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ABSTRACT
This paper considers the problem of optimum stratification for a model-based allocation under a superpopulation model. The
equations giving optimum points of stratification have been derived and a few methods for finding approximately optimum
points of stratification have been obtained from the equations. Numerical illustrations using generated data have been worked
out and the proposed methods of stratification have been compared with equal interval stratification.
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1. INTRODUCTION

The classical work of Tschuprow [1] and Neyman [2] on allocation of sample size to strata opened a space for further research on allocation
and stratification aspects in stratified sampling. However, initial works on problem of allocation of sample size to strata as well as optimum
stratification were based on the values of study variable y itself. When the information on an auxiliary variable highly correlated with the
study variable y is available, it was demonstrated by Cochran [3] that a superpopulation model could be constructed in which the finite
population under study could be treated as a random sample from an infinite population (superpopulation). It could also be used for
construction of strata and allocation of sample size to strata.

Hanurav [4] and Rao [5] started using auxiliary information for allocation of sample size to strata in which the following superpopulation
model was considered.

(i) 𝜉
(
yi|xi

)
= 𝛼 + 𝛽xi

(ii) v
(
yi|xi

)
= 𝜎2xgi

(iii) 𝜍
(
yi, yj|xi, xj

)
= 0

} (1)

where 𝛼, 𝛽, 𝜎2and g were superpopulation parameters with 𝜎2 > 0 and g ≥ 0. The script letters 𝜉, v, 𝜍 denoted conditional expectation,
variance and covariance given x’s respectively.

Hanurav [4] studied the problem of allocation and obtained the allocation as nh ∝ Nh𝜎h x for simple random sampling with replacement
(SRSWR) within each stratum under particular case g = 2 of the model (1). This allocation was obtained from Tschuprow–Neyman allo-
cation when the unknown proportionate values of 𝜎2

h y’s were replaced by known proportionate values of 𝜎2
h x’s, which were the estimates of

𝜎2
h y’s. Rao [5] too examined analytically the justification for the assumption that the unknown proportionate values of 𝜎2

h y’s were not quite
different from the proportionate values of known 𝜎2

h x’s. He proved that 𝜎2
h y’s could be expected to be in the same proportion as 𝜎2

h x’s, if

the squares of the corrected coefficients of variation of x character, defined by 𝜍2
hx

X2
h−

𝛿h
N2
h

, where 𝛿h = Nh

(
Nh

∑
j=1

X2
h j −

Nh

∑
j=1

Xg
h j

)
, are equal in all
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strata. He also obtained allocation which minimized the expected variance of strategy consisting 𝜋PS sampling scheme, and Narain [6] and
Horvitz and Thomson [7] estimator under particular case of the model (1) with intercept 𝛼 = 0.

The problem of optimum allocation of sample size to strata for probability proportional to size with replacement (PPSWR) within each
stratum under a particular case 𝛼 = 0 of the model (1) was considered by Gupt and Rao [8].

On the other hand, in stratified sampling, ever since Dalenius [9] had pioneered the work on optimum stratification based on estimation
variable for Tschuprow–Neyman allocation, later workers have been extending the work in various perspectives and dimensions till date.
Regarding finding of approximate solutions to the equations giving optimum strata boundaries (OSBs), Dalenius and Hodges [10] were the
first ones who proposed cum √f rule. In case of the problem of optimum stratification using auxiliary variable, the original main works,
inter alia, were done by Dalenius and Gurney [11] and Taga [12] who considered it in the case of Tschuprow–Neyman and proportional
allocations (PA) respectively. Subsequently, Singh and Sukhatme [13,14], Serfling [15], Singh and Parkash [16] and Singh [17–20] furthered
the work on optimum stratification based on auxiliary variable for various allocation methods in which a number of methods of finding
approximate solutions to all the equations giving OSB were also obtained.

Whenever an auxiliary variable highly correlated with the study variable is available, Singh and Sukhatme [13] stipulated a superpopulation
model as follows—for which the form of regression of estimation variable y on the concomitant variable x and also the form of the variance
function were known.

y = c (x) + e such that 𝜉 (e|x) = 0 and v (e|x) = 𝜑 (x) (2)

where c (x) and 𝜑 (x) are real valued functions of x with 𝜑 (x) > 0, for all values of x in the range (a, b) with (b − a) < ∞.

Singh and Sukhatme [13] derived OSB and approximately optimum strata boundaries (AOSBs) based on the auxiliary variable for
Tschuprow–Neyman Optimum Allocation (TNOA) and PA under the superpopulation model (2) and empirically illustrated under model
(1) for the particular case g = 1.

Yadava and Singh [21] derived equations for OSB for allocation proportional to strata totals of an auxiliary variable and also developed a
few methods of obtaining their approximate solutions.

Gupt [22,23] considered sample size allocation problem by modifying the above model (1) in such a way that the element of correlation
among units within the same stratumwas incorporated; he derived three model-based allocations by assuming some conditions for approx-
imation.

In this paper, we consider problem of optimum stratification for the following allocation which is one of the three model-based allocations,
viz.,

nh𝛼Nh√𝜇h (xg) (3)

provided 𝜃h
(
g
)
= 𝜍h(x)

√𝜇h(xg)
are equal in all strata.

The equations that give OSB for the allocation (3) for stratified SRSWR have been derived in Section 2. Moreover, these results will hold
true for stratified simple random sampling without replacement (SRSWOR) design too when finite population correction is ignored in
each stratum. The limiting lower bound of the variance of population mean when the number of strata tends to infinity has been shown in
Section 3. The methods of obtaining AOSB to the equations that give OSB have been obtained in Section 4. Numerical illustrations by using
generated populations have been worked out in Section 5. Conclusion is given in Section 6.

2. EQUATIONS GIVING OSB

The model-based allocation (3) can be expressed as

nh = n Wh√𝜇h (xg)
∑Wh√𝜇h (xg)

(4)

whereWh is the proportion of population units in the hth stratum, 𝜇h
(
xg
)
is the mean for xg in the hth stratum.

For the above expression (4), the variance of the estimate of the population mean can be obtained as

v
(
yst
)
= 1

n

L

∑
h=1

Wh {𝛽2𝜎2
hx + 𝜎2𝜇h

(
xg
)
}

√𝜇h (xg)

L

∑
h=1

Wh√𝜇h (xg). (5)

If f (x) is taken as the marginal density function for the stratification variable x,Pdf_Folio:47
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We know that

Wh𝜇h
(
xg
)
=

xh

∫
xh−1

xgf (x) dx. (6)

2Wh𝜎hx
𝛿𝜎hx
𝛿xh

= (xh − 𝜇hx)2 f (xh) − 𝜎2
hxf (xh) . (7)

Taking into consideration of the superpopulation model (1) we get,

𝜎2
h y = 𝛽2𝜎2

h x + 𝜎2𝜇h(xg). (8)

The variance expression in (5) is partially differentiated with respect to xh (h = 1, 2, ..., L − 1) and equated to zero to obtain minimum
variance.

On differentiating (5) partially with respect to xh, we get

L

∑
h=1

[
Wh {𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
)
}

√𝜇h (xg)
] 𝛿
𝛿xh

L

∑
h=1

Wh√𝜇h (xg)

+
L

∑
h=1

Wh√𝜇h (xg)
𝛿
𝛿xh

L

∑
h= 1

[
Wh {𝛽2𝜎2

h x + 𝜎2𝜇h
(
xg
)
}

√𝜇h (xg)
] = 0

⇒
L

∑
h=1

Wh {𝛽2𝜎2
hx + 𝜎2𝜇h

(
xg
)
}

√𝜇h (xg)
{Wh

𝛿
(
h∗
)

𝛿xh
+
(
h∗
) 𝛿Wh
𝛿xh

+Wi
𝛿
(
i∗
)

𝛿xh
+
(
i∗
) 𝛿Wi

𝛿xh
}

+
L

∑
h=1

Wh√𝜇h (xg) {Wh
𝛿 (h)
𝛿xh

+ (h) 𝛿Wh
𝛿xh

+Wi
𝛿 (i)
𝛿xh

+ (i) 𝛿Wi

𝛿xh
} = 0

where i∗ = h∗ + 1,
(
h∗
)
= √𝜇h (xg), i = h + 1, (h) =

{𝛽2𝜎2
hx + 𝜎2𝜇h

(
xg
)
}

√𝜇h (xg)
. (9)

By using the definitions in (6), (7) and relation (8)

Wh
𝛿
(
h∗
)

𝛿xh
+
(
h∗
) 𝛿Wh
𝛿xh

+Wi
𝛿
(
i∗
)

𝛿xh
+
(
i∗
) 𝛿Wi

𝛿xh

=
𝜇h

(
xg
)
+ xgh

2√𝜇h (xg)
f (xh) +

𝜇i
(
xg
)
+ xgh

2√𝜇i (xg)
(
−f (xh)

)
(10)

and

Wh
𝛿 (h)
𝛿xh

+ (h) 𝛿Wh
𝛿xh

+Wi
𝛿 (i)
𝛿xh

+ (i) 𝛿Wi

𝛿xh

=
{𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
)
} {𝜇h

(
xg
)
− xgh} + 2𝜇h

(
xg
)
{𝛽2 (xh − 𝜇hx)2 + 𝜎2xgh}

2 {𝜇i (xg)}3/2
f (xh)

+
{𝛽2𝜎2

ix + 𝜎2𝜇i
(
xg
)
} {𝜇i

(
xg
)
− xgh} + 2𝜇i

(
xg
)
{𝛽2 (xh − 𝜇ix)2 + 𝜎2xgh}

2 {𝜇i (xg)}3/2
{−f (xh)}

(11)
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Then, finally using (10) and (11), the equations giving OSB for model-based allocation (3) can be obtained as

{𝛽2𝜎2
hx + 𝜎2𝜇h

(
xg
)
} {𝜇h

(
xg
)
− xgh} + 2𝜇h

(
xg
)
{𝛽2 (xh − 𝜇hx)2 + 𝜎2xgh}

2 {𝜇h (xg)}3/2
L

∑
h=1

Wh√𝜇h (xg)

+
{𝜇h

(
xg
)
+ xgh}

2√𝜇h (xg)

L

∑
h=1

[
Wh {𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
)
}

√𝜇h (xg)
]

=
{𝛽2𝜎2

ix + 𝜎2𝜇i
(
xg
)
} {𝜇i

(
xg
)
− xgh} + 2𝜇i

(
xg
)
{𝛽2 (xh − 𝜇ix)2 + 𝜎2xgh}

2 {𝜇i (xg)}3/2
L

∑
h=1

Wh√𝜇h (xg)

+
{𝜇i

(
xg
)
+ xgh}

2√𝜇i (xg)

L

∑
h=1

[
Wh {𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
)
}

√𝜇h (xg)
] .

(12)

The above equations (12) give the OSB of the auxiliary variable x.

3. A FEW METHODS OF FINDING APPROXIMATE SOLUTIONS TO THE EQUATIONS GIVING
OSB

In order to find the approximate solutions of the equations (12), we follow the techniques of Singh and Sukhatme [13] and Yadava and Singh
[21]. For this purpose, it is required to assume the existence of partial derivatives of f (x), c (x) and 𝜓 (x), where we have defined 𝜓 (x) = xg,
c (x) = 𝛼+𝛽x. Then, we obtain series expansions of this system of equations (Singh and Sukhatme [13]) using the identities (Ekman [24,25])
and Taylor’s series expansion, about the point xh which is assumed as the common boundary of hth and (h + 1) th strata. Considering the
right hand side of Equation (12) and all the derivatives used hereafter, in this paper, are evaluated at t = xh in the interval t ∈ [xh, xh+1], we
have

𝜇i𝜓 = 𝜓 + 𝜓′
2
ki +

𝜓′f ′ + 2f𝜓″
12f

k2i +
ff″𝜓′ + ff ′𝜓″ + f2𝜓‴ − 𝜓′f ′2

24f2
k3i + O

(
k4i
)
.

⇒ 𝜇i
(
xg
)
− xgh =

𝜓′
2
ki +

𝜓′f ′ + 2f𝜓″
12f

k2i +
ff″𝜓′ + ff ′𝜓″ + f2𝜓‴ − 𝜓′f ′2

24f2
k3i + O

(
k4i
)
.

Now, we can get

𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
= 𝜎2𝜓 +

(𝜎2𝜓′
2

)
ki +

(𝛽2f + 2𝜎2f𝜓″ + 𝜎2f ′𝜓′
12f

)
k2i

+
(
𝜎2ff″𝜓′ + 𝜎2ff ′𝜓″ + 𝜎2f2𝜓‴ − 𝜎2f2𝜓′

24f2

)
k3i + O

(
k4i
)
.

& {𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
} {𝜇i

(
xg
)
− xgh}

= 𝜎2𝜓𝜓′
2

ki +
𝜎2f ′𝜓𝜓′ + 2𝜎2f𝜓𝜓″ + 3𝜎2f𝜓′2

12f
k2i

+

( +2𝜎2f2𝜓′𝜓″ + 𝛽2f2𝜓′ + 2𝜎2f2𝜓′𝜓″ + 𝜎2ff ′𝜓′2
𝜎2ff″𝜓𝜓′ + 𝜎2ff ′𝜓𝜓″ + 𝜎2f2𝜓𝜓‴ − 𝜎2f ′2𝜓𝜓′ + 𝜎2ff ′𝜓′2

)
24f2

k3i + O
(
k4i
)
.

(13)
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Also,

2𝜇i
(
xg
)
{𝛽2 (𝜇ix − xh)2 + 𝜎2xgh}

= 2𝜎2𝜓2 + 𝜎2𝜓𝜓′ki +
(3𝛽2f𝜓 + 𝜎2f ′𝜓𝜓′ + 2𝜎2f𝜓𝜓″

6f

)
k2i

+

(
+𝜎2ff ′𝜓𝜓″ + 𝜎2f2𝜓𝜓‴ − 𝜎2f ′2𝜓𝜓′

3𝛽2f2𝜓′ + 2𝛽2ff ′𝜓 + 𝜎2ff″𝜓𝜓′
)

12f2
k3i + O

(
k4i
) (14)

Adding (13) and (14) we get,

{𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
} {𝜇i

(
xg
)
− xgh} + 2𝜇i

(
xg
)
{𝛽2 (𝜇ix − xh)2 + 𝜎2xgh}

= 2𝜎2𝜓2 +
(
3𝜎2𝜓𝜓′

2

)
ki +

(
+𝜎2f𝜓′2 + 2𝛽2f𝜓

𝜎2f ′𝜓𝜓′ + 2𝜎2f𝜓𝜓″
)

4f
k2i

+

( +2𝜎2ff ′𝜓′2 + 4𝜎2f2𝜓′𝜓″ + 7𝛽2f2𝜓′ + 4𝛽2ff ′𝜓
3𝜎2ff″𝜓𝜓′ + 3𝜎2ff ′𝜓𝜓″ + 3𝜎2f2𝜓𝜓‴ − 3𝜎2f ′2𝜓𝜓′

)
24f2

k3i

+O
(
k4i
)

(15)

Moreover

1
2 [𝜇i (xg)]3/2

= 1
2𝜓3/2 [1 −

3𝜓′
4𝜓 ki +

15f𝜓′2 − 4f ′𝜓𝜓′ − 8f𝜓𝜓″
32f𝜓2

+

−8ff ′𝜓″𝜓2 − 8f2𝜓‴𝜓2 + 8f ′2𝜓′𝜓2)
(20ff ′𝜓𝜓′2 + 40f2𝜓𝜓′𝜓″ − 35f2𝜓′3 − 8ff″𝜓′𝜓2

128f2𝜓3 k3i + O
(
k4i
)
.
⎤
⎥
⎥
⎥
⎦

(16)

Multiplying Equations (15) and (16), we get,

{𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
} {𝜇i

(
xg
)
− xgh} + 2𝜇i

(
xg
)
{𝛽2 (𝜇ix − xh)2 + 𝜎2xgh}

2
(
𝜇i

(
xgi
))3/2

= 𝜎2√𝜓 + 𝜎2𝜓′2 + 8𝛽2𝜓
32𝜓3/2 k2i +

2𝜎2f ′𝜓𝜓′2 + 4𝜎2f𝜓𝜓′𝜓″ − 8𝛽2f𝜓𝜓′ + 16𝛽2f ′𝜓2 − 3𝜎2f𝜓′3
192f𝜓5/2 k3i

+O
(
k4i
)
.

(17)

Similarly, we have derived

𝜇i
(
xg
)
+ xgh

2√𝜇i (xg)
= √𝜓 + 𝜓′2

32𝜓3/2 k
2
i +

2f ′𝜓𝜓′2 + 4f𝜓𝜓′𝜓″ − 3f𝜓′3
192f𝜓5/2 k3i + O

(
k4i
)

(18)

Thus from (9), (17) and (18), we can again express the equations (12) as

[g1f k2h −
(
g1f

)′ k3h
3
+ O

(
k4h
)
]

L

∑
h=1

Wh
(
h∗
)
+ [g2f k2h −

(
g2f

)′ k3h
3
+ O

(
k4i
)
]

L

∑
h=1

Wh (h)

= [g1f k2i +
(
g1f

)′ k3i
3
+ O

(
k4i
)
]

L

∑
h=1

Wh
(
h∗
)
+ [g2f k2i +

(
g2f

)′ k3i
3
+ O

(
k4i
)
]

L

∑
h=1

Wh (h) . (19)

Now, for the purpose of tackling (19), we prove the following lemma:Pdf_Folio:50
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Lemma 3.1. If (xh, xh+1) are boundaries of the ith stratum and ki = xh+1 − xh, the expressions
L

∑
h=1

Wh
(
h∗
)
and

L

∑
h=1

Wh (h) can, under the

conditions of AOSB, be approximated to give fixed values for a given value of L- no of strata, where i = h + 1.

Proof: Using series expansions in powers of interval width ki for Wi, 𝜇i𝜓 and 𝜎2
ix by following certain techniques and strategies (Ekman

[24,25], Singh and Sukhatme [13], Yadava and Singh [21]).

We have already got from above

√𝜇h (xg) = √𝜓 [1 + 𝜓′

4𝜓 ki +
8f𝜓𝜓″ + 4f

′𝜓𝜓′ − 3f𝜓′ 2

96f𝜓2 k2i

+
8ff

″𝜓2𝜓′ + 8ff
′𝜓2𝜓″ + 8f2𝜓2𝜓‴ − 8f

′ 2𝜓2𝜓′ − 8f2𝜓𝜓′𝜓″ − 4ff
′𝜓𝜓′ 2 + 3f2𝜓′ 3

384f2𝜓3 k3i + O
(
k4i
)
] . (20)

AndWi = kif+ k2i
2 f

′+ k3i
6 f

″+ k4i
24 f

‴+O
(
k5i
)
. (21)

Multiplying (20) and (21)

Wi√𝜇h (xg) = √𝜓 [kif +
f𝜓′ + 2f ′𝜓

4𝜓 k2i +
8f𝜓𝜓″ + 16f ′𝜓𝜓′ − 3f𝜓′2 + 16f″𝜓2

96𝜓2 k3i

+

−10f ′𝜓𝜓′2 + 3f𝜓′3 + 16f
‴𝜓3

24f″𝜓2𝜓′ + 24f ′𝜓2𝜓″ + 8f𝜓2𝜓‴ − 8f𝜓𝜓′𝜓″
384𝜓3 k4i + O

(
k5i
)⎤⎥⎥
⎥
⎥
⎦

(22)

Considering the expansion of the following term by Taylor’s series

xh+1

∫
xh

√𝜓 (t)f (t) dt

=
(
√𝜓f

)
ki +

(
√𝜓f

)′ k2i
2! +

(
√𝜓f

)″ k3i
3! +

(
√𝜓f

)‴ k4i
4! + O

(
k5i
)

= √𝜓 [kif +
f𝜓′ + 2f ′𝜓

4𝜓 k2i +
2f𝜓𝜓″ + 4f ′𝜓′𝜓 − f𝜓′2 + 4f″𝜓2

24𝜓2 k3i

+ 24f ′𝜓2𝜓″ + 8f𝜓‴𝜓2 + 24f″𝜓2𝜓′ − 12f ′𝜓𝜓′2 + 16f
‴𝜓3 − 12f𝜓𝜓′𝜓″ + 6f𝜓′3

384𝜓3 k4i + O
(
k5i
)
]

(23)

Subtracting (23) from (22)

Wi√𝜇i (xg) −
xh+1

∫
xh

√𝜓 (t)f (t) dt

= k2i
96 [

f𝜓′2

𝜓√𝜓
ki +

4f𝜓𝜓′𝜓″ + 2f ′𝜓𝜓′2 − 3f𝜓′3

4𝜓2√𝜓
k2i + O

(
k3i
)
]

= k2i
96 [g

∗
1 f ki +

1
2

d
dxh

(
g∗1 f

)′ k2i + O
(
k3i
)
] , where g∗1 =

𝜓′2
𝜓3/2

(24)

The following lemma was proved by Singh and Sukhatme [13], by using Taylor’s series expansion at the point t = y.

Lemma 3.2.

[
x

∫
y

𝜆√f (t) dt]
𝜆

= k𝜆 [f
(
y
)
+

f ′
(
y
)

2
k + O

(
k2
)
] = k𝜆−1

x

∫
y

f (t) dt [1 + O
(
k2
)
]
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By using Lemma (3.2) in (24) and considering the fact that if we have large number of strata whose strata widths khare small, the higher powers
of kh in the expansion can be neglected. So, by neglecting the terms of order O

(
m5), where m = sup(a,b) (kh), we get

Wi√𝜇i (xg) −
xh+1

∫
xh

√𝜓 (t)f (t) dt = 1
96 [

xh+1

∫
xh

3√g∗1 (t) f (t)]
3

.

By using cum g∗1 (t) f (t)or 3√g∗1 (t) f (t) rule in manner in which Yadava and Singh [21] proceeded for obtaining AOSB -
xh+1

∫
xh

3√g∗1 (t) f (t)dt =

1
L

b

∫
a

3√g∗1 (t) f (t)dt. We get

L

∑
h=1

Wh√𝜇h (xg) =
b

∫
a

√𝜓 (x)f (x) dx + 1
96L2

[
b

∫
a

3√g∗1 (x) f (x)dx]

3

. (25)

From (25), we have known that under the conditions of AOSB,
L

∑
h=1

Wh
(
h∗
)
in (19) can be assumed as a fixed value for a given L.

In the same way, the expression
L

∑
h=1

Wh (h) in (19) can also be reduced to a fixed value, for a given L, as follows:

Wi {𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
}

√𝜇i (xg)

= 1
√𝜓

[𝜎2f𝜓ki +
𝜎2f𝜓′ + 2𝜎2f ′𝜓

4
k2i +

{ +16𝜎2ff″𝜓2 − 3𝜎2f2𝜓′2
8𝛽2f2𝜓 + 8𝜎2f2𝜓𝜓″ + 16𝜎2ff ′𝜓𝜓′}

96f𝜓 k3i

+
{ +8𝜎

2f3𝜓‴𝜓2 + 3𝜎2f3𝜓′3 + 16𝛽2f2f ′𝜓2 + 16𝜎2f2f
‴𝜓3 − 8𝛽2f3𝜓𝜓′

−10𝜎2f2f ′𝜓𝜓′2 − 8𝜎2f3𝜓𝜓′𝜓″ + 24𝜎2f2f″𝜓′𝜓2 + 24𝜎2f2f ′𝜓″𝜓2 }

384f2𝜓2 k4i + O
(
k5i
)
.

(26)

&
xh+1

∫
xh

𝜎2√𝜓 (t)f
(
f
)
dt

= 1
√𝜓

[𝜎2f𝜓ki +
𝜎2f𝜓′ + 2𝜎2f ′𝜓

4
k2i +

{8𝜎2f2𝜓𝜓″ + 16𝜎2f ′ f𝜓𝜓′ − 4𝜎2f2𝜓′2 + 16𝜎2ff″𝜓2}
96f𝜓 k3i

+
{ +16𝜎2f2f

‴𝜓3 − 12𝜎2f3𝜓𝜓′𝜓″ + 6𝜎2f3f ′𝜓′3
24𝜎2f2f ′𝜓2𝜓″ + 8𝜎2f3𝜓‴𝜓2 + 24𝜎2f2f″𝜓′𝜓2 − 12𝜎2f2f ′𝜓𝜓′2}

384f2𝜓2 k4i + O
(
k5i
) (27)

Subtracting (27) from (26)

Wi {𝛽2𝜎2
ix + 𝜎2𝜇i

(
xg
)
}

√𝜇i (xg)
−

xh+1

∫
xh

𝜎2√𝜓 (t)f (t) dt

=
(
8𝛽2𝜓 + 𝜎2𝜓′2

)
f

96𝜓3/2 k3i +
(
2𝜎2f ′𝜓𝜓′2 + 4𝜎2f𝜓𝜓′𝜓″ − 3𝜎2f𝜓′3 + 16𝛽2f ′𝜓2 − 8𝛽2f𝜓𝜓′

)
384𝜓5/2 k4i + O

(
k5i
)

Thus, in this case too, as obtained in (25), we get

L

∑
h=1

Wh
(
𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
))

√𝜇h (xg)
=

b

∫
a

𝜎2√𝜓 (x)f (x) dx + 1
96L2

[
b

∫
a

3√g∗2 (x) f (t)dt]

3

(28)
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where g∗2 (x) = 8𝛽2𝜓(x)+𝜍2𝜓′2(x)
𝜓3/2(x)

Under the conditions of AOSB, the expression
L

∑
h=1

Wh (h)in (19) can also be assumed as a fixed value for a given value of L. Thus the proof

of lemma is completed.

Now, for the sake of convenience, we put two constant quantities P andQ in place of
L

∑
h=1

Wh
(
h∗
)
and

L

∑
h=1

Wh (h) in (19), and Equation (19)

can be rewritten as

[g1f k2h −
(
g1f

)′ k3h
3
+ O

(
k4h
)
] P + [g2fk2h −

(
g2f

)′ k3h
3
+ O

(
k4h
)
]Q

= [g1f k2i +
(
g1f

)′ k3i
3
+ O

(
k4i
)
] P + [g2fk2i +

(
g2f

)′ k3i
3
+ O

(
k4i
)
]Q,

where g1 (t) = 𝜍2𝜓′2(t)+8𝛽2𝜓(t)
𝜓3/2(t) , g2 (t) = 𝜓′2(t)

𝜓3/2(t)

⇒ g3fk2h −
(
g3f

)′ k3h
3
+ O

(
k4h
)
= g3fk2i +

(
g3f

)′ k3i
3
+ O

(
k4i
)
,

where g3 (t) = Pg1 (t) + Qg2 (t)

⇒
(
g3f

)
k2h [1 −

(
g3f

)′
g3f

kh
3
+ O

(
k2h
)
] =

(
g3f

)
k2i [1 +

(
g3f

)′
g3f

ki
3
+ O

(
k2i
)
]

On raising power 3/2 and then applying binomial expansion

⇒
(
g3f

)3/2 k3h [1 − kh
2

(
g3f

)′
g3f

+ O
(
k2h
)
] =

(
g3f

)3/2 k3i [1 + ki
2

(
g3f

)′
g3f

+ O
(
k2i
)
] (29)

By using the Lemma 3.2 and on further simplification, the system of Equations (29) can be transformed into

k2h

xh

∫
xh−1

g3 (t) f (t) dt
(
1 + O

(
k2h
))

= k2i

xh+1

∫
xh

g3 (t) f (t) dt
(
1 + O

(
k2i
))

⇒ k2h

xh

∫
xh−1

g3 (t) f (t) dt = constant = c1 (30)

The Equation (30) can again be easily proved to be equivalent to

xh

∫
xh−1

3√g3 (t) f (t)dt = c2 (31)

where c2 = 1
L

b

∫
a

3√g3 (t) f (t) dt (32)

For evaluating the value of constant c2, we can use (32) and approximate solutions may be determined by fixing xh−1 and calculating upper
boundaries.

The procedures used in this method of finding AOSB have finally yielded the following theorem.

Theorem 3.1. If the function g3 (t) f (t)is bounded and first two derivatives for all x in (a, b) exist, for a given number of strata taking equal
intervals on cumulative g3 (t) f (t) or 3√g3 (t) f (t) yields approximately OSBs on the auxiliary variable.
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4. LIMIT EXPRESSION FOR THE VARIANCE

The variance expression in (5) can further be reduced to a form that will give an insight into the pattern of reduction of the variance of the
estimate yst with the increase in the number of strata. It is also shown that V

(
yst
)
does not tend to zero when the number of strata tends to

infinity. It is a sequel to the techniques used by Yadava and Singh [21].

In Lemma 3.1, it is already shown that
L

∑
h=1

Wh√𝜇h (xg) = A + 1
L2

B, where

A =
b

∫
a

√𝜓 (t)f (t) dt and B = 1
96 [

b

∫
a

3√g∗1 (t) f (t)dt]

3

.

And∑
Wh {𝛽2𝜎2

hx + 𝜎2𝜇h
(
xg
)
}

√𝜇h (xg)
= C + D

L2
, where

C = 𝜎2

b

∫
a

√𝜓 (t)f (t) dt, D = 1
L2

[
b

∫
a

3√g∗2 (t) f (t)dt]

3

.

Therefore,

V
(
yst
)
= 1

n

(
A + B

L2

) (
C + D

L2

)
. (33)

In the above expression (33), it is seen that as L → ∞ ⇒ V
(
yst
)
→ AC

n . It shows that V
(
yst
)
does not tend to zero when the number of

strata tends to infinity, and hence the following theorem.

Theorem 4.1. When the approximately OSBs are obtained by using cum 3√g3 (t) f (t) rule, it is observed that lim
L→∞

V
(
yst
)
= AC

n .

5. NUMERICAL ILLUSTRATION BY USING GENERATED DATA

For numerical investigation, the following three densities of x, which were not only used by Singh and Sukhatme [13] but also bymost of the
later workers who furthered researches in the area of problem of construction of strata, are used in this paper too.We calculate the solutions
of the Equation (12), corresponding solutions of the approximation methods (31) and (32), and the sampling variances of the stratified
sampling for equal interval stratification for L = 2, 3, 4, 5, 6. In the case of exponential density of x, slight deviation from equal interval
stratification is considered for L = 6 to avoid some inconveniences that came upon in using the generated data. The relative efficiencies of
the equations givingOSB and their corresponding a fewmethods of approximationwith respect to equal interval stratification are separately
shown in Tables 1–9 by taking g = 1, g = 1.5 and g = 2 successively.

i. Rectangular f (x) = 1, 1 ≤ x ≤ 2.
ii. Right triangular f (x) = 2 (2 − x) , 1 ≤ x ≤ 2.
iii. Exponential f (x) = e−x+1, 1 ≤ x < ∞.

The regression function c (x) is taken to be linear with the slope at 45⁰. The constant 𝜎 2 is determined in each case for the different values
of g in such a way that 90% of the total variation is accounted for by the regression. In the case of the exponential distribution, we truncate
the distribution such that the area under the curve to the right of the truncation point is 0.05. The optimum points of stratification are
found by successive iterations. In solving the methods of finding AOSB (31) and (32), suitable techniques for solving numerical algebraic
and transcendental equations, and numerical integrations are used.

6. CONCLUSION

In this paper, all the proposed methods of stratification—the equations giving OSBs and their methods of approximations—are found
to be highly efficient in stratifying heteroscedastic populations. In uniform populations, equal interval stratification is considered to be
efficient stratification method and all our proposed methods of stratification perform, in most cases, with nearly same with or, in a few
cases, more efficiencies than that of equal interval stratification in the generated populations following uniform density function for all
the strengths of heteroscedasticity, i.e., g = 1, 1.5, 2. Moreover the proposed methods of stratifications perform with relatively higherPdf_Folio:54
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Table 1 Uniform distribution, g = 1.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.5170 0.02783 1.5 0.0277 99.68 1.5011 0.0283 97.87
3 1.3259, 0.01641 1.334, 0.0164 100.00 1.3203, 0.0163 100.61

1.6712 1.667 1.6582
4 1.2564, 0.01278 1.25, 0.0128 99.84 1.2388, 0.0130 98.41

1.4789, 1.5, 1.49009
1.7343 1.75 1.7477

5 1.2124, 0.01202 1.20, 0.0132 109.58 1.1904, 0.0119 110.39
1.3695, 1.40, 1.3861,
1.5302, 1.60, 1.5865,
1.7451 1.80 1.7912

6 1.1699, 0.00964 1.1667, 0.0088 90.87 1.1583, 0.0089 98.87
1.3208, 1.3334, 1.32033,
1.5200, 1.499, 1.4857,
1.7233, 1.667, 1.6543,
1.8767 1.8334 1.8257

Table 2 Uniform distribution, g = 1.5.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.5135 0.0279 1.5 0.0278 99.53 1.4800 0.0283 98.20
3 1.3418, 0.0163 1.334, 0.0164 100.68 1.3169, 0.0163 100.68

1.6792 1.667 1.6557
4 1.2558, 0.0127 1.25, 0.0127 99.92 1.2361, 0.0129 98.53

1.4785, 1.50, 1.4832,
1.7337 1.75 1.7403

5 1.2121, 0.0120 1.20, 0.0131 109.26 1.1882, 0.0119 110.46
1.3695, 1.40, 1.3832,
1.5302, 1.60, 1.5853,
1.7447 1.80 1.7940

6 1.1697, 0.0095 1.1667, 0.0086 90.52 1.1571, 0.0089 96.95
1.3205, 1.334, 1.3183,
1.5107, 1.499, 1.4854,
1.7232, 1.6667, 1.6562,
1.8774 1.8334 1.8305

Table 3 Uniform distribution, g = 2.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.5102 0.0280 1.5 0.0278 99.39 1.4734 0.0283 98.41
3 1.3408, 0.0167 1.334, 0.0164 98.26 1.3118, 0.0165 99.45

1.6783 1.667 1.6536
(continued)
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Table 3 Uniform distribution, g = 2. (Continued)

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
4 1.2516, 0.0127 1.25, 0.0127 99.69 1.2300, 0.0128 98.60

1.4762, 1.50, 1.4813,
1.7334 1.75 1.7422

5 1.2119, 0.0119 1.20, 0.0130 109.59 1.1840, 0.0118 110.05
1.3696, 1.40, 1.3774,
1.5303, 1.60, 1.5853,
1.7446 1.80 1.7955

6 1.1696, 0.0094 1.1667, 0.0084 90.05 1.1543, 0.0086 97.68
1.3204, 1.334, 1.3163,
1.5106, 1.50, 1.4841,
1.7233, 1.6667, 1.6570,
1.8784 1.8334 1.8323

Table 4 Right triangular distribution, g = 1.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.3794 0.0226 1.5 0.0278 122.98 1.3926 0.0226 123.04
3 1.2754, 0.0131 1.334, 0.0138 105.11 1.2529, 0.0135 102.15

1.5898 1.667 1.5504
4 1.1915, 0.0104 1.25, 0.0121 117.29 1.1864, 0.0103 117.64

1.4006, 1.50, 1.3944,
1.6349 1.75 1.6373

5 1.1804, 0.0099 1.20, 0.0101 102.33 1.1480, 0.0093 108.73
1.3812, 1.40, 1.3085,
1.5800, 1.60, 1.4871,
1.7367 1.80 1.6960

6 1.1450, 0.0079 1.1667, 0.0093 117.35 1.1507, 0.0081 115.17
1.2891, 1.334, 1.2842,
1.4357, 1.50, 1.4300,
1.5897 1.6667, 1.5920,
1.7367 1.8334 1.7831

Table 5 Right triangular distribution, g = 1.5.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.3759 0.0225 1.5 0.0280 124.73 1.3864 0.0225 124.73
3 1.2737, 0.0131 1.334, 0.0142 108.54 1.2477, 0.0136 104.94

1.5889 1.667 1.5435
4 1.1842, 0.0103 1.25, 0.0122 118.40 1.1832, 0.0101 120.52

1.3959, 1.50, 1.3892,
1.6344 1.75 1.6330

5 1.1799, 0.0099 1.20, 0.0101 102.34 1.1450, 0.0092 109.92
(continued)
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Table 5 Right triangular distribution, g = 1.5. (Continued)

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
1.3807, 1.40, 1.3034,
1.5799, 1.60, 1.4183,
1.7371 1.80 1.6903

6 1.1447, 0.0078 1.1667, 0.0092 117.92 1.1477, 0.0080 115.70
1.2888, 1.334, 1.2791,
1.4356, 1.50, 1.4230,
1.5897, 1.6667, 1.5850,
1.7371 1.8334 1.7776

Table 6 Right triangular distribution, g = 2.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 1.3732 0.0224 1.5 0.0283 126.40 1.3803 0.0221 127.71
3 1.2720, 0.0130 1.334, 0.0142 109.29 1.2431, 0.0129 110.39

1.5883 1.667 1.5375
4 1.1837, 0.0102 1.25, 0.0121 119.17 1.1790, 0.0098 123.42

1.3957, 1.50, 1.3830,
1.6341 1.75 1.6273

5 1.1794, 0.0098 1.20, 0.0101 102.97 1.1430, 0.0087 115.33
1.3804, 1.40, 1.3002,
1.5800, 1.60, 1.4775,
1.7377 1.80 1.6884

6 1.1445, 0.0077 1.1667, 0.0091 118.73 1.1447, 0.0072 126.70
1.2887, 1.334, 1.2744,
1.4358, 1.50, 1.4174,
1.5900, 1.6667, 1.5791,
1.7377 1.8334 1.7734

Table 7 Exponential distribution, g = 1.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 2.2012 0.1817 2.50 0.1984 109.19 2.0632 0.1747 113.52
3 1. 6974,

2.5992
0.1037 2.0, 3.0 0.1208 116.43 1.6503, 2.5605 0.1055 114.49

4 1.6526, 0.0857 1.75, 0.0888 103.63 1.4686, 0.0802 110.75
2.3296, 2.50, 2.0625,
3.1672 3.25 2.8591

5 1.4058, 0.0674 1.6, 0.0807 119.77 1.3663, 0.0657 122.86
1.9199, 2.2, 1.8066,

(continued)
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Table 7 Exponential distribution, g = 1. (Continued)

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2.5131, 2.8, 2.3489,
3.2297 3.4 3.0445

6 1.3710, 0.0575 1.5, 0.0644 111.90 1.3007, 0.0504 126.40
1.8163, 2.0, 1.6503,
2.3082, 2.3, 2.0626,
2.7549, 2.8, 2.5602,
3.2835 3.5 3.1815

Table 8 Exponential distribution, g = 1.5.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 2.1016 0.1715 2.50 0.1997 116.42 2.0247 0.1704 117.16
3 1. 6954, 0.1017 2.0, 0.1219 119.78 1.6264, 0.1041 117.08

2.5915 3.0 2.5684
4 1.6513, 0.0856 1.75, 0.0891 104.10 1.4466, 0.0762 116.98

2.3279, 2.50, 2.0249,
3.1658 3.25 2.8127

5 1.4039, 0.0661 1.6, 0.0806 121.88 1.3484, 0.0645 125.07
1.9191, 2.2, 1.7741,
2.5132, 2.8, 2.3082,
3.2294 3.4 3.0633

6 1.3695, 0.0606 1.5, 0.0682 112.57 1.2856, 0.0540 126.38
1.1816, 2.0, 1.6221,
2.3095, 2.30, 2.0250,
2.7586, 2.8, 2.5191,
3.2748 3.5 3.1482

Table 9 Exponential distribution, g = 2.

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2 2.0613 0.1672 2.50 0.2014 120.90 1.9881 0.1683 119.71
3 1. 6939, 0.1001 2.0, 0.1228 122.73 1.5951, 0.1045 117.55

2.5846 3.0 2.4780
4 1.6503, 0.0854 1.75, 0.0893 104.56 1.4259, 0.0739 120.89

2.3271, 2.50, 1.9983,
3.1667 3.25 2.7732

5 1.4021, 0.0670 1.6, 0.0804 120.11 1.3315, 0.0648 124.10
1.9186, 2.2, 1.7429,

(continued)
Pdf_Folio:58
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Table 9 Exponential distribution, g = 2. (Continued)

No. of
Strata (L)

Stratification by Using
Equations (12)

Equal Interval
Stratification

Relative
Efficiency

Stratification by Using
Methods of

Approximation

Relative
Efficiency

Points nV
(
Yst

)
Points nV

(
Yst

)
Points nV

(
Yst

)
2.5144, 2.8, 2.2680,
3.2311 3.4 2.9714

6 1.3511, 0.0585 1.5, 0.0675 115.31 1.2714, 0.0530 127.23
1.8094, 2.0, 1.5952,
2.3114, 2.30, 1.9883,
2.7637, 2.8, 2.4780,
3.2886 3.5 3.1141

efficiencies than equal interval stratification in stratifying populations of right triangular and exponential probability density functions for
all the considered strengths of heteroscedasticity. Hence, it is observed that all the proposed methods of stratification perform efficiently in
stratifying less skewed and lower level of heteroscedastic populations aswell as highly skewed andhigher level of heteroscedastic populations.
These methods can be used effectively in stratifying heteroscedastic populations based on auxiliary variable which is highly correlated with
estimation variable.

CONFLICTS OF INTEREST

There is no conflict of interest between the authors.

AUTHORS’ CONTRIBUTIONS

The authors are equally involved in the work and the joint effort of the authors have led to the making of the paper.

Funding Statement

There is no funding for the research work from any funding agency.

ACKNOWLEDGEMENTS

We, the authors, are grateful to the anonymous reviewers for the inputs and guidance provided to us in improving the quality of the paper.

REFERENCES

1. A.A. Tschuprow, Metron. 2 (1923), 461–493.
2. J. Neyman, J. R. Stat. Soc. 97 (1934), 558–625.
3. W.G. Cochran, Ann. Math. Stat. 17 (1946), 164–177.
4. T.V. Hanurav, Optimum Sampling Strategies and Some Related Problems, unpublished Ph.D. Thesis, Indian Statistical Institute, 1965.
5. T.J. Rao, Ann. Inst. Stat. Math. 20 (1968), 159–166.
6. R.D. Narain, J. Indian. Soc. Agric. Stat. 3 (1951), 169–174.
7. D.G. Horvitz, D.J. Thompson, J. Am. Stat. Assoc. 47 (1952), 663–685.
8. B.K. Gupt, T.J. Rao, J. Indian. Soc. Agric. Stat. 50 (1997), 199–208.
9. T. Dalenius, Skand. Akt. 33 (1950), 203–213.
10. T. Dalenius, J.L. Hodges, Skand. Akt. 3 (1959), 198–203.
11. T. Dalenius, M. Gurney, Skand. Akt. 34 (1951), 133–148.
12. Y. Taga, Ann. Inst. Stat. Math. 19 (1967), 101–130.
13. R. Singh, B.V. Sukhatme, Ann. Inst. Stat. Math. 21 (1969), 515–528.
14. R. Singh, B.V. Sukhatme, Ann. Inst. Stat. Math. 24 (1972), 485–494.
15. R.J. Serfling, J. Am. Stat. Assoc. 63 (1968), 1298–1309.Pdf_Folio:59

https://doi.org/10.2307/2342192
https://doi.org/10.1214/aoms/1177730978
https://doi.org/10.1007/BF02911631
https://doi.org/10.1080/01621459.1952.10483446
http://isas.org.in/jsp/volume/vol50/issue2/B.K.Gupt.pdf
https://doi.org/10.1080/03461238.1950.10432042
https://doi.org/10.1080/03461238.1957.10405970
https://doi.org/10.1080/03461238.1951.10432134
https://doi.org/10.1007/BF02911670
https://doi.org/10.1007/BF02532275
https://doi.org/10.1007/BF02479777
https://doi.org/10.1080/01621459.1968.10480928


60 B. K. Gupt and Md. I. Ahamed / Journal of Statistical Theory and Applications 20(1) 46–60

16. R. Singh, D. Prakash, Ann. Inst. Stat. Math. 27 (1975), 273–280.
17. R. Singh, J. Am. Stat. Assoc. 66 (1971), 829–833.
18. R. Singh, Sankhya(c). 37 (1975), 109–115.
19. R. Singh, An Alternate Method of Stratification on the Auxiliary Variable, Sankhya(c). 37 (1975), 100–108.
20. R. Singh, Aust. NZ. J. Stat. 17 (1975), 12–21.
21. S.S. Yadava, R. Singh, Commun. Stat-Theor. Method. 13 (1984), 2793–2806.
22. B.K. Gupt, Metron-Int. J. Stat. LXI (2003), 35–52.
23. B.K. Gupt, Allocation of Sample Size in Stratified Sampling Under Superpopulation Models, LAP LAMBERT Academic Publishing AV

Akademikerverlag GmbH & Co.KG, Saarbrucken, Germany, 2012.
24. G. Ekman, Ann. Math. Stat. 30 (1959), 219–229.
25. G. Ekman, Ann. Math. Stat. 30 (1959), 1131–1134.

Pdf_Folio:60

https://doi.org/10.1007/BF02504646
https://doi.org/10.1080/01621459.1971.10482352
https://doi.org/10.1111/j.1467-842X.1975.tb01368.x
https://doi.org/10.1080/03610928408828861
https://ideas.repec.org/a/mtn/ancoec/030105.html
https://doi.org/10.1214/aoms/1177706377
https://doi.org/10.1214/aoms/1177706096

	Construction of Strata for a Model-Based Allocation Under a Superpopulation Model
	1 INTRODUCTION
	2 EQUATIONS GIVING OSB
	3 A FEW METHODS OF FINDING APPROXIMATE SOLUTIONS TO THE EQUATIONS GIVING OSB
	4 LIMIT EXPRESSION FOR THE VARIANCE
	5 NUMERICAL ILLUSTRATION BY USING GENERATED DATA
	6 CONCLUSION


