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1. INTRODUCTION

ABSTRACT

Overlapping coefficient is a direct measure of similarity between two distributions which is recently becoming very useful. This
paper investigates estimation for some well-known measures of overlap, namely Matusita’s measure o, Weitzman’s measure A
and A based on Kullback-Leibler. Two estimation methods considered in this study are point estimation and Bayesian approach.
Two inverse Lomax populations with different shape parameters are considered. The bias and mean square error properties of
the estimators are studied through a simulation study and a real data example.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Inverse Lomax distribution is a special case of the generalized beta distribution of the second kind. It is one of the notable lifetime models in
statistical applications. The inverse Lomax distribution is one of significant lifetime models. Kleiber and Kotz [1] used this inverse Lomax
distribution to get Lorenz ordering relationship among ordered statistics. McKenzie et al. [2] applied this life time distribution on geophysical
data on the sizes of land fires in the California State, United States.

The overlapping coefficients (OVL) represents the proportion of overlap between two probability density functions (pdfs) as a measure of
similarity between distributions. Generally it is measured on the scale of 0 to 1 (see Figure 1). Values of measure close to 0 corresponding to
the distributions having supports with no intersection and 1 to the perfect matching of the two distributions. This paper investigates point
and interval estimation for four measures of overlap (OVL) for two inverse Lomax populations with different shape parameters.

* Matusia’s measure [3]

*  Weitzman’s measure [4]

b= j\/ RGO God

A= J min{fi (0, (0}

* OVL-based Kullback and Leibler [5]
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with KL(f 1| ) = [0 — ) log (442 ) i

*Corresponding author. Email: hamza.dhaker@umoncton.ca


https://doi.org/{10.2991/jsta.d.210107.002}
https://www.atlantis-press.com/journals/jsta
http://creativecommons.org/licenses/by-nc/4.0/

62 Dhaker et al. / Journal of Statistical Theory and Applications 20(1) 61-75

n

= -

= ,f' S, — alpha2 , beta=3
H h --- alpha2 , beta=2
I kY
r: hY
i’

o

-

o

75}

o 4

o

o

Q —

o

Figure 1 The overlap of two inverse Lomax densities.

The mathematical structure of these measures is complicated; there are no results available on the exact sampling distributions of the
commonly used OVL estimators. Researchers such as Smith [6] derived formulas for estimating the mean and the variance of discrete
version of Weitzman’s measure using the delta method. Mishra et al. [7] gave small and large sample properties of the sampling distribution
for a function of A under the assumption of homogeneity of variances. Recently, several authors including Al-Saidy et al. [8], Clemons [9],
Dhaker et al. [10], Inman and Bradley [11], Jose et al. [12], Mulekar and Mishra [13] and Reiser and Faraggi [14] considered this measure.

In this article, we consider the point and interval estimation for some measures of overlap (OVL) for two inverse Lomax populations with
different shape parameters using “Simple Random Sample (SRS) and Ranked Set Sampling (RSS) and Bayesian methodology”

The first method (RSS, McIntyre [15]) was earlier applied by Helu and Samawi [16] for the point and interval estimation of the overlapping
coefficients for two Lomax distributions. We will use their methodology for the point estimate and interval in the case of inverse Lomax
distribution. The second approach, we use another method for parameter estimation using Bayesian inference [17].

The primary purpose of this study is to compare the confidence intervals for the overlap coefficients (o, A and A) computed using SRS,
RSS, Bayesian methods. Section 2 defines the inverse Lomax distribution and derivations of the three OVL measures. In Section 3 we draw
some statistical inference on the OVL measures using SRS. Section 4 draws an inference on the OVL measures using RSS. In Section 5, we
provide Bayesian estimators along with approximate bias and variances for the three measures of overlap. In Section 6, a simulation study
is performed to evaluate and compare biases and mean square errors of OVL measures estimates. In Section 7 we give an example using a
real dataset. Finally, the conclusion is presented in Section 8.

2. OVL MEASURES FOR INVERSE LOMAX DISTRIBUTION

A random variable X is said to have a Lomax distribution if the corresponding probability density function and cumulative density function

are given by Yadav et al. [18].

« —(a+1)
g(y;oc,ﬁ)=—<l+z> y20, a ,>0 )
B B
—-a
G(y;a,6)=1—<1+%> y>0, a ,>0 (3)
Consider the random variable Z = 1. Then Z has the inverse Lomax distribution with pdfand cdf as
ﬁ ﬁ —(1+1/x)
h(z;oc,ﬁ):—2<l+—> z>20,a,>0 (4)
az z

B —l/a
H(z;a,ﬁ)=(1+;) z>20,a,8>0 (5)
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1

respectively. Note that h(y; o, §) = Ziz (%) and Hy;a,8)=1—F (;)
We consider another variable with X = %
1 1\ ~Hve
f(x;ot)=—2<1+—> x>0,a>0 (6)
ax X
1 1-1/a
F(x;oc)=<1+—> x>0,a>0 (7)
X
The computation or estimation of OVL for two inverse Lomax distributions, with density functions
1\ ~0H/e
filxs o) = > (1+—> x>0,a,>0 (8)
ax
1\ "0+
falxay) = — (1+—> x>0,a,>0 9)
ax X
LetR= %, the continuous version of the three overlap measures can be expressed as a function of C as follows:
_2y/R (10)
P=R+1
1 1
A=1-RER[1-o|,  R#1, (11)
and
R
A= ——m—. 12
R?—R+1 (12)

Figure 2 shows curves of the three overlap measures according to R All three measures are monotone for all R > 0

Proposition 2.1. For OVLs defined earlier,

i 0<SOVLL1forallR>0
i, OVL=1iffR=1
ili. OVL=0iff R=00rR= co.

Proposition 2.2. All four OVLs possess properties of reciprocity, invariance and piecewise monotonicity

i. OVL(R) = OVL(1/R),

ii. OVLs are monotonically increasing in R for 0 < R < 1 and decreasing in R > 1.
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Figure 2 Measures of similarity as functions of R.
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3. STATISTICAL INFERENCE USING SRS

3.1. Estimation

As in Helu and Samawi [16], parallel results to those of the two Lomax populations can be established for the inverse Lomax populations.

Suppose (Xjj;j = 1,...,n;;i = 1,2) denote independent observations from two independent inverse Lomex populations. Let fi(x)(i = 1, 2)
denote the inverse Lomex densities with shape parameters «; and a, respectively. Define R = «;/a,. The likelihood function the Inverse
Lomax distribution (6) is given as

1 1 1 1 _ ,
L(oc,-|x)=?H;Hln<1+;j) i=1,2j=1,..n (13)

=L e
The maximum likelihood estimators (MLEs) based on the two samples are given by

1. From the first sample:

1 < 1
dlSRS = n_lzlog <1 + ;)
]

j=1

2. From the second sample:
1 <& 1
Gsps = — ), log | 1+ —
2588 = - J; g ( x2j>
The maximum likelihood estimators &ggg, and &g, exist and are unique. Using a simple transformation, it can be shown that

A 281 ~ a
Asrs1 ~ Gamma | ny, — and Ggpgy ~ Gamma | ny, —
ni ny

Consequently, the means and variances of those MLE's are respectively

E(bsrs) = o E&,) = ay,
and
3 ai . ai
V(lsps) = —  VlGspsp) = —-
ni ny
Then we may define an estimate of R is
L Qg
R=24.
Ao

Therefore, using the relationship between gamma distribution and chi-square distribution and the fact that the two samples are independent,
it is easy to show that %R has F- distribution with 21 and 2n, degrees of freedom (Fay, 24, ). Hence, the variance of R is
1

n%(m +nm-1)
m(ny — 1)2(ny — 2)

Var(Rsrs) =

Also, an unibiased estimate R is given by fléRs = "2}: Rgrs with

ohp+ny—1

Var(Rsgs) = R ,
ar(Rsgs) —

Clearly, R§zs has less variance than Rggs.

Since the OVL measures are functions of R, therefore, based on MLE estimate of R, the OVL measures can be estimated by

2 \/ R;RS

_ , (14)
Rips +1

Psrs =
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PR 1
and
. R}
Asrs = (16)

(Rigs)? — Rigs + 1

3.2. Asymptotic Properties

Let OVL = g(R), and its estimator OVLsks = g(RﬁRS). Using the well-known delta method (expansion of the Taylor series) the asymptotic
sampling variance of the OVL measures is given by the following theorem.

Theorem 3.1. Let fgps, Agrg and Agyg are the estimates of p, A and A respectively, then for ny > 3, we have the approximate expressions for
variances of the OVL measures can be obtained as follows:

(n1 +na — 1) R(1 — R)?

Varlpses) = = 3 RE DT
(1 + 1)RLR(Z R)?
~ _ ni ny — 1- n
Varlse) = = 0" (=R
_ 201 _ p2y2
Va”(ASRs) _ (nmi+mn—1) R°1—R")

m(na—2) (R2—R+ 1)4.

Proof. Let function g(R) has one parameter of R and let Rézg be an almost sure consistent estimate of R.

Then the variance of g(R§zs) may be obtained from the linear Taylor approximation around R.
8(Rirs) = g(R) + (Rips — Rg'(R)

for the estimator Pgpg:

Since, in this case,

Var(Bses) = Var(g(Rigs)) = Var(g(R)) + Var((Rszs — R)g' (R))
~ 1-—- R)2 n+n—1
— / R 2V R* — ( 2
(g (R)"Var(Rggs) RO+ R (s — 1)
_ (m+m—1R1-R)
n(ny —2) (1+R)*
Similar arguments can be used for the other overlaps coefficients. [l

Theorem 3.2. Using Taylor series expansion, then for ny > 3. Approximations for the biases of the OVL coefficients estimates are as follows:

(nm +n2 — 1) VRGR: —6R — 1)
2n1(n2 — 2) (1+R)?

Bias(bsps) =

2R—
Cmtm=1) RI=x RQR — InR — 2)InR — (R — 1)?
2n1(ny —2) (R—1)

l if 0<R<1

Bias(Aggs) =

2R—1
R1-R R2R — InR — 2)InR — (R — 1)?
(R—-1)°

(m+n-1)_,
2ni1(ny — 2)

] y R2
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(m+m—-1)R —3R-R
m@m, —2) (R2—R+1)?

Bias(Aggs) =

Proof. Again by using the well-known Delta method (Taylor series expansion) the asymptotic bias of the OVL measures can be obtained as follows:

A A 1 4
8(Rszs) = g(R) + (Rips — R)g'(R) + > (Rsps = RY’g7(R)
for the estimator Ogpg:
R;RS
R;RS +1

2

g(Rsrs) =

Since, in this case,
1 — Rigg VRGR? — 6R — 1)

so  g/"(Rsgs) = R+ R

g (Rigs) =
Rigs(1 + Rigg)?

E(Pses) = E@(Rirs)) = 8(R) + E [(Rigs = R)] g7(R) + S [(Rsps — R] g77(R)

. A 1 %
Bias(fgps) = EVW(RSRs)g”(R)

_ (m +m—1)yYRGR® —6R—1)
T 2m(ny = 2) (1+ Ry

the bias Similar arguments can be used for the bias the other overlaps coefficients. |

3.3. Interval Estimation

For large sample, normal approximation to the sampling distribution, using the delta method, works fairly well. Therefore, the asymptotic
100(1 — ¢ty)% confidence intervals for the OVL coefficients can be computed easily as

{O/\VLSRS + Zi—a,2y\ Var(O/\VLSRS)}

where Z,_q,, is the ay/2 upper quantile of the standard normal distribution.

These confidence intervals are not the best because of the bias involved in OVL coefficients estimates, however, for large samples they work
fairly well. Using these approximations, the bias corrected interval can be computed as

i[mms - BiaS(O/-\VLSRS)] + Zi—q,n\/ Var(mszzs)§

4. STATISTICAL INFERENCE USING RSS

4.1. Estimation

Similar to the previous section, suppose (Xiyk X1k - » Xi¢rk) and Xy, Xo@yks - > Xogrpk)» K = 1,2,..., m are two independent RSS
samples drawn from f,(x) and f>(x) respectively. The estimates of 8, and 6, using RSS sample are given by:

1. From the first sample:

1 ron
Qipss = E2210g<1 +

1
. ny =rim.
i=1k=1 X1k

2. From the second sample:

1 PR 1
&ZRSSZH_ZZZIOg<1+ >, Ny = ram.

i=1k=1 X2k
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Note that, it is easy to show that

E(@irss) = a1, E(arss) = s,

Var(é pss) irss i 1 Var@,mss) Wirss i 1
ar(& = - ar(& = :
1RSS mR =it 2RSS e
Also, R can be estimated by Rpss = %. Hence, by using Delta method of approximation, the variance of Rgss can be approximated by
2RSS
(IR T
Vm’(ﬁRSS) ~ R2 zi:l ri—i+1 + i=1 r—i+l )
Thus, we have
2‘\/ szss
Prss = 2 —— (17)
RSS R+ 1
R 1 . AR;ss
1 — (Rss) ®s™! 4 (Rygs) ™! if 0<R<1
Apss = (18)
. 1 ) ARI*{SS
1+ (R?QSS) Riss—1 — (R;SS)R;SS_I 1f R>1
A Riss
Apss = (19)

(Riss)? — Riggs + 1

4.2. Asymptotic Properties

Let OVL = g(R), and its estimator OVlirss = g(RRss). Using the well-known delta method (expansion of the Taylor series) the asymptotic
sampling variance of the OVL measures is given by the following theorem.

Corollary 4.1. Let pygs, Aggs and Aygg are the estimates of p, A and A respectively, then for ny > 3, we have the approximate expressions for
variances of the OVL measures can be obtained as follows:

n 1 6] 1
Var(Pass) = Zi:l noitl Zi=1 7=1 | R0 — R)?
ks mr? mr’ (R+1)*
n 1 r 1 2
Var(heeo) = DI . 2ty =T | RER(InR)?
i mr? mr (1-R?
n 1 L) 1
Var([\ )= Zi:l ri—it+1 4 2= —it1 Rz(l — RZ)2
i mr} m3 | (R =R+ 1)}
Proof. Same proof of Theorem 3.1, replacing Rjyg with the Ripg estimator. O

Corollary 4.2. Using Taylor series expansion, then for ny > 3. Approximations for the biases of the OVL coefficients estimates, are as follows:

[Z:lzl o N Y, ] VRGR® — 6R — 1)

mr% mr% 2(1 + R)?

Bias(frss) =
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¢ 1 T 1 2R—1
_ Zi;l r—itl + Zizzl i P R1-R RQR — InR — 2)InR — (R — 1)? o<R<l
mri mr R—1)
Bias(Aggs) =
) no_1 2R-1
Z::l 71_11'+1 + Zi:l ry—i+1 R2 R 1-R R(ZR — InR — 2)ll’lR _ (R _ 1)2 If oo 1
mry mr’ (R— 1) >
n 1 r 1
Bias(Aggs) = Yoy 7o + Dy 7ol | B 3R — R
- mri mz | (R =R+ 1)
Proof. Same proof of Theorem 3.2, replacing Rjps with the Rz estimator. .

4.3. Interval Estimation

Similar to the case of SRS and RSS, the asymptotic 100(1 — ¢;)% confidence intervals for the OVL coefficients can be computed easily as

{(ﬁRss +  Zi—ay\/ Var(mRss)I

where Z,_q,, is the ay/2 upper quantile of the standard normal distribution.

These confidence intervals are not the best because of the bias involved in OVL coefficient estimates, however, for large samples they work
fairly well. Using these approximations, the bias corrected interval can be computed as

{[O/\VLRSS - BiaS(O/\VLRss)] + Zi—apy/ Vaf(mRss)}

5. STATISTICAL INFERENCE USING BAYESIAN APPROACH

In recent decades, the Bayes viewpoint, as a powerful and valid alternative to traditional statistical perspectives, has received frequent
attention for statistical inference. In our study normal approximations for the shape parameter « of Inverse Lomax distribution will be
obtained using Jeffery’s prior. Noted that the choice of this type of distribution, thus often leads to classical estimators of the maximum
likelihood approach.

5.1. Estimation

* Jeffery’s Prior: Using Jeffery’s prior for the scale parameter o
P(a) = a~! 0<a<o (20)

Using (20) and (13) we get the posterior distribution for « is as

P(o|x) x P(a)L(ct|x) = anl+1 exp <—(1 + 1/oc)210g <1 + %)) (21)

i=1

The log posterior is log(P(a|x)) = —(n + 1) log(ar) — (1 + 1/a) Z:lzl log (1 + %)

The first derivative is

AP(ct|x) n+l 1 « 1
=— — > log| 1+ —
oa « @ ; s\t Xi
and the posterior mode is obtained as

1. From the first sample:

1 < 1
&y = log{ 1+ —
u n1+1; g< X11>
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2. From the second sample:

1 & 1
by = log{ 14+ —
2 n2+1; g< xzi)

Using simple transformation, it can be shown that

N a N 9%)
&y ~ Gamma ( n, —— and G, ~ Gamma | ny, ——T
1 2

A consequent estimate of R is Ry = %. Hence, an approximation variance of Ry can be given by
2]

ny + 1>2 ng(m +ny—1) R

vartky) = <n1 +1) ni(ny —1)%(n2 —2)

m(m—=D0m+1)

Also, an unibiased estimate R is given by Rj = 2% Tt D Rpy with
2

2
A n —1 n+n-—1_,

Var(R;) =

ar( ]) (112—1) 1’11(1’!2—2)

Thus, we have

2,/ Ry
P = > (22)
TR+

1—RHS + RHS! if 0<R<1

A= (23)

1 R/

1+ RHET —®HFT if R>1

. Ry
A} = (24)
Ry —Rr+1

The asymptotic variance of the OVL measures are given by

—1)2n1+n2—1R(1—R)2

AN _ [ M1
Var(P/) - (I’Zz -1 I’ll(i’lz — 2) (1 + R)4

2 2 2
- n— 1\ n +n,—1R1-R(InR)
Var(A)) =
ar(dy) <n2—1> ni(ny —2) (1 —R)>?
2 2 212
A n—1 n+n—1 R(1-R
Var(\)) = .
ar(Ay) <n2—1> mi(n, —2) (R2—R+ 1)}

With the asymptotic bias given by

m+2\> m@m+m—1) VRGR*—6R-1)
m+1/) 2(ny—1)>%*(ny—2) (1+R)?

Bias(fy) = (
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2R—1
_(mt2\ m(u+m—1) | RI-RRQR~InR~2)InR — (R~ 1)’
m+1/) (np—1)32m—2) (R—-1)

l if 0<R<1
Bias(A,) =

n+2 2 nl(n1+n2—1) R2
m+1/) (n2—12(mn—2)

2R—1
RT-R RQ2R — InR — 2)InR — (R — 1)?
(R—1)°

] y R2

n2+2>2 m(m +m — 1) R®—3R* — R?

BiastAy) = (m +1) (m—-Dm—2) (RR—R+ 17

5.2. Interval Estimation

The (1 — 2a;) confidence intervals for the overlap measures are computed as

gavi, + Zl_ao/zw/Var(O/\VL])}

Using these estimates the bias corrected interval, the 100(1 — ¢t;)% confidence intervals for the OVL measures can be given by

{[m]—Bias(m])] + zl_%m/vﬂr((m,)l

6. SIMULATION

In our simulation study we include the following: R = 0.1,0.5,0.75,0.8, and r1 = 2,3,4,5; 1, = 2,3,4,5 m = 8,40 and ¢ty = 0.05. A
simulation study is conducted to get insight about the performance of the proposed estimators. All the 1000 simulated sets of observations
were generated under the assumption that both densities have standard inverse Lomax distribution with the different shape parameter.

The performance of the OVL measure using RSS and SRS can be assessed using the asymptotic relative efficiency which is computed as

- MSE(OVL
EfflOVLsrs, OVLgss) = %
MSE(OVLgss)

Where MSE(O/V\L) = Var(m) + Bias(O/V\L)2
Tables 1 and 2 show the asymptotic relative efficiencies for the OVL measures using RSS relative to using SRS.

Tables 1 and 2 shows that, using SRS for estimating all three overlap measure is more efficient that using SRS. The efficiency increases as
the set size r1 and r; increases. Increasing the number of cycles’s m slightly decreases the efficiency. This may due the fact that this relative
efficiency is based on a large sample approximation. Therefore, the larger is the sample size is the closer is the relative efficiency to the exact
one.

Tables 3 and 4 indicate that the bias of the proposed OVL estimators is negligible in most cases and |bias| decreases as the sample sizes are
increased for both SRS, RSS and Bayes. However, the asymptotic bias when using SRS is smaller than when using RSS or Bayes.

The bias estimates for n = 25 are plotted in Figure 3. Only one plot of bias values is presented because a similar pattern is observed for other
sample sizes. For R < 0.5 the bias estimates of the SRS, bayesian and behave more similarly, but for the bias of RSS shows a different pattern.
For R > 0.5, the bias estimate of the RSS is growing, that of of Bayes are decreasing and but for that SRS tends towards 0. The estimates of
MSE are plotted in Figure 4 for all three methods. For R < 0, 6, the MSE estimates for the SRS and RSS have almost the same values and for
BB has a peak at R = 0.6 and declining steadily thereafter as R increases.

7. REAL DATA APPLICATION

As applications, considers the dataset discussed by Proschan [19]. The data of 30 and 12 successive failure time intervals (in hours) of the
air-conditioning system of jet plane, Plane 8044 and Plane-7912, for fitting to Lomax distribution (Gupta et al. [20]). The inverse Lomax
random variable (X) can be obtained by using the transformation x = 1/y on Lomax random variable (Y) (Saleem and Aslam [21]).

Plane 8044: X;(n = 12) : 487,18,100,7, 98,5, 85,91, 43, 230, 3, 130.



Dhaker et al. / Journal of Statistical Theory and Applications 20(1) 61-75 71

Table 1 Asymptotic relative efficiency of OVL estimates using RSS relative to using SRS, m = 8.

P A A

R rr, 2 3 4 5 2 3 4 5 2 3 4 5

0.10 2 0.9830 0.9795 0.9790 0.9791 0.990 0.9882 0.9879 0.9879 0.9998 0.9999 0.9998 0.9998
3 0.9864 0.9839 0.9837 0.9840 0.9921 0.9908 0.9907 0.9908 0.9999 0.9999 0.9998 0.9999
4 0.9882 0.9861 0.9861 0.9865 0.9932 0.9921 0.9921 0.9923 0.9999 0.9999 0.9999 0.9999
5 0.9865 0.9874 0.9876 0.9880 0.9923 0.9928 0.9929 0.9932 0.9999 0.9999 0.9999 0.9999

0.5 2 0.9021 0.9012 0.8958 0.8940 0.9814 0.9779 0.9772 0.9772 0.9828 0.9796 0.9791 0.9791
3 0.9331 0.9164 0.9129 0.9125 0.9852 0.9825 0.9823 0.9825 0.9864 0.9839 0.9838 0.9840
4 0.9401 0.9252 0.9228 0.9232 0.9872 0.9848 0.9849 0.9853 0.9882 0.9861 0.9862 0.9865
5 0.9446 0.9308 0.9292 0.9302 0.9884 0.9863 0.9865 0.9870 0.9893 0.9875 0.9876 0.9881

0.8 2 0.8510 0.8036 0.7854 0.7764 0.8848 0.8523 0.8415 0.8369 0.8861 0.8541 0.8435 0.8391
3 0.8647 0.8177 0.8001 0.7929 0.8991 0.8693 0.8607 0.8579 0.9004 0.8712 0.8628 0.8601
4 0.8732 0.8270 0.8112 0.8045 0.9077 0.8797 0.8727 0.8711 0.9090 0.8816 0.8749 0.8733
5 0.8791 0.8340 0.8188 0.8129 0.9133 0.8868 0.8809 0.8802 0.9146 0.8886 0.8829 0.8823

Table 2 Asymptotic relative efficiency of OVL estimates using RSS relative to using SRS, m = 40.

p A A

R nr, 2 3 4 5 2 3 4 5 2 3 4 5

0.10 2 0.9931 0.9940 0.9945 0.9948 0.9961 0.9966 0.9997 0.9971 0.9999 0.9999 0.9999 0.9999
3 0.9943 0.9952 0.9957 0.9960 0.9968 0.9973 0.9976 0.9978 0.9999 0.9999 0.9999 0.9999
4 0.9949 0.9958 0.9963 0.9952 0.9971 0.9977 0.9979 0.9981 0.9999 0.9999 0.9999 0.9999
5 0.9952 0.9962 0.9967 0.9970 0.9973 0.9979 0.9982 0.9983 0.9999 0.9999 0.9999 0.9999

0.5 2 0.9552 0.9603 0.9631 0.9650 0.9925 0.9935 0.9940 0.9943 0.9931 0.9940 0.9945 0.9948
3 0.9621 0.9677 0.9707 0.9727 0.9937 0.9948 0.9953 0.9957 0.9943 0.9952 0.9957 0.9961
4 0.9655 0.9713 0.9746 0.9767 0.9944 0.9954 0.9960 0.9964 0.9949 0.9958 0.9963 0.9967
5 0.9677 0.9736 0.9770 0.9791 0.9948 0.9958 0.9964 0.9967 0.9952 0.9962 0.9967 0.9970

0.8 2 0.8430 0.8516 0.8575 0.8616 0.9146 0.9225 0.9272 0.9304 0.9165 0.9243 0.9290 0.9321
3 0.8578 0.8694 0.8772 0.8828 0.9259 0.9351 0.9406 0.9442 0.9276 0.9370 0.9421 0.9456
4 0.8663 0.8798 0.8889 0.8953 0.9319 0.9419 0.9477 0.9517 0.9335 0.9433 0.9491 0.9530
5 0.8718 0.8866 0.8966 0.9036 0.9357 0.9461 0.9523 0.9564 0.9373 0.9475 0.9536 0.9576

Plane 7912: X>(m = 30) : 23,261,87,7,120, 14, 62,47,225,71, 246,21, 42,20, 5, 12,120, 11,
3,14,71,11,14,11, 16,90, 1, 16, 52, 95.

Fitting both data sets to inverse Lomax distribution witl} parameters o; (Plane 8044) and «, (Plane-7912), we obtain: &, = 0.0035 and
&, = 0.0071. The estimate of the ratio R is given as R= % = 0.493 (Table 5).
2

Since the confidence interval obtained by RSR does not include the value 1 the failure time distributions for the two jets should not be
considered to be identical, unlike other methods.

8. CONCLUSION

In this paper we considered three measures of overlap, namely Matusia’s measure p, Weitzman's measure A and Kullback-Leibler A. We
studied the estimation of overlap measures and bias and variance of their estimates. The values of the OVL measures are very similar, the
coefficient p is of the best for having small values of Bias and MSE. The overall conclusion is that the biases of each of the OVL measures
are close to zero and approximations are adequate for samples of size as small as 40. The SRS and RSS procedures provided sensible and
reasonably reliable confidence intervals. These are also the simplest methods to use in practice that do not need any computers, special
software or extensive computations.
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Figure 3 The bias estimates of overlap coefficients by R.
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Figure 4 The Mean Squared Error (MSE) estimates for overlap coefficients by R.

Table 5 Results based on the real data.

p = 0.995 A = 0.906 I'=0.938
SRS RSS Baye SRS RSS Baye SRS RSS Baye
Bias(OVL) 0.011 0.060 0.012 0.055 0.228 0.046 0.047 0.220 0.040
Var(OVL) 0.004 0.0003 0.0001 0.0015 0.007 0.001 0.022 0.018 0.030
95% confidence  (0.991,1.0)  (0.915,1.0)  (0.990, 1.0) (0.803, (0.799, (0.798, (0.763,1.0)  (0.94,1.0)  (0.70,1.0)
0.932) 0.999) 0.921)
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