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ABSTRACT
In this paper, we propose a new class of distributions by compounding Lindley distributed random variates with the number of
variates being zero-truncated Poisson distribution. This model is called a compound zero-truncated Poisson–Lindley distribu-
tion with two parameters. Different statistical properties of the proposed model are discussed. We describe different methods
of estimation for the unknown parameters involved in the model. These methods include maximum likelihood, least squares,
weighted least squares, Cramer–vonMises, maximum product of spacings, Anderson–Darling and right-tail Anderson–Darling
methods. Numerical simulation experiments are conducted to assess the performance of the so obtained estimators developed
from these methods. Finally, the potentiality of the model is studied using one real data set representing the monthly highest
snowfall during February 2018, for a subset of stations in the Global Historical Climatological Network of USA.
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1. INTRODUCTION

In recent years, many researches are interested in obtaining several new continuous distributions by compounding an absolutely continu-
ous distribution with a discrete distribution. This method is used widely in engineering applications including risk measurement, floods
reliability and survical analysis. For example, Adamidis and Loukas [1] proposed a two-parameter lifetime distribution by compounding
exponential and geometric distributions. The exponential Poisson (EP) and exponential logarithmic distributions were introduced by Kus
[2] and Tahmasbi and Rezaei [3], respectively. Marshall and Olkin [4] developed some new extensions based on random minimum and
maximum. Barreto-Souza and Cribari-Neto [5] introduced the exponentiated exponential Poisson (EEP).

Cancho et al. [6] introduced the Poisson-exponential (PE) distribution by compounding the exponential and zero-truncated Poisson distri-
butions. Chahkandi and Ganjali [7] introduced a class of distributions, namely exponential power series (EPS) distributions by compound-
ing exponential and power series distributions. Also in the same way, Mahmoudi and Jafari [8] introduced the generalized exponential
power series (GEPS) distribution by compounding the generalized exponential (GE) distribution with the power series distribution. The
performances of the estimators using intensive simulation experiments have received considerable attention in the literature by several
authors. Among them, Gupta and Kundu [9], Kundu and Raqab [10], Alkasabeh and Raqab [11], Asgharzadeh et al. [12], Dey et al. [13]
and Rodrigues et al. [14].

The main aim of the present study is two-fold. The first main aim is to introduce a new model which is flexible in fitting a wide range of
data sets by compounding Lindley and zero-truncated Poisson distributions. The basic idea can be described as follows. Consider a random
variable X having the Lindley distribution with probability density function (PDF)

fX(x; 𝜆) = 𝜆2
𝜆 + 1

(1 + x)e−𝜆x, x > 0, 𝜆 > 0, (1)

and cumulative distribution function (CDF)

FX(x; 𝜆) = 1 −
(
1 + 𝜆

𝜆 + 1
x
)
e−𝜆x, x > 0, 𝜆 > 0. (2)

*Corresponding author. Email: mraqab@ju.edu.jo
Pdf_Folio:33

https://doi.org/{10.2991/jsta.d.210105.001}
https://www.atlantis-press.com/journals/jsta
https://orcid.org/0000-0002-3047-1466
http://creativecommons.org/licenses/by-nc/4.0/


34 M. A. Meraou and M. Z. Raqab. / Journal of Statistical Theory and Applications 20(1) 33–45

GivenM = m, let X1,X2, ...,Xm be independent and identically distributed (iid) random variables from Lindley distribution. The random
variableM follows zero-truncated Poisson distribution with PDF

P(M = m) = 𝜃m
m! (e𝜃 − 1)

, m = 1, 2, 3, ..., 𝜃 > 0. (3)

Here, we introduce a new class of distributions based on the maximal random variate Y = max{X1,X2...,XM}. Now we have

P(Y ≤ y) = P(max{X1,X2...,XM} ≤ y)

=
∞
∑
m=1

P
(
max{X1,X2...,XM} ≤ y|M = m

)
P(M = m)

=
∞
∑
m=1

[F(y; 𝜆, 𝜃)]m P(M = m)

=
∞
∑
m=1

[𝜃 FX(y; 𝜆, 𝜃)]m
m!

1
e𝜃 − 1

= e𝜃 FX(y;𝜆,𝜃) − 1
e𝜃 − 1

, (4)

where FX(x; 𝜆) is the CDF of the Lindley distribution defined in (2). The so obtained model is called the compound zero-truncated Poisson
Lindley (ZTPL) distribution with two parameters. It has an absolute continuous distribution function. Moreover, the Lindley distribution
can be obtained as a special case of the compound ZTPL.

The second aim is to present various estimation methods for estimating the two parameters of the compound ZTPL model. The estimators
to be considered are maximum likelihood estimators (MLEs), least square estimators (LSEs), weighted least square estimators (WLSEs),
Cramer–von Mises type minimum distance estimators (CMDEs), maximum product of spacings, Anderson–Darling estimators (ADEs)
and right-tail Anderson–Darling estimation (RTADE). An intensive simulation study is performed for comparing the effectiveness of the
so developed of estimators.

This paper is organized as follows: In Section 2, the ZTPL model is described and its distributional properties are discussed. Also, differ-
ent methods for estimating the parameters of the ZTPL model are developed in Section 3. Numerical simulation results are presented in
Section 4. The analysis of monthly highest snowfall data during the month of February 2018, for a subset of stations in the Global Historical
Climatological Network of USA is performed for validation purposes in Section 5. Some concluding remarks are presented in Section 6.

2. ZTPL DISTRIBUTION

A random variable Y is said to have a compound ZTPL distribution if its CDF is given by

FY(y; 𝜆, 𝜃) = e
𝜃[1−

(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]

− 1
e𝜃 − 1

. (5)

The corresponding PDF of Y can be obtained to be

fY(y; 𝜆, 𝜃) =
𝜃𝜆2(1 + y)e−𝜆y

(e𝜃 − 1)(𝜆 + 1)
e
𝜃[1−

(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]

, y > 0; 𝜃, 𝜆 > 0. (6)

From (6), it is easily seen that the Lindley distribution is a special case of compound ZTPL when 𝜃 → 0. Hence the parameter 𝜃 can be
interpreted as a concentration parameter. Figure 1 provides plots of the compound ZTPL distribution for some selected choices of 𝜆 and 𝜃.
It is observed that the compound ZTPL distribution can be decreasing and unimodal.

The joint PDF of Y andM is given as

fY,M(y,m) = 𝜃𝜆2
(e𝜃 − 1)(m − 1)! (𝜆 + 1)

(1 + y)e−𝜆y [𝜃
(
1 −

(
1 + 𝜆y

1 + 𝜆

)
e−𝜆y

)
]
m−1

. (7)
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Figure 1 Probability density function (PDF) plots of zero-truncated Poisson–Lindley (ZTPL) distribution for different
parameter values: (a) (0.25, 1) (b) (2, 3) (c) (1, 4) (d) (3, 0.75) (e) (2, 0.5) (f) (0.2, 0.0001).

Further, from (6) and (7), it can be shown that the PDF of the conditional distribution ofM given Y = y is just Poisson random variate with

mean 𝜃
(
1 −

(
1 + 𝜆y

1 + 𝜆

)
e−𝜆y

)
. That is,

P(M = m|Y = y) =
[𝜃

(
1 −

(
1 + 𝜆y

1 + 𝜆

)
e−𝜆y

)
]
m−1

(m − 1)! e
𝜃 [1−

(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]

,m = 1, 2, ....

The survival function and hazard rate (HR) of the ZTPL(𝜆, 𝜃) distribution, are given respectively by

S(y) = e𝜃

e𝜃 − 1

⎧
⎨
⎩
1 − e

[1−
(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]⎫

⎬
⎭
,

and

h(y) = 𝜃𝜆2(1 + y)e−𝜆y

(𝜆 + 1)e𝜃
e
𝜃[1−

(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]

1 − e
[1−

(
1+

𝜆y
1 + 𝜆

)
e−𝜆y]

.

Figure 2 presents different shapes of HR for the compound ZTPL(𝜆, 𝜃) distribution considering different values of 𝜆 and 𝜃. It is observed
from Figure 2 that the HR function is increasing for all 𝜆 > 0 and 𝜃 > 0.

The following expression for the r-th moment of Y can be obtained as

E(Yr) = 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j {
Γ(r + j + 1)
[𝜆(i + 1)]r+j+1 +

Γ(r + j + 2)
[𝜆(i + 1)]r+j+2 } ,
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Figure 2 HR Plots for 𝜆 = 0.5, 1, 1.5, 2, 2.5 and fxed 𝜃 = 1.

where

k,i,j =
∞
∑
k=0

∞
∑
i=0

∞
∑
j=0

𝜃k
k!

(
k
i

)
(−1)i

(
i
j

)(
𝜆

𝜆 + 1

)j
.

Therefore, the mean and variance of Y are given by

E(Y) = 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j

( Γ(j + 2)
[𝜆(i + 1)]j+2 +

Γ(j + 3)
[𝜆(i + 1)]j+3

)
,

and

Var(Y) = 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j {
Γ(j + 3)

[𝜆(i + 1)]j+3 +
Γ(j + 4)

[𝜆(i + 1)]j+4

− 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j

( Γ(j + 2)
[𝜆(i + 1)]j+2 +

Γ(j + 3)
[𝜆(i + 1)]j+3

)2

} .

The skewness measure of Y is given by

𝛾3 =
(
𝜆(𝜆 + 1)(e𝜃 − 1)

𝜃

)1/2

−1/2k,i,j {
Γ(j + 3)

[𝜆(i + 1)]j+3 +
Γ(j + 4)

[𝜆(i + 1)]j+4

− 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j

( Γ(j + 2)
[𝜆(i + 1)]j+2 +

Γ(j + 3)
[𝜆(i + 1)]j+3

)2

}
−3/2

× { Γ(j + 4)
[𝜆(i + 1)]j+4 +

Γ(j + 5)
[𝜆(i + 1)]j+5 } .

The moment generating function (MGF) of Y,MY(t), is

MY(t) = 𝜃𝜆2
(e𝜃 − 1)(𝜆 + 1)

k,i,j {
Γ(j + 1)

[𝜆(i + 1) − t]j+1 +
Γ(j + 2)

[𝜆(i + 1) − t]j+2 } .
Pdf_Folio:36
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3. METHODS OF ESTIMATION

In this section, we present different estimation methods for obtaining the estimators of the parameters 𝜆 and 𝜃 of the compound ZTPL
distribution. These methods are quite useful in obtaining the estimators of 𝜆 and 𝜃 and other related inferences.

3.1. Maximum Likelihood Estimation and its Asymptotics

Let {y1, ..., yn} be a random sample of size n from ZTPL(𝜆, 𝜃). Then the log-likelihood function is given as

l(𝜆, 𝜃) = n log(𝜃) + 2n log(𝜆) +
n

∑
i=1

log(1 + yi) − 𝜆
n

∑
i=1

yi + 𝜃
n

∑
i=1

[1 −
(
1 + 𝜆yi

1 + 𝜆

)
e−𝜆yi]

−n log(e𝜃 − 1) − n log(1 + 𝜆). (8)

The MLEs ̂𝜆MLE and ̂𝜃MLE of 𝜆 and 𝜃, are obtained respectively by solving the two nonlinear equations:

𝜕l(𝜆, 𝜃)
𝜕𝜆 = 2n

𝜆 − n
1 + 𝜆 −

n

∑
i=1

yi + 𝜃
(𝜆 + 1)2

n
∑
i=1
𝜆yie−𝜆yi (𝜆yi + yi + 𝜆 + 2) = 0,

and

𝜕l(𝜆, 𝜃)
𝜕𝜃 = n

𝜃 −
n

e𝜃 − 1
+

n

∑
i=1

[1 −
(
1 + 𝜆yi

1 + 𝜆

)
e−𝜆yi] = 0.

Another aspect of estimation is to construct confidence intervals (CIs) of the parameters by making use of the asymptotic distribution

theory of MLE. By denoting the parameter vector 𝝑 = (𝜆, 𝜃), the asymptotic distribution of 𝝑 is
( ̂𝝑 − 𝝑

) D→ N2(0, I−1), where ̂𝝑 is the MLE
of 𝝑 and I−1(𝝑) is the inverse of the observed information matrix of 𝝑 = (𝜆, 𝜃), which can be approximated by I−1( ̂𝝑), where

I( ̂𝝑) =
(
− 𝜕2l
𝜕𝜗i 𝜕𝜗j

)
|𝝑= ̂𝝑,

with 𝜗1 = 𝜆 and 𝜗2 = 𝜃.
The elements of matrix I(𝝑) are derived based on (8) as follows:

I11 = 2n
𝜆2 −

n
(1 + 𝜆)2 +

𝜃
(𝜆 + 1)3

n
∑
i=1

yie−𝜆yi (𝜆3y2i + 𝜆3yi + 2𝜆2y2i + 3𝜆2yi + 𝜆y2i + 𝜆yi − yi − 2),

I12 = I21 = − 1
(𝜆 + 1)2

n
∑
i=1
𝜆yie−𝜆yi (𝜆yi + yi + 𝜆 + 2),

and

I22 = n
𝜃2 −

ne𝜃

(e𝜃 − 1)2
.

Therefore, the lower confidence limit (LCL) and upper confidence limit (UCL) of (1 − 𝛼)% CI of 𝜗j are

LCB = ̂𝜗j − z𝛼/2√I−1( ̂𝜗j), j = 1, 2,

and

UCB = ̂𝜗j + z𝛼/2√I−1( ̂𝜗j), j = 1, 2,

where z𝛼/2 is upper 𝛼/2 quantile of the standard normal distribution, N(0, 1). However, the drawback of this method is that the lower limit
of the CI may be negative, which is inadmissible. For this reason, one may use the delta method and logarithmic transformation can avoid
this problem. The asymptotic distribution of ln ̂𝜗j is (

ln ̂𝜗j − ln 𝜗j
) D→ N(0, var(ln ̂𝜗j)),

Pdf_Folio:37
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where

var(ln ̂𝜗j) =
var( ̂𝜗j)

̂𝜗2
j

=
[I−1( ̂𝜗)]j

̂𝜗2
j

.

Then the (1 − 𝛼)% CI of 𝜗j can be written as

⎛⎜⎜⎜⎜⎝
̂𝜗j

Exp
(
z𝛼/2√var(ln ̂𝜗j)

) , ̂𝜗j Exp
(
z𝛼/2√var(ln ̂𝜗j)

)⎞⎟⎟⎟⎟⎠
.

3.2. Least Square and Weighted LSEs

Swain et al. [15] proposed an alternative method to compute the estimation of unknown parameters, which is called the LSEs or WLSEs.
The basic idea can be defined as follows. Let y1, ..., yn is a random sample of size n from ZTPL distribution and y(1) < ... < y(n) denote the
order statistics of the random sample. The LSEs of 𝜆 and 𝜃 (say, ̂𝜆LSE and ̂𝜃LSE) can be obtained by minimizing

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
i

n + 1 ]
2
,

with respect to 𝜆 and 𝜃, where F(y|𝜆, 𝜃) is given by (5). Equivalently, they can be obtained by solving the following nonlinear equations:

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
i

n + 1 ] 𝜂1(y(i)|𝜆, 𝜃) = 0,

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
i

n + 1 ] 𝜂2(y(i)|𝜆, 𝜃) = 0,

where

𝜂1(y(i)|𝜆, 𝜃) =
𝜃𝜆y(i)e−𝜆y(i)

(1 + 𝜆)2(e𝜃 − 1)
exp {𝜃 [1 −

(
1 + 𝜆y(i)

1 + 𝜆

)
e−𝜆y(i)]}

×
(
𝜆(1 + y(i)) + y(i) + 2

)
, (9)

𝜂2(y(i)|𝜆, 𝜃) =
1

(e𝜃 − 1)2
{(e𝜃 − 1) [1 −

(
1 + 𝜆y(i)

1 + 𝜆

)
e−𝜆y(i)] exp

(
𝜃 [1 −

(
1 + 𝜆y(i)

1 + 𝜆

)
e−𝜆y(i)]

)
− exp

(
𝜃2 [1 −

(
1 + 𝜆y(i)

1 + 𝜆

)
e−𝜆y(i)]

)
+ e𝜃} . (10)

The WLSEs of 𝜆 and 𝜃, say ̂𝜆WLSE and ̂𝜃WLSE, respectively, can be found by minimizing

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1) [F(y(i)|𝜆, 𝜃) −

i
n + 1 ]

2
.

Hence, the estimates ̂𝜆WLSE and ̂𝜃WLSE, respectively, can be obtained by solving the following nonlinear equations:

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1) [F(y(i)|𝜆, 𝜃) −

i
n + 1 ] 𝜂1(y(i)|𝜆, 𝜃) = 0,

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1) [F(y(i)|𝜆, 𝜃) −

i
n + 1 ] 𝜂2(y(i)|𝜆, 𝜃) = 0.
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3.3. Maximum Product of Spacings

Cheng and Amin [16,17] introduced an elaborate technique to compute the estimation of unknown parameters of continuous univariate
distributions, namely the maximum product spacing (MPS) method. It was developed by Ranneby [18] independently as an approximation
to the Kullback–Leibler measure of information. The simple idea can be described as follows. Let

Di(𝜆, 𝜃) = F(y(i)|𝜆, 𝜃) − F(y(i−1)|𝜆, 𝜃), i = 1, ..., n + 1,

where

F(y(0)|𝜆, 𝜃) = 0, and F(y(n+1)|𝜆, 𝜃) = 1.

Clearly
n+1
∑
i=1

Di (𝜆, 𝜃) = 1.

TheMPS estimators (MPSEs) of 𝜆 and 𝜃, say ̂𝜆MPS and ̂𝜃MPS, respectively, can be obtained bymaximizing the geometricmean of the spacings

G(𝜆, 𝜃) = [
n+1
∏
i=1

Di(𝜆, 𝜃)]
1/(n+1)

. (11)

Equivalently, they can be obtained by maximizing the logarithm of the geometric mean of sample spacings:

H(𝜆, 𝜃) = 1
n + 1

n+1
∑
i=1

logDi(𝜆, 𝜃). (12)

The estimates ̂𝜆MPS and ̂𝜃MPS can be obtained by solving the two nonlinear equations:

𝜕H(𝜆, 𝜃)
𝜕𝜆 = 1

n + 1

n+1
∑
i=1

1
Di(𝜆, 𝜃)

[𝜂1(y(i)|𝜆, 𝜃) − 𝜂1(y(i−1)|𝜆, 𝜃)] = 0,

and

𝜕H(𝜆, 𝜃)
𝜕𝜃 = 1

n + 1

n+1
∑
i=1

1
Di(𝜆, 𝜃)

[𝜂2(y(i)|𝜆, 𝜃) − 𝜂2(y(i−1)|𝜆, 𝜃)] = 0,

where 𝜂1(.|𝜆, 𝜃) and 𝜂2(.|𝜆, 𝜃) are given in (9) and (10), respectively.

3.4. Cramer–von Mises Minimum Distance Estimators

The CMDEs can be obtained as the difference between the estimate of the CDF and its respective empirical distribution function. MacDon-
ald [19] provided empirical evidence that the bias of the estimator is smaller than the other minimum distance estimators. The Cramer–
von Mises estimates ̂𝜆CME and ̂𝜃CME are obtained by minimizing

C(𝜆, 𝜃) = 1
12n +

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
2i − 1
2n ]

2
. (13)

These estimates can also be obtained by solving the nonlinear equations:

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
2i − 1
2n ] 𝜂1(y(i)|𝜆, 𝜃) = 0,

n

∑
i=1

[F(y(i)|𝜆, 𝜃) −
2i − 1
2n ] 𝜂2(y(i)|𝜆, 𝜃) = 0,

where 𝜂1(.|𝜆, 𝜃) and 𝜂2(.|𝜆, 𝜃) are given in (9) and (10), respectively.Pdf_Folio:39
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3.5. Anderson–Darling and Right-Tail Anderson–Darling
The ADE is another type of minimum distance estimator and it was introduced by Anderson and Darling [20]. The ADEs ̂𝜆ADE and ̂𝜃ADE
of 𝜆 and 𝜃 are, respectively, obtained by minimizing

A(𝜆, 𝜃) = −n − 1
n

n

∑
i=1

(2i − 1){log F(y(i)|𝜆, 𝜃) + log S(y(n+1)|𝜆, 𝜃)}.

These estimates can also be obtained by solving the following equations:

n

∑
i=1

(2i − 1) [𝜂1(y(i)|𝜆, 𝜃)F(y(i)|𝜆, 𝜃)
− 𝜂1(y(n+1)|𝜆, 𝜃)

S(y(n+1)|𝜆, 𝜃)
] = 0,

n

∑
i=1

(2i − 1) [𝜂2(y(i)|𝜆, 𝜃)F(y(i)|𝜆, 𝜃)
− 𝜂2(y(n+1)|𝜆, 𝜃)

S(y(n+1)|𝜆, 𝜃)
] = 0,

where 𝜂1(.|𝜆, 𝜃) and 𝜂2(.|𝜆, 𝜃) are given in (9) and (10), respectively.

Similarly, the RTADEs, ̂𝜆RTADE and ̂𝜃RTADE are obtained by minimizing

R(𝜆, 𝜃) = n
2
− 2

n

∑
i=1

log F(y(i)|𝜆, 𝜃) −
1
n

n

∑
i=1

(2i − 1) log S(y(n+1)|𝜆, 𝜃).

These estimates can be obtained by solving the the following equations:

−2
n

∑
i=1

𝜂1(y(i)|𝜆, 𝜃)
F(y(i)|𝜆, 𝜃)

+ 1
n

n

∑
i=1

(2i − 1)𝜂1(y(n+1)|𝜆, 𝜃)S(y(n+1)|𝜆, 𝜃)
= 0,

−2
n

∑
i=1

𝜂2(y(i)|𝜆, 𝜃)
F(y(i)|𝜆, 𝜃)

+ 1
n

n

∑
i=1

(2i − 1)𝜂2(y(n+1)|𝜆, 𝜃)S(y(n+1)|𝜆, 𝜃)
= 0,

where 𝜂1(.|𝜆, 𝜃) and 𝜂2(.|𝜆, 𝜃) are given in (9) and (10), respectively.

4. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we present some results of Monte Carlo simulation study to compare the efficiency of the different estimation procedures
proposed in the previous sections. For a given set of parameter values for 𝜆 and 𝜃 and for a given sample size, we first generate a random
sample of size n from the compound ZTPL model. Secondly, we compute the average estimates (AEs) and the associated mean squared
errors (MSEs) over on 1000 replications. The results are recorded in Tables 1 and 2. The simulation study was computed using the software
R. The performance of different methods of estimation are evaluated in terms of MSEs.

Some of the points are quite clear from Tables 1 and 2. As the sample size increases, the AEs based on all estimation methods tend to the
true parameter values and the MSEs decrease. This indicates that all estimators are consistent and asymptotically unbiased. Furthermore, it
is observed that as 𝜆 and 𝜃 increase, the MSEs increase for all the estimates. Based on the MSE as an optimality criterion, the MPSEs have
superior performance than theMLEs and other types of estimation for the compound ZTPL distribution. These results are shownwith other
studies, see, for example, Ramos and Louzada [21] and Sharma et al. [22]. However, the RTADE has smaller MSE than the ADE. Figures 3
and 4 confirm that these concluding remarks.

5. APPLICATION TO MONTHLY MAXIMUM SNOWFALL DATA

In this section, we discuss the analysis of real-life data representing the monthly highest snowfall during the month of February 2018,
obtained from a subset of stations in the United States and it is measured in inches (in). This data set was reported in: the National Centers
for Environmental Information (NCEI) (https://www.ncdc.noaa.gov/cdoweb/datatools/records). Here, we only wish to demonstrate the use
of the estimation procedures based on samples from compound ZTPL model. Table 3 summarizes some basic statistics of the monthly
maximum snowfall data set.

The following distributions are used in the literature as fitting models for the data set. For example, Poisson Lomax PL (𝛼, 𝛽, 𝜆) distribution
is introduced by Bander and Hanaa [23], exponentiated Weibull–Poisson (EWP) (𝛼, 𝛽, 𝛾, 𝜃) distribution is considered by Mahmoudi andPdf_Folio:40
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Table 1 The AE and the associated MSEs for the estimates of 𝜆 and 𝜃 considering different sample sizes.

Par n Est. MLE LSE WLSE CME MPS ADE RTADE

𝜆 = 0.5 25 AE 0.5673 0.4897 0.4929 0.5263 0.4816 0.5102 0.4686
MSE 0.0200 0.0316 0.0315 0.0313 0.0041 0.0257 0.0218

50 AE 0.5437 0.4829 0.4802 0.5040 0.4983 0.4975 0.4902
MSE 0.0089 0.0170 0.0146 0.0158 0.0024 0.0175 0.0113

100 AE 0.5227 0.4873 0.5003 0.4997 0.4992 0.4914 0.5027
MSE 0.0042 0.0096 0.0067 0.0084 0.0011 0.0046 0.0064

300 AE 0.5098 0.4891 0.4990 0.4986 0.5004 0.4942 0.5050
MSE 0.0015 0.0036 0.0020 0.0028 0.0009 0.0020 0.0023

500 AE 0.5026 0.5049 0.4968 0.5007 0.5090 0.5008 0.5022
MSE 0.0010 0.0014 0.0013 0.0016 0.0003 0.0013 0.0010

𝜃 = 0.5 25 AE 1.1585 0.2207 0.1742 0.6038 0.4670 0.4126 0.1417
MSE 1.6850 2.6828 3.2857 3.2989 0.0076 2.7555 3.8645

50 AE 0.8743 0.2743 0.2389 0.4794 0.4896 0.4011 0.3443
MSE 0.8223 2.4417 1.7143 1.6978 0.0010 1.9692 1.4611

100 AE 0.5960 0.3460 0.4395 0.4713 0.4963 0.4337 0.4771
MSE 0.3872 0.9877 0.7283 0.9177 0.0008 0.5503 0.8661

300 AE 0.3400 0.4181 0.4931 0.4756 0.5049 0.4486 0.5061
MSE 0.1264 0.3812 0.2301 0.2816 0.0007 0.2131 0.2165

500 AE 0.5292 0.5073 0.4734 0.5011 0.5097 0.4915 0.5216
MSE 0.0960 0.1335 0.1338 0.1657 0.0003 0.1373 0.0969

AE, average estimate; MSE, mean squared error; MLE, maximum likelihood estimator; LSE, least square estimator; WLSE, weighted least square estimator;
MPS, maximum product spacing; ADE, Anderson–Darling estimator; RTADE, right-tail Anderson–Darling estimator.

Table 2 The AE and the associated MSEs for the estimates of 𝜆 and 𝜃 considering different sample sizes.

Par n Est. MLE LSE WLSE CME MPS ADE RTADE

𝜆 = 1 25 AE 1.0759 0.9318 0.9798 1.0336 0.9598 0.9866 1.0077
MSE 0.0508 0.1168 0.0937 0.0938 0.0202 0.0864 0.0954

50 AE 1.0092 0.9861 0.9562 1.0146 0.9808 0.9430 1.0216
MSE 0.0207 0.0601 0.0437 0.0565 0.0084 0.0446 0.0477

100 AE 1.0223 0.9873 1.0170 1.0215 0.9912 0.9958 1.0153
MSE 0.0143 0.0351 0.0220 0.0262 0.0030 0.0244 0.0248

300 AE 1.0015 0.9865 0.9780 1.0080 1.0056 1.0096 0.9913
MSE 0.0048 0.0098 0.0082 0.0086 0.0026 0.0085 0.0070

500 AE 1.0034 1.0043 1.0053 1.0014 1.0176 1.0025 1.0078
MSE 0.0037 0.0049 0.0044 0.0047 0.0020 0.0044 0.0034

𝜃 = 0.75 25 AE 1.0774 0.2428 0.5457 0.8378 0.7257 0.4698 0.7177
MSE 1.2320 3.6427 2.4906 2.2156 0.0071 2.8561 3.0602

50 AE 0.8486 0.6438 0.5907 0.7168 0.7453 0.4715 0.8298
MSE 0.5147 1.7936 1.2246 1.1642 0.0012 1.3342 1.3694

100 AE 0.8745 0.6277 0.8020 0.8503 0.7480 0.6720 0.8176
MSE 0.4271 0.8848 0.5889 0.5837 0.0008 0.6024 0.6815

300 AE 0.7589 0.6678 0.6496 0.7904 0.7520 0.7519 0.7044
MSE 0.1057 0.2395 0.1890 0.1721 0.0006 0.1865 0.1870

500 AE 0.7682 0.7524 0.7613 0.7523 0.7583 0.7775 0.8085
MSE 0.1000 0.1024 0.1045 0.1041 0.0005 0.1090 0.0978

AE, average estimate; MSE, mean squared error; MLE, maximum likelihood estimator; LSE, least square estimator; WLSE, weighted least square estimator;
MPS, maximum product spacing; ADE, Anderson–Darling estimator; RTADE, right-tail Anderson–Darling estimator.

Table 3 Basic statistics of monthly highest snowfall data set.

Mean Median Std.Dev. Q1 Q3

8.25 7.99 3.50 5.98 10.09
Pdf_Folio:41
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Figure 3 MSE of 𝜆̂ for 𝜆 = 0.5 (left) and MSE of ̂𝜃 for 𝜃 = 0.5 (right).

Figure 4 MSE of 𝜆̂ for 𝜆 = 1 (left) and MSE of ̂𝜃 for 𝜃 = 0.75 (right).

Table 4 The MLEs and the corresponding log-likelihood (ll) values for different fitting distributions.

Distribution Parameters ll

Lindley 𝜆̂=0.2205 −156.4475
ZTPL 𝜆̂=0.4259 ̂𝜃=5.8033 −143.1997
PL 𝛼̂=0.0107 ̂𝛽=6.7197 𝜆̂=29.0468 −145.3201
EWP 𝛼̂ = 0.1814 ̂𝛽 = 4.2158 𝛾̂=0.4335 ̂𝜃=319.3034 −152.0237
MLE, maximum likelihood estimator; ZTPL, zero-truncated Poisson–Lindley; EWP, exponentiated Weibull–Poisson.

Sepahdar [24] and Lindley (𝜃) distribution is also used by Ghitany et al. [25]. Here, we show that the compound ZTPL distribution is also
a correct fitting distribution as an alternative to the PL, EWP and LI distributions. We fit the compound ZTPL distribution to the monthly
highest snowfall data set. The MLEs and the corresponding log-likelihood (ll) values for each distribution are computed. The results are
reported in Table 4. TheMLEs of 𝜆 and 𝜃 are computed numerically usingNewton–Raphson (NR)method to be ̂𝜆 = 0.4259 and ̂𝜃 = 5.8033.
The Kolmogorov–Smirnov (K-S) distance between the fitted and the empirical distribution functions is 0.1109, and the corresponding p
values is 0.5197, respectively. Therefore, these values indicate that the two-parameter compound ZTPL distribution fits the data set well.

For further checking model validity and comparisons, the values of K-S and other criteria and their corresponding p values for other dis-
tributions including Lindley, PL and EWP distributions are computed. The additional considered criteria are Akaike information crite-
rion (AIC), Akaike information criterion correction (AICc), Hannan–Quinn information criterion (HQIC), Bayesian information criterion
(BIC). Table 5 presents the values of these statistics. Note that the smaller the value of the considered criterion, the better the fit to the data.Pdf_Folio:42
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Table 5 The goodness of fit tests for monthly highest snowfall data set.

Distribution AIC AICc HQIC BIC K-S p- value

Lindley 314.8949 314.9719 315.6620 316.8839 0.2398 0.004
ZTPL 290.3994 290.6347 291.9335 294.3774 0.1109 0.5197
PL 296.6401 297.1201 298.9414 302.6071 0.1267 0.3512
EWP 312.0474 312.8637 315.1156 320.0033 0.1587 0.1317
MLE, maximum likelihood estimator; ZTPL, zero-truncated Poisson–Lindley; EWP, exponentiated Weibull–Poisson; AIC, Akaike information criterion;
AICc, Akaike information criterion correction (AICc); HQIC, Hannan–Quinn information criterion; BIC, Bayesian information criterion; K-S, Kol-
mogorov–Smirnov.

Figure 5 Fitted and empirical densities and cumulative distribution functions (CDFs) of zero-truncated Poisson–Lindley
(ZTPL), PL, Lindley and exponentiated Weibull–-Poisson (EWP) distributions for the monthly highest snowfall data set.

Table 6 Estimates of 𝜆 and 𝜃 and the respective 95% CIs under various methods and goodness of fit statistics.

Method 𝜆̂ 𝜃̂ ll K-S

Est. LCB UCB Est. LCB UCB

MLE 0.4258 0.3471 0.5078 5.8033 4.1696 7.4369 −143.1997 0.1109
LSE 0.4309 0.3477 0.5140 6.1238 4.4186 7.8289 −143.2309 0.1173
WLSE 0.4239 0.3421 0.5056 5.8177 4.1809 7.4544 −143.2049 0.1165
CME 0.4423 0.3569 0.5276 6.6075 4.7906 8.4243 −143.3629 0.1162
MPS 0.4341 0.3503 0.5178 5.8224 4.1845 7.4602 −143.1989 0.1104
ADE 0.4278 0.3453 0.5102 5.9683 4.2981 7.6384 −143.2100 0.1160
RTADE 0.4383 0.3537 0.5228 6.4321 4.6562 8.2079 −143.3023 0.1165
CI, confidence interval;MSE,mean squared error;MLE,maximum likelihood estimator; LSE, least square estimator;WLSE, weighted least square estimator;
MPS, maximum product spacing; ADE, Anderson–Darling estimator; RTADE, right-tail Anderson–Darling estimator.

Clearly, the compound ZTPL distribution is a good alternative model comparing with other fitted models. Figure 5 shows the plots of the
fitted PDFs and CDFs with their corresponding empirical values. In addition, the empirical survival function (ESF) and fitted survival func-
tion are presented in Figure 6. All these plots confirm the same conclusion. Now, we obtain the estimators of the unknown parameters for
the compound ZTPL model using different methods of estimation discussed in Section 3. The results for estimates as well as LCL and UCL
for 95% CIs of the parameters are displayed in Table 6. Based on K-S distance and log-likelihood criteria, it can be checked that the MPS
method competes the other methods but their values are close.Pdf_Folio:43
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Figure 6 The empirical survival function (ESF) and fitted survival functions for different distributions:
(a) zero-truncated Poisson–Lindley (ZTPL), (b) PL, (c) exponentiated Weibull–-Poisson (EWP) and (d)
Lindley.

6. CONCLUSION

In this paper, a new family of distributions is proposed based on a maxima of Poisson number of Lindely random variates. It is called a
compound ZTPL model. Some distributional properties of this model are discussed and different methods of estimation are derived for
the unknown parameters, namely, maximum likelihood, least squares, weighted least squares, Cramer–von Mises, maximum product of
spacing, Anderson–Darling and right tailed Anderson–Darling. It is observed that the estimators obtained bymaximum product of spacing
method outperform all other estimators when the mean square error is considered as an optimality criterion. For fitting the maximal values
of random number observations, it is evident that the compound ZTPLmodel provides a consistently better fit than Lindley, Poisson Lomax
and Exponentiated Weibul–Poisson distributions.
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