
 

 
 

Journal of Nonlinear Mathematical 
Physics 

 
ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp  

 

Nonstandard Separability on the Minkowski Plane 

Giuseppe Pucacco, Kjell Rosquist 

To cite this article: Giuseppe Pucacco, Kjell Rosquist (2009) Nonstandard Separability on 
the Minkowski Plane, Journal of Nonlinear Mathematical Physics 16:4, 421–430, DOI: 
https://doi.org/10.1142/S1402925109000455 

To link to this article: https://doi.org/10.1142/S1402925109000455 

 

Published online: 04 January 2021 



Article

Journal of Nonlinear Mathematical Physics, Vol. 16, No. 4 (2009) 421–430

c© G. Pucacco and K. Rosquist

NONSTANDARD SEPARABILITY ON THE MINKOWSKI PLANE

GIUSEPPE PUCACCO

Dipartimento di Fisica – Università di Roma “Tor Vergata”
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We present examples of nonstandard separation of the natural Hamilton–Jacobi equation on the
Minkowski plane M

2. By “nonstandard” we refer to the cases in which the form of the metric,
when expressed in separating coordinates, does not have the usual Liouville structure. There are
two possibilities: the “complex-Liouville” (or “harmonic”) case and the “linear/null” (or “Jordan
block”) case. By means of explicit examples, we show that, in all cases, a suitable glueing of
coordinate patches of the different structures allows us to separate natural systems with indefinite
kinetic energy all over M

2.
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1. Introduction

The study of separation of variables on the Minkowski plane M
2 is very classical [1] and

almost as old as the corresponding problem on the Euclidean plane E
2. A general approach

based on conformal coordinate transformations to solve Killing tensor equations has been
given in [2]. It has been applied [3–5] to get a complete classification of separating coordinate
systems of the Hamilton–Jacobi equation with the corresponding separated potentials and
second integral of motion.

Separability of free motion on the hyperbolic plane has already been investigated [7–9].
In particular, [9] describes a general theory of complex variable separation on pseudo-
Riemannian manifolds. In [3, 4] the general picture of separability is extended to indefinite
natural systems, showing how different kinds of separation structures are needed for differ-
ent regions in configuration space. In particular, it is in general necessary to use different
separating variables, even for the integration of a single orbit. Associating as usual the
existence of a 2nd-rank Killing tensor to that of a system of separating coordinates [6], the

421



422 G. Pucacco & K. Rosquist

picture can be illustrated as follows: for (1+1)-dimensional systems there are three possible
types of conformal Killing tensors, and therefore, three distinct separability structures in
contrast to the single standard (Liouville) type separation of the positive definite case [10].
One of the new separability structures is the complex-Liouville/harmonic type which is
characterized by complex separation variables and the metric is an harmonic function. The
other new type is the linear/null separation which occurs when the conformal Killing tensor
has a null eigenvector so that it has the structure of a Jordan block and the metric depends
only linearly on one of the separation variables.

In the general case the components of the conformal part of the Killing tensor are two
arbitrary real functions. It can be proved [3] that for a natural system on M

2, these functions
are two quadratic polynomials with equal leading-order coefficient. There are therefore five
real constants determining nine different coordinate systems [7]. Six of these admit both
Liouville and complex-Liouville separation and a subset of three of these admits also the null
separation. In the particular case of a flat space, the additional structures do not in general
provide new kinds of dynamical systems. Rather they in general coexist in determining the
dynamics of a given system and are required to obtain separated solutions on the whole
plane as we see below in four representative cases.

The layout of the paper is as follows: in Sec. 2 we recall separability on the Minkowski
plane; in Sec. 3 we resume the classification of the coordinate systems and the corresponding
separation structures; in Sec. 4 we provide a detailed analysis of four natural Hamiltonian
systems that give an overview of the possible cases; Sec. 5 contains concluding remarks.

2. Separation Structures in the Minkowski Plane

Given a Hamiltonian

H(pu, px, u, x) =
1
2
(−p2

u + p2
x) + Φ(u, x) ≡ E , (2.1)

the corresponding Hamilton–Jacobi equation is separable if there exists a 2nd-rank Killing
tensor Kij , (i, j = 0, 1), for the pseudo-Riemannian metric

ds2 = gijdxidxj = 2Γ(u, x)(−du2 + dx2), (2.2)

where u = x0, x = x1 and Γ(u, x) = Φ − E . The second independent integral of motion
satisfying the commutation relation {H, I} = 0, is

I(pu, px, u, x) = Kij(u, x; E)pipj|E→H , (2.3)

where indices are raised with the metric tensor of (2.2). It can be proven [3] that the
conformal part of the Killing tensor [11], P ij = Kij − 1

2Kk
kg

ij , is uniquely determined by
two arbitrary functions Σ = Σ(u + x) and Σ̂ = Σ̂(u − x) by

(P ij) =
1
4

(
Σ + Σ̂ Σ − Σ̂

Σ − Σ̂ Σ + Σ̂

)
. (2.4)

The Hamilton–Jacobi equation is separable for arbitrary values of H = E if these functions
have the forms

Σ = k(u + x)2 + b(u + x) + c, Σ̂ = k(u − x)2 + b̂(u − x) + ĉ, (2.5)
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where k, b, b̂, c, ĉ are arbitrary real constants; this class of separable systems includes free
motion on the flat hyperbolic plane [12]. They exist more general separable geodesic flows on
a generic pseudo-Riemannian metric (2.2) and/or natural Hamiltonian systems separable for
fixed values of H = E [10,12] in which the functions Σ = Σ(u+x) and Σ̂ = Σ̂(u−x) are not
restricted to the class (2.5). We observe that the procedure recalled in the present section
applies to this general setting including fixed-energy (“weak”) separability and is based on
a generalization of the conformal coordinate transformation introduced by Kolokoltsov [13].
In the subsequent sections we will stick with the arbitrary-energy (“strong”) separability.

The determinant of the conformal Killing tensor specifies the kind of separation struc-
tures: det(P ij) > 0 is associated with the standard Liouville separation, det(P ij) < 0 with
the harmonic or complex-Liouville separation and det(P ij) = 0 with the null separation.
The separating coordinates, U,X, originate from the transformations bringing P ij to the
standard (constant components) form P = 1

2diag(1, ε), where ε = sgn(det(P ij)). Using
auxiliary “null” variables

ζ = u + x, ζ̂ = u − x, W = U + X, Ŵ = U − X, (2.6)

the standardizing transformations are provided by [2–4,13]

W = U + X =
∫

dζ√|Σ(ζ)| , (2.7)

Ŵ = U − X =
∫

dζ̂√
ε|Σ̂(ζ̂)|

. (2.8)

In the standard case, U and X are separating variables and the metric can be put in the
standard Liouville form,

ds2 =
A0(U) + A1(X)
B0(U) + B1(X)

(dU2 − dX2), (2.9)

with Ai arbitrary functions of the arguments and Bi specified by the particular pair of Σ
and Σ̂ chosen.

In the complex-Liouville case, separated expressions are obtained using complex conju-
gate pairs

Z = X + iU, Z̄ = X − iU (2.10)

and the metric takes the form

ds2 =
�{Q(Z)}
�{Ψ(Z)}(dZ2 + dZ̄2), (2.11)

where Q(Z) and Ψ(Z) are holomorphic functions: Q is arbitrary and Ψ is specified by the
particular transformation chosen in the set with det(P ij) < 0.
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In the linear/null case the metric is

ds2 = [C(Ŵ )W + D(Ŵ )]dWdŴ , (2.12)

where C(Ŵ ) and D(Ŵ ) are arbitrary functions. It can be proven [3, 4] that, even if the
metric does not take an explicitly separated form, the Hamilton–Jacobi equation is indeed
separable.

3. Classification of Separable Systems

The separating coordinate systems for natural systems at arbitrary energy are classified by
examining the inequivalent combinations of independent parameters appearing in (2.5):
exploiting isometries and rescaling of variables, the leading order coefficient k can be
assumed to take the values 0 or 1 and, in the first case, either b or c can be put equal
to zero. Therefore, there are five distinct classes of transformations for each null variable.
They are listed in Table 1 for the transformation ζ → W ; analogous forms apply to the
transformation ζ̂ → Ŵ : the first column gives the number used in the classification; the
second column gives ζ(W ); the third W (ζ); the fourth Σ(ζ) and the fifth the values of
the corresponding parameters, with D = b2 − 4kc and Δ =

√|D|/4. When combining the
five cases, we must consider only cases with the same value of the separating constant k,
since k appears both in Σ and Σ̂. There are no other restrictions so this gives four cases
with k = 0 and nine cases with k �= 0, thirteen cases in total. However, it is reasonable
not to distinguish systems which can be transformed into each other by the transformation
(ζ, ζ̂) → (ζ̂ , ζ) or equivalently x → −x. This reduces the number of cases to three for k = 0
and six for k �= 0, nine cases in total. Using the numbers 1–5 appearing in the first column
of the table and the corresponding “hatted” figures 1̂–5̂, with an obvious notation, the set
of possible independent separating coordinates is given by the combinations

k = 0 : 11̂, 12̂, 22̂, (3.1)

k = 1 : 33̂, 34̂, 35̂, 44̂, 45̂, 55̂. (3.2)

Once the possible combinations of the functions Σ and Σ̂ are established, we also need
to analyze the sign of det(P ): we see that the possibility of a negative sign appears when
Σ1,Σ2 and Σ4 are involved, whereas it may vanish when Σ̂1 and Σ̂2 are involved. The
general investigation with the complete list of all possible cases is given elsewhere [3].
Here we give simple but nontrivial examples of systems in which nonstandard separability
appears. The explicit proof of integrability by quadrature of the nonstandard cases is given
in [4, Sec. 2.2.2].

Table 1. The possible conformal transformation functions for (1 + 1)-dimensional inte-
grable Hamiltonians with a second degree invariant.

1. W ζ Σ1(ζ) = 1 k = b = 0, c �= 0

2. W 2 √
ζ Σ2(ζ) = 4ζ k = c = 0, b �= 0

3. eW log ζ Σ3(ζ) = ζ2 k �= 0, D = 0

4. Δ cosh W cosh−1(ζ/Δ) Σ4(ζ) = ζ2 − Δ2 k �= 0, D > 0

5. Δ sinh W sinh−1(ζ/Δ) Σ5(ζ) = ζ2 + Δ2 k �= 0, D < 0
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4. Examples

4.1. Example I: A Cartesian-parabolic case (12̂ )

Let us consider the Hamiltonian

H1 =
1
2
(−p2

u + p2
x) + 3(u + x)2 + u − x. (4.1)

It is easy to check that

I1 =
1
4
(pu + px)2 − 2(pu − px)(upx + xpu) + 4

(
(u + x)3 + x2 − u2

)
(4.2)

is such that {H1, I1} = 0. According to Table 1, the conformal coordinate transformation
is generated by Σ1(ζ) = 1 and Σ̂2(ζ̂) = 4ζ̂, so that the new variables are (see Fig. 1)

W = ζ, Ŵ =
√

εζ̂, (4.3)

or, in non-null coordinates,

U =
1
2
(u + x +

√
u − x), X =

1
2
(u + x −√

u − x), u > x, (4.4)

U =
1
2
(u + x +

√
x − u), X =

1
2
(u + x −√

x − u), u < x. (4.5)

−2 −1 0 1 2
−2

−1

0

1

2

x

u

Fig. 1. Coordinate lines of the Cartesian-parabolic case (12̂): refer to definition (4.4) for coordinates in the
upper-left half plane and to definition (4.5) for coordinates in the lower-right half plane.
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Standard (Liouville) separation occurs in the u > x half plane, where the separated form
of the Hamiltonian and second integral are

H1 =
1

U − X

[
1
4
(−p2

U + p2
X) + 4(U3 − X3)

]
, (4.6)

I1 =
1

U − X
[U(p2

X − 16X3) − X(p2
U − 16U3)]. (4.7)

In the u < x half plane, a direct application of the new transformation (4.5) puts the
potential in the form

Φ = 2(U2 + X2 + 4UX ), (4.8)

which is not separable. However, using complex variables (2.10), we get complex-
Liouville/harmonic separated forms of the Hamiltonian and second integral

H1 = 2
�{p2

Z + (1 − i)Z3}
�{(1 + i)Z} , (4.9)

I1 = 2
�{(1 − i)Z̄(p2

Z + (1 − i)Z3)}
�{(1 + i)Z} . (4.10)

4.2. Example II: A parabolic-parabolic case (22̂)

Let us consider the Hamiltonian

H2 =
1
2
(−p2

u + p2
x) + 4u2 − x2. (4.11)

This Hamiltonian is superintegrable (actually “superseparable”), with integrals of motion

A2 =
1
2
p2

x − x2, B2 = H2 − A2 (4.12)

and

I2 = px(upx + xpu) + 2ux2. (4.13)

The existence of I2 is associated with parabolic coordinates. According to Table 1, the
conformal coordinate transformation is generated by Σ2(ζ) = 4ζ and Σ̂2(ζ̂) = 4ζ̂, so that
the new variables are (see Fig. 2)

W =
√

ζ, Ŵ =
√

εζ̂, (4.14)

or, in non-null coordinates,

U =
1
2
(
√

u + x +
√

u − x), X =
1
2
(
√

u + x −√
u − x), u2 > x2, (4.15)

U =
1
2
(
√

u + x +
√

x − u), X =
1
2
(
√

u + x −√
x − u), u2 < x2. (4.16)
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Fig. 2. Coordinate lines of the parabolic-parabolic case (22̂): refer to definition (4.15) for coordinates inside
the light cone and to definition (4.16) for coordinates outside the light cone.

Standard (Liouville) separation occurs inside the “light cone”, where the separated form of
the Hamiltonian and second integral are

H2 =
1

4(U2 − X2)
[−p2

U + p2
X + 16(U6 − X6)], (4.17)

I2 =
1

U2 − X2
[U2(p2

X − 32X6) − X2(p2
U − 32U6)]. (4.18)

Outside the light cone, the new transformation (4.16) puts the potential in the form

Φ = 14U2X2 − U4 − X4, (4.19)

which is not separable. However, using complex variables (2.10), we get complex-
Liouville/harmonic separated forms of the Hamiltonian and second integral

H2 =
�{p2

Z − 2Z6}
2�{Z2} , (4.20)

I2 =
�{Z̄2(p2

Z − 2Z6)}
�{Z2} . (4.21)

4.3. Example III: A polar-elliptical case (34̂)

Let us consider the Hamiltonian

H3 =
1
2
(−p2

u + p2
x) + 2(u + x)2(4(u − x)2 − 1). (4.22)
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0
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u

Fig. 3. Coordinate lines of the polar-elliptical case (34̂): refer to definitions (4.27–4.28) for coordinates inside
the strip |u − x| < 1 and to definitions (4.25–4.26) for coordinates outside the strip.

This system admits the second integral of motion

I3 = (upx + xpu)2 − 1
4
(pu − px)2 + 4(u − x)(u + x)3. (4.23)

The existence of I3 is associated with “polar-elliptical” coordinates (see Fig. 3). According
to Table 1, the conformal coordinate transformation is generated by Σ3(ζ) = ζ2 and Σ̂4(ζ̂) =
ζ̂2 − 1, where, without loss of generality, the choice Δ̂ = 1 has been made. The coordinate
transformation is

Σ3(ζ) = ζ2, Σ̂4(ζ̂) = ζ̂2 − 1, W = A3(ζ) = ln |ζ|, F3(W ) = eW

Ŵ = Â4(ζ̂) =
∫

dζ̂√
ε(ζ̂2 − 1)

=

{
arcosh ζ̂, F̂4(Ŵ ) = cosh Ŵ , ε = +1, Liouville separation

arcsin ζ̂, F̂4(Ŵ ) = sin Ŵ , ε = −1, harmonic separation

(4.24)

or in non-null coordinates

U =
1
2
(ln(u + x) + ln(u − x +

√
(u − x)2 − 1)), (4.25)

X =
1
2
(ln(u + x) − ln(u − x +

√
(u − x)2 − 1)), ε = +1, |u − x| > 1 (4.26)
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and

U =
1
2
(ln(u + x) + arcsin(u − x)), (4.27)

X =
1
2
(ln(u + x) − arcsin(u − x)), ε = −1, |u − x| < 1. (4.28)

Standard (Liouville) separation occurs outside the strip defined by |u − x| < 1, where
separating variables are given by (4.25)–(4.26) and the separated form of the Hamiltonian
and second integral are

H3 =
1

e2U − e2X
[−p2

U + p2
X + e6U − e6X)], (4.29)

I3 =
1

e2U − e2X
[e2U (p2

X − 2e6X ) − e2X(p2
U − 2e6U )]. (4.30)

Inside the strip |u−x| < 1, the transformation (4.27)–(4.28) puts the potential in the form

Φ = 2e2(U+X)(4 sin2(U − X) − 1), (4.31)

which is not separable. However, using complex variables (2.10), we get complex-
Liouville/harmonic separated forms of the Hamiltonian and second integral

H3 =
2�{p2

Z − e3(1−i)Z}
�{e(1−i)Z} , (4.32)

I3 =
2�{e(1+i)Z̄ (p2

Z − e3(1−i)Z)}
�{e(1−i)Z} . (4.33)

4.4. Example IV: A Cartesian–Cartesian (11̂) null case

Let us consider the Hamiltonian

H4 =
1
2
(−p2

u + p2
x) + 3u2 − x2 − 2ux. (4.34)

The second integral of motion is

I4 =
1
4
(pu + px)2 − (u − x)2. (4.35)

To obtain this integrable case, we can use pseudo-rotated Cartesian coordinates since they
are themselves good coordinates. However, the choice Σ1(ζ) = 1 and Σ̂1(ζ̂) = 0 must be
made in order to accomodate the (leading order) term in the momenta. This is an example
of a vanishing determinant of the conformal Killing tensor. The separable forms are now
expressed in terms of the null coordinates: they are

H4 = −2pζpζ̂ + 2ζζ̂ + ζ̂2 (4.36)

and

I4 = p2
ζ − ζ̂2. (4.37)

The integrability by quadrature follows by exploiting the recipe of references [3, Sec, III.E]
and [4, Sec. 2.2.2].
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5. Conclusions

We have presented examples of nonstandard separation of the natural Hamilton–Jacobi
equation on the Minkowski plane M

2. The two new possibilities, the complex-Liouville (or
harmonic) case and the linear/null (or Jordan block) case have been illustrated by means
of explicit examples, showing that, in all cases, a suitable glueing of the orbits across the
coordinate patches corresponding to the different structures allows us to separate indefinite
natural systems all over M

2.
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