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We study the solitary wave solutions of a non-integrable generalized KdV equation proposed by
Fokas [A. S. Fokas, Physica D 87, 145 (1995)], aiming to describe unidirectional waves in shallow
water with greater accuracy than the standard KdV equation. This generalized equation includes
higher-order terms in the small parameters o and 3, representing respectively the height and inverse
width of the wave compared to the thickness of the water sheet. The solitary waves we find have
a smaller height and a larger width than the corresponding KdV soliton at the same propagation
velocity. Extrapolating these results we conjecture that — in the limit of arbitrarily high order in
« and B — the solitary waves will attain a specific, finite height and width as the wave speed ¢
increases.
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1. Introduction

The Korteweg—de Vries (KdV) equation, written in a stationary frame as
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represents a first-order approximation in the study of waves of small amplitude and long
wavelength propagating in one direction over the surface of a shallow layer of an inviscid
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Fig. 1. A solitary wave approaching the beach of Molokai, Hawaii. The lagoon has a constant depth of
approximately one metre and is perfectly suited to observe KdV solitons [9].

and incompressible fluid [1-8]. In this equation hg denotes the height of the undisturbed
fluid layer, n(x,t) the elevation of the wave above hg, and ¢y = \/ghgy the nondispersive
phase velocity.

A good example of a situation described by the KdV equation is depicted in Fig. 1, in
which we see a solitary wave travelling across the lagoon of one of the Hawaiian islands,
with an amplitude much smaller than the depth Ay = 1m of the lagoon. Historically, the
first example of a solitary wave of this type was the “Wave of Translation” observed by
John Scott Russell in a channel near Edinburgh in 1834 [7,10,11], but solitary ripples that
are well-described by the KdV equation — if one is willing to ignore the small viscosity
and compressibility of water — can be observed whenever a thin sheet of water flows (with
velocity exceeding cg) over a smooth floor. Certainly the most celebrated property of the
solitary-wave solutions of Eq. (1) is that they collide elastically: when two of them cross
each other, they emerge unscathed from the interaction. It is because of this particle-like
property that they are called solitons [12].

We should mention that the study of solitary water waves can also be pursued to some
extent at the level of the governing fluid-dynamical equations [13-15]. However, the KdV
equation is often preferred — notwithstanding the fact that it is only an approximation —
because it admits an in-depth analysis.

Equation (1) can be brought into dimensionless form by a change of variables: ¢ —
T = t/t. (where t. represents a typical time scale), x — £ = x/¢ (with £ a typical length
scale in the horizontal direction, say the width of the wave) and n — u = n/a (with a
a typical length scale in the vertical direction, i.e. the height of the wave). Applying this
change of variables, and choosing t. = ¢/cy, we arrive at the following form of the KdV
equation:

Uy + ug + cuug + Pugee = 0, (2)
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where o = %a/ho and 3 = %(ho/ﬁ)2.a In the derivation of the KAV equation both av and 3 are
taken to be small compared to 1. Moreover it is usually assumed that a/hg ~ (ho/¢)?; this
is a natural assumption, expressing the balance between nonlinearity and dispersion that
plays a crucial role in the solitary wave solution for which the KdV equation is famous [16].
It is not obligatory, however, since a and ¢ are two independent quantities and formal
considerations support the view that the KdV equation is a valid approximation to the
underlying hydrodynamical equations also outside the regime where a/hg and (ho/¢)? have
roughly the same value [17].

When «a and ( are not really small (or when a more accurate description is required),
higher-order terms in these parameters should be included. Up to second order the equation
is [18-23]

Uy + ue + ouug + Bugee + a2p1u2u§ + aff(pauugee + pauguee) + ﬁ2p4u§§§§§ =0, (3)

where the constant coefficients (determined from the original physical equations for an
inviscid, incompressible fluid) are given by p; = —%, p2 = %, p3 = % and pg = %. Unlike
the original KdV equation, Eq. (3) with the given values for the coefficients is not integrable
and its solitary wave solutions are not true “solitons” since their collisions are not perfectly
elastic: During the interaction, a dispersive wave train of small amplitude is generated.P Tt
can be shown that exact soliton solutions (with the well-known sech? profile) exist for special
combinations of the parameters {pi,...,ps}, but these do not include the aforementioned
combination for water [24].

The next equation, in which all terms up to third order in a and 3 are retained, was
studied recently by Marchant [25,26]. He showed that the resulting equation does not in
general conserve mass due to the fact that the unidirectional assumption in the derivation
(which allows for right-moving waves only) breaks down at this order. To correct this he
coupled the third-order equation to a companion equation describing left-moving waves
and found that left-moving waves are generated whenever the wave profile is changing, e.g.
during the collision of two solitary waves [25]. A single solitary wave, which moves without
any change of shape, does not give rise to a left-moving wave.

In the present paper we study the somewhat simpler case when O(a/hg) > O((ho/f)?),
i.e. when the waves are higher and/or wider than is usually assumed. In this case the terms
of order O(3?),0(af?) and O(B?) may be neglected, and the third-order equation reduces
to [27]:

Ur + ug + quug + Bugee + o prudug + aB(poungee + pauguee) + adorutug
+ a2ﬁ(02u2u555 + o3uuguge + U4u§) =0. (4)

The constant coefficients p1, ps and ps have the same values as above, see Eq. (3), and the

new ones are given by o; = %, o9 = %, o3 = % and o4 = g—g [27]. Again this equation is not

#Note that one could rescale a and 3 out of Eq. (2) by a further change of variables. However, we choose not
to do so because both « and ( are essential parameters in our analysis of the higher-order approximations,
see Eq. (4).

PThe solitary wave solutions of Eq. (3) are sometimes called “asymptotic solitons”, since the inelastic effects
can be shown to be beyond the second-order asymptotic validity of equation [18,20, 21], i.e., these effects
are of order O(a®,a?3, 3%, 3%) and higher.
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integrable and its solitary wave solutions do not collide precisely elastically. Only for special
combinations of the parameters — which do not represent the hydrodynamic situation —
does Eq. (4) admit exact soliton solutions with a sech? profile [28,29]. Our main concern is
therefore with single solitary-wave solutions and in particular we study how the successive
higher-order terms in Eq. (4) alter the shape of these waves.

Since we concentrate on travelling waves moving to the right, we limit ourselves to
solutions of the form u(&, 7) = u(§ — c7), where ¢ is the velocity of propagation. The central
question we seek to answer is: How do the height and width of the solitary waves depend
on the velocity c¢ if terms of increasingly high order are added to the KdV equation? For
definiteness we take o = 0.60 and 3 = 0.01. The choice of «a implies that a/hg = %a =
0.40, which is not much smaller than 1, so that there is good reason to include the higher
order terms in «. It should be noted that this choice is still within the realistic range for
solitary water waves over a horizontal bottom; the maximum value of a/hy that can be
achieved in practice lies somewhere around 0.55 [30], while the theoretical upper limit is
0.78 [31-33]. (In our equations this means that u = 7/a should not exceed 0.55h¢/a = 1.375
or, theoretically, 0.78hg/a = 1.95. However, we also study values beyond that to gain
extra insight in the mathematical structure of the problem.) The choice of § means that
(ho/?)? = 63 = 0.06 in accordance with the assumption O(a/hg) > O((ho/f)?), which lies
at the basis of Eq. (4).

In Sec. 2 we briefly analyze the solitary wave profile of the KdV equation, i.e. Eq. (4)
up to first order in o and S. The shape of the wave in this case is well-known and serves
as a benchmark for the subsequent cases. In Sec. 3 we include the terms O(a?,af,a?)
[i.e. the first line of Eq. (4) as a whole] and in Sec. 4 we turn to the full Eq. (4) by
including also the cubic terms O(a?3) of the second line. Finally in Sec. 5 we compare
the solitary waves in the three successive approximations and conjecture on the height and
width of the waves in the limiting case when terms of arbitrarily high order in o and (3 are
included.

2. First-Order Approximation: The KdV Equation

To make our discussion self-contained, and to demonstrate the method we are going to use,
in this section we briefly review the unperturbed KdV equation Eq. (2) or, equivalently,
the first line of Eq. (4). Since we are interested in waves travelling to the right, we consider
solutions of the form u(&,7) = w({ — ¢7), which do not depend on ¢ and 7 separately
but only on the combined variable ( = £ — ¢r. Now, with ug = u¢ - d(/d§ = u¢ and
Uy = u¢ - d(/dr = —cu¢, the KdV equation becomes the following ordinary differential
equation (the prime denotes the derivative with respect to ¢):

(1 —c)u' + auu’ + pu” = 0. (5)
Integrating this equation once yields:
1
(1—c)u+ Eau2 + pu’” =0, (6)

where the integration constant (the right-hand side of this equation) is zero because of the
vanishing boundary conditions u({) = u/(¢) = u”(¢) = 0 at { = +c0. In order to analyze
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Fig. 2. Left: The (u, «')-plane for Eq. (7) for the values o = 0.6, 3 = 0.01 and ¢ = 2. The homoclinic orbit
emanating from the saddle point (0,0) represents a solitary wave. Right: The corresponding solitary-wave
profile u(().

Eq. (6) by means of a phase-plane analysis, we rewrite this second-order ODE in the form
of two first-order ODEs:

1 (7)

u' =y = 3 [(1 —c)u + ;auQ] :

The corresponding (u,u’) phase-plane is depicted in Fig. 2. We observe two fixed points, a
saddle in (0,0) and a centre in (2a~!(c—1),0) = (3.33,0). The homoclinic orbit (separatrix)
emanating from the (0,0) represents the well-known soliton solution

3(c—1)

c—1

Usor(§,7) = sech? [ 1 & CT)] : (8)

Note that this solution only exists for ¢ > 1, in agreement with our earlier observation that
solitary waves occur when the speed exceeds the nondispersive phase velocity cg = v/gho,
which has been implicitly rescaled to 1 by the nondimensionalization.

The solitary wave solution Eq. (8) divides the unbounded orbits in the outer region of
the (u,u)-plane from the periodic orbits within the inner region. These latter solutions are
known as the cnoidal waves of the KdV equation [6,7] and correspond to the Stokes wave
solutions of the governing fluid-dynamical equations [2, 7,34, 35].

3. Second-Order Approximation

We now turn to the next level of approximation by studying Eq. (4) up to the terms of
order O(a?, aB3,a?), i.e. the first line of Eq. (4) altogether. It may be noted that we thus
mix a term of cubic order () with the terms of quadratic order in o and 3, but this is a
logical consequence of the fact that we are working with a relatively large value of o = 0.60
and a small value of § = 0.01. It is for this same reason that we may ignore the quadratic
term (3%pyugeeee [cf. the full second-order KAV equation Eq. (3)] in the present discussion.
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Fig. 3. Left: The (u, u')-plane for the second-order KdV system, Eq. (10), for the same values o = 0.60,
B =0.01 and ¢ = 2 as in Fig. 2. Right: The second-order solitary wave profile u(¢). It has a smaller height
and larger width than the first-order soliton of Fig. 2.

We again assume a travelling-wave solution, u = u(§ — ¢7) = u(¢), and thus turn the
original partial differential equation into an ordinary differential equation,

" /01

(1 — o) + auu’ + Bu” + o?pru*u’ + aB(paun’” + pau'u”) + aloruy’ = 0, (9)
which is readily integrated — just as Eq. (5) in the previous section — and leads to the
following system of two first-order ODEs:

u =y

" / —1

YT B+ apau)

1 1 1 1
{(1 —c)u+ §au2 + §a2p1u3 + iaﬂ(pg —p2)y? + Za301u4} :
(10)

Solving (10) numerically and plotting the solutions in the (u, u')-plane of Fig. 3, we observe
again a homoclinic orbit emanating from the saddle point in (0, 0), representing the solitary
wave solution. This homoclinic orbit, however, is much flatter than the corresponding one
in the first-order system (cf. Fig. 2) implying that the sides of the solitary wave are now
considerably less steep. We further observe that the rightmost point of the homoclinic orbit
(where it intersects the u-axis) lies at a somewhat smaller value of u than in the first-order
case, meaning that the height of the solitary wave has decreased. These observations are
confirmed by the profile of the solitary wave u(({) given in the right-hand plot of Fig. 3. We
return to this in the Conclusion.

4. Third-Order Approximation

At the next level of accuracy we consider the full Eq. (4). When we again restrict ourselves
to travelling-wave solutions of the form u = u(§ — er) = u((), Eq. (4) takes the form of the
following ordinary differential equation:

/N

+ o2 pruu + af(poun” + pau'u”) + odoyu?

(1 —c)u' + avu’ + Bu” '

+ a2 B(oau*u” + ozun/u” + oyu”) = 0. (11)
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Equation (11) is, as far as we can tell, not integrable. We therefore transform it directly to
the following system of three first-order ODEs,

—1
m o 1 _ 2 2
s B(1 +ap2u+a202u2){(1 — Oy Fauy Faipuy

+ aBpsyz + a301u3y + a2ﬁ03uyz + 04250'4113} (12)

and solve this system numerically in the (u,w’,4”) phase-space. The solution is depicted in
Fig. 4.

For all speeds ¢ > 1 we again observe a homoclinic orbit — or solitary wave — emanating
from the unstable equilibrium point in the origin (0,0,0), which follows a curved surface
in the three-dimensional space. In the second plot of Fig. 4 this orbit is projected onto
the (u,u)-plane for direct comparison with the results of the previous two approximations.
The trend observed in the second-order approximation is retained: The homoclinic orbit

ju 6] u(d
20] 3
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Fig. 4. Top: The (u, v/, u”) phase-space for the third-order KdV system Eq. (12) for the same values,
a = 0.60, 3 = 0.01 and ¢ = 2, as in Figs. 2 and 3. The homoclinic orbit corresponding to the solitary-wave
solution is seen to lie on a curved surface. Down, left: Projection of the homoclinic orbit on the (u, u’)-plane
to facilitate the comparison with Figs. 2 and 3. Down, right: The third-order solitary-wave profile u((). Its
height has decreased, and its width increased, with respect to the first- and second-order solutions of the
previous figures.
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has shrunk in size still further, both in the u- and the w’-directions, corresponding to an
increase of the height of the solitary wave and a decrease of its width, respectively.

In the interior region of the homoclinic orbit (following the curved surface in the three-
dimensional space) there exist cnoidal waves also in this case. We will discuss these in a
forthcoming publication.

5. Conclusion: Comparing the Successive Approximations

In this paper we examined the inclusion of higher-order terms in the small parameters «
and (3 in the KdV equation. The successive approximations preserve the most characteristic
solution of the KdV equation, namely the solitary wave, but they do change its shape and
also cause the loss of the pure “soliton” property: When two of them meet, they do not
emerge from the interaction completely unscathed [24-26]. With respect to the shape, given
a certain wave speed, the height of the solitary wave decreases and its width increases, as
can be seen clearly in Fig. 5 (left).

It is also interesting to compare three wave profiles for the same height, as in Fig. 5
(right). The second- and third-order approximations are seen to be considerably wider than
the sech? profile of the first-order approximation [cf. Eq. (8)]. Their velocity differs from that
of the first-order wave, but only slightly. Note that in this figure we have chosen a realistic
amplitude u = 1, corresponding to a wave height a = 0.4hg, well achievable in practice [30].
In the other figures we have mot restricted ourselves to experimentally attainable values,
going also beyond u = 1.375, as explained in the Introduction. For these larger values of u
(and ¢) the differences between the solitary waves become much clearer.

Concentrating on the height of the solitary wave, we see that it decreases drastically
already as a result of the first correction terms of order O(a?, a3, a?). Figure 6 illustrates
this point. The KdV equation itself (i.e. the first-order approximation indicated by the

g1 u@ , u@®
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Fig. 5. Comparison of the solitary-wave profiles u(¢) for the first-, second- and third-order equations. Left:
At one fixed value of the wave speed ¢ = 2. The height of the profile diminishes, and its width grows, as
the order of the approximation increases. Right: For the same wave amplitude v = 1 (corresponding to a
slightly different wave speed, ¢ ~ 1.20, for each curve). The width of the profiles for the second and third
approximations is distinctly larger than that of the sech?(¢) profile of the first approximation.
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symbol I) shows a linear increase of the height, h(c) « (¢ — 1), as can also be read from
the analytic solution Eq. (8). The second-order approximation causes a sharp decrease of
the height and instead of a linear growth we now observe an approximately logarithmic
dependence h(c) o Inc. The third-order corrections cause a further — albeit less drastic —
decrease in the height and make the logarithmic growth even more gradual. On the basis
of this we conjecture that the inclusion of corrections of arbitrarily high order in « and 3
will stop the growth altogether. If this indeed be the case, the height of the solitary waves
at high speed c¢ saturates at a definite, finite value.

Likewise the width of the solitary waves as a function of ¢ displays a conspicuous increase
as one goes from one approximation to the next. This is illustrated in Fig. 7, where we
measure the width w at the half-height of the wave. The behavior is best discerned in
terms of the inverse square width w2 depicted in the second plot. This quantity grows
linearly in the case of the original KdV equation (I) since w(c) o (¢ — 1)~1/2 [as can be
inferred analytically from Eq. (8)], implying that high-speed solitary waves in this first
approximation become infinitesimally thin. This unrealistic feature is corrected at the level
of the next approximations, Il and III. Indeed we conjecture that the width saturates at a
finite nonzero value in the limit for large ¢ when terms of arbitrarily high order in o and
are taken into account.

It would be highly desirable if accurate experiments were performed to test the validity
of the results presented in this paper. As far as real water waves are concerned (which
are subject to the restriction that a/hy cannot exceed 0.55, or equivalently, u cannot grow
beyond 1.375, with corresponding wave speeds ¢ < 1.3) the quantity that best lends itself
to distinguish between the successive approximations seems to be the width of the profile,
as in Figs. 5 (right) and 7.

Further, the method outlined here can be employed to study also other generalizations of
the KdV equation, e.g. the ones that take into account vorticity to model wave-current inter-
actions [36,37], or in fact any other evolution equation possessing travelling wave solutions.
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Fig. 6. Height of the solitary wave as a function of its speed ¢ in the three successive approximations. In the
first-order approximation I (i.e., the ordinary KdV equation) the height h(c) grows linearly without bound,
following the analytic solution Eq. (8). The approximations II and III show the restraining influence of the
higher-order terms. Note: The wave amplitudes that can be achieved in water experiments are restricted
to the narrow zone h < 1.375 (or theoretically, h < 1.95) and corresponding wave velocities ¢ < 1.3 (or
¢ < 1.4), where the curves I, II, and III have hardly separated yet [30-33].
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Fig. 7. Top: Width w(c) of the solitary wave as a function of its speed c in the three successive approximations.
Bottom: The inverse square width w_Q(c), showing a linear increase with respect to ¢ for the first-order
KdV equation [in accordance with the analytic solution Eq. (8)] and a much more restricted growth for the
second- and third-order approximations.
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