between the modulus signs tends to 0 as ε → 0 for almost every (x, y).
The first step is to expand Φ(x, y) into Fourier series,

Φ(x, y) =
∑
k∈Zd

Φk(x)e2πik·y, (3.21)

where the Fourier coefficients Φk(x) are given by

Φk(x) =
∫

Td

Φ(x, y)e−2πik·ydy. (3.22)

Note that Φ(x) coincides with the Fourier coefficient with k = 0,

Φ(x) =
∫

Td

Φ(x, y)dρ(y) = Φ0(x). (3.23)

Now using (3.21), (3.22) and (3.23) we can rewrite the expression to be estimated in the
set of slow ergodization (3.6) as∣∣∣∣∣∣ 1

nε
0

nε
0−1∑
l=0

Φ(x, f l
xy) − Φ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

∑
k∈Zd

Φk(x)e2πik·f l
x(y) − Φ0(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

∑
k∈Zd\{0}

Φk(x)e2πik·f l
x(y)

∣∣∣∣∣∣ . (3.24)

Changing the order of summation gives us∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

Φ(x, f l
xy) − Φ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
nε

0

∑
k∈Zd\{0}

Φk(x)
nε

0−1∑
l=0

e2πik·f l
x(y)

∣∣∣∣∣∣ . (3.25)

Now, since Φ(x, y) is a trigonometric polynomial only a finite number of its Fourier coeffi-
cients are nonzero. Suppose all nonzero Fourier coefficients have index |k| < N . Using this
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and that Φ(x, y) is bounded gives us∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

Φ(x, f l
xy) − Φ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1
nε

0

∑
k∈Z

d\{0}
|k|≤N

Φk(x)
nε

0−1∑
l=0

e2πik·f l
x(y)

∣∣∣∣∣∣∣∣
≤ L

∑
k∈Z

d\{0}
|k|≤N

1
nε

0

∣∣∣∣∣∣
nε

0−1∑
l=0

e2πik·f l
x(y)

∣∣∣∣∣∣ . (3.26)

Consider the inner sum on the right-hand side. Since f l
x(y) is equidistributed on T

d

lim
nε

0→∞
1
nε

0

∣∣∣∣∣∣
nε

0−1∑
l=0

e2πik·f l
x(y)

∣∣∣∣∣∣ = 0 ∀ k ∈ Z
d\{0}. (3.27)

Since we are only summing over a finite number of terms in (3.26) and each of these tends
to zero as nε

0 → ∞ we get

lim
nε

0→∞

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

Φ(x, f l
xy) − Φ(x)

∣∣∣∣∣∣ = 0

for almost every y ∈ M . Since nε
0 → ∞ as ε → ∞, there is a sequence d(nε

0, δ) such that

μ0(Ey(nε
0, δ)) = μ0

⎧⎨⎩y ∈ M :

∣∣∣∣∣∣ 1
nε

0

nε
0−1∑
l=0

Φ(x, f l
xy) − Φ(x)

∣∣∣∣∣∣ > δ

⎫⎬⎭ < d(nε
0, δ), (3.28)

and d(nε
0, δ) → 0 as ε → 0. Consequently

μ{(x, y) ∈ K × M ∩ E(nε
0, δ)} =

∫
K

μ0(Ey(nε
0, δ))dl(x) < d(nε

0, δ) · l(k), (3.29)

and (3.10) is satisfied as required. All other assumptions are relatively easy to verify and
the averaging principle of Theorem 1 applies to the map with ϕ, f of the form (3.13) and
(3.14).

Now we will turn to another class of examples where in addition to checking the assump-
tions of Theorem 1 we can estimate the rate of convergence of the limit (3.8). We achieve
this by estimating how fast the set of slow ergodization is vanishing. In Chapter 1 of [8]
Kachurovskii points out that in general the rate of convergence of ergodic averages depends
on the pair (Φ, f). This dependence is complicated and at present not yet fully understood.
There is a remarkable class of functions where the rate of convergence can be explicitly
bounded. The following assumptions will all be placed on the fast variables for each slow
variable x fixed. Let fx(y) = (x, y, 0) be an ergodic automorphism on every fibre x and
Φ(x, y, 0) ∈ L1(M) for every x. Then Φ ∈ L1(M) is said to be cohomologous to zero if it
can be written as Φ = h ◦ fx − h for some h ∈ L1(M).

We will use the following theorem for functions fx and Φ(x, y, 0) for x fixed, i.e. on each
fibre.
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Theorem 4 ([8]). Let f be an ergodic automorphism of M . For any Φ ∈ L1(M) the
following conditions are equivalent

(1) There is a constant C such that |AnΦ| ≤ C/n a.e. for all n,

(2) μx{AnΦ = O(1/n) as n → ∞} > 0,

(3) Φ = h ◦ f − h for some h ∈ L∞,

(3.30)

where AnΦ = 1
n

∑n−1
k=0 Φ ◦ fk and μx is the ergodic measure.

See [8] for a proof and discussion. If fx(y) = f(x, y, 0) is an ergodic automorphism on
every fibre x and Φ(x, y, 0) ∈ L1(M) for every x and Φ(x, y, 0) is cohomologous to zero for
every x, then Condition 1 is automatically satisfied and furthermore we obtain the rate of
convergence in Theorem 1.

Theorem 5. Suppose that the Lipschitz and boundedness assumptions on the functions
in (3.1) hold as well as (3.5). If fx(y) is an ergodic automorphism on every fibre x and
Φ(x, y, 0) ∈ L1(M) is cohomologous to zero for every x, then for any T > 0 and any
compact set K ⊂ R

d∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμx(y)dl(x) = O

((
log

1
ε

)α−1
)

, (3.31)

as ε → ∞ for some α ∈ (0, 1).

The proof of this theorem is placed in Sec. 5.

4. Proof of Theorem 1

To prove Theorem 1 we use Lemma 1 and two auxiliary lemmas.
For ease of notation define Rk(x, y) to be the distance between the kth iterate of the

fast component of the true orbit and the kth iterate of the unperturbed fast map, i.e.

Rk(x, y) = dM (Y ε
x,y(k), fk

x y). (4.1)

Then we can state the following lemma about the distance between the true orbit and the
averaged one.

Lemma 2. Suppose that the Lipschitz and boundedness assumptions on the functions in
(3.1) hold as well as (3.5). Let 1 ≤ n ≤ T

ε and N(ε) be the integer part of n
nε

0
. Then for

∀x ∈ R
d, y ∈ M, ε ∈ (0, 1) and δ > 0,

sup
0≤n≤T

ε

|Xε
x,y(n) − Xε

x(n)|

≤ εeLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + 2εnε
0L + εL

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + δT

+ εnε
02L

N(ε)−1∑
j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + Tεnε

0

1
2
(L3 + 2L2)

⎞⎠ , (4.2)
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where 1E(nε
0,δ)(x, y) is the characteristic function, i.e. 1E(nε

0,δ)(x, y) = 1 if (x, y) ∈ E(nε
0, δ)

and = 0 otherwise.

Proof. The proof of this lemma may seem lengthy, but each step is straightforward. We
start with some general estimates on the entire time domain before breaking it down into
smaller intervals to get sharper estimates.

First we estimate the difference between the nth iterate of the slow component of the
true orbit and the averaged orbit. Using the first line of (3.1) and the averaged equation
(3.9) repeatedly we obtain

|Xε(n) − Xε(n)| =

∣∣∣∣∣Xε(0) + ε

n−1∑
k=0

ϕ(Xε(k), Y ε(k), ε) − Xε(0) − ε

n−1∑
k=0

ϕ(Xε(k), ε)

∣∣∣∣∣ . (4.3)

We note that Xε(0) = Xε(0). Then we substitute ϕ from (3.2) and ϕ from (3.3) into the
expression and rearrange the terms

|Xε(n) − Xε(n)|

= ε

∣∣∣∣∣
n−1∑
k=0

(G(Xε(k) − G(Xε(k)))) + ε

n−1∑
k=0

(Φ(Xε(k), Y ε(k), ε) − Φ(Xε(k)))

∣∣∣∣∣ . (4.4)

Since G is Lipschitz, |G(x) − G(z)| ≤ L|x − z|, the triangle inequality gives

|Xε(n) − Xε(n)|

≤ εL
n−1∑
k=0

|Xε(k) − Xε(k)| + ε2

∣∣∣∣∣
n−1∑
k=0

(Φ(Xε(k), Y ε(k), ε) − Φ(Xε(k)))

∣∣∣∣∣ . (4.5)

Using the triangle inequality again, we bound the last term of the inequality

ε2

∣∣∣∣∣
n−1∑
k=0

(Φ(Xε(k), Y ε(k), ε) − Φ(Xε(k)))

∣∣∣∣∣
≤ ε2

n−1∑
k=0

|Φ(Xε(k), Y ε(k), ε) − Φ(Xε(k), Y ε(k))|

+ ε2

∣∣∣∣∣
n−1∑
k=0

(Φ(Xε(k), Y ε(k)) − Φ(Xε(k)))

∣∣∣∣∣ + ε2
n−1∑
k=0

|Φ(Xε(k)) − Φ(Xε(k))|. (4.6)

Let us consider these three terms separately. First we note that the assumption that
Φ(x, y, ε) is Lipschitz gives us

ε2
n−1∑
k=0

|Φ(Xε(k), Y ε(k), ε) − Φ(Xε(k), Y ε(k))| ≤ ε3nL. (4.7)
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Then using the definition of the space average (3.4) and the triangle inequality we find that

ε2
n−1∑
k=0

|Φ(Xε(k)) − Φ(Xε(k))|

≤ ε2
n−1∑
k=0

(∣∣∣∣Φ(Xε(k)) −
∫

M
Φ(Xε(k), y)dμXε(k)(y)

∣∣∣∣
+

∣∣∣∣∫
M

Φ(Xε(k), y)dμXε(k)(y) −
∫

M
Φ(Xε(k), y)dμXε(k)(y)

∣∣∣∣) . (4.8)

Using assumption (3.5) we get∣∣∣∣Φ(Xε(k)) −
∫

M
Φ(Xε(k), y)dμXε(k)(y)

∣∣∣∣ ≤ L2|Xε(k) − Xε(k)|, (4.9)

and rewriting the following integrals as one integral and then using that Φ(x, y) is Lipschitz
we obtain∣∣∣∣∫

M
Φ(Xε(k), y)dμXε(k)(y) −

∫
M

Φ(Xε(k), y)dμXε(k)(y)
∣∣∣∣ ≤ L|Xε(k) − Xε(k)|. (4.10)

Substituting these expressions into (4.8) gives

ε2
n−1∑
k=0

|Φ(Xε(k)) − Φ(Xε(k))| ≤ ε2(L2 + L)
n−1∑
k=0

|Xε(k) − Xε(k)|. (4.11)

In order to estimate the remaining third term on the right-hand side of (4.6), we split the
time interval of length n into N(ε) sections, each of length nε

0. Let us introduce the following
notation: set xε

j = Xε
x,y(jn

ε
0) and analogously yε

j = Y ε
x,y(jn

ε
0), i.e. (xε

j , y
ε
j ) is the coordinate

of the orbit at the beginning of the jth section. Note that n = N(ε)nε
0 +r, where 0 ≤ r < nε

0

is the remainder and N(ε) the integer part of n
nε

0
. This remainder gives rise to the term

2nε
0L in the following estimate

ε2

∣∣∣∣∣
n−1∑
k=0

(Φ(Xε(k), Y ε(k)) − Φ(Xε(k)))

∣∣∣∣∣
≤ ε2

r∑
k=0

(|Φ(Xε
xε

N(ε)
,yε

N(ε)
(k), Y ε

xε
N(ε)

,yε
N(ε)

(k))| + |Φ(Xε
xε

N(ε)
,yε

N(ε)
(k))|)

+ ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), Y ε

xε
j ,yε

j
(k)) − Φ(Xε

xε
j ,yε

j
(k)))

∣∣∣∣∣∣ . (4.12)

Using the boundedness of Φ and then that r < nε
0 we find that

ε2
r∑

k=0

(|Φ(Xε
xε

N(ε)
,yε

N(ε)
(k), Y ε

xε
N(ε)

,yε
N(ε)

(k))| + |Φ(Xε
xε

N(ε)
,yε

N(ε)
(k))|)

≤ ε2
r∑

k=0

(L + L) ≤ 2Lε2nε
0.
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Hence

ε2

∣∣∣∣∣
n−1∑
k=0

(Φ(Xε(k), Y ε(k)) − Φ(Xε(k)))

∣∣∣∣∣
≤ 2Lε2nε

0 + ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), Y ε

xε
j ,yε

j
(k)) − Φ(Xε

xε
j ,yε

j
(k)))

∣∣∣∣∣∣ . (4.13)

So, let us continue our analysis on each such section of length nε
0. To estimate the last term

in (4.13) we need to establish a number of auxiliary estimates, starting with equation (4.14)
and ending with (4.24). First let us use the triangle inequality and that Φ(x, y) is Lipschitz
to obtain∣∣∣∣∣∣

nε
0−1∑

k=0

(Φ(Xε
xε

j ,yε
j
(k), Y ε

xε
j ,yε

j
(k)) − Φ(Xε

xε
j ,yε

j
(k), fk

xε
j
yε

j ))

∣∣∣∣∣∣ ≤ L

nε
0−1∑

k=0

dM (Y ε
xε

j ,yε
j
(k), fk

xε
j
yε

j ). (4.14)

Substituting Rk(x, y) as defined in (4.1) into this expression yields∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), Y ε

xε
j ,yε

j
(k)) − Φ(Xε

xε
j ,yε

j
(k), fk

xε
j
yε

j))

∣∣∣∣∣∣ ≤ L

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ). (4.15)

In a similar way we use the triangle inequality and the assumption that Φ(x, y) is Lipschitz
to get ∣∣∣∣∣∣

nε
0−1∑

k=0

(Φ(Xε
xε

j ,yε
j
(k), fk

xε
j
yε

j) − Φ(xε
j , f

k
xε

j
yε

j))

∣∣∣∣∣∣ ≤ L

nε
0−1∑

k=0

|Xε
xε

j ,yε
j
(k) − xε

j |. (4.16)

Then, to estimate how far the slow component of the true orbit has moved from its starting
point in k iterates we apply the first line of the map (3.1){

Xε(n + 1) − Xε(n) = εϕ(Xε(n), Y ε(n), ε)

Y ε(n + 1) = f(Xε(n), Y ε(n), ε),

repeatedly to obtain

|Xε
z,v(k) − z| =

∣∣∣∣∣ε
k−1∑
n=0

ϕ(Xε
z,v(n), Y ε

z,v(n), ε) + Xε
z,v(0) − z

∣∣∣∣∣ . (4.17)

Noting that Xε
z,v(0) = z by definition and then using the triangle inequality and the bound-

edness of ϕ we get

|Xε
z,v(k) − z| ≤ ε

k−1∑
n=0

|ϕ(Xε
z,v(n), Y ε

z,v(n), ε)| ≤ εkL ∀ z ∈ R
d,∀ v ∈ M. (4.18)
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Now, expand the following expression, rearrange the terms and apply the triangle inequality,∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − Φ(xε

j)n
ε
0

∣∣∣∣∣∣ ≤
nε

0−1∑
k=0

∣∣∣∣(Φ(Xε
xε

j ,yε
j
(k)) −

∫
M

Φ(Xε
xε

j ,yε
j
(k), y)dμxε

j
(y)

)∣∣∣∣
+

nε
0−1∑

k=0

∫
M

|Φ(Xε
xε

j ,yε
j
(k), y) − Φ(xε

j , y)|dμxε
j
(y).

Assumption (3.5) gives us the following bound for the first term

nε
0−1∑

k=0

∣∣∣∣(Φ(Xε
xε

j ,yε
j
(k)) −

∫
M

Φ(Xε
xε

j ,yε
j
(k), y)dμxε

j
(y)

)∣∣∣∣ ≤ nε
0−1∑

k=0

L2|Xε
xε

j ,yε
j
(k) − xε

j|, (4.19)

and the second term is bounded since Φ(x, y) is Lipschitz

nε
0−1∑

k=0

∫
M

|Φ(Xε
xε

j ,yε
j
(k), y) − Φ(xε

j , y)|dμxε
j
(y) ≤

nε
0−1∑

k=0

L|Xε
xε

j ,yε
j
(k) − xε

j|, (4.20)

hence ∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − Φ(xε

j)n
ε
0

∣∣∣∣∣∣ ≤ (L2 + L)
nε

0−1∑
k=0

|Xε
xε

j ,yε
j
(k) − xε

j |. (4.21)

Before collecting the results we need the following estimate. Let 1E(nε
0,δ)(z, v) = 1 if (z, v) ∈

E(nε
0, δ). Suppose that (z, v) /∈ E(nε

0, δ), then by the definition of the set of slow ergodization
(3.6) ∣∣∣∣∣∣

nε
0−1∑

k=0

Φ(z, fk
z v) − nε

0Φ(z)

∣∣∣∣∣∣ ≤ nε
0δ. (4.22)

Now suppose that (z, v) ∈ E(nε
0, δ). In this case we get a larger upper bound. Boundedness

of Φ(x, y) implies that |Φ| ≤ L, hence∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(z, fk
z v) − Φ(z)nε

0

∣∣∣∣∣∣ ≤
nε

0−1∑
k=0

|Φ(z, fk
z v)| + nε

0|Φ(z)| ≤ 2nε
0L. (4.23)

Combining (4.22) and (4.23) we get∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(z, fk
z v) − nε

0Φ(z)

∣∣∣∣∣∣ ≤ nε
0(δ + 2L1E(nε

0,δ)(z, v)) (4.24)

since (z, v) either belongs to E(nε
0, δ) or it does not.

Now we are ready to continue with our estimate of the third term of (4.6) so let us
return to Eq. (4.13) and consider the second term in that expression. Expansion, the triangle
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inequality (with middle point Φ(Xε
xε

j ,yε
j
(k), fk

xε
j
yε

j )) and (4.15) yield

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), Y ε

xε
j ,yε

j
(k)) − Φ(Xε

xε
j ,yε

j
(k)))

∣∣∣∣∣∣
≤ ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), fk

xε
j
yε

j) − Φ(Xε
xε

j ,yε
j
(k)))

∣∣∣∣∣∣ .

(4.25)

Using the triangle inequality (with middle point Φ(xε
j , f

k
xε

j
yε

j)) and (4.16), the second term
in (4.25) is estimated by the following two terms

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(Xε
xε

j ,yε
j
(k), fk

xε
j
yε

j) − Φ(Xε
xε

j ,yε
j
(k)))

∣∣∣∣∣∣
≤ ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

|Xε
xε

j ,yε
j
(k) − xε

j | + ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j ) − Φ(Xε
xε

j ,yε
j
(k)))

∣∣∣∣∣∣ .

(4.26)

Let us estimate these two terms separately. Equation (4.18) gives us the following bound
for the first term

ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

|Xε
xε

j ,yε
j
(k) − xε

j | ≤ ε3L2

N(ε)−1∑
j=0

nε
0−1∑

k=0

k. (4.27)

To estimate the second term we expand the expression, apply the triangle inequality (with
middle point Φ(xε

j)) and rearrange the terms to get

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j) − Φ(Xε
xε

j ,yε
j
(k)))

∣∣∣∣∣∣
≤ ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j) − Φ(xε
j))

∣∣∣∣∣∣ + ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − nε

0Φ(xε
j)

∣∣∣∣∣∣ .

(4.28)

Now, substituting (4.25), (4.26), (4.27) and (4.28) into (4.13) we have

ε2

∣∣∣∣∣
n−1∑
k=0

Φ(Xε(k), Y ε(k)) − Φ(Xε(k))

∣∣∣∣∣
≤ ε22nε

0L + ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + ε3L2

N(ε)−1∑
j=0

nε
0−1∑

k=0

k
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+ ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j ) − Φ(xε
j))

∣∣∣∣∣∣
+ ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − nε

0Φ(xε
j)

∣∣∣∣∣∣ . (4.29)

Equation (4.24) gives the following estimate for the second last term

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j) − Φ(xε
j))

∣∣∣∣∣∣ ≤ ε2

N(ε)−1∑
j=0

(nε
0δ + nε

02L1E(nε
0,δ)(x

ε
j , y

ε
j )). (4.30)

The last term of (4.29) is bounded in the following way. First apply (4.21)

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − nε

0Φ(xε
j)

∣∣∣∣∣∣ ≤ ε2

N(ε)−1∑
j=0

nε
0−1∑

k=0

(L2 + L)|Xε
xε

j ,yε
j
(k) − xε

j |, (4.31)

and then (4.18) to get

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

Φ(Xε
xε

j ,yε
j
(k)) − nε

0Φ(xε
j)

∣∣∣∣∣∣ ≤ ε2

N(ε)−1∑
j=0

nε
0−1∑

k=0

(L2 + L)εkL. (4.32)

Substituting (4.30) and (4.32) into (4.29) gives

ε2

∣∣∣∣∣
n−1∑
k=0

Φ(Xε(k), Y ε(k)) − Φ(Xε(k))

∣∣∣∣∣
≤ ε22nε

0L + ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + ε2nε

02L
N(ε)−1∑

j=0

1E(nε
0,δ)(x

ε
j , y

ε
j )

+ ε2N(ε)nε
0

(
δ + εnε

0

1
2
(L3 + 2L2)

)
. (4.33)

We now substitute (4.7), (4.11) and (4.33) into (4.6). Then (4.5) implies

|Xε(n) − Xε(n)|

≤ εL

n−1∑
k=0

|Xε(k) − Xε(k)| + ε3nL + ε22nε
0L + ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j )

+ ε2nε
02L

N(ε)−1∑
j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + ε2N(ε)nε

0

(
δ + εnε

0

1
2
(L3 + 2L2)

)

+ ε2(L2 + L)
n−1∑
k=0

|Xε(k) − Xε(k)|. (4.34)
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The last step in this proof is to apply Lemma 1 to (4.34). Let zk be the difference between
the kth iterate of the slow component of the true orbit and the averaged one

zk = |Xε(k) − Xε(k)|,
b = εL + ε2(L2 + L),

(4.35)

and let an be the sequence

an = ε3nL + ε22nε
0L + ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j )

+ ε2nε
02L

N(ε)−1∑
j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + ε2N(ε)nε

0

(
δ + εnε

0

1
2
(L3 + 2L2)

)
. (4.36)

Obviously b > 0. We now show that an is increasing with n. Note that N(ε) :=
⌊

n
nε

0

⌋
is a

non-decreasing function of n and that all the values involved are non-negative. Consequently
all terms of (4.36) are non-decreasing functions of n. Therefore an+1 − an ≥ ε3L > 0.
Lemma 1 applied to (4.34) gives zn ≤ (1 + b)n−1an, i.e.

|Xε(n) − Xε(n)|

≤ (1 + ε2(L2 + L) + εL)n−1

⎛⎝ε3nL + ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j )

+ ε22nε
0L + ε2nε

02L
N(ε)−1∑

j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + ε2N(ε)nε

0

(
δ + εnε

0

1
2
(L3 + 2L2)

)⎞⎠ .

Using that 0 ≤ nε ≤ T and therefore εnε
0N(ε) ≤ T we get

|Xε(n) − Xε(n)| ≤ (1 + ε2(L2 + L) + εL)n−1

⎛⎝ε2LT + 2ε2nε
0L

+ ε2L

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + ε2nε

02L
N(ε)−1∑

j=0

1E(nε
0,δ)(x

ε
j , y

ε
j )

+ εδT + Tε2nε
0

1
2
(L3 + 2L2)

⎞⎠ . (4.37)

So, finally, we have

|Xε(n) − Xε(n)| ≤ εeLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + εL

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + 2εnε

0L

+ εnε
02L

N(ε)−1∑
j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + δT + Tεnε

0

1
2
(L3 + 2L2)

⎞⎠ , (4.38)

which concludes the proof of Lemma 2.
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Lemma 3. For L > 1 constant, we have

L(log 1
ε
)1−α

= O(ε−β) (4.39)

when ε → 0 for any α ∈ (0, 1) and ∀ β > 0.

Proof. First we manipulate Llog( 1
ε
)1−α

as follows

Llog( 1
ε
)1−α

= e(log L)(log 1
ε
)1−α

= ε− log L(log 1
ε
)−α

. (4.40)

Then for any α ∈ (0, 1) and any β > 0 ∃ ε0 such that (log L)(log 1
ε )−α < β ∀ ε < ε0, hence

L(log 1
ε
)1−α

= ε− log L(log 1
ε
)−α

= O(ε−β) ε < ε0. (4.41)

Now let us turn to the proof of Theorem 1. The main components in this proof are an
estimate on Rk(x, y), Lemmas 2 and 3.

Proof of Theorem 1. We begin by noting that the definition of Rk(x, y), Eq. (4.1), and
the triangle inequality allow us to rewrite Rk(x, y) as follows

Rk(x, y) = dM (f(Xε
x,y(k − 1), Y ε

x,y(k − 1), ε), fk
x y)

≤ dM (f(Xε
x,y(k − 1), Y ε

x,y(k − 1), ε), f(Xε
x,y(k − 1), Y ε

x,y(k − 1)))

+ dM (f(Xε
x,y(k − 1), Y ε

x,y(k − 1)), f(x, Y ε
x,y(k − 1)))

+ dM (f(x, Y ε
x,y(k − 1)), fx(fk−1

x y)). (4.42)

Each of these three terms is now estimated using the Lipschitz properties of f(x, y, ε) which
yields

Rk(x, y) ≤ Lε + L|Xε
x,y(k − 1) − x| + LdM (Y ε

x,y(k − 1), fk−1
x y), (4.43)

which, using (4.18) and the definition of Rk(x, y) again, is rewritten as

Rk(x, y) ≤ Lε + εL2(k − 1) + LRk−1(x, y). (4.44)

Applying the same method another k − 1 times gives us

Rk(x, y) ≤ L(ε + εL(k − 1) + Rk−1(x, y))

≤ L(ε + εL(k − 1) + L(ε + εL(k − 2) + L(ε + εL(k − 3) + . . .

+ L(ε + εL(k − k) + R0(x, y))) . . .)

= εL

k−1∑
l=0

Ll(1 + L(k − l − 1)). (4.45)

We can then establish the following upper bound for Rk(x, y)

Rk(x, y) ≤ εL

k−1∑
l=0

Ll(1 + Lk) = εL(1 + Lk)
Lk − 1
L − 1

. (4.46)
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Now, let us consider the averaged difference between the slow component of the true orbit
and the averaged one. First using Lemma 2 we get∫

K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y)

≤
∫

K

∫
M

eLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + 2εnε
0L + εL

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j )

+ εnε
02L

N(ε)−1∑
j=0

1E(nε
0,δ)(x

ε
j , y

ε
j ) + δT + Tεnε

0

1
2
(L3 + 2L2)

⎞⎠ dμ(x, y). (4.47)

Consider the sum containing Rk(x, y). Using (4.46) gives

ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) ≤ ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

εL(1 + Lk)
Lk − 1
L − 1

≤ ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

εL(1 + Lk)Lk

= ε2LN(ε)
nε

0−1∑
k=0

(Lk + LkLk). (4.48)

Calculating the values of these sums gives

nε
0−1∑

k=0

Lk =
Lnε

0 − 1
L − 1

≤ Lnε
0, (4.49)

and

L

nε
0−1∑

k=0

kLk = L

(
nε

0

Lnε
0

L − 1
− Lnε

0 − 1
(L − 1)2

L

)
≤ L2nε

0L
nε

0 . (4.50)

Substituting (4.49) and (4.50) into (4.48) gives

ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) ≤ ε2LN(ε)(Lnε

0 + L2nε
0L

nε
0).

Next we apply Lemma 3, which gives

ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) ≤ ε2LN(ε)K̃(ε−β + L2nε

0ε
−β)

≤ ε2N(ε)K̃1(ε−β + nε
0ε

−β), (4.51)
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for some β ∈ (0, 1) and K̃, K̃1 > 0 independent of ε. Using that N(ε) ≤ T
εnε

0
we obtain

ε

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) ≤ TK̃1

(
ε1−β

nε
0

+ ε1−β

)
. (4.52)

Substituting (4.52) into (4.47) and performing the integration gives∫
K

∫
M

sup
0≤n≤ T

ε2

1
ε

∣∣Xε
x,y(n) − Xε

x(n)
∣∣ dμ(x, y)

≤ eLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + 2εnε
0L + LTK̃1

(
ε1−β

nε
0

+ ε1−β

)
+ δT

+ Tεnε
0

1
2
(L3 + 2L2) + εnε

02L
N(ε)−1∑

j=0

∫
K

∫
M

1E(nε
0,δ)(X

ε
x,y(jn

ε
0), Y

ε
x,y(jn

ε
0))dμ(x, y)

⎞⎠ .

(4.53)

Finally, using assumption (3.7) we get∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y)

≤ eLT eεT (L2+L)

1 + εL + ε2(L2 + L)

(
εLT + 2εnε

0L + LTK̃1

(
ε1−β

nε
0

+ ε1−β

)

+ δT + Tεnε
0

1
2
(L3 + 2L2) + 2LTdT,K(nε

0, δ)
)

, (4.54)

where β ∈ (0, 1) and K̃1 > 0 independent of ε. As we let ε → 0 and then δ → 0 we obtain

lim
ε→0

∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y) = 0. (4.55)

Let us here point out some limitations of our method.

Remark 7. It is Lemma 3 that determines how nε
0 should be chosen, not condition (3.7).

In fact, allowing for longer intervals nε
0, i.e. more time steps in each section, would make it

easier to satisfy the condition, that is, a lower rate of ergodization of Φ would be permissible.
The choice of nε

0 = (log 1
ε )1−α with α ∈ (0, 1) is the optimal choice. It is the fastest growing

nε
0 that satisfies εLnε

0 → 0 and εnε
0 → 0 as ε → 0. It can be mentioned that further

weakening of the coupling, say to the kth power of ε (in Eq. (3.2)), will not change this
fact as we will (depending on the way the theorem is stated) end up with terms such as
εkLnε

0 → 0 and εknε
0 → 0 as ε → 0. The permissible growth rate of Lnε

0 does not change as
we multiply by a factor εk.
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5. Proof of Theorem 5

In this section we prove Theorem 5. The proof is very similar to the proof of Theorem 1;
with the exception that we sharpen the estimates concerning the set of slow ergodization.

Proof of Theorem 5. We first sharpen estimate (4.38) to

|Xε(n) − Xε(n)| ≤ εeLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + 2εnε
0L

+ εL

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + C1

T

nε
0

+ Tεnε
0

1
2
(L3 + 2L2)

⎞⎠ , (5.1)

for some C1 > 0. Theorem 4 part (3) implies that Φ(x) = 0. Then using Theorem 4 part
(1) we conclude that

ε2

N(ε)−1∑
j=0

∣∣∣∣∣∣
nε

0−1∑
k=0

(Φ(xε
j , f

k
xε

j
yε

j) − Φ(xε
j))

∣∣∣∣∣∣ ≤ ε2

N(ε)−1∑
j=0

C1 ≤ ε2N(ε)C1 ≤ εC1T

nε
0

, (5.2)

for some constant C1 > 0 and a.e. y. Replacing the estimates (4.22), (4.23), (4.24) and
(4.30) in the proof of Theorem 1 by (5.2) and following those calculations through gives
(5.1). Therefore∫

K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y)

≤
∫

K

∫
M

eLT eεT (L2+L)

1 + εL + ε2(L2 + L)

⎛⎝εLT + 2εnε
0L

+ εL

N(ε)−1∑
j=0

nε
0−1∑

k=0

Rk(xε
j , y

ε
j ) + C1

T

nε
0

+ Tεnε
0

1
2
(L3 + 2L2)

⎞⎠ dμ(x, y). (5.3)

Using (4.52), performing the integration on the right-hand side and factorizing out 1/nε
0

yields ∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y)

≤ eLT 1
nε

0

eεT (L2+L)

1 + εL + ε2(L2 + L)

(
εLTnε

0 + 2ε(nε
0)

2L

+ LTK̃1(ε1−β + ε1−βnε
0) + Tε(nε

0)
2 1
2
(L3 + 2L2) + C1T

)
l(K), (5.4)
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where l(K) is the Lebesgue measure of K. So, as ε → 0∫
K

∫
M

sup
0≤n≤T

ε

1
ε
|Xε

x,y(n) − Xε
x(n)|dμ(x, y) = O

(
1
nε

0

)
= O

((
log

1
ε

)α−1
)

, (5.5)

for any α ∈ (0, 1).
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