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1.  INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of a large number 
of tiny devices that are able to measure various physical quanti-
ties in their immediate environment. During the last two decades, 
WSNs have been utilized in many event-monitoring applications 
that are related to domains such as security, ecology, agriculture, 
transportation, or industry [1–3]. Unfortunately besides their lim-
ited capabilities, sensor nodes are inherently prone to failures [4], 
especially when they are randomly deployed in hostile environ-
ments. These failures can lead to the occurrence of uncovered areas 
also called holes that can be detrimental to network effectiveness 
[5]. Hence, coverage maintenance is of paramount importance to 
have any hope of prolonging network lifetime [6]. This process 
comprises two phases namely, detection and elimination.

When the underlying application requires a complete area cov-
erage, hole detection use techniques originating from geometry,  
algebraic topology and graph theory [7–13]; whereas hole elimina-
tion solutions can exploit nodes’ redundancy, mobility or motility 
[8,14–18]. Detection strategies must be fast and accurate whereas 
recovery schemes must eliminate the best the coverage hole while 
minimizing energy consumption and overlapped areas. This pro-
cess must avoid creating new holes and be applied to both closed 
and open holes. It is also desirable that the coverage recovery strat-
egy is localized and considers scenarios involving nodes with dif-
ferent ranges. To address all these requirements some authors opt 

for hybrid solutions which are essentially based on both nodes’ 
sensing range adjustment (motility) and controlled movements 
(mobility) [19]. However, schemes commonly proposed usually 
struggle to simultaneously prevent undesirable effects such as new 
hole formation, collisions, and oscillations especially when nodes 
movements are constrained by obstacles.

In this paper, we propose to seamlessly combine mobility, redun-
dancy control, and motility based strategies in order to further 
increase the network’s resilience. The main contributions of this 
work are as follows:

•• a localized intersection points based coverage hole detection 
scheme that helps to discover in linear time any type of hole 
(closed, semi-open, open), to minimize the use of geographical 
information, and to reduce message overhead;

•• a location-allocation [20,21] based model and a mixed integer 
linear programming formulation for the area coverage recovery 
problem. A fully distributed tabu-search based scheme is applied 
to make hole elimination decisions. Unlike most existing solu-
tions, our strategy guarantees energy-efficiency and high cov-
erage ratio by simultaneously preventing new holes formation, 
cascaded movements, collisions, oscillations, especially in the 
presence of obstacles;

•• a novel metric (the coverage resilience index) to help better esti-
mate coverage hole elimination protocols’ actual fault tolerance 
ability;

•• extensive simulations using various scenarios are performed to 
validate the proposed algorithms. Results show that our scheme 
outperforms several recently proposed solutions with respect to 
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the number displaced nodes, coverage ratio, total distance trav-
elled, and energy consumption.

The rest of the paper is organized as follows: Section 2 surveys 
recent and significant related contributions; then, the proposed 
solution is detailed in Section 3; the performance evaluation pro-
cess, the results, and discussions are presented in Section 4 followed 
by conclusion in Section 5.

2.  RELATED WORK

Area coverage maintenance is a two-phase process encompassing 
hole detection and its elimination. Hole detection phase is aimed at 
providing maximum information (position, surface, shape, perim-
eter...) about the damaged areas (holes) resulting from a topol-
ogy change. Once identified, holes must be healed using the least 
amount of resources.

2.1.  Hole Detection

Area coverage hole detection is part of network boundary detec-
tion problem [22]. Methods commonly used for that purpose can 
be categorized into geometric, algebraic topology, graph theory, 
and analytic methods [23]. Accuracy and precision are the most 
important challenges to face, irrespective of the type of holes (close, 
open, semi-open). Techniques commonly used (virtual grid, inter-
section points, perimeter coverage, Voronoi tessellation, Delaunay 
triangulation...) mainly originate from computational geometry. 
They generally require nodes to know their exact positions. An  
et al. [24] proposed a combination of cells and triangles in order to 
reduce the computational complexity. However, this scheme is only 
limited to closed holes and homogeneous networks. Trong et al. [7] 
proposed a solution for dynamic holes. Besides detecting holes, this 
strategy is aimed at predicting the enlargement of their boundar-
ies but has the drawback of increasing message overhead. Amgoth 
and Jana [8] suggest also using classical square grids. However, this 
strategy targets only closed holes.

Kang et al. [25] suggest a coordinate-free strategy based on the  
concept of critical boundary points i.e. intersection points which  
are not covered by any other node. Regrettably, finding such points 
is time consuming. Sahoo et al. [9] use a similar strategy except that 
it requires nodes to know their exact positions.

Huang and Tseng [26] used a perimeter coverage based strategy 
that regrettably requires also sensors to know their exact locations. 
In order to cope with this shortcoming, Bejenaro [27] suggests 
a concept called cyclic segment sequence which involves using 
nodes’ local polar coordinates. A hole is detected if every selected 
arc (segment) does not overlap with exactly two other segments. 
However, this method has a high computational complexity ( )3n .

Qui et al. [28] proposed a k-coverage Delaunay triangulation ori-
ented strategy. Any hole is now detected if a voronoi cell is cov-
ered by less than k nodes. Although innovative, this method has 
a ( )2n nln  time complexity. Dai et al. [10] used also a voronoi 
diagram-based strategy. Unfortunately, the proposed solution is 
not fully-distributed (the latter diagram is constructed by the sink) 
and is thus not scalable. Li and Wu [29] proposed to merge isolated 
empty-circles in order to properly estimate hole’s size. If the length 

of the common side of two Delaunay triangles is greater than their 
diameters then the two resulting isolated empty circles are consid-
ered as a hole. The two circles are merged if their centers are located 
at the same part of the common side. This strategy is able to detect 
both close and open holes, but cannot be applied to heterogeneous 
networks.

Senouci et al. [30] suggest using a collaborative scheme triggered 
by duly identified stuck nodes. Hole discovery process is based on 
the classical message forwarding TENT rule [31]. However, this 
strategy is dedicated to only closed holes. Chu and Ssu [32] used a  
location-free strategy that explicitly considers obstacles. However, 
this scheme requires each node to previously collect three-hops 
neighborhood information. In order to quickly detect holes, Patra 
and Sau [12] proposed to find a base cycle i.e. a cycle in the sub-
graph induced by each node’s neighborhood. Regrettably, this tech-
nique is devoted to only closed holes.

To avoid using nodes exact locations, many authors suggest using 
techniques inspired by homotopy or homology to infer a simpli-
cial complex from the network topology. However, Yan et al. [33] 
showed that it is impossible to detect with a Rips complex, cer-
tain types of holes including triangular holes, i.e. damaged areas 
enclosed by three nodes (two-simplexes). In a recent study, Šorbel 
et al. [11] used a spanning tree-based strategy for homological cov-
erage verification. Small network segments are gradually merged 
into larger ones, until a Rips complex is obtained. This merging 
strategy is helpful to locally compute the first Betti number but 
hardly scalable since the spanning tree construction scheme is  
centralized.

2.2.  Hole Elimination

Area coverage recovery is also a well studied topic in the literature. 
Solutions commonly proposed can be classified into redundancy, 
motility, and mobility based approaches.

Diongue and Thiare [34] proposed to maintain active some nodes 
(sentinels) so that they watch over their sleeping neighbors. This 
strategy combines node-based and link-based adaptation schemes. 
The link adaptation technique helps a sentinel to dynamically 
adjust its communication range according to link quality. On the 
other hand, node adaptation process consists of waking up redun-
dant nodes to replace the failed sentinels. Unfortunately, this strat-
egy fails to cope with large scale damages. Sharma and Sharma [18] 
propose a similar scheme to minimize movements by grouping 
nodes according to their overlapping coverage ratio. Each cluster is 
controlled by a node referred to as the Zone Monitor (ZM). When 
a cluster member fails, the ZM orders the sleeping redundant ones 
to be active in order to eliminate the resulting hole. Nodes’ mobility 
is only used if no redundant node is found. Despite a low message 
overhead, no solution is proposed to cope with ZM failures.

As for mobility-based solutions, they mainly rely on nodes’ loco-
motion abilities to replace failed neighbors especially after a large 
scale disaster. The challenges to face include the minimization of 
the number of candidates, overlapped areas, cascaded movements, 
the average distance travelled while avoiding collisions, oscillations 
and new holes formation. Strategies commonly found, involve 
using (attractive or repulsive) virtual forces inspired from quantum 
physics [35–37]. Li et al. [15] investigated using Tchebychev point 
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instead of targeting traditional points such as centroid or Voronoi 
vertex. Nodes must seek such a point in their k-order Voronoi cell. 
This scheme is very useful in 3D environments and helps to mini-
mize oscillations but does not consider obstacles. Habibi et al. [38] 
use geometric optimization formulation. Although, this strategy 
provides a high coverage ratio, it cannot prevent the formation of 
new holes. To cope with this shortcoming, Sahoo and Liao [39] 
suggest to replace nodes according to their degrees while limiting 
their movements. They proposed a nonlinear programming for-
mulation combined to a triangulation based scheme. The latter is 
aimed at minimizing energy consumption due to mobility and cov-
erage overlapping. Regrettably, candidates selection scheme does 
not consider nodes’ residual energy. Qiu and Shen [40] proposed a 
coordinate-free scheme that first constructs Delaunay triangles (i.e. 
triangles that have no other node inside) and then conducts nodes 
movements to meet conditions that suffice to ensure each triangle 
full coverage. New holes creation are avoided by ensuring that each 
node finds a safe area capable of preserving its coverage. However, 
this technique considers only closed holes and requires nodes to 
synchronize their movements. Saha and Das [16] addressed this 
problem for heterogeneous networks, but the proposed scheme 
cannot be applied to open holes. Khelil and Beghdad [41] proposed 
a self-deployment scheme to move nodes periodically toward the 
centroid of the polygon induced by the hole. However, such a strat-
egy also requires nodes’ movements to be synchronized. Rout and 
Roy [42] apply a strategy that use obstacles and deployment bound-
aries as sources of repulsive forces exerting on nodes. This solution 
enhances coverage ratio and minimizes distance travelled but 
cannot prevent the formation of new holes. Zhao et al. [43] pro-
posed a novel paradigm referred to as fruit fly optimization. The 
deployment zone is discretized with a virtual grid. All the uncov-
ered areas exert on nodes (fruit flies), smells that are able to attract 
them to suitable areas. This strategy considers the presence of 
obstacles and quickly converges but can only be applied to homo-
geneous and dense networks. Ray and De [44] suggest instead, a 
glowworm based heuristic that minimizes the number of over-
lapped areas but fails to prevent new holes formation.

Solutions aiming at controlling specifically nodes’ sensing ranges 
are more recent [45,46]. Qu and Georgakopoulos [47] used a 
Voronoi diagram based scheme that allows each node to adjust 
its range in order to entirely cover its Voronoi cell and check its 
redundancy. However, this solution is dedicated to only closed 
holes. Amgoth and Jana [8] proposed a virtual grid based scheme 
where after neighbor discovery, each node must identify cells that it 
can cover respectively with its current range and maximum range. 
These information help nodes to find cells that are not covered by 
any neighbor and eventually detect holes. In that case, a detection 
message is sent to alert these neighbors. If such a message is not 
acknowledged, node must increase its range in order to cover those 
empty cells. Although precise, this strategy is memory and energy 
expensive since large messages are required.

So far, only a few solutions have considered hybrid strategies to 
eliminate area coverage holes. Guvesan and Yavuz [19] proposed 
to combine motility and mobility based approaches. Regrettably, 
this protocol applies only to networks composed of nodes equipped 
with directional antennas. Abolhasan et al. [48] suggest a potential 
game theory based strategy that allows nodes to move or adjust 
their sensing ranges more efficiently. However, this solution is 
devoted to only closed holes and does not prevent the formation of 

new holes. Joshita et al. [49] proposed to vary nodes’ sensing ranges 
along with a random mobility. This scheme helps to minimize the 
number of candidates and the number of overlapped areas, but also 
cannot prevent new holes to appear. Khedr et al. [50] suggest to 
only move redundant nodes and to add a pro-active scheme where 
nodes with low residual energy must alert neighbors in order to 
prevent hole formation. However, this strategy leads to collisions 
since some neighbors can move to the position of the alert’s sender 
before its actual death.

3.  PROPOSED SOLUTION

In this section we first discuss the motivations and objectives of 
this paper. Then we describe the key assumptions before detailing 
our solution.

3.1.  Motivations and Objectives

Most existing solutions essentially aim to detect and eliminate only 
closed holes. It is useful to design a solution that can efficiently deal 
with the main three types of holes (closed, semi-open, and open) 
regardless of the failure scale.

Few hybrid hole elimination schemes, have been proposed in the  
literature. They often combine sensing range adjustment (motil-
ity) or redundancy control to mobility strategies in order to further 
reduce nodes’ energy consumption. However, they fail to simultane-
ously face challenges such as overlapped areas, new holes formation, 
collisions, oscillations, and cascaded movements. This shortcoming 
need to be addressed especially in the presence of obstacles.

Furthermore, in most studies the performance evaluation process 
is commonly based on metrics which alone are not sufficient to 
actually capture the protocol’s resilience ability. Hence, a more pre-
cise metric should be proposed to better estimate network’s fault 
tolerance.

This paper is specifically aimed at minimizing:

•• coverage hole detection and elimination time;

•• travel distance, overlapped areas, number of candidates, and 
movements required to eliminate a hole regardless its type and 
location;

•• risk of new holes formation especially at the network’s boundaries.

3.2.  Assumptions

We make the following assumptions:

•• nodes respectively use the classical Unit Disk Graph and Boolean 
disk coverage models to communicate and sense events;

•• each node u’s communication and sensing ranges, respectively 
denoted by rc(u) and rs(u), are such that rc(u) ≥ 2 × rs(u);

•• each node u knows its position coordinates (xu, yu) in the deploy-
ment zone A using the underlying localization protocol;

•• each node u can estimate the transmission delay τ(u, v) and the 
round trip time rtt(u) with each neighbor v;
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•• two nodes u and v are neighbors (with two intersection points) if 
d(u, v) < (rs(u) + rs(v)) and d(u, v) > (rs(u) − rs(v)). d(u, v) denotes 
the euclidean distance between u and v. (rs(u) + rs(v)) − d(u, v) > = 
l; where l is a parameter set by the underlying application.

•• nodes are capable of adjusting their communication and sensing 
ranges (motility);

•• nodes are able to control their mobility;

•• the process is supposed to take place in a two-dimensional 
euclidian space.

3.3.  Description

In this section, we detail our solution referred to as Coverage Hole 
Elimination Adaptive Protocol (CHEAP). This localized message 
passing protocol consists of three phases namely: hole detection, 
hole characterization, and hole elimination (coverage recovery).

We need first to give some definitions that can help to gain a better 
understanding of our strategy.

Definition 1 (Coverage of a node) Let i be a point of the deployment 
zone denoted by A, the coverage of node u denoted by C(u) is such as 
C(u) = {i ∈ A: d(u, i) ≤ rs(u)}; where d(u, i) is the euclidean distance 
between i and u while rs(u) denotes the sensing range of node u.

Definition 2 (Perimeter of a node) Let i be a point in C(u) the cov-
erage of node u while the perimeter of u denoted by P(u) such as P(u) 
= {i ∈ C(u): d(u, i) = rs(u)}.

Definition 3 (Parents of an intersection point) the parents (father 
and mother) of a point are the nodes of which sensing disks intersec-
tion has created this point. Formally, let i be a point of the deployment 
zone denoted by A. Let u and v two nodes, (u, v ∈ χ(i)) Û (i ∈ P(u)) 
^ (i ∈ P(v)). Where χ(i), P(u), and P(v) respectively denote the set of 
point i’s parents, the perimeter of u, and the perimeter of v.

Definition 4 (Uncovered arc of a node) Let P(u) be the perimeter 
of node u and N(u) the set of its neighbors. A part of P(u) denoted by  
a u( ) is an uncovered arc of node u, if none of its neighbors covers this 
arc. Formally, a u p P u v N u r v d v ps( ) = { ( ) : ( ), ( ) ( , )} Î Î ³ .

In order to simplify notations and discussions, each uncovered  
arc a u( )  will be reduced to ij



 such as i j a u, Î ( )  and 
∃ ∈ ∩ ∧ ∩v w N u C u C v i C u C w j, ( ) : ( ( ) ( ) = { }) ( ( ) ( ) = { }).  i and j will 
be referred to as the border points of a u( ).

Definition 5 (Adjacent uncovered arcs) Let i, j, k, and l be four 
points whose coordinates are respectively denoted by (xi, yi),(xj, yj), 
(xk, yk) and (xl, yl). The uncovered arcs ij



 and kl


 are adjacent if  
((xj = xk) ∧ (yj = yk)) ∨ (xi = xl) ∧ (yi = yl)); in other words, if  
(j = k) ∨ (i = l).

Definition 6 (Maneuver of a node) A maneuver is an action (dis-
placement or range change) that a node u can perform in order 
to be usefully involved in a hole elimination process. Formally, 
a maneuver m is a vector such as m = (xo, yo, xd, yd, ro, rd) and 
$ Î - + -i H x x y y rd i i d d: ( ) ( ) <2 2 2  where H is a coverage hole, i a 
point and (xi; yi) its coordinates.

(xo, yo, xd, yd, ro, rd) respectively denote the current position’s  
abscissa, the current position’s ordinate, the destination’s abscissa,  

the destination’s ordinate, the current range, and the destination’s 
range of node u. Therefore:

if (xo ≠ xd) ∨ (yo ≠ yd), maneuver m implies node u’s displacement 
(mobility);

if (ro ≠ rd), maneuver m implies node u’s range change (motility).

Definition 7 (Elbow room of a node) node u’s elbow room denoted 
by Φ(u) is the set of its maneuvers. Formally, let xu and yu respec-
tively denote the abscissa and the ordinate of node u. Let I be a set 
of maneuvers, and F(u) a family such as F(u) = {η(u): η(u) ⊆ N(u)}

F( ) = {( , ( )) ( ) : ( = ) ( = )}u m u I F u x x y yo u o uh Î ´ Ù .

η(u) is referred to as node u’s immobilized neighborhood.

Definition 8 (Redundant node) A node u is redundant if each point 
within its range is also covered by at least one of its immobilized neigh-
bors. Formally, u is redundant iff " Î $ Î £i C u v u d v i r vs( ), ( ) : ( , ) ( )h .

Definition 9 (Maximum Redundancy Zone) The Maximum 
Redundancy Zone (MRZ) of node u is the region delimited by the 
convex hull deriving from the cloud of the intersection points between 
neighbors that belong to node u’s immobilized neighborhood. Points 
located on this hull will be referred to as the Border Points; whereas 
the others will be referred to as the Interior Points. Let IP(u), IN(u) 
and MRZ(u) respectively denote the set of intersection points between 
node u and its neighbors, the set of intersection points between node 
u’s neighbors, and the set of border points on the convex hull of node 
u’s MRZ; formally,

	 IP( ) = { ( ) : ( ), ( )}u i P u v u i P v∈ ∃ ∈ ∈h �

	 IN( ) = { : , ( ), [( ( )) ( ( ))]}u i A v w u i P v i P wÎ " Î Î Ù Îh �

MRZ( ) = { ( ( ) ( )) : ( ( ), ) ( ( ))}( )u i IP u IN u v u v i C vi∈ ∪ ∀ ∈ ∉ ⇔ ∉h c

Definition 10 (Incompatible maneuvers) Two maneuvers m =  
(xo, yo, xd, yd, ro, rd) and m x y x y r ro o d d o d

� � � � � � �= ( , , , , , )  are incompatible 
in the following cases:

•• ( = ) ( = )x x y yo o o o
 Ù  i.e. maneuvers m and m  imply an ubiqui-

tous displacement; in other words, they involve the same node;

•• ( = ) ( = )x x y yd d d d
 Ù  i.e. maneuvers m and m  imply a collision;

•• maneuvers m and m  respectively involve two nodes u and v such 
as ( ) ( )x x y yo o o o≠ ∧ ≠  ,  u is redundant and v ∈ η(u) or v is redun-
dant and u ∈ η(v);

•• maneuvers m and m  respectively involve two nodes u and v 
such as ( ) ( )x x y yo o o o≠ ∧ ≠  ,  u and v are not redundant and  
(v ∈ N(u)) ∧ (u ∈ N(v)).

Definition 11 (State of a node) Node u can enter into the following 
states:

•• Sleep (SLP),

( ( ) = ) [( ( ) = 0) ( ( ) )]state SLPu r u N usÛ Ù ¹ Æ

•• Active (ACT),

	 ( ( ) = ) ( ( ) > 0)state ACTu r us⇔

•• Tentative (TNT),

( ( ) = ) [( ( ) > 0) (( ( ) ( )) )]state TNT IP MRZu r u u us⇔ ∧ ∩ ≠ ∅
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•• Alert (ALRT),

( ( ) = ) [( ( ) > 0) ( )]state ALRTu r u klsÛ Ù ¹ Æ


•• Initiator (INIT),

( ( ) = ) [( ( ) > 0) ( ( ) = )]state INIT init idu r u us uÛ Ù

•• Coordinator (CRD),

( ( ) = ) [( ( ) > 0) ( ( ) = )]state CRD crd idu r u us u⇔ ∧

•• Candidate (CAND),

( ( ) = ) [( ( ) > 0) ( ( ) )]state CANDu r u usÛ Ù ¹ ÆF

•• Move (MOV),

( ( ) = ) [( ( ) > 0) ( ( ) )]state MOV destu r u us⇔ ∧ ≠ ∅

kl u u uu



, , ( ), ( ), ( )id init crd dest  respectively denote the adjacent 
uncovered arc, node u’s identifier, the process initiator’s identifier, the 
process coordinator’s identifier, the next destination to move to.

3.3.1.  Hole detection phase

Each active node must periodically (re)discover its neighbors and 
check for the presence of a potential coverage hole, following this 
process:

•• step 1: get all Type 1 intersection points (i.e. intersection points 
with each neighbor);

•• step 2: get Type 2 intersection points (i.e. intersection points 
between neighbors);

•• step 3: create a cloud from the two types of intersection points;

•• step 4: construct a convex hull from the point cloud created;

•• step 5: get from that hull the set of border points (i.e. points that 
are covered only by their parents); the latter set is referred to as 
the convex hull of the MRZ;

•• step 6: check if the MRZ’s convex hull contains Type 1 intersec-
tions points; if so, a coverage hole exists; stop.

Let us see two examples. In Figure 1a node u constructs a convex 
hull (in red) from the cloud of intersection points, i.e. the intersec-
tion points with each neighbor (in white) and the ones between 
neighbors (in gray). Node u tries to derive from this first convex 
hull the one of the MRZ. To do this, node u focuses on points that 
are covered only by their parents, namely points bp1, bp2, bp3, and 
bp4, respectively covered by parents {v3, v4}, {v2, v4}, {v1, v2}, and 
{v2, v3}. There is no white point among them, therefore, there is no 
coverage hole. Note that, in this example the first convex hull and 
the one of the MRZ coincide; this is not always the case. Figure 1b 
shows another example where node u constructs a convex hull 
from a cloud of intersection points (white and gray). Then node 
u derives its MRZ’s convex hull composed of bp1, bp2, bp3, and bp4. 
However, two of these points (bp1 and bp2) are white. Node u con-
cludes that arc bp bp1 2

  is uncovered. In other words, node u has 
found a new coverage hole in its neighborhood.

Note that, each node must store the parents’ identifiers (fi, mi)  
of all the intersection points i located on the convex hull 
of its MRZ. Then derive from these information a vector 

{( ; ; ; ), ( ; ; ; ), }x y f m x y f mi i i i j j j j ijt  for each uncovered arc ij


 found; 
where τij denotes the number of times an alert message (i.e. HOLE 
message) about ij



 has been broadcasted so far.

When a non-isolated node u notices the presence of an uncovered 
arc, it waits for an amount of time ttent(u) randomly and uniformly 
chosen in a interval defined as a parameter. Upon timer ttent(u) 
expiration, node u broadcasts a HOLE message in its two-hop 
neighborhood; if it has not already received such a message; then, 
node u starts a backoff timer tinit(u) and waits for a reply. tinit(u) 
is initiated using its maximum round-trip time and updated using 
Equation (1) upon receiving a ARC message from any node v. Node 
u will be considered by its nodes around the hole as the initiator of 
the recovery process to come.

	 t u t u rtt vt t

i

u v

i iinit init
( 1) ( )

=1

( , )

( , 1)( ) = ( ) ( )+
++ +å

| |p

t � (1)

τ(i,i+1) denotes the transmission delay between two consecutive 
nodes on the path between nodes u and v. rtt(v) is the maximum 
round trip time between node v and its neighbors. p (u, v) is the set 
of intermediary nodes on the path between u and v.

		  t v rtt w
w u v

alert ( ) = ( )
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å
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Upon receiving a HOLE message, a node v becomes active (if 
needed) and enters into Alert state for a duration denoted by 
talert(v). The latter is calculated using Equation (2). Then, if v is a 
parent of at least one of the border points contained in the HOLE 
message it must search its perimeter for any uncovered arc adjacent 
to those sent by node u. Neighbor v must substitute the adjacent arc 
contained in the HOLE message by the arc it has found before for-
warding this message, in turn, to its neighbors. Finally, node v must 

Figure 1 | Construction of the Maximum Redundancy Zone (MRZ)’s 
convex hull (dotted) in order to detect a coverage hole by node u: (a) no 
coverage hole, no intersection point with neighbors found on this hull (b) 
coverage hole, two intersection points with neighbors found on this hull.

b

a
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send to initiator u a ARC message via the neighbor who forwarded 
u’s HOLE message. This message contains information about the 
adjacent uncovered arc node v has just found on its perimeter.

Priority is given to HOLE messages which have the lowest τij. The 
length of each arc ij



 denoted by ( )ij


 is used to break ties.

3.3.2.  Hole characterization phase

From information contained in ARC messages, the initiator builds 
a graph describing the relationships existing between all the uncov-
ered arcs found by its neighbors (see Definition 5).

Upon timer tinit(u) expiration, initiator u that has received at least 
one ARC message must start the characterization process of the 
newly discovered hole (closed or open) by checking if the uncov-
ered arcs graph is respectively cyclic or not. Several schemes exist 
for that purpose in the literature. However, we propose a method 
based on Theorem 1.

Theorem 1.  Let Ga = (Va, Ea) be a graph that specifically results 
from a hole detection process; where Va and Ea respectively denote 
the set of uncovered arcs ij



 and the set of the symmetric links existing 
between them. Formally, Ea ij kl Va Va j k i l= {( ; ) : ( = ) ( = )}

 

Î ´ Ú .  
Ga is cyclic if |Va| = |Ea|.

Proof. Any node w sending a ARC message has inevitably received at 
least one HOLE message via a neighbor u. Therefore, w could have 
necessarily verified that one of its uncovered arcs denoted by kl



 is 
adjacent to the one contained in the HOLE message and denoted 
by ij


. Since any HOLE message is sent by only one node u referred 
to as the initiator, there is a relationship between an uncovered 
arc denoted by ab  found by the initiator and kl



. In other words,  
( )( ; ), ..., ( ; )ab cd ij kl� � � �

 is a simple path in graph Ga. Moreover, this 
path is unique in Ga since only nodes that have received a HOLE mes-
sage and have found at least one adjacent uncovered arc, have sent a 
ARC message as a reply. By definition, a cycle is a simple path wherein 
the number of nodes equals the number of links. |Va| is the length 
of path ( );( ; ), ..., ( ; )ab cd ij kl� � � �

 therefore (| |=| |)Va Ea GaÛ  is cyclic.

Corollary 1 If Ga = (Va, Ea) is not cyclic and if |Va| ≥ 3 then 
$ Î Ïij uv Va ij uv Ea
� � � �, : ( ; )  and we have ( ( , ) 0) ( , ) 0).d i v d j u¹ Ù ¹

Corollary 2 Topology induced by Ga = (Va, Ea) is the hole’s concave 
border; if ij Va



Î , points i and j are located on its convex hull.

From Theorem 1 and Corollaries 1 and 2 we give a formal defini-
tion of a coverage hole.

Definition 12 (Coverage hole) Let H be a set of points in the area of 
interest A and Ga = (Va; Ea) a graph of uncovered arcs discovered in 
its neighborhood; if H ⊂ Va then H is a hole. Moreover,

	 H

Va Va Ea
Va Va

is :

Closed if
Semi open if

((| | 3) (| |=| |)
((| | 3) (|

³ Ù
- ³ Ù || | |)

( , : > ))

¹

Ù $ Î

ì

í

ï
ï

î

ï
ï

Ea

ij uv Va d
� � W th

Open otherwise

�

with W = ( ( ; ), ( ; ))max .d j u d i v

d(j; u) and d(i; v) respectively denote the euclidean distances between 
point j and point u then between point i and point v. Ω is referred to 
as the “closure distance” and dth denotes a threshold.

Therefore, in order to characterize the detected hole the initiator 
must just ensure that conditions specified in Definition 12 are met. 
Furthermore, the initiator must identify all the boundary nodes 
and choose among them the one who can best lead and supervise 
the rest of this operation. The latter node will be referred to as the 
coordinator. Indeed, in order to be a good coordinator, a node must 
be as close as possible to the centroid of the newly detected hole. 
This issue is trivial for closed holes but crucial for energy efficiency, 
in the case of open or semi-open holes. Figure 2a–2c show some 
examples of graphs that an initiator could build during a hole char-
acterization process.

The coordinator will be chosen by the initiator using the graph of 
parents denoted by Gp = (Vp, Ep) built from the border points (see 
Definitions 3 and 4) contained in ARC messages.

The graph of parents induces a ring (cycle), a tree or a chain (path) 
when the coverage hole is respectively closed or open. Coordinator 
election process complies with the following rules:

•• if this graph is cyclic (see Theorem 1) the initiator becomes the  
coordinator;

•• otherwise, the initiator is the root of a tree containing two sets  
of nodes or branches denoted by b1 and b2 such as |b2| ≥ |b1| with 
|b2| > 0 and |b1| ≥ 0; then the node located h  hops from the ini-
tiator on branch b2 is chosen as the coordinator. h  is calculated 
using Equation (3).

		  h b b b = | | | | 1
2

(| | 1)1 2
1ë

+ -
û - - � (3)

After choosing another node as a coordinator, the initiator must 
send a COORD message containing information needed to con-
duct the coverage recovery process such as the uncovered arcs, 
the type of topology induced by the detected coverage hole, and  

Figure 2 | Different types of holes and their corresponding graphs of 
parents: (a)–(c) on left gray node is the initiator, on right gray node is the 
coordinator.

a

b

c
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information that help to update the timer talert of all the nodes that 
have entered into Alert state.

The coverage recovery process is started by the coordinator just 
after its election upon receiving a COORD message or directly, if it 
was the former initiator.

3.3.3.  Hole elimination phase

The entire coverage recovery process is supervised by the coordi-
nator. This process consists of three phases, namely: relocation sites 
definition, candidates selection, and candidates migration.

•• Relocation sites definition

This phase starts with the location of hole H’s centroid denoted by 
G. To do this, coordinator must find the set of border points start-
ing by the ones located on its own perimeter. These points will be 
referred to as pi in the remainder of this description; i denotes the 
index granted by the coordinator. The latter gets each border point 
pi’s coordinates respectively denoted by xi and yi from information 
contained in the uncovered arcs.

When the hole is closed, point G corresponds to the barycenter of 
the irregular polygon induced by its convex hull. G’s coordinates 
respectively denoted by xG and yG, are calculated using Equations 
(4)–(6).

	 x
H

x x x y x yG
i

n

i i i i i i= 1
6 ( )

( )( )
=1

1 1 1´
+ -å + + + � (4)

	 y
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		  ( ) = 1
2

( )
=1

1 1H x y x y
i

n

i i i iå + +- � (6)

However, if hole H is open, G is located such as d u G k rs( , ) = D ´;  
where d(u, G) denotes the distance between coordinator u and G on 
the direction vertical to the chord existing between border points of 
its uncovered arc (see Figure 3b). Δk (i.e. the range offset) is defined 
as a parameter and rs

  denotes nodes’ maximum range.

After locating the centroid G, coordinator u must discretize hole H 
linking each border point pi to G. Figure 3a and 3b depict results 
respectively obtained with a closed hole and an open one.

Each resulting triangle will be referred to as a zone in the remain-
der of this description. coordinator u must also determine inside 
hole H all the relocation sites. To do this, each segment p Gi  is split 
(see Figure 4a and 4b) into ë - ûd p G ri s( ; ) / (2 ) l  parts (i.e. with 
 −  −d p G ri s( ; ) / (2 ) 1 l  points) if d p G ri s( ; ) > (2 )- l ; or into two 
parts (by putting just one point) otherwise. d(pi; G) denotes the 
length of p Gi  and λ is a constant (see Section 3.2).

After hole discretization process, coordinator u broadcasts in its 
two-hop neighborhood a SITE message containing information 
about the border points and those located inside hole H. Then, 
it starts a timer whose duration tsite(u) is initiated using the max-
imum round trip time experienced among its neighbors. This 
timer is updated using Equation (7) upon receiving any response 
(CANDIDATE message) from a neighbor v.

	 t u t u rtt vt t
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u v

i isite site
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++ +å

| |p
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τ(i,i+1) denotes the transmission delay between two consecutive 
nodes on the path between nodes u and v. rtt(v) is the maximum 
round trip time between node v and its neighbors. p(u, v) is the set 
of intermediary nodes on the path between u and v.

Upon receiving a SITE message, any node v in Alert state must 
define its elbow room Φ(v) (see Definition 7). Indeed, in coordina-
tor u’s two-hop neighborhood each node v must find with respect 
to each of its own neighbors, the farthest external position denoted 
by s v  which helps to take part in the hole elimination process 
without compromising its coverage. For example, in Figure 4c, on 
receiving a SITE message from the coordinator, node 2 starts look-
ing with its maximum range (first dotted circle) for all the possi-
ble actions to take in order to be involved in the hole elimination 
process. Thus, node 2 notices that it can reach the hole from its 
current position (i.e. its range is strictly greater than the distance to 
at least one border point). Then, since node 2 is before neighbor 1 
(i.e. closer to hole’s centroid G than node 1), node 2 will try to find 
with respect to neighbor 1 on the direction vertical to the chord 
ij, the farthest position it may move to, in order to reach the hole 
without compromising the coverage of the area of interest (second 
dotted circle). Formally, if w v r w r vs s, , ( ), ( ), and s v  respectively 
denote node 1’s position, node 2’s current position, node 1’s max-
imum range, node 2’s maximum range, and node 2’s farthest posi-
tion with respect to neighbor 1, then the coordinates of s v  will be 
determined using Equations (8)–(12) λ is a parameter set by the 
underlying application as discussed in Section 3.2. 
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Figure 3 | Hole discretization by a coordinator (in gray): (a) hole is closed 
(b) hole is open.
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Figure 4 | Finding potential positions (in red): (a) by the coordinator for 
a closed hole (b) by the coordinator for an open hole (c) by a potential 
candidate (Virtual grid is only used to estimate the coverage ratio in each 
zone. See online version for colors).

a

b
c

The farthest position found with respect to neighbor 1 requires 
node 1, 3, and 4 to be immobilized (i.e. η(μ) = {1, 3, 4}). Note that 
node 2 has also found that choosing its current position as a poten-
tial relocation site does not require any neighbor to be immobilized 
(i.e. η(u) = ∅).

Node 2 will try to do the same with each of its other neighbors 
located further away with respect to G. Therefore, Node 2’s elbow 
room is the set of actions to perform in order to reach the hole 
without compromising its coverage. Redundant potential candi-
dates generally have the largest rooms for maneuver. Indeed, such 
nodes can freely move toward several sites (external or not) without 
compromising deployment zone coverage. To do this, these nodes 
must select sites (especially the internal ones) by immobilizing 
their neighborhood; knowing that a node may be redundant with 
respect to different subsets of neighbors. For example, in Figure 5a  
node 1 (in gray) is redundant with respect to two subsets of neigh-
bors namely {2, 3, 5, 6} and {2, 3, 4, 5, 6}; therefore, any displacement 
toward a site will require node 1 to immobilize only the smallest set 
of neighbors namely, {2, 3, 5, 6} (i.e. η(μ) = {2, 3, 5, 6}). In Figure 5b 
node 1 and node 4 are respectively redundant in relation to {2, 3, 
5, 6} or {2, 3, 4, 5, 6} and {5, 6, 7, 8, 9}. Therefore, the two subsets 
of neighbors to be immobilized during the displacements of node 1 
and node 4, are respectively {2, 3, 5, 6} and {5, 6, 7, 8, 9}.

Note that like any potential candidate, redundant nodes must make 
sure that they have enough energy to move to any selected site and 
reach at least one zone from that position (see Definition 6).

Also note that any area coverage redundancy check protocol 
found in the literature can be used to detect redundant nodes [14]. 
Although, we suggest the MRZ-based one we proposed in our pre-
vious works [51,52].

If a node v has a sufficient elbow room (i.e. Φ(v) ≠ ∅) it becomes 
a formal candidate by sending CANDIDATE message to the coor-
dinator and starts a timer for tcand (v) units of time. This message 
contains information about its elbow room, and state. tcand (v) is 
estimated using Equation (13) in terms of the round trip time on 
the path p(u, v) between v and coordinator u. The latter informa-
tion is contained in the SITE message sent by the coordinator.

		  t v rtt w
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( , )Î

å
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From mobility point of view, there are three types of formal candi-
dates (with respect to their states) which might be involved in the 
coverage recovery process namely: nodes that are unable to move, 
nodes with reduced mobility, and those with full mobility. These 
types of candidacy respectively correspond to intermediary states 
MO, MRM, and MM. Note that coordinator may be a candidate as 
well.

•• Candidates selection

This last phase allows coordinator u to ensure coverage recovery 
optimization. Indeed, after timer tsite(u) expiration, coordinator u 
must choose the maneuvers which help to best eliminate the hole 
while minimizing overlapped areas and energy wastes.

We formulate this issue as a location-allocation problem [20,21]. 
The latter has several well-known variants in combinatorics and 
geometry (facility location, p-median, p-center, set covering, Weber 
problem...) [53,54].

Solutions commonly proposed in the literature have many applica-
tions in domains such as industry, geography, transportation, logis-
tics, marketing etc. We formulate this problem using the following 
mixed integer linear program:

Let xij be the area exclusively covered in zone j by the candidate 
involved in maneuver i. Let

		  yi  = 
1,
0,

if maneuver is allowed
otherwise

iì
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îï
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	 zij   = 
1,
0,

if maneuvers and are incompatible
otherwise

i jì
í
ï

îï
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and let ϕij,  fi and dj respectively denote the overlapped area obtained 
in zone j when allowing maneuver i, the energy ratio dissipated 
after maneuver i and the total area to be covered (the demand) in 
zone j. Note that, I and J respectively denote the set of maneuvers to 
be allowed and the set of zones.
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Figure 5 | Neighbors immobilization process by a redundant candidate (in 
gray): (a) with multiple redundancy neighborhood. (b) with a redundant 
neighbor.
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		  fij i I j JÎ " Î " Î+ , ; � (22)

		  z i I j Iij Î " Î " Î{0, 1}, ; � (23)

		  f i Ii Î " Î[0, 1], � (24)

		  d j Jj Î " Î+* , � (25)

Equation (14) states the objective namely, minimize the uncovered 
areas, the overlapped areas inside the hole and the total energy con-
sumption. Equation (15) states that each zone j must be entirely 
covered. Equation (16) suggests that any maneuver i should reach 
at least one zone j. This constraint ensures that each candidate is 
active and is able to reach at least one zone. Equation (17) ensures 
that the residual energy of the candidate concerned by a maneuver 
is enough if allowed. Equation (18) prevents coordinator to allow 
incompatible maneuvers. This constraint prevents illogic maneu-
vers (ubiquity), new hole formation, collisions, and oscillations. 
Equation (19) ensures that any solution allows at least one maneu-
ver. Equations (20)–(22) define the decision variables. Equations 
(23)–(25) define the constants.

Energy costs are calculated using Equation (26); where εdist(.) and 
εrange(.) are two functions respectively related to the underlying 
mobility and motility energy consumption models. Er(v) is the 
residual energy of the candidate v concerned by maneuver i.

		  f i i
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Note that in practice, it is difficult to comply with the constraint 
suggested by Equation (15) since nodes are randomly deployed 
and their density constantly decreases. Therefore, coordinator can 
relax Equation (15) by Equation (27) if n < ψ*; where n denotes the 
numbers of available redundant candidates whereas ψ* denotes the 
maximum number of candidates required to totally cover hole H; 
its value is obtained using Equation (28) inspired from Tóth [55]; 
where  ×( )  and  ×( )  denote two functions helping to respectively 
assess area and perimeter of hole H; rs

  denotes nodes’ maximum 
range.
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Any method of the literature can be used to estimate the area of 
hole H. As suggested by Figure 4a and 4b, an intuitive method is 
to add up the calculated areas (e.g. using Heron’s formula) of the 
zones (triangles) created during the hole discretization process. 
For closed holes, ( )H  may also be calculated using Equation (6) 
while ( )H  is trivially obtained by adding the length of chords 
existing between border points pi.

According to a method commonly used in the literature dj, xij and 
ϕij can be estimated by discretizing each zone j with a virtual grid 
of patterns such as points, squares etc. [56–58]. Figure 6 illustrates 

how to estimate these values. Let j (in red) be a zone of a detected 
hole discretized with a grid of 24 cells (dj = 24). In this example, 
we consider that a cell is entirely covered by a node if its four cor-
ners are within the node’s range (i.e located at a distance inferior or 
equals to the circle’s radius). r, s, t, u, v, w denote six nodes that can 
reach zone j. Node r exclusively covers six cells (namely cells 3, 4, 5, 
9, 10, and 11); node s covers cells 19 and 20; node t cells 15, 21, and 
22; node u cells 1, 7, 8, and 13; node v cell 2. Instead, node w does 
not exclusively cover any cell. Therefore, xrj = 6, xsj = 2, xtj = 3, xuj = 4,  
xvj = 1, xwj = 0. Nodes r, s, u yield no overlapped areas; instead,  
node t yields overlapped area in cell 20, node v in cells 1, 7, and 8; 
node w in cells 13, 19 and 20. Therefore, ϕrj = 0, ϕsj = 0, ϕtj = 1, ϕuj = 0,  
ϕvj = 3, ϕwj = 3.

Note that, in this example we have discretized zone j with large 
squares only to simplify our explanations. One could also have 
used smaller grid cells or even points [57] to increase precision and 
minimize estimation errors like those yielded by coverage in cells 
14 and 16.

Coordinator defines incompatibilities zij between two maneuvers 
i and j with respect to their origins (ubiquity), destinations (col-
lision) or immobilizations contained in candidates’ elbow rooms 
(see Definitions 7 and 10)

Regrettably, location-allocation problem has been proven NP-hard 
[59–61]. Therefore, we propose an approximate solution based on 
tabu search metaheuristic [62].

A local reorganization scheme s (i.e. a simplified version of a fea-
sible solution) will denote a set of n maneuvers, each related to a 
unique candidate. Formally, s = {i ∈ I: yi = 1} with |s| = n. To find an 
initial solution, coordinator first looks for the best (i.e. less energy 
consuming) maneuver toward the centroid; then, if found, allows it 
and store the concerned candidate’s identifier.

For each candidate v (except the one eventually sent to the  
centroid), coordinator will look for all the maneuvers of v that are 
compatible with the ones already allowed. If v is redundant then 
coordinator chooses the most energy consuming maneuver of v; 
otherwise, the less energy consuming one. The set of all maneuvers 
thus allowed will be referred to as the initial local reorganization 
scheme.

During the optimal local reorganization scheme search process, 
neighbor solutions will be obtained by shifting two maneuvers.

During the decision making process, coordinator will use candi-
dates’ maximum range denoted by rs

. Whereas in a heterogeneous 

Figure 6 | Exclusive and overlapped area coverage estimations in a virtual 
grid-based discretized zone.
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network, r s
  will denote the smallest value chosen among nodes’ 

maximum range.

A local reorganization scheme s = {i1, i2, …, in} corresponds to 
decisions made by coordinator for each of the n candidates taking 
account of maneuvers’ incompatibilities. For instance, applying a 
move on i1 consists in finding for the concerned candidate a new 
maneuver ¢i1  which is compatible like i1, to other maneuvers {i2, 
i3, …, in} in s. If ¢i1  exists and if set { , , ..., }1

’
2i i in  is not inside the 

tabu list LT then { , ... }1
’

2i i in, ,  is considered as a neighbor solution 
of s. Another neighbor solution will involve maneuver i2 and so 
on. N(s) denotes the set of the neighbor solutions of s. Formally, 
N s i i i i i i i i in n n( ) = {{ , ... }, { , ... }...{ , ... }}1

’
2 1 2

’
1 2

’ .  Note that, the tabu 
list’s size is limited in order to store the last ρ*|N(s)| solutions; ρ > 0 
is a parameter.

•• Candidates migration

After finding an optimal local reorganization scheme, coordinator u 
broadcasts a MOVE message containing its decisions. Upon receiv-
ing such a message, candidates start moving to their new reloca-
tion sites. MOVE messages are forwarded via paths used by SITE  
messages.

Nodes will optimize their ranges using any scheme of the literature 
[63–65] upon reaching destination and timer tmove (u) expiration. 
Redundant nodes will eventually enter into sleep state.

Figure 7 depicts the rationale behind CHEAP. Figure 8 shows the 
state diagram of the discussed coverage hole detection and elimi-
nation schemes.

Table 1 summarizes the variables used in the different algorithms.

Algorithms 1–4 formally describe coverage hole detection, charac-
terization, and elimination processes. Algorithms 5 and 6 specifically 
describe the optimal local reorganization scheme search process.

Figure 7 | Flowchart of CHEAP.

Figure 8 | State diagram of CHEAP.

4.  PERFORMANCE EVALUATION

In order to verify and validate our scheme, we chose OMNeT++ 
5.5 simulator [66] to evaluate our solution with respect to different 
metrics. Results are compared to those obtained with three major 
related protocols proposed in the literature: DECM by Qiu and 
Shen [40], HORA by Sahoo and Liao [39], and ZBFR by Sharma 
and Sharma [18].

We used the communication and the sensing energy consumption 
models respectively proposed by Heinzelman et al. [67] and by 
Halgamuge et al. [68]. We also used a mobility energy consump-
tion model [see Equations (29)–(33)] inspired from the method 
proposed by Society of Robots [69].

		  Em Ec Ep E C= (2 )´ + + + � (29)

		  Ec m v= 1
2

2´ ´ � (30)

		      Ep m g h= ´ ´ � (31)

		      E d Ec=d ´ ´ � (32)

		  C Er ea eb ec ed= (1 )´ - ´ ´ ´ � (33)

where Ec denotes the kinetic energy, Ep is the potential energy, 
E  represents energy lost due to frictions, C  corresponds to the 
amount of energy drained due to conversions. m is the mass of the 
node, v the velocity, g denotes the gravity, h is the travel height, d  
the deceleration rate (number of re-accelerations per unit of dis-
tance), d is the distance travelled, Er denotes node’s residual energy. 
ea, eb, ec, ed respectively denote chemical, mechanical, electrical 
and thermal conversions efficiency.

Since this process is supposed to take place in the plan (see 
Section 3.2), potential energy is null (( ).Ep h= 0) ( = 0)Û

For each experiment, we deployed several networks; each of them 
is composed of randomly and uniformly distributed nodes. To  
randomly vary the average times between two consecutive faults, 
we used the Weibull distribution combined with the Uniform  
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Table 1 | Main global variables

Name Definition

crd(u) coordinator of the hole elimination process involving node u
D set of relocation sites inside a hole
deadline current deadline of a timer
dest(u) destination node u is allowed to move to
Δk range offset for open hole’s centroid
Ea(u) set of edges between arcs’ parents discovered by node u
Er(u) node u’s residual energy
Eth residual energy threshold
G centroid of a hole
Φ(u) set of maneuvers that node u can perform (its elbow room)
I set of candidates’ maneuvers
idu node u’s identifier
init(u) initiator of the hole detection process involving node u
IP(u) intersection points between node u and its neighbors
IN(u) intersection points between node u’s neighbors
itmax maximum number of iterations
J set of sub-areas inside a hole (zone)
K set of nodes’ sensing ranges
l length of a virtual grid cell
ls size of the tabu list
MRZ(u) set of points on the convex’s hull of node u’s MRZ  

(see Definition 9)
N(u) node u’s neighbor table
NH(u) set of candidates for the coverage recovery process led by node u
η(u) node u’s immobilized neighborhood (see Definition 7)
P set of points on hole’s border
rs(u) current sensing range of node u

r s


maximum sensing range

rtt(v) round trip time with neighbor v
s* optimal reorganization scheme
state(u) current state of node u (see Definition 11 for possible values)
Sr(u) set of uncovered arcs so far reported by node u
talert(u) duration of node u’s on alert state
tcand(u) duration of node u’s candidate state
tdiscov duration between two neighbor (re)discovery periods
tinit(u) duration of node u’s initiator state
tmax maximum duration of tentative state
tmov(u) duration of node u’s on move state
tsite(u) duration of node u’s coordinator state
tsleep(u) duration of node u’s sleep state
ttent(u) duration of node u’s tentative state
ϒij set of parents of points i and j (see Definition 3)
Va(u) set of arcs’ parents
χ(i) parents of point i (see Definition 3)
xG abscissa of the hole’s centroid
yG ordinate of the hole’s centroid

Algorithm 1 | Hole detection process by a node u

Require: Er(u), Eth, tdiscov, tmax, K, ls, deadline, Δk... ⊲ see Table 1
  1: Er(u)← get_residual_energy() ⊲ check battery level
  2: while (Er(u)>Eth) do ⊲ is residual energy enough ?
  3:     if ((current time() = delay_DISC)) then
  4:       if (state(u) = ACT) then
  5:          N(u) ← neighbor_discovery()
  6:          IP(u) ← get_points_with_neighbors (N(u))
  7:          IN(u) ← get_points_among_neighbors (N(u))
  8:          MRZ(u) ← get_MRZ_hull (IN(u), IP(u), N(u))
  9:          if ((IP(u) ∩ MRZ(u)) ≠ ∅) then ⊲ found uncovered arcs
10:              state(u) ← TNT
11:              ttent(u) ← random_uniform ([0; tmax])
12:              deadline ← current_time() + ttent(u)
13:          end if
14:         end if
15:         delay_DISC ← current_time() + tdiscov
16:     end if
17:     receive message from v  ⊲ new message from a neighbor v
18:     switch message do
19:         case HOLE
20:          ij



 ← get_uncovered_arc (message)
21:          ϒij ← get_parents ( ij



)
22:          if (state(u) ∈ {ACT, TNT, SLP})∧(idu ∈ ϒij) then
23:              IP(u) ← get_points_with_neighbors (N(u))
24:              IN(u) ← get_points–among–neighbors (N(u))
25:              MRZ(u) ← get_MRZ_hull (IN(u), IP(u), N(u))

26:       �       kl


← argmax (are_adjacent ( ij


, xy )) 

          xy ∈ (IP(u) ∩ MRZ(u))

27:              rs(u) ← r s


28:              state(u) ← ALRT
29:              init(u) ← message.init  ⊲ initiator’s id

30:              if ( kl


 ¹ ∅) then
31:                talert(u) ← get_path_delay (message)
32:                deadline ← current_time() + talert(u)

33:                send HOLE(init(u), kl


) to w, ∀w ∈ N(u)\{v}

34:                send ARC({ ij


; kl


}, init(u)) to v
35:              else
36:                forward_or_delete (message, N(u), v, ttlmax)
37:              end if
38:          else
39:              forward_or_delete (message, N(u), v, ttlmax)
40:          end if
41:         case ARC
42:          if ((state(u) = INIT)∧(message.init = init(u))) then

43:              { ij


; kl


} ← get_pair_of_arcs (message)
44:              tinit(u) ← get_path_delay (message)
45:              deadline ← deadline + tinit(u)

46:              Va(u) ← (Va(u)\{ ij


; kl


})È{ ij


; kl


}

47:              Ea(u) ← Ea(u)È{ ij


; kl


}
48:          else
49:              forward_or_delete (message, N(u), v, ttlmax)
50:          end if
51:         otherwise
52:          elimination (message, v, IP(u), ...) ⊲ see Algorithm 2
53:     end switch
54:     detection_timers (IP(u), IN(u), ...) ⊲ see Algorithm 3
55:     elimination_timers (IP(u), IN(u), ...) ⊲ see Algorithm 4
56:     Er(u) ← get_residual_energy() ⊲ check battery level
57: end while

distribution as described in Table 2. Faults were injected using 
these factors under an unfair distributed daemon.

Fault injection consisted in randomly constructing an irregular 
polygon so that only intersecting nodes experience a fault (dis-
placement or failure). Note that battery exhaustion is only due to 
energy losses and self-discharge.

In the following sections, we first detail all the experiments we have 
conducted. Then we analyze and explain their results. In the course 
of these experiments we evaluated the impact of the factors described 
in Table 2 on the selected metrics. Note that each experiment was 
repeated 100 times. The results were obtained with a 95% confidence 
interval. The simulation parameters are summarized in Table 3.
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Algorithm 3 | Detection timers check for a node u

Require: IP(u), MRZ(u), Va(u), Ea(u), deadline, Δk ... ⊲ see Table 1
  1: if (current_time() = deadline) then
  2:    switch state(u) do
  3:      case TNT
  4:          Cr ← get_arcs (IP(u)∩MRZ(u))

  5:          for all xy  ∈ (Cr ∩ Sr(u)) do

  6:             xy .t ← xy .t + 1 ⊲ increase arc’s detection counter
  7:          end for

  8:     �     Nr ← argmin ( xy .t ≥ 0) 

          xy ∈ (Cr\Sr(u))

  9:     �     ij


 ← argmax (get_arc_length( xy )) 

          xy ∈Nr 

10:          send HOLE ( ij


, idu) to v, ∀v ∈ N(u)
11:          state(u) ← INIT
12:          tinit(u) ← max{rrt(v), ∀v ∈ N(u)}
13:          deadline ← current_time() + tinit(u)

14:          Sr(u) ← Sr(u) È { ij


}
15:        case INIT
16:          if (Va(u) ≠ ∅) then
17:              Vp ← get_parents (Va(u))
18:              Ep ← link_between_parents (Ea(u))
19:              crd(u) ← find_coordinator (Vp, E p)
20:              if (crd(u) = idu) then
21:                P ← find_border_points (Va(u), Ea(u))
22:                G ← get_centroid(P, Δk) ⊲ Equations (4) and (5)
23:                J ← triangulation(P, G)
24:                create_virtual_grid(J)

25:                D ← set_internal_sites(P, r s
 , G.x, G.y, l)

26:                state(u) ← CRD
27:                send SITE(D, P) to w , ∀w ∈ N(u)\v
28:                tsite(u) ← max{rrt(v), ∀v ∈ N(u)}
29:                deadline ← current_time() + tsite(u)
30:                Φ(u) ← get_elbow_room(D, P)
31:              else
32:                if ((Va(u) ≠ ∅)∧(Ea(u) ≠ ∅)) then
33:                     send COORD(Va(u), Ea(u)) to crd(u)
34:                     state(u) ← ALRT
35:                end if
36:              end if
37:          else
38:              state(u) ← ACT
39:              init(u) ← 0
40:          end if
41:        case ALRT
42:          state(u) ← ACT
43:          init(u) ← 0
44:    end switch
45: end if

times. These results are essentially due to the fact that, unlike 
other protocols, CHEAP does not define waiting times accord-
ing to nodes’ degrees. Indeed, to avoid endless edge flipping 
during the Delaunay triangulation, DECM sets a timer which 
depends on nodes’ degrees; while the performance of HORA is 
due to the mobility invitation messages sent. ZBFR yields the 
worst times because of the heartbeat message used for large 
agreement regions as well as for failures involving the Zone 
Monitor.

Algorithm 2 | Hole elimination process by a node u

Require: message, v, IP(u), MRZ(u), deadline, ... ⊲ see Table1
  1: switch message do
  2:     case COORD
  3:      if (state(u) = ALRT)∧(message.coord = idu)) then
  4:         P ← find_border_points (Va(u), Ea(u))
  5:         G ← get_centroid (P, Δk) ⊲ Equations (4) and (5)
  6:         J ← triangulation (P, G) ⊲ Hole discretization
  7:         create_virtual_grid (J)

  8:         D ← set_internal_sites(P, r s
 , G.x, G.y, λ)

  9:         state(u) ← CRD
10:           send SITE(D, P) to w, ∀w ∈ N(u)\v
11:           tsite(u) ← max{rrt(v), ∀v ∈ N(u)}
12:           deadline ← current_time() + tsite(u)
13:           Φ(u) ← get_elbow_room (D, P)
14:           message.ttl ← ttlmax
15:        end if
16:     case SITE
17:        if ((state(u) = ALRT)∧(message.init = init(u))) then
18:          Φ(u) ← get_elbow_room (message.D, message.P)
19:          if (Φ(u) ≠ ∅) then
20:             send CANDIDATE (Φ(u), message.coord) to v
21:             state(u) ← CAND
22:             tcand(u) ← get_path_delay (message)
23:             deadline ← current_time() + tcand(u)
24:          end if
25:        end if
26:     case CANDIDATE
27:        if ((state(u) = CRD)∧(message.init = init(u))) then
28:          D ← D È get_external_locations (message)
29:          I ← I È get_travel_paths (message)
30:          NH(u) ← NH(u) È {v}
31:          tsite(u) ← get_path_delay (message)
32:          deadline ← deadline + tsite(u)
33:          message.ttl ← ttlmax
34:        end if
35:     case MOVE
36:        if ((state(u) = CAND)∧(message.init = init(u))) then
37:          d ← get_new_location (message.s*)
38:          state(u) ← MOV
39:          tmov(u) ← get_travel_time (d)
40:          travel to d
41:          deadline ← current_time() + tmov(u)
42:        end if
43: end switch
44: forward_or_delete (message, N(u), v, ttlmax)

4.1.  Average Hole Detection Time

During this experiment, when a fault was injected, simulation 
daemon recorded the occurrence time, hole localization, and 
information about boundary nodes. Hole detection time was 
determined by the simulation program after having received 
a signal from all the boundary nodes. The resultant detection 
times were averaged at the end of the simulation (i.e. after all sen-
sors died). Note that detection time of an undetected hole was 
obtained by subtracting the fault injection time from the simula-
tion duration.

Figure 9a and 9b suggest that for all the evaluated protocols, 
average hole detection time increases according to network size 
and fault scale. However, CHEAP provides the lowest detection 
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Algorithm 4 | Elimination timers check for a node u

Require: I, J, D, NH(u), itmax, ls, deadline, s* .... ⊲ see Table1
  1: if (current_time() = deadline) then
  2:    switch state(u) do
  3:      case CRD
  4:          s* ← reorganization (I, J, K, ..) ⊲ see Algorithm 5
  5:          if (s* ≠ ∅) then
  6:            send MOVE (s*) to v, ∀v ∈ NH(u)
  7:          end if
  8:          if (Φ(u) ≠ ∅) then
  9:             d ← get_new_location(s*)
10:             state(u) ← MOV
11:             tmov(u) ← get_travel_time(d)
12:             travel to d
13:             deadline ← current_time() + tmov(u)
14:          end if
15:        case CAND
16:          state(u) ← ACT
17:        case MOV
18:          rs(u) ← get_new_range(s*)
19:          if (check_redundancy()) then
20:             state(u) ← SLP
21:             tsleep(u) ← get_sleep_time()
22:             deadline ← current_time() + tsleep(u)
23:          else
24:             state(u) ← ACT ⊲ return to normal state
25:             optimize_range() ⊲ see [63–65]
26:          end if
27:        case SLP
28:          state(u) ← ACT ⊲ return to normal state
29:    end switch
30: end if

Algorithm 6 | Initial reorganization scheme generation by a coordinator u

Require: I, K, G, NH(u)
Ensure: s
  1: k ← max(K) ⊲ use maximum sensing range
  2: �L ← argmax (check_destination(i, G)) 

          i∈I
  3: C* ← ∅
  4: if (Λ ≠ ∅) then
  5:  �  i* ← argmin (e dist(i)) 

          i∈Λ

  6:    I  ← I  È {i*}⊲ update the authorized maneuvers list
  7:    s ← s È {(i*; k)} ⊲ update the solution
  8:    C* ← get_candidate_id(i) ⊲ get the node involved
  9: end if
10: for all v ∈ NH(u)\C* do

11:     �ϒ ← argmax (check_origin(i, v) + compatible (i, I )) 

          i∈I
12:     if (ϒ ¹ ∅) then
13:      if (is_movable(v)) then ⊲ can v move ?
14:         �i* ← argmax (e dist(i)) ⊲ assign the farthest maneuver 

        i∈ϒ
15:      else
16:         �i* ← argmax (e dist(i)) ⊲ assign the nearest maneuver 

        i∈ϒ
17:      end if

18:      I← I  È {i*} ⊲ update authorized maneuvers list
19:      s ← s È {(i*; k)} ⊲ update the solution
20:     end if
21: end for
22: return sAlgorithm 5 | Tabu-based optimal reorganization scheme search

Require: I, J, D, G, K, NH(u), itmax, ls, s*

  1: s ← get_initial_solution(I, K, G, NH(u)) ⊲ see Algorithm 6
  2: s* ← s
  3: LT ← ∅ ⊲ tabu list initialization
  4: nitr ← 0
  5: while (nitr < itmax) do
  6:    N(s) ← {s¢ |are_neighbors(s¢, s)∧(s¢ Ï LT)} : |N(s)| ≤ ls
  7:    δ ← 1
  8:    if (N(s) ≠ ∅) then

  9:   �   s← argmin f(s¢)) ⊲ best neighbor (Equations (14)–(27)) 

          s¢∈ N(s)

10:        if ( f( s  ) < f(s*)) then ⊲ Equations (14)–(27)

11:          s* ← s
12:        end if
13:        update_list (LT, N(s))
14:        δ ← |N(s)|
15:      else
16:    �    s ← argmin (f(s¢)) ⊲ aspiration 

        s¢∈LT
17:        LT ← LT\s
18:      end if
19:      nitr ← nitr + δ
20: end while

Table 2 | Fault tolerance factors

Factors Unit/Description – +

Fault scale* Area of the hole U (1;50) U (55;100)
MTBF** Average time 

between two 
faults

W  (a = U (2;10); 
b = 3)

W  (a = U (100;500); 
b = 3)

Fault effect*** Degree of severity 0 U (1;2)
*Value to square; unit is m2. **(Mean Time Between Failures) expressed in seconds (sim-
ulated time). ***nodes displacement = 0, damaged sensing unit = 1, node failure = 2. U , 
Uniform distribution; W, Weibull distribution.

4.2.  Average Hole Elimination Time

In this experiment, hole elimination time was determined by the 
simulation program after having received a signal from all the 

candidates when reaching their final destinations. The resultant 
elimination times were averaged after all sensors died. Note that 
the elimination time of an uncovered hole was obtained by sub-
tracting the fault injection time from the simulation duration.

Figure 10a and 10b shows that average hole elimination time 
increases according to network size and fault scale when using 
all the evaluated protocols. However, CHEAP provides the lowest 
values, i.e. approximately half the times obtained with the other 
evaluated protocols. This is due to CHEAP’s ability to avoid nodes’ 
cascaded movements which increase the coverage recovery pro-
cess’ latency. This is particulary true with DECM whose hole 
elimination time suffers from the cooperative movement scheme 
proposed by its authors. Performance of HORA is also due to the 
delay induced by the nodes’ mobile region and the nearest assis-
tant node selection processes. As for ZBFR, its back up nodes  
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Figure 10 | Average hole elimination time: (a) effect of network size;  
(b) effect of fault scale for network size = 1000.

a

b

Table 3 | Simulation parameters

Parameter Value

Deployment area 1000 m ´ 1000 m
Number of sensors 100 to 1000
Sink’s position (450;200)
Sensors’ communication ranges {15;35;54;70;83;98;117;127} m
Sink’s communication range 250 m
Sensors’ initial energy (Ei) 2.5 J
Self-discharge per second 0.1 μJ
Threshold energy (Ethr) 100 μJ
Eelec 50 nJ/bit
efs 10 nJ/bit/m2

eamp 0.0013 nJ/bit/m4

d0 87 m
Message length (l) 2000 bits
ttlmax 2
Usup 2.7 V
Isens 25 mA
tsens 0.25 ms
Data size(b) 200 bits
Mass (m) 0.5 kg
Maximum velocity (v) 0.06 m/s

Deceleration rate (d ) U (1;3)
Chemical efficiency (ea) 90%
Mechanical efficiency (eb) 70%
Electrical efficiency (ec) 95%
Thermal efficiency (ed) 100%
Virtual grid cell length (λ) 7 m
Range offset (Δk) 3
Maximum number of iterations (itmax) 200

Figure 9 | Average hole detection time: (a) Impact of network size;  
(b) Impact of fault scale for network size = 1000.

a

b

designation process (sleeping nodes activation + redundancy check 
+ sleep rescheduling) conducted by the Zone Monitors contributes 
to increasing hole elimination delay. 

4.3.  Average Mobilization Ratio

This experiment was aimed to evaluate each protocol’s ability to 
minimize the number of candidates required to eliminate a hole. 

To do this, the simulation program recorded the set of potential 
candidates located two hops from the hole created after fault injec-
tion. After hole elimination, the simulation program calculated the 
ratio between the number of potential candidates and the number 
of candidates actually used.

After the last sensor died, the experiment was stopped and the 
resulting ratios were averaged. Figure 11a and 11b respectively 
suggest that regardless of the protocol evaluated, average mobili-
zation ratio decreases while the network size grows but increases 
according to fault scale. Intuitively, the higher is the node density 
the lower is the number of candidates to be relocated. On the other 
hand, the larger is the coverage hole, the higher will be the number 
of required candidates. HORA yields the highest ratios (60–55%) 
especially when the number of sensors is large. Indeed, the mobil-
ity invitation-based scheme used in HORA tends to move all the 
possible candidates, even when the hole is already eliminated. The 
performances of DECM are more mitigated with an average ratio of 
45% when the network size is 1000 and the hole area is 90 × 90 m2.  
This is due to the cooperative movement mechanism applied in 
DECM to prevent generating new holes during node movements. 
Indeed, this strategy can lead to cascaded movements especially 
when node density is low. On the contrary, the strategy based on 
nodes’ redundancy and mobility helps ZBFR to better cope with 
these cascaded movements, the low average ratios we obtained 
(50–42%). A similar strategy was applied in CHEAP; however, the 
node motility (i.e. range control) scheme helps to better minimize 
the number of moving candidates; hence, the lowest ratios (i.e. 
40–35%).

4.4.  Average Elasticity

We carried out this experiment in order to investigate each proto-
col’s ability to prevent new hole formation during candidates’ relo-
cation. After hole elimination, the simulation program searched 
for a hole in candidates’ coverage. This metric denotes the ratio 
between the number of candidates who did not make any coverage 
hole and the total number of candidates. The resulting ratios were 
averaged after all sensors died.
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the shorter is the distance to be travelled by candidates (espe-
cially, the boundary nodes) to eliminate any hole; but, for a spe-
cific network size, the larger is a hole, the longer is the distance 
travelled. HORA provides the worst ratios (above 90%). Indeed, 
in this scheme the only criterion for candidates selection is their 
overlapping degrees. Ignoring nodes residual energy inevitably 
leads to high distances travelled. When using ZBFR or DECM, 
the average migration ratio respectively reaches 82% and 80%. 
ZBFR also does not consider candidates’ residual energy but 
unlike HORA, the Zone Monitors relocate the nearest backup 
nodes (redundant nodes). DECM use a similar scheme when 
helping candidates find the shortest path to their safe area. 
Regrettably, all these performances are mitigated by the cascaded 
movements attached to both solutions. CHEAP outperforms the 
three other protocols by providing a 70% ratio on average. This 
performance is mainly due to the minimization scheme applied 
by the coordinator while selecting candidates. This strategy helps 
to avoid using nodes’ cascaded movements. Indeed, when using 
CHEAP only mutually compatible movements are allowed, this 
strategy prevents new hole formation and minimizes the number 

Figure 11 | Average mobilization ratio: (a) effect of network size; (b) effect 
of fault scale for network size = 1000.

a

b

Figure 12 | Average elasticity: (a) effect of network size; (b) effect of fault 
scale for network size = 1000.

a

b

Figure 13 | Average migration ratio: (a) effect of network size; (b) effect of 
fault scale for network size = 1000.

a

b

Figure 12a and 12b shows that elasticity increases according to net-
work size and fault scale irrespective of the protocol used. These 
results are due to the fact that when node density is high, hole cre-
ation probability by cascaded movements is low; the same goes for 
the number of nodes to be relocated. DECM provides the lowest 
ratios (around 55%). This is because DECM can generate unnec-
essary node movements which reduce the Delaunay triangulation 
accuracy. This shortcoming is detrimental to safe area calculation 
and inevitably leads to new holes while candidates are moved. ZBFR 
yields better ratios (65–68%) because the strategy applied is mainly 
based on redundant nodes (back up nodes); but an insufficient 
number of backup nodes forces ZM to move the nearest neigh-
bor even if a new hole is created. Thus, ZBFR actually eliminates 
holes through cascaded movements. The latter scheme is inefficient 
for holes located in the area of interest’s periphery. This issue is 
addressed by the linear non linear programs respectively proposed 
by CHEAP and HORA who both yield ratios above 90%. However, 
when using CHEAP, values oscillate between 96% and 99.75%. 
Indeed, unlike HORA, CHEAP strives to control both nodes’ ranges 
(motility) and mobility. These results prove the relevance of the 
strategy that allows each node to define a elbow room since it helps 
to take account of all the meaningless and risky movements. 

4.5.  Average Migration Ratio

The goal of this experiment was to assess each protocol’s ability to 
minimize the travel distance required to eliminate a hole. For that 
purpose, after fault injection, the simulation program estimated 
and recorded the distance of each potential candidate to the hole’s 
centroid. Then, after hole elimination the simulation program cal-
culated for each candidate, the ratio between the distance actually 
travelled and the distance supposed to be covered.

Note that for undetected holes the ratio is assumed to be 100% for 
each candidate. This experiment was ended after all sensors died.

The results depicted in Figure 13a and 13b suggest that irrespec-
tive of the protocol used, the average migration ratio decreases 
according to network size but increases with fault scale. These 
performances are due to the fact that the higher is node density 
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of movements required for coverage restoration. Furthermore, 
unlike DECM and HORA, CHEAP considers both nodes’ resid-
ual energy, nodes’ motility, redundant nodes’ mobility, and obsta-
cles during the candidates selection process.

4.6.  Average Elimination Ratio

In order to evaluate each protocol’s ability to restore the coverage 
degree we conducted an experiment where the simulation program 
had to calculate the area of the newly created hole just after having 
injected a fault. After nodes’ relocation, the resulting coverage ratio 
was estimated. Note that each hole which was not eliminated was 
assumed to have 0% coverage ratio. This experiment ended after all 
sensors died.

Figure 14a and 14b shows that regardless of the protocol used, the 
average elimination ratio increases according to network size, but 
decreases with fault scale. 

This is because when node density is high, the number of can-
didates is large enough to restore the coverage. However, intui-
tively for the same network density, the average elimination ratio 
decreases when the area to be restored increases. All the evaluated 
protocols, provide ratios greater than 90%. DECM yields the lowest 
ratios (between 93% and 95.5%). This is due to the inaccuracy of 
Delaunay triangulation. Indeed, as discussed in Section 4.4 this 
scheme can lead to some errors when safe areas are calculated espe-
cially with open holes or those located in the outskirts of the area of 
interest. These errors are detrimental to hole full coverage. HORA 
and ZBFR provide better results (respectively between 95.2% and 
95.6% and between 96.5% and 97%) because these schemes mainly 
consider redundant nodes when trying to eliminate a coverage 
hole; but these performances are mitigated by the fact that cov-
erage redundancy check is a NP-complete problem [51,52] which 
requires approximate solutions that often lead to several false nega-
tive cases. The latter prevent efficient candidates mobility and hole 
full coverage. CHEAP provides the highest ratios varying between 
96.5% and 98%. This is due to the fact that during the hole elim-
ination process, when making decisions coordinator uses candi-
dates’ maximum range while targeting primarily the centroid. The 
latter position often provides the highest coverage ratio when using 
node’s maximum range.

4.7.  Energy Efficiency and Network Lifetime

In order to estimate the amount of energy depleted during hole 
detection and elimination processes, we used the same experimen-
tal setup as described in the previous sections. Since we mainly 
aimed at investigating each protocol’s ability to minimize energy 
losses, we injected only faults that displaced nodes. We conducted 
this experiment respectively until a node died [First Node Dies 
(FND)] and until all nodes died [Last Node Dies (LND)].

Figure 15a and 15b then 16a and 16b show that irrespective of  
the protocol used and the lifetime definition (FND or LND), 
the energy oriented network lifetime decreases while network 
size and fault scale grow. These results are due to the fact that 
energy losses are mainly due to communication activities. The 
latter increase according to nodes’ degree (number of neighbors). 
By contrast, large scale disasters (especially when several nodes 

Figure 14 | Average elimination ratio: (a) effect of network size; (b) effect 
of fault scale for network size = 1000.

a

b

Figure 15 | Network lifetime (until First Node Dies): (a) effect of network 
size; (b) effect of fault scale for network size = 1000.

a

b

Figure 16 | Network lifetime (until Last Node Dies): (a) effect of network 
size; (b) effect of fault scale for network size = 1000.
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become isolated) tend to decrease nodes’ average degree and 
reduce therefore their energy consumption. However, since faults 
are essentially local, they have a relatively small impact on the 
network’s lifetime. CHEAP obtains the best results. They are actu-
ally due to its performances in terms of message complexity and 
average migration or mobilization ratio, as discussed in previous 
sections. By contrast DECM, ZBFR, and HORA use more energy 
consuming strategies such as cascaded movements. Indeed, ZBFR 
uses heart-beat signalization scheme for hole detection while 
DECM leads to unnecessary node movements due to Delaunay 
triangulation inaccuracy (see Section 4.4). HORA does not con-
sider residual energy to select candidates for coverage recovery. 
The latter strategy is particularly energy inefficient. 

4.8.  Coverage Resilience Index

In order to evaluate each protocol’s ability to maximize network 
resilience denoted by φ, we propose to aggregate the metrics dis-
cussed above using a weighted geometric mean as expressed by 
Equation (34). Let τm, ls, τg, τe, and ε respectively be the average 
mobilization ratio, the average elasticity, the migration ratio, the 
average elimination ratio, and the average energy consumption 
ratio.

j t t t e= (1 ) (1 ) (1 ) , =11 2 3 4 5

=1

5

- ´ ´ - ´ ´ - åm
w w
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where w1…w5 denote the weighting coefficients of the aggre-
gated metrics. We chose to use an equal weighting scheme (i.e. 
" Îi wi{1, .., 5}, = 0.2).

By definition, a candidate’s energy consumption ratio is the amount 
of energy lost during the entire coverage maintenance process 
divided by its residual energy at the time of fault injection.

Figure 17a and 17b shows that regardless the protocol used, resil-
ience increases according network size, but decreases as fault scale 
grows. These results are due to the fact that high node density intu-
itively fosters coverage recovery speed and ratio. Since this resil-
ience index is a composite metric, any performance depends on 
the results discussed in previous section. CHEAP provides a cov-
erage resilience index between 70% and 74.2%. In other words, our 

contribution enables network to efficiently maintain coverage in 
70–74.2% of all cases; while the three other protocols’ results oscil-
late between 45% and 57%. These results prove that the coordina-
tion and location-allocation-based strategy combined with nodes’ 
range control is more relevant than any iterative movements-based 
scheme to eliminate coverage holes. 

5.  CONCLUSION

In this paper we addressed the area coverage restoration problem 
in self-organized mobile WSNs with the objective of maximizing 
the network’s resilience. We proposed a localized solution referred 
to as CHEAP that uses first, a geometric approach based on nodes’ 
sensing disks crossings to effectively detect any type of holes; then 
a tabu search based heuristic that combines nodes’ redundancy, 
motility and mobility-based strategies to restore the lost coverage. 
Simulation results have confirmed that regardless of the type of 
hole, CHEAP outperforms several major previous schemes. The 
coverage resilience index metric we proposed, explicitly revealed  
that the location-allocation-based scheme we applied helps to 
effectively minimize risks of new hole formation, average distance 
travelled, nodes’ movements, overlapped areas, and total power 
consumption; while maximizing coverage ratio.

In future work, we plan to extend this solution to three-dimensional  
environments.
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