
Research Article

CHEAP: An Efficient Localized Area Coverage Maintenance
Protocol for Wireless Sensor Networks

Gokou Hervé Fabrice Diédié1,*, Boko Aka2, Michel Babri3

1Laboratoire de Mathématiques et d’Informatique, Université Peleforo Gon Coulibaly, Korhogo BP 1328, Côte d’Ivoire
2Laboratoire de Mathématiques et d’Informatique, Université Nangui Abrogoua, Abidjan 02 BP 801, Côte d’Ivoire
3Laboratoire de Recherche en Informatique et en Télécommunication, INPHB, Yamoussoukro BP 1093, Côte d’Ivoire

1.  INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of a large number
of tiny devices that are able to measure various physical quanti-
ties in their immediate environment. During the last two decades,
WSNs have been utilized in many event-monitoring applications
that are related to domains such as security, ecology, agriculture,
transportation, or industry [1–3]. Unfortunately besides their lim-
ited capabilities, sensor nodes are inherently prone to failures [4],
especially when they are randomly deployed in hostile environ-
ments. These failures can lead to the occurrence of uncovered areas
also called holes that can be detrimental to network effectiveness
[5]. Hence, coverage maintenance is of paramount importance to
have any hope of prolonging network lifetime [6]. This process
comprises two phases namely, detection and elimination.

When the underlying application requires a complete area cov-
erage, hole detection use techniques originating from geometry,
algebraic topology and graph theory [7–13]; whereas hole elimina-
tion solutions can exploit nodes’ redundancy, mobility or motility
[8,14–18]. Detection strategies must be fast and accurate whereas
recovery schemes must eliminate the best the coverage hole while
minimizing energy consumption and overlapped areas. This pro-
cess must avoid creating new holes and be applied to both closed
and open holes. It is also desirable that the coverage recovery strat-
egy is localized and considers scenarios involving nodes with dif-
ferent ranges. To address all these requirements some authors opt

for hybrid solutions which are essentially based on both nodes’
sensing range adjustment (motility) and controlled movements
(mobility) [19]. However, schemes commonly proposed usually
struggle to simultaneously prevent undesirable effects such as new
hole formation, collisions, and oscillations especially when nodes
movements are constrained by obstacles.

In this paper, we propose to seamlessly combine mobility, redun-
dancy control, and motility based strategies in order to further
increase the network’s resilience. The main contributions of this
work are as follows:

•• a localized intersection points based coverage hole detection
scheme that helps to discover in linear time any type of hole
(closed, semi-open, open), to minimize the use of geographical
information, and to reduce message overhead;

•• a location-allocation [20,21] based model and a mixed integer
linear programming formulation for the area coverage recovery
problem. A fully distributed tabu-search based scheme is applied
to make hole elimination decisions. Unlike most existing solu-
tions, our strategy guarantees energy-efficiency and high cov-
erage ratio by simultaneously preventing new holes formation,
cascaded movements, collisions, oscillations, especially in the
presence of obstacles;

•• a novel metric (the coverage resilience index) to help better esti-
mate coverage hole elimination protocols’ actual fault tolerance
ability;

•• extensive simulations using various scenarios are performed to
validate the proposed algorithms. Results show that our scheme
outperforms several recently proposed solutions with respect to

A RT I C L E I N F O
Article History

Received 04 September 2020
Accepted 18 November 2020

Keywords

Coverage hole
detection
recovery
location-allocation
tabu search
wireless sensor network

A B S T R AC T
Over the course of operation, a wireless sensor network can experience failures that are detrimental to the underlying application’s
objectives. In this paper, we address the problem of restoring coverage ratio of a damaged area (hole) using only the neighboring
nodes. Most existing solutions fail to simultaneously prevent new holes formation, collisions, oscillations, cascaded movements,
and overlapped areas. To do this, we propose an intersection points-based strategy to properly locate and characterize any
type of coverage hole. Then, we allow nodes, whether or not redundant, to coordinate their movements and ranges in order
to effectively eliminate the detected hole. We suggest for that purpose, a tabu search based optimization scheme along with
a location-allocation model through a mixed integer linear program. Simulation results show that our protocol significantly
increases the network’s resilience.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: herve.diedie@upgc.edu.ci
Data availability statement: The data that support the findings of this study are available
from the corresponding author [GHFD] upon reasonable request.

International Journal of Networked and Distributed Computing
Vol. 9(1); January (2021), pp. 33–51

DOI: https://doi.org/10.2991/ijndc.k.201218.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

http://creativecommons.org/licenses/by-nc/4.0/
mailto: herve.diedie@upgc.edu.ci
https://doi.org/10.2991/ijndc.k.201218.001
https://www.atlantis-press.com/journals/ijndc

34	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

the number displaced nodes, coverage ratio, total distance trav-
elled, and energy consumption.

The rest of the paper is organized as follows: Section 2 surveys
recent and significant related contributions; then, the proposed
solution is detailed in Section 3; the performance evaluation pro-
cess, the results, and discussions are presented in Section 4 followed
by conclusion in Section 5.

2.  RELATED WORK

Area coverage maintenance is a two-phase process encompassing
hole detection and its elimination. Hole detection phase is aimed at
providing maximum information (position, surface, shape, perim-
eter...) about the damaged areas (holes) resulting from a topol-
ogy change. Once identified, holes must be healed using the least
amount of resources.

2.1.  Hole Detection

Area coverage hole detection is part of network boundary detec-
tion problem [22]. Methods commonly used for that purpose can
be categorized into geometric, algebraic topology, graph theory,
and analytic methods [23]. Accuracy and precision are the most
important challenges to face, irrespective of the type of holes (close,
open, semi-open). Techniques commonly used (virtual grid, inter-
section points, perimeter coverage, Voronoi tessellation, Delaunay
triangulation...) mainly originate from computational geometry.
They generally require nodes to know their exact positions. An
et al. [24] proposed a combination of cells and triangles in order to
reduce the computational complexity. However, this scheme is only
limited to closed holes and homogeneous networks. Trong et al. [7]
proposed a solution for dynamic holes. Besides detecting holes, this
strategy is aimed at predicting the enlargement of their boundar-
ies but has the drawback of increasing message overhead. Amgoth
and Jana [8] suggest also using classical square grids. However, this
strategy targets only closed holes.

Kang et al. [25] suggest a coordinate-free strategy based on the
concept of critical boundary points i.e. intersection points which
are not covered by any other node. Regrettably, finding such points
is time consuming. Sahoo et al. [9] use a similar strategy except that
it requires nodes to know their exact positions.

Huang and Tseng [26] used a perimeter coverage based strategy
that regrettably requires also sensors to know their exact locations.
In order to cope with this shortcoming, Bejenaro [27] suggests
a concept called cyclic segment sequence which involves using
nodes’ local polar coordinates. A hole is detected if every selected
arc (segment) does not overlap with exactly two other segments.
However, this method has a high computational complexity ()3n .

Qui et al. [28] proposed a k-coverage Delaunay triangulation ori-
ented strategy. Any hole is now detected if a voronoi cell is cov-
ered by less than k nodes. Although innovative, this method has
a ()2n nln time complexity. Dai et al. [10] used also a voronoi
diagram-based strategy. Unfortunately, the proposed solution is
not fully-distributed (the latter diagram is constructed by the sink)
and is thus not scalable. Li and Wu [29] proposed to merge isolated
empty-circles in order to properly estimate hole’s size. If the length

of the common side of two Delaunay triangles is greater than their
diameters then the two resulting isolated empty circles are consid-
ered as a hole. The two circles are merged if their centers are located
at the same part of the common side. This strategy is able to detect
both close and open holes, but cannot be applied to heterogeneous
networks.

Senouci et al. [30] suggest using a collaborative scheme triggered
by duly identified stuck nodes. Hole discovery process is based on
the classical message forwarding TENT rule [31]. However, this
strategy is dedicated to only closed holes. Chu and Ssu [32] used a
location-free strategy that explicitly considers obstacles. However,
this scheme requires each node to previously collect three-hops
neighborhood information. In order to quickly detect holes, Patra
and Sau [12] proposed to find a base cycle i.e. a cycle in the sub-
graph induced by each node’s neighborhood. Regrettably, this tech-
nique is devoted to only closed holes.

To avoid using nodes exact locations, many authors suggest using
techniques inspired by homotopy or homology to infer a simpli-
cial complex from the network topology. However, Yan et al. [33]
showed that it is impossible to detect with a Rips complex, cer-
tain types of holes including triangular holes, i.e. damaged areas
enclosed by three nodes (two-simplexes). In a recent study, Šorbel
et al. [11] used a spanning tree-based strategy for homological cov-
erage verification. Small network segments are gradually merged
into larger ones, until a Rips complex is obtained. This merging
strategy is helpful to locally compute the first Betti number but
hardly scalable since the spanning tree construction scheme is
centralized.

2.2.  Hole Elimination

Area coverage recovery is also a well studied topic in the literature.
Solutions commonly proposed can be classified into redundancy,
motility, and mobility based approaches.

Diongue and Thiare [34] proposed to maintain active some nodes
(sentinels) so that they watch over their sleeping neighbors. This
strategy combines node-based and link-based adaptation schemes.
The link adaptation technique helps a sentinel to dynamically
adjust its communication range according to link quality. On the
other hand, node adaptation process consists of waking up redun-
dant nodes to replace the failed sentinels. Unfortunately, this strat-
egy fails to cope with large scale damages. Sharma and Sharma [18]
propose a similar scheme to minimize movements by grouping
nodes according to their overlapping coverage ratio. Each cluster is
controlled by a node referred to as the Zone Monitor (ZM). When
a cluster member fails, the ZM orders the sleeping redundant ones
to be active in order to eliminate the resulting hole. Nodes’ mobility
is only used if no redundant node is found. Despite a low message
overhead, no solution is proposed to cope with ZM failures.

As for mobility-based solutions, they mainly rely on nodes’ loco-
motion abilities to replace failed neighbors especially after a large
scale disaster. The challenges to face include the minimization of
the number of candidates, overlapped areas, cascaded movements,
the average distance travelled while avoiding collisions, oscillations
and new holes formation. Strategies commonly found, involve
using (attractive or repulsive) virtual forces inspired from quantum
physics [35–37]. Li et al. [15] investigated using Tchebychev point

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 35

instead of targeting traditional points such as centroid or Voronoi
vertex. Nodes must seek such a point in their k-order Voronoi cell.
This scheme is very useful in 3D environments and helps to mini-
mize oscillations but does not consider obstacles. Habibi et al. [38]
use geometric optimization formulation. Although, this strategy
provides a high coverage ratio, it cannot prevent the formation of
new holes. To cope with this shortcoming, Sahoo and Liao [39]
suggest to replace nodes according to their degrees while limiting
their movements. They proposed a nonlinear programming for-
mulation combined to a triangulation based scheme. The latter is
aimed at minimizing energy consumption due to mobility and cov-
erage overlapping. Regrettably, candidates selection scheme does
not consider nodes’ residual energy. Qiu and Shen [40] proposed a
coordinate-free scheme that first constructs Delaunay triangles (i.e.
triangles that have no other node inside) and then conducts nodes
movements to meet conditions that suffice to ensure each triangle
full coverage. New holes creation are avoided by ensuring that each
node finds a safe area capable of preserving its coverage. However,
this technique considers only closed holes and requires nodes to
synchronize their movements. Saha and Das [16] addressed this
problem for heterogeneous networks, but the proposed scheme
cannot be applied to open holes. Khelil and Beghdad [41] proposed
a self-deployment scheme to move nodes periodically toward the
centroid of the polygon induced by the hole. However, such a strat-
egy also requires nodes’ movements to be synchronized. Rout and
Roy [42] apply a strategy that use obstacles and deployment bound-
aries as sources of repulsive forces exerting on nodes. This solution
enhances coverage ratio and minimizes distance travelled but
cannot prevent the formation of new holes. Zhao et al. [43] pro-
posed a novel paradigm referred to as fruit fly optimization. The
deployment zone is discretized with a virtual grid. All the uncov-
ered areas exert on nodes (fruit flies), smells that are able to attract
them to suitable areas. This strategy considers the presence of
obstacles and quickly converges but can only be applied to homo-
geneous and dense networks. Ray and De [44] suggest instead, a
glowworm based heuristic that minimizes the number of over-
lapped areas but fails to prevent new holes formation.

Solutions aiming at controlling specifically nodes’ sensing ranges
are more recent [45,46]. Qu and Georgakopoulos [47] used a
Voronoi diagram based scheme that allows each node to adjust
its range in order to entirely cover its Voronoi cell and check its
redundancy. However, this solution is dedicated to only closed
holes. Amgoth and Jana [8] proposed a virtual grid based scheme
where after neighbor discovery, each node must identify cells that it
can cover respectively with its current range and maximum range.
These information help nodes to find cells that are not covered by
any neighbor and eventually detect holes. In that case, a detection
message is sent to alert these neighbors. If such a message is not
acknowledged, node must increase its range in order to cover those
empty cells. Although precise, this strategy is memory and energy
expensive since large messages are required.

So far, only a few solutions have considered hybrid strategies to
eliminate area coverage holes. Guvesan and Yavuz [19] proposed
to combine motility and mobility based approaches. Regrettably,
this protocol applies only to networks composed of nodes equipped
with directional antennas. Abolhasan et al. [48] suggest a potential
game theory based strategy that allows nodes to move or adjust
their sensing ranges more efficiently. However, this solution is
devoted to only closed holes and does not prevent the formation of

new holes. Joshita et al. [49] proposed to vary nodes’ sensing ranges
along with a random mobility. This scheme helps to minimize the
number of candidates and the number of overlapped areas, but also
cannot prevent new holes to appear. Khedr et al. [50] suggest to
only move redundant nodes and to add a pro-active scheme where
nodes with low residual energy must alert neighbors in order to
prevent hole formation. However, this strategy leads to collisions
since some neighbors can move to the position of the alert’s sender
before its actual death.

3.  PROPOSED SOLUTION

In this section we first discuss the motivations and objectives of
this paper. Then we describe the key assumptions before detailing
our solution.

3.1.  Motivations and Objectives

Most existing solutions essentially aim to detect and eliminate only
closed holes. It is useful to design a solution that can efficiently deal
with the main three types of holes (closed, semi-open, and open)
regardless of the failure scale.

Few hybrid hole elimination schemes, have been proposed in the
literature. They often combine sensing range adjustment (motil-
ity) or redundancy control to mobility strategies in order to further
reduce nodes’ energy consumption. However, they fail to simultane-
ously face challenges such as overlapped areas, new holes formation,
collisions, oscillations, and cascaded movements. This shortcoming
need to be addressed especially in the presence of obstacles.

Furthermore, in most studies the performance evaluation process
is commonly based on metrics which alone are not sufficient to
actually capture the protocol’s resilience ability. Hence, a more pre-
cise metric should be proposed to better estimate network’s fault
tolerance.

This paper is specifically aimed at minimizing:

•• coverage hole detection and elimination time;

•• travel distance, overlapped areas, number of candidates, and
movements required to eliminate a hole regardless its type and
location;

•• risk of new holes formation especially at the network’s boundaries.

3.2.  Assumptions

We make the following assumptions:

•• nodes respectively use the classical Unit Disk Graph and Boolean
disk coverage models to communicate and sense events;

•• each node u’s communication and sensing ranges, respectively
denoted by rc(u) and rs(u), are such that rc(u) ≥ 2 × rs(u);

•• each node u knows its position coordinates (xu, yu) in the deploy-
ment zone A using the underlying localization protocol;

•• each node u can estimate the transmission delay τ(u, v) and the
round trip time rtt(u) with each neighbor v;

36	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

•• two nodes u and v are neighbors (with two intersection points) if
d(u, v) < (rs(u) + rs(v)) and d(u, v) > (rs(u) − rs(v)). d(u, v) denotes
the euclidean distance between u and v. (rs(u) + rs(v)) − d(u, v) > =
l; where l is a parameter set by the underlying application.

•• nodes are capable of adjusting their communication and sensing
ranges (motility);

•• nodes are able to control their mobility;

•• the process is supposed to take place in a two-dimensional
euclidian space.

3.3.  Description

In this section, we detail our solution referred to as Coverage Hole
Elimination Adaptive Protocol (CHEAP). This localized message
passing protocol consists of three phases namely: hole detection,
hole characterization, and hole elimination (coverage recovery).

We need first to give some definitions that can help to gain a better
understanding of our strategy.

Definition 1 (Coverage of a node) Let i be a point of the deployment
zone denoted by A, the coverage of node u denoted by C(u) is such as
C(u) = {i ∈ A: d(u, i) ≤ rs(u)}; where d(u, i) is the euclidean distance
between i and u while rs(u) denotes the sensing range of node u.

Definition 2 (Perimeter of a node) Let i be a point in C(u) the cov-
erage of node u while the perimeter of u denoted by P(u) such as P(u)
= {i ∈ C(u): d(u, i) = rs(u)}.

Definition 3 (Parents of an intersection point) the parents (father
and mother) of a point are the nodes of which sensing disks intersec-
tion has created this point. Formally, let i be a point of the deployment
zone denoted by A. Let u and v two nodes, (u, v ∈ χ(i)) Û (i ∈ P(u))
^ (i ∈ P(v)). Where χ(i), P(u), and P(v) respectively denote the set of
point i’s parents, the perimeter of u, and the perimeter of v.

Definition 4 (Uncovered arc of a node) Let P(u) be the perimeter
of node u and N(u) the set of its neighbors. A part of P(u) denoted by
a u() is an uncovered arc of node u, if none of its neighbors covers this
arc. Formally, a u p P u v N u r v d v ps() = { () : (), () (,)} Î Î ³ .

In order to simplify notations and discussions, each uncovered
arc a u() will be reduced to ij



 such as i j a u, Î () and
∃ ∈ ∩ ∧ ∩v w N u C u C v i C u C w j, () : (() () = { }) (() () = { }).  i and j will
be referred to as the border points of a u().

Definition 5 (Adjacent uncovered arcs) Let i, j, k, and l be four
points whose coordinates are respectively denoted by (xi, yi),(xj, yj),
(xk, yk) and (xl, yl). The uncovered arcs ij



 and kl


 are adjacent if
((xj = xk) ∧ (yj = yk)) ∨ (xi = xl) ∧ (yi = yl)); in other words, if
(j = k) ∨ (i = l).

Definition 6 (Maneuver of a node) A maneuver is an action (dis-
placement or range change) that a node u can perform in order
to be usefully involved in a hole elimination process. Formally,
a maneuver m is a vector such as m = (xo, yo, xd, yd, ro, rd) and
$ Î - + -i H x x y y rd i i d d: () () <2 2 2 where H is a coverage hole, i a
point and (xi; yi) its coordinates.

(xo, yo, xd, yd, ro, rd) respectively denote the current position’s
abscissa, the current position’s ordinate, the destination’s abscissa,

the destination’s ordinate, the current range, and the destination’s
range of node u. Therefore:

if (xo ≠ xd) ∨ (yo ≠ yd), maneuver m implies node u’s displacement
(mobility);

if (ro ≠ rd), maneuver m implies node u’s range change (motility).

Definition 7 (Elbow room of a node) node u’s elbow room denoted
by Φ(u) is the set of its maneuvers. Formally, let xu and yu respec-
tively denote the abscissa and the ordinate of node u. Let I be a set
of maneuvers, and F(u) a family such as F(u) = {η(u): η(u) ⊆ N(u)}

F() = {(, ()) () : (=) (=)}u m u I F u x x y yo u o uh Î ´ Ù .

η(u) is referred to as node u’s immobilized neighborhood.

Definition 8 (Redundant node) A node u is redundant if each point
within its range is also covered by at least one of its immobilized neigh-
bors. Formally, u is redundant iff " Î $ Î £i C u v u d v i r vs(), () : (,) ()h .

Definition 9 (Maximum Redundancy Zone) The Maximum
Redundancy Zone (MRZ) of node u is the region delimited by the
convex hull deriving from the cloud of the intersection points between
neighbors that belong to node u’s immobilized neighborhood. Points
located on this hull will be referred to as the Border Points; whereas
the others will be referred to as the Interior Points. Let IP(u), IN(u)
and MRZ(u) respectively denote the set of intersection points between
node u and its neighbors, the set of intersection points between node
u’s neighbors, and the set of border points on the convex hull of node
u’s MRZ; formally,

	 IP() = { () : (), ()}u i P u v u i P v∈ ∃ ∈ ∈h �

	 IN() = { : , (), [(()) (())]}u i A v w u i P v i P wÎ " Î Î Ù Îh �

MRZ() = { (() ()) : ((),) (())}()u i IP u IN u v u v i C vi∈ ∪ ∀ ∈ ∉ ⇔ ∉h c

Definition 10 (Incompatible maneuvers) Two maneuvers m =
(xo, yo, xd, yd, ro, rd) and m x y x y r ro o d d o d

� � � � � � �= (, , , , ,) are incompatible
in the following cases:

•• (=) (=)x x y yo o o o
 Ù i.e. maneuvers m and m imply an ubiqui-

tous displacement; in other words, they involve the same node;

•• (=) (=)x x y yd d d d
 Ù i.e. maneuvers m and m imply a collision;

•• maneuvers m and m respectively involve two nodes u and v such
as () ()x x y yo o o o≠ ∧ ≠  ,  u is redundant and v ∈ η(u) or v is redun-
dant and u ∈ η(v);

•• maneuvers m and m respectively involve two nodes u and v
such as () ()x x y yo o o o≠ ∧ ≠  ,  u and v are not redundant and
(v ∈ N(u)) ∧ (u ∈ N(v)).

Definition 11 (State of a node) Node u can enter into the following
states:

•• Sleep (SLP),

(() =) [(() = 0) (())]state SLPu r u N usÛ Ù ¹ Æ

•• Active (ACT),

	 (() =) (() > 0)state ACTu r us⇔

•• Tentative (TNT),

(() =) [(() > 0) ((() ()))]state TNT IP MRZu r u u us⇔ ∧ ∩ ≠ ∅

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 37

•• Alert (ALRT),

(() =) [(() > 0) ()]state ALRTu r u klsÛ Ù ¹ Æ


•• Initiator (INIT),

(() =) [(() > 0) (() =)]state INIT init idu r u us uÛ Ù

•• Coordinator (CRD),

(() =) [(() > 0) (() =)]state CRD crd idu r u us u⇔ ∧

•• Candidate (CAND),

(() =) [(() > 0) (())]state CANDu r u usÛ Ù ¹ ÆF

•• Move (MOV),

(() =) [(() > 0) (())]state MOV destu r u us⇔ ∧ ≠ ∅

kl u u uu



, , (), (), ()id init crd dest  respectively denote the adjacent
uncovered arc, node u’s identifier, the process initiator’s identifier, the
process coordinator’s identifier, the next destination to move to.

3.3.1.  Hole detection phase

Each active node must periodically (re)discover its neighbors and
check for the presence of a potential coverage hole, following this
process:

•• step 1: get all Type 1 intersection points (i.e. intersection points
with each neighbor);

•• step 2: get Type 2 intersection points (i.e. intersection points
between neighbors);

•• step 3: create a cloud from the two types of intersection points;

•• step 4: construct a convex hull from the point cloud created;

•• step 5: get from that hull the set of border points (i.e. points that
are covered only by their parents); the latter set is referred to as
the convex hull of the MRZ;

•• step 6: check if the MRZ’s convex hull contains Type 1 intersec-
tions points; if so, a coverage hole exists; stop.

Let us see two examples. In Figure 1a node u constructs a convex
hull (in red) from the cloud of intersection points, i.e. the intersec-
tion points with each neighbor (in white) and the ones between
neighbors (in gray). Node u tries to derive from this first convex
hull the one of the MRZ. To do this, node u focuses on points that
are covered only by their parents, namely points bp1, bp2, bp3, and
bp4, respectively covered by parents {v3, v4}, {v2, v4}, {v1, v2}, and
{v2, v3}. There is no white point among them, therefore, there is no
coverage hole. Note that, in this example the first convex hull and
the one of the MRZ coincide; this is not always the case. Figure 1b
shows another example where node u constructs a convex hull
from a cloud of intersection points (white and gray). Then node
u derives its MRZ’s convex hull composed of bp1, bp2, bp3, and bp4.
However, two of these points (bp1 and bp2) are white. Node u con-
cludes that arc bp bp1 2

 is uncovered. In other words, node u has
found a new coverage hole in its neighborhood.

Note that, each node must store the parents’ identifiers (fi, mi)
of all the intersection points i located on the convex hull
of its MRZ. Then derive from these information a vector

{(; ; ;), (; ; ;), }x y f m x y f mi i i i j j j j ijt for each uncovered arc ij


 found;
where τij denotes the number of times an alert message (i.e. HOLE
message) about ij



 has been broadcasted so far.

When a non-isolated node u notices the presence of an uncovered
arc, it waits for an amount of time ttent(u) randomly and uniformly
chosen in a interval defined as a parameter. Upon timer ttent(u)
expiration, node u broadcasts a HOLE message in its two-hop
neighborhood; if it has not already received such a message; then,
node u starts a backoff timer tinit(u) and waits for a reply. tinit(u)
is initiated using its maximum round-trip time and updated using
Equation (1) upon receiving a ARC message from any node v. Node
u will be considered by its nodes around the hole as the initiator of
the recovery process to come.

	 t u t u rtt vt t

i

u v

i iinit init
(1) ()

=1

(,)

(, 1)() = () ()+
++ +å

| |p

t � (1)

τ(i,i+1) denotes the transmission delay between two consecutive
nodes on the path between nodes u and v. rtt(v) is the maximum
round trip time between node v and its neighbors. p (u, v) is the set
of intermediary nodes on the path between u and v.

		 t v rtt w
w u v

alert () = ()
(,)Î

å
p

� (2)

Upon receiving a HOLE message, a node v becomes active (if
needed) and enters into Alert state for a duration denoted by
talert(v). The latter is calculated using Equation (2). Then, if v is a
parent of at least one of the border points contained in the HOLE
message it must search its perimeter for any uncovered arc adjacent
to those sent by node u. Neighbor v must substitute the adjacent arc
contained in the HOLE message by the arc it has found before for-
warding this message, in turn, to its neighbors. Finally, node v must

Figure 1 | Construction of the Maximum Redundancy Zone (MRZ)’s
convex hull (dotted) in order to detect a coverage hole by node u: (a) no
coverage hole, no intersection point with neighbors found on this hull (b)
coverage hole, two intersection points with neighbors found on this hull.

b

a

38	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

send to initiator u a ARC message via the neighbor who forwarded
u’s HOLE message. This message contains information about the
adjacent uncovered arc node v has just found on its perimeter.

Priority is given to HOLE messages which have the lowest τij. The
length of each arc ij



 denoted by ()ij


 is used to break ties.

3.3.2.  Hole characterization phase

From information contained in ARC messages, the initiator builds
a graph describing the relationships existing between all the uncov-
ered arcs found by its neighbors (see Definition 5).

Upon timer tinit(u) expiration, initiator u that has received at least
one ARC message must start the characterization process of the
newly discovered hole (closed or open) by checking if the uncov-
ered arcs graph is respectively cyclic or not. Several schemes exist
for that purpose in the literature. However, we propose a method
based on Theorem 1.

Theorem 1. Let Ga = (Va, Ea) be a graph that specifically results
from a hole detection process; where Va and Ea respectively denote
the set of uncovered arcs ij



 and the set of the symmetric links existing
between them. Formally, Ea ij kl Va Va j k i l= {(;) : (=) (=)}

 

Î ´ Ú .
Ga is cyclic if |Va| = |Ea|.

Proof. Any node w sending a ARC message has inevitably received at
least one HOLE message via a neighbor u. Therefore, w could have
necessarily verified that one of its uncovered arcs denoted by kl



 is
adjacent to the one contained in the HOLE message and denoted
by ij


. Since any HOLE message is sent by only one node u referred
to as the initiator, there is a relationship between an uncovered
arc denoted by ab found by the initiator and kl



. In other words,
()(;), ..., (;)ab cd ij kl� � � �

 is a simple path in graph Ga. Moreover, this
path is unique in Ga since only nodes that have received a HOLE mes-
sage and have found at least one adjacent uncovered arc, have sent a
ARC message as a reply. By definition, a cycle is a simple path wherein
the number of nodes equals the number of links. |Va| is the length
of path ();(;), ..., (;)ab cd ij kl� � � �

 therefore (| |=| |)Va Ea GaÛ is cyclic.

Corollary 1 If Ga = (Va, Ea) is not cyclic and if |Va| ≥ 3 then
$ Î Ïij uv Va ij uv Ea
� � � �, : (;) and we have ((,) 0) (,) 0).d i v d j u¹ Ù ¹

Corollary 2 Topology induced by Ga = (Va, Ea) is the hole’s concave
border; if ij Va



Î , points i and j are located on its convex hull.

From Theorem 1 and Corollaries 1 and 2 we give a formal defini-
tion of a coverage hole.

Definition 12 (Coverage hole) Let H be a set of points in the area of
interest A and Ga = (Va; Ea) a graph of uncovered arcs discovered in
its neighborhood; if H ⊂ Va then H is a hole. Moreover,

	 H

Va Va Ea
Va Va

is :

Closed if
Semi open if

((| | 3) (| |=| |)
((| | 3) (|

³ Ù
- ³ Ù || | |)

(, : >))

¹

Ù $ Î

ì

í

ï
ï

î

ï
ï

Ea

ij uv Va d
� � W th

Open otherwise

�

with W = ((;), (;))max .d j u d i v

d(j; u) and d(i; v) respectively denote the euclidean distances between
point j and point u then between point i and point v. Ω is referred to
as the “closure distance” and dth denotes a threshold.

Therefore, in order to characterize the detected hole the initiator
must just ensure that conditions specified in Definition 12 are met.
Furthermore, the initiator must identify all the boundary nodes
and choose among them the one who can best lead and supervise
the rest of this operation. The latter node will be referred to as the
coordinator. Indeed, in order to be a good coordinator, a node must
be as close as possible to the centroid of the newly detected hole.
This issue is trivial for closed holes but crucial for energy efficiency,
in the case of open or semi-open holes. Figure 2a–2c show some
examples of graphs that an initiator could build during a hole char-
acterization process.

The coordinator will be chosen by the initiator using the graph of
parents denoted by Gp = (Vp, Ep) built from the border points (see
Definitions 3 and 4) contained in ARC messages.

The graph of parents induces a ring (cycle), a tree or a chain (path)
when the coverage hole is respectively closed or open. Coordinator
election process complies with the following rules:

•• if this graph is cyclic (see Theorem 1) the initiator becomes the
coordinator;

•• otherwise, the initiator is the root of a tree containing two sets
of nodes or branches denoted by b1 and b2 such as |b2| ≥ |b1| with
|b2| > 0 and |b1| ≥ 0; then the node located h hops from the ini-
tiator on branch b2 is chosen as the coordinator. h is calculated
using Equation (3).

		 h b b b = | | | | 1
2

(| | 1)1 2
1ë

+ -
û - - � (3)

After choosing another node as a coordinator, the initiator must
send a COORD message containing information needed to con-
duct the coverage recovery process such as the uncovered arcs,
the type of topology induced by the detected coverage hole, and

Figure 2 | Different types of holes and their corresponding graphs of
parents: (a)–(c) on left gray node is the initiator, on right gray node is the
coordinator.

a

b

c

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 39

information that help to update the timer talert of all the nodes that
have entered into Alert state.

The coverage recovery process is started by the coordinator just
after its election upon receiving a COORD message or directly, if it
was the former initiator.

3.3.3.  Hole elimination phase

The entire coverage recovery process is supervised by the coordi-
nator. This process consists of three phases, namely: relocation sites
definition, candidates selection, and candidates migration.

•• Relocation sites definition

This phase starts with the location of hole H’s centroid denoted by
G. To do this, coordinator must find the set of border points start-
ing by the ones located on its own perimeter. These points will be
referred to as pi in the remainder of this description; i denotes the
index granted by the coordinator. The latter gets each border point
pi’s coordinates respectively denoted by xi and yi from information
contained in the uncovered arcs.

When the hole is closed, point G corresponds to the barycenter of
the irregular polygon induced by its convex hull. G’s coordinates
respectively denoted by xG and yG, are calculated using Equations
(4)–(6).

	 x
H

x x x y x yG
i

n

i i i i i i= 1
6 ()

()()
=1

1 1 1´
+ -å + + + � (4)

	 y
H

y y x y x yG
i

n

i i i i i i= 1
6 ()

()()
=1

1 1 1´
+ -å + + +

� (5)

		 () = 1
2

()
=1

1 1H x y x y
i

n

i i i iå + +- � (6)

However, if hole H is open, G is located such as d u G k rs(,) = D ´;
where d(u, G) denotes the distance between coordinator u and G on
the direction vertical to the chord existing between border points of
its uncovered arc (see Figure 3b). Δk (i.e. the range offset) is defined
as a parameter and rs

 denotes nodes’ maximum range.

After locating the centroid G, coordinator u must discretize hole H
linking each border point pi to G. Figure 3a and 3b depict results
respectively obtained with a closed hole and an open one.

Each resulting triangle will be referred to as a zone in the remain-
der of this description. coordinator u must also determine inside
hole H all the relocation sites. To do this, each segment p Gi is split
(see Figure 4a and 4b) into ë - ûd p G ri s(;) / (2) l parts (i.e. with
 −  −d p G ri s(;) / (2) 1 l points) if d p G ri s(;) > (2)- l ; or into two
parts (by putting just one point) otherwise. d(pi; G) denotes the
length of p Gi and λ is a constant (see Section 3.2).

After hole discretization process, coordinator u broadcasts in its
two-hop neighborhood a SITE message containing information
about the border points and those located inside hole H. Then,
it starts a timer whose duration tsite(u) is initiated using the max-
imum round trip time experienced among its neighbors. This
timer is updated using Equation (7) upon receiving any response
(CANDIDATE message) from a neighbor v.

	 t u t u rtt vt t

i

u v

i isite site
(1) ()

=1

(,)

(, 1)() = () ()+
++ +å

| |p

t � (7)

τ(i,i+1) denotes the transmission delay between two consecutive
nodes on the path between nodes u and v. rtt(v) is the maximum
round trip time between node v and its neighbors. p(u, v) is the set
of intermediary nodes on the path between u and v.

Upon receiving a SITE message, any node v in Alert state must
define its elbow room Φ(v) (see Definition 7). Indeed, in coordina-
tor u’s two-hop neighborhood each node v must find with respect
to each of its own neighbors, the farthest external position denoted
by s v which helps to take part in the hole elimination process
without compromising its coverage. For example, in Figure 4c, on
receiving a SITE message from the coordinator, node 2 starts look-
ing with its maximum range (first dotted circle) for all the possi-
ble actions to take in order to be involved in the hole elimination
process. Thus, node 2 notices that it can reach the hole from its
current position (i.e. its range is strictly greater than the distance to
at least one border point). Then, since node 2 is before neighbor 1
(i.e. closer to hole’s centroid G than node 1), node 2 will try to find
with respect to neighbor 1 on the direction vertical to the chord
ij, the farthest position it may move to, in order to reach the hole
without compromising the coverage of the area of interest (second
dotted circle). Formally, if w v r w r vs s, , (), (), and s v respectively
denote node 1’s position, node 2’s current position, node 1’s max-
imum range, node 2’s maximum range, and node 2’s farthest posi-
tion with respect to neighbor 1, then the coordinates of s v will be
determined using Equations (8)–(12) λ is a parameter set by the
underlying application as discussed in Section 3.2.

		 x x
d w x x

d w vv w
v v w

s

s




=
(,) ()

(,)
+

´ - 	   (8)

		 y y
d w y y

d w vv w
v v w

s

s




=
(,) ()

(,)
+

´ -
	   (9)

		 d w r w r vv s s(,) = (() ())s l� �+ - � (10)

		 d v d w d w vv v(,) = (,) (,)s s  - � (11)

		 d w v x x y yw v w v(,) = () ()2 2− + − � (12)

Figure 3 | Hole discretization by a coordinator (in gray): (a) hole is closed
(b) hole is open.

a

b

40	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

Figure 4 | Finding potential positions (in red): (a) by the coordinator for
a closed hole (b) by the coordinator for an open hole (c) by a potential
candidate (Virtual grid is only used to estimate the coverage ratio in each
zone. See online version for colors).

a

b
c

The farthest position found with respect to neighbor 1 requires
node 1, 3, and 4 to be immobilized (i.e. η(μ) = {1, 3, 4}). Note that
node 2 has also found that choosing its current position as a poten-
tial relocation site does not require any neighbor to be immobilized
(i.e. η(u) = ∅).

Node 2 will try to do the same with each of its other neighbors
located further away with respect to G. Therefore, Node 2’s elbow
room is the set of actions to perform in order to reach the hole
without compromising its coverage. Redundant potential candi-
dates generally have the largest rooms for maneuver. Indeed, such
nodes can freely move toward several sites (external or not) without
compromising deployment zone coverage. To do this, these nodes
must select sites (especially the internal ones) by immobilizing
their neighborhood; knowing that a node may be redundant with
respect to different subsets of neighbors. For example, in Figure 5a
node 1 (in gray) is redundant with respect to two subsets of neigh-
bors namely {2, 3, 5, 6} and {2, 3, 4, 5, 6}; therefore, any displacement
toward a site will require node 1 to immobilize only the smallest set
of neighbors namely, {2, 3, 5, 6} (i.e. η(μ) = {2, 3, 5, 6}). In Figure 5b
node 1 and node 4 are respectively redundant in relation to {2, 3,
5, 6} or {2, 3, 4, 5, 6} and {5, 6, 7, 8, 9}. Therefore, the two subsets
of neighbors to be immobilized during the displacements of node 1
and node 4, are respectively {2, 3, 5, 6} and {5, 6, 7, 8, 9}.

Note that like any potential candidate, redundant nodes must make
sure that they have enough energy to move to any selected site and
reach at least one zone from that position (see Definition 6).

Also note that any area coverage redundancy check protocol
found in the literature can be used to detect redundant nodes [14].
Although, we suggest the MRZ-based one we proposed in our pre-
vious works [51,52].

If a node v has a sufficient elbow room (i.e. Φ(v) ≠ ∅) it becomes
a formal candidate by sending CANDIDATE message to the coor-
dinator and starts a timer for tcand (v) units of time. This message
contains information about its elbow room, and state. tcand (v) is
estimated using Equation (13) in terms of the round trip time on
the path p(u, v) between v and coordinator u. The latter informa-
tion is contained in the SITE message sent by the coordinator.

		 t v rtt w
w u v

cand() = ()
(,)Î

å
p

� (13)

From mobility point of view, there are three types of formal candi-
dates (with respect to their states) which might be involved in the
coverage recovery process namely: nodes that are unable to move,
nodes with reduced mobility, and those with full mobility. These
types of candidacy respectively correspond to intermediary states
MO, MRM, and MM. Note that coordinator may be a candidate as
well.

•• Candidates selection

This last phase allows coordinator u to ensure coverage recovery
optimization. Indeed, after timer tsite(u) expiration, coordinator u
must choose the maneuvers which help to best eliminate the hole
while minimizing overlapped areas and energy wastes.

We formulate this issue as a location-allocation problem [20,21].
The latter has several well-known variants in combinatorics and
geometry (facility location, p-median, p-center, set covering, Weber
problem...) [53,54].

Solutions commonly proposed in the literature have many applica-
tions in domains such as industry, geography, transportation, logis-
tics, marketing etc. We formulate this problem using the following
mixed integer linear program:

Let xij be the area exclusively covered in zone j by the candidate
involved in maneuver i. Let

		 yi =
1,
0,

if maneuver is allowed
otherwise

iì
í
ï

îï
�

	 zij =
1,
0,

if maneuvers and are incompatible
otherwise

i jì
í
ï

îï
�

and let ϕij, fi and dj respectively denote the overlapped area obtained
in zone j when allowing maneuver i, the energy ratio dissipated
after maneuver i and the total area to be covered (the demand) in
zone j. Note that, I and J respectively denote the set of maneuvers to
be allowed and the set of zones.

	 min
j J

j
i I j J

ij
i I j J

ij
i I

i id x f y
Î Î Î Î Î Î
å åå åå å- + +f � (14)

s.t.:

		
i I

ij jx d j J
Î
å " Î= , � (15)

		
j J

ij
j J

ijx i I
∈ ∈
∑ ∑+ ∀ ∈f > 0, � (16)

		 f y i Ii i £ " Î1, � (17)

		 y y z i I j Ii j ij+ + £ " Î " Î2, ; � (18)

Figure 5 | Neighbors immobilization process by a redundant candidate (in
gray): (a) with multiple redundancy neighborhood. (b) with a redundant
neighbor.

a b

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 41

		
i I

iy
Î
å ³1 � (19)

		 x i I j Jij Î " Î " Î+ , ; � (20)

		 y i Ii Î " Î{0, 1}, � (21)

		 fij i I j JÎ " Î " Î+ , ; � (22)

		 z i I j Iij Î " Î " Î{0, 1}, ; � (23)

		 f i Ii Î " Î[0, 1], � (24)

		 d j Jj Î " Î+* , � (25)

Equation (14) states the objective namely, minimize the uncovered
areas, the overlapped areas inside the hole and the total energy con-
sumption. Equation (15) states that each zone j must be entirely
covered. Equation (16) suggests that any maneuver i should reach
at least one zone j. This constraint ensures that each candidate is
active and is able to reach at least one zone. Equation (17) ensures
that the residual energy of the candidate concerned by a maneuver
is enough if allowed. Equation (18) prevents coordinator to allow
incompatible maneuvers. This constraint prevents illogic maneu-
vers (ubiquity), new hole formation, collisions, and oscillations.
Equation (19) ensures that any solution allows at least one maneu-
ver. Equations (20)–(22) define the decision variables. Equations
(23)–(25) define the constants.

Energy costs are calculated using Equation (26); where εdist(.) and
εrange(.) are two functions respectively related to the underlying
mobility and motility energy consumption models. Er(v) is the
residual energy of the candidate v concerned by maneuver i.

		 f i i
Er vi = () ()

()
 dist range+ � (26)

		
i I

ijx dj j J
Î
å £ " Î, � (27)

Note that in practice, it is difficult to comply with the constraint
suggested by Equation (15) since nodes are randomly deployed
and their density constantly decreases. Therefore, coordinator can
relax Equation (15) by Equation (27) if n < ψ*; where n denotes the
numbers of available redundant candidates whereas ψ* denotes the
maximum number of candidates required to totally cover hole H;
its value is obtained using Equation (28) inspired from Tóth [55];
where  ×() and  ×() denote two functions helping to respectively
assess area and perimeter of hole H; rs

 denotes nodes’ maximum
range.

	 y
p

*
2= 2

3 3
() 2

3
() 1´

æ

è
çç

ö

ø
÷÷ + ´

æ

è
ç

ö

ø
÷ +

A PH

r

H
rs s



� (28)

Any method of the literature can be used to estimate the area of
hole H. As suggested by Figure 4a and 4b, an intuitive method is
to add up the calculated areas (e.g. using Heron’s formula) of the
zones (triangles) created during the hole discretization process.
For closed holes, ()H may also be calculated using Equation (6)
while ()H is trivially obtained by adding the length of chords
existing between border points pi.

According to a method commonly used in the literature dj, xij and
ϕij can be estimated by discretizing each zone j with a virtual grid
of patterns such as points, squares etc. [56–58]. Figure 6 illustrates

how to estimate these values. Let j (in red) be a zone of a detected
hole discretized with a grid of 24 cells (dj = 24). In this example,
we consider that a cell is entirely covered by a node if its four cor-
ners are within the node’s range (i.e located at a distance inferior or
equals to the circle’s radius). r, s, t, u, v, w denote six nodes that can
reach zone j. Node r exclusively covers six cells (namely cells 3, 4, 5,
9, 10, and 11); node s covers cells 19 and 20; node t cells 15, 21, and
22; node u cells 1, 7, 8, and 13; node v cell 2. Instead, node w does
not exclusively cover any cell. Therefore, xrj = 6, xsj = 2, xtj = 3, xuj = 4,
xvj = 1, xwj = 0. Nodes r, s, u yield no overlapped areas; instead,
node t yields overlapped area in cell 20, node v in cells 1, 7, and 8;
node w in cells 13, 19 and 20. Therefore, ϕrj = 0, ϕsj = 0, ϕtj = 1, ϕuj = 0,
ϕvj = 3, ϕwj = 3.

Note that, in this example we have discretized zone j with large
squares only to simplify our explanations. One could also have
used smaller grid cells or even points [57] to increase precision and
minimize estimation errors like those yielded by coverage in cells
14 and 16.

Coordinator defines incompatibilities zij between two maneuvers
i and j with respect to their origins (ubiquity), destinations (col-
lision) or immobilizations contained in candidates’ elbow rooms
(see Definitions 7 and 10)

Regrettably, location-allocation problem has been proven NP-hard
[59–61]. Therefore, we propose an approximate solution based on
tabu search metaheuristic [62].

A local reorganization scheme s (i.e. a simplified version of a fea-
sible solution) will denote a set of n maneuvers, each related to a
unique candidate. Formally, s = {i ∈ I: yi = 1} with |s| = n. To find an
initial solution, coordinator first looks for the best (i.e. less energy
consuming) maneuver toward the centroid; then, if found, allows it
and store the concerned candidate’s identifier.

For each candidate v (except the one eventually sent to the
centroid), coordinator will look for all the maneuvers of v that are
compatible with the ones already allowed. If v is redundant then
coordinator chooses the most energy consuming maneuver of v;
otherwise, the less energy consuming one. The set of all maneuvers
thus allowed will be referred to as the initial local reorganization
scheme.

During the optimal local reorganization scheme search process,
neighbor solutions will be obtained by shifting two maneuvers.

During the decision making process, coordinator will use candi-
dates’ maximum range denoted by rs

. Whereas in a heterogeneous

Figure 6 | Exclusive and overlapped area coverage estimations in a virtual
grid-based discretized zone.

42	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

network, r s
 will denote the smallest value chosen among nodes’

maximum range.

A local reorganization scheme s = {i1, i2, …, in} corresponds to
decisions made by coordinator for each of the n candidates taking
account of maneuvers’ incompatibilities. For instance, applying a
move on i1 consists in finding for the concerned candidate a new
maneuver ¢i1 which is compatible like i1, to other maneuvers {i2,
i3, …, in} in s. If ¢i1 exists and if set { , , ..., }1

’
2i i in is not inside the

tabu list LT then { , ... }1
’

2i i in, , is considered as a neighbor solution
of s. Another neighbor solution will involve maneuver i2 and so
on. N(s) denotes the set of the neighbor solutions of s. Formally,
N s i i i i i i i i in n n() = {{ , ... }, { , ... }...{ , ... }}1

’
2 1 2

’
1 2

’ .  Note that, the tabu
list’s size is limited in order to store the last ρ*|N(s)| solutions; ρ > 0
is a parameter.

•• Candidates migration

After finding an optimal local reorganization scheme, coordinator u
broadcasts a MOVE message containing its decisions. Upon receiv-
ing such a message, candidates start moving to their new reloca-
tion sites. MOVE messages are forwarded via paths used by SITE
messages.

Nodes will optimize their ranges using any scheme of the literature
[63–65] upon reaching destination and timer tmove (u) expiration.
Redundant nodes will eventually enter into sleep state.

Figure 7 depicts the rationale behind CHEAP. Figure 8 shows the
state diagram of the discussed coverage hole detection and elimi-
nation schemes.

Table 1 summarizes the variables used in the different algorithms.

Algorithms 1–4 formally describe coverage hole detection, charac-
terization, and elimination processes. Algorithms 5 and 6 specifically
describe the optimal local reorganization scheme search process.

Figure 7 | Flowchart of CHEAP.

Figure 8 | State diagram of CHEAP.

4.  PERFORMANCE EVALUATION

In order to verify and validate our scheme, we chose OMNeT++
5.5 simulator [66] to evaluate our solution with respect to different
metrics. Results are compared to those obtained with three major
related protocols proposed in the literature: DECM by Qiu and
Shen [40], HORA by Sahoo and Liao [39], and ZBFR by Sharma
and Sharma [18].

We used the communication and the sensing energy consumption
models respectively proposed by Heinzelman et al. [67] and by
Halgamuge et al. [68]. We also used a mobility energy consump-
tion model [see Equations (29)–(33)] inspired from the method
proposed by Society of Robots [69].

		 Em Ec Ep E C= (2)´ + + + � (29)

		 Ec m v= 1
2

2´ ´ � (30)

		   Ep m g h= ´ ´ � (31)

		   E d Ec=d ´ ´ � (32)

		 C Er ea eb ec ed= (1)´ - ´ ´ ´ � (33)

where Ec denotes the kinetic energy, Ep is the potential energy,
E represents energy lost due to frictions, C corresponds to the
amount of energy drained due to conversions. m is the mass of the
node, v the velocity, g denotes the gravity, h is the travel height, d
the deceleration rate (number of re-accelerations per unit of dis-
tance), d is the distance travelled, Er denotes node’s residual energy.
ea, eb, ec, ed respectively denote chemical, mechanical, electrical
and thermal conversions efficiency.

Since this process is supposed to take place in the plan (see
Section 3.2), potential energy is null (().Ep h= 0) (= 0)Û

For each experiment, we deployed several networks; each of them
is composed of randomly and uniformly distributed nodes. To
randomly vary the average times between two consecutive faults,
we used the Weibull distribution combined with the Uniform

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 43

Table 1 | Main global variables

Name Definition

crd(u) coordinator of the hole elimination process involving node u
D set of relocation sites inside a hole
deadline current deadline of a timer
dest(u) destination node u is allowed to move to
Δk range offset for open hole’s centroid
Ea(u) set of edges between arcs’ parents discovered by node u
Er(u) node u’s residual energy
Eth residual energy threshold
G centroid of a hole
Φ(u) set of maneuvers that node u can perform (its elbow room)
I set of candidates’ maneuvers
idu node u’s identifier
init(u) initiator of the hole detection process involving node u
IP(u) intersection points between node u and its neighbors
IN(u) intersection points between node u’s neighbors
itmax maximum number of iterations
J set of sub-areas inside a hole (zone)
K set of nodes’ sensing ranges
l length of a virtual grid cell
ls size of the tabu list
MRZ(u) set of points on the convex’s hull of node u’s MRZ

(see Definition 9)
N(u) node u’s neighbor table
NH(u) set of candidates for the coverage recovery process led by node u
η(u) node u’s immobilized neighborhood (see Definition 7)
P set of points on hole’s border
rs(u) current sensing range of node u

r s


maximum sensing range

rtt(v) round trip time with neighbor v
s* optimal reorganization scheme
state(u) current state of node u (see Definition 11 for possible values)
Sr(u) set of uncovered arcs so far reported by node u
talert(u) duration of node u’s on alert state
tcand(u) duration of node u’s candidate state
tdiscov duration between two neighbor (re)discovery periods
tinit(u) duration of node u’s initiator state
tmax maximum duration of tentative state
tmov(u) duration of node u’s on move state
tsite(u) duration of node u’s coordinator state
tsleep(u) duration of node u’s sleep state
ttent(u) duration of node u’s tentative state
ϒij set of parents of points i and j (see Definition 3)
Va(u) set of arcs’ parents
χ(i) parents of point i (see Definition 3)
xG abscissa of the hole’s centroid
yG ordinate of the hole’s centroid

Algorithm 1 | Hole detection process by a node u

Require: Er(u), Eth, tdiscov, tmax, K, ls, deadline, Δk... ⊲ see Table 1
  1: Er(u)← get_residual_energy() ⊲ check battery level
  2: while (Er(u)>Eth) do ⊲ is residual energy enough ?
  3:   if ((current time() = delay_DISC)) then
  4:    if (state(u) = ACT) then
  5:      N(u) ← neighbor_discovery()
  6:      IP(u) ← get_points_with_neighbors (N(u))
  7:      IN(u) ← get_points_among_neighbors (N(u))
  8:      MRZ(u) ← get_MRZ_hull (IN(u), IP(u), N(u))
  9:      if ((IP(u) ∩ MRZ(u)) ≠ ∅) then ⊲ found uncovered arcs
10:        state(u) ← TNT
11:        ttent(u) ← random_uniform ([0; tmax])
12:        deadline ← current_time() + ttent(u)
13:      end if
14:     end if
15:     delay_DISC ← current_time() + tdiscov
16:   end if
17:   receive message from v ⊲ new message from a neighbor v
18:   switch message do
19:     case HOLE
20:      ij



 ← get_uncovered_arc (message)
21:      ϒij ← get_parents (ij



)
22:      if (state(u) ∈ {ACT, TNT, SLP})∧(idu ∈ ϒij) then
23:        IP(u) ← get_points_with_neighbors (N(u))
24:        IN(u) ← get_points–among–neighbors (N(u))
25:        MRZ(u) ← get_MRZ_hull (IN(u), IP(u), N(u))

26:       � kl


← argmax (are_adjacent (ij


, xy))

      xy ∈ (IP(u) ∩ MRZ(u))

27:        rs(u) ← r s


28:        state(u) ← ALRT
29:        init(u) ← message.init ⊲ initiator’s id

30:        if (kl


 ¹ ∅) then
31:         talert(u) ← get_path_delay (message)
32:         deadline ← current_time() + talert(u)

33:         send HOLE(init(u), kl


) to w, ∀w ∈ N(u)\{v}

34:         send ARC({ ij


; kl


}, init(u)) to v
35:        else
36:         forward_or_delete (message, N(u), v, ttlmax)
37:        end if
38:      else
39:        forward_or_delete (message, N(u), v, ttlmax)
40:      end if
41:     case ARC
42:      if ((state(u) = INIT)∧(message.init = init(u))) then

43:        { ij


; kl


} ← get_pair_of_arcs (message)
44:        tinit(u) ← get_path_delay (message)
45:        deadline ← deadline + tinit(u)

46:        Va(u) ← (Va(u)\{ ij


; kl


})È{ ij


; kl


}

47:        Ea(u) ← Ea(u)È{ ij


; kl


}
48:      else
49:        forward_or_delete (message, N(u), v, ttlmax)
50:      end if
51:     otherwise
52:      elimination (message, v, IP(u), ...) ⊲ see Algorithm 2
53:   end switch
54:   detection_timers (IP(u), IN(u), ...) ⊲ see Algorithm 3
55:   elimination_timers (IP(u), IN(u), ...) ⊲ see Algorithm 4
56:   Er(u) ← get_residual_energy() ⊲ check battery level
57: end while

distribution as described in Table 2. Faults were injected using
these factors under an unfair distributed daemon.

Fault injection consisted in randomly constructing an irregular
polygon so that only intersecting nodes experience a fault (dis-
placement or failure). Note that battery exhaustion is only due to
energy losses and self-discharge.

In the following sections, we first detail all the experiments we have
conducted. Then we analyze and explain their results. In the course
of these experiments we evaluated the impact of the factors described
in Table 2 on the selected metrics. Note that each experiment was
repeated 100 times. The results were obtained with a 95% confidence
interval. The simulation parameters are summarized in Table 3.

44	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

Algorithm 3 | Detection timers check for a node u

Require: IP(u), MRZ(u), Va(u), Ea(u), deadline, Δk ... ⊲ see Table 1
  1: if (current_time() = deadline) then
  2:   switch state(u) do
  3:    case TNT
  4:      Cr ← get_arcs (IP(u)∩MRZ(u))

  5:      for all xy ∈ (Cr ∩ Sr(u)) do

  6:       xy .t ← xy .t + 1 ⊲ increase arc’s detection counter
  7:      end for

  8:     � Nr ← argmin (xy .t ≥ 0)

      xy ∈ (Cr\Sr(u))

  9:     � ij


 ← argmax (get_arc_length(xy))

      xy ∈Nr

10:      send HOLE (ij


, idu) to v, ∀v ∈ N(u)
11:      state(u) ← INIT
12:      tinit(u) ← max{rrt(v), ∀v ∈ N(u)}
13:      deadline ← current_time() + tinit(u)

14:      Sr(u) ← Sr(u) È { ij


}
15:     case INIT
16:      if (Va(u) ≠ ∅) then
17:        Vp ← get_parents (Va(u))
18:        Ep ← link_between_parents (Ea(u))
19:        crd(u) ← find_coordinator (Vp, E p)
20:        if (crd(u) = idu) then
21:         P ← find_border_points (Va(u), Ea(u))
22:         G ← get_centroid(P, Δk) ⊲ Equations (4) and (5)
23:         J ← triangulation(P, G)
24:         create_virtual_grid(J)

25:         D ← set_internal_sites(P, r s
 , G.x, G.y, l)

26:         state(u) ← CRD
27:         send SITE(D, P) to w , ∀w ∈ N(u)\v
28:         tsite(u) ← max{rrt(v), ∀v ∈ N(u)}
29:         deadline ← current_time() + tsite(u)
30:         Φ(u) ← get_elbow_room(D, P)
31:        else
32:         if ((Va(u) ≠ ∅)∧(Ea(u) ≠ ∅)) then
33:           send COORD(Va(u), Ea(u)) to crd(u)
34:           state(u) ← ALRT
35:         end if
36:        end if
37:      else
38:        state(u) ← ACT
39:        init(u) ← 0
40:      end if
41:     case ALRT
42:      state(u) ← ACT
43:      init(u) ← 0
44:   end switch
45: end if

times. These results are essentially due to the fact that, unlike
other protocols, CHEAP does not define waiting times accord-
ing to nodes’ degrees. Indeed, to avoid endless edge flipping
during the Delaunay triangulation, DECM sets a timer which
depends on nodes’ degrees; while the performance of HORA is
due to the mobility invitation messages sent. ZBFR yields the
worst times because of the heartbeat message used for large
agreement regions as well as for failures involving the Zone
Monitor.

Algorithm 2 | Hole elimination process by a node u

Require: message, v, IP(u), MRZ(u), deadline, ... ⊲ see Table1
  1: switch message do
  2:   case COORD
  3:    if (state(u) = ALRT)∧(message.coord = idu)) then
  4:     P ← find_border_points (Va(u), Ea(u))
  5:     G ← get_centroid (P, Δk) ⊲ Equations (4) and (5)
  6:     J ← triangulation (P, G) ⊲ Hole discretization
  7:     create_virtual_grid (J)

  8:     D ← set_internal_sites(P, r s
 , G.x, G.y, λ)

  9:     state(u) ← CRD
10:      send SITE(D, P) to w, ∀w ∈ N(u)\v
11:      tsite(u) ← max{rrt(v), ∀v ∈ N(u)}
12:      deadline ← current_time() + tsite(u)
13:      Φ(u) ← get_elbow_room (D, P)
14:      message.ttl ← ttlmax
15:     end if
16:   case SITE
17:     if ((state(u) = ALRT)∧(message.init = init(u))) then
18:      Φ(u) ← get_elbow_room (message.D, message.P)
19:      if (Φ(u) ≠ ∅) then
20:       send CANDIDATE (Φ(u), message.coord) to v
21:       state(u) ← CAND
22:       tcand(u) ← get_path_delay (message)
23:       deadline ← current_time() + tcand(u)
24:      end if
25:     end if
26:   case CANDIDATE
27:     if ((state(u) = CRD)∧(message.init = init(u))) then
28:      D ← D È get_external_locations (message)
29:      I ← I È get_travel_paths (message)
30:      NH(u) ← NH(u) È {v}
31:      tsite(u) ← get_path_delay (message)
32:      deadline ← deadline + tsite(u)
33:      message.ttl ← ttlmax
34:     end if
35:   case MOVE
36:     if ((state(u) = CAND)∧(message.init = init(u))) then
37:      d ← get_new_location (message.s*)
38:      state(u) ← MOV
39:      tmov(u) ← get_travel_time (d)
40:      travel to d
41:      deadline ← current_time() + tmov(u)
42:     end if
43: end switch
44: forward_or_delete (message, N(u), v, ttlmax)

4.1.  Average Hole Detection Time

During this experiment, when a fault was injected, simulation
daemon recorded the occurrence time, hole localization, and
information about boundary nodes. Hole detection time was
determined by the simulation program after having received
a signal from all the boundary nodes. The resultant detection
times were averaged at the end of the simulation (i.e. after all sen-
sors died). Note that detection time of an undetected hole was
obtained by subtracting the fault injection time from the simula-
tion duration.

Figure 9a and 9b suggest that for all the evaluated protocols,
average hole detection time increases according to network size
and fault scale. However, CHEAP provides the lowest detection

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 45

Algorithm 4 | Elimination timers check for a node u

Require: I, J, D, NH(u), itmax, ls, deadline, s* ⊲ see Table1
  1: if (current_time() = deadline) then
  2:   switch state(u) do
  3:    case CRD
  4:      s* ← reorganization (I, J, K, ..) ⊲ see Algorithm 5
  5:      if (s* ≠ ∅) then
  6:       send MOVE (s*) to v, ∀v ∈ NH(u)
  7:      end if
  8:      if (Φ(u) ≠ ∅) then
  9:       d ← get_new_location(s*)
10:       state(u) ← MOV
11:       tmov(u) ← get_travel_time(d)
12:       travel to d
13:       deadline ← current_time() + tmov(u)
14:      end if
15:     case CAND
16:      state(u) ← ACT
17:     case MOV
18:      rs(u) ← get_new_range(s*)
19:      if (check_redundancy()) then
20:       state(u) ← SLP
21:       tsleep(u) ← get_sleep_time()
22:       deadline ← current_time() + tsleep(u)
23:      else
24:       state(u) ← ACT ⊲ return to normal state
25:       optimize_range() ⊲ see [63–65]
26:      end if
27:     case SLP
28:      state(u) ← ACT ⊲ return to normal state
29:   end switch
30: end if

Algorithm 6 | Initial reorganization scheme generation by a coordinator u

Require: I, K, G, NH(u)
Ensure: s
  1: k ← max(K) ⊲ use maximum sensing range
  2: �L ← argmax (check_destination(i, G))

      i∈I
  3: C* ← ∅
  4: if (Λ ≠ ∅) then
  5:  � i* ← argmin (e dist(i))

      i∈Λ

  6:   I ← I È {i*}⊲ update the authorized maneuvers list
  7:   s ← s È {(i*; k)} ⊲ update the solution
  8:   C* ← get_candidate_id(i) ⊲ get the node involved
  9: end if
10: for all v ∈ NH(u)\C* do

11:   �ϒ ← argmax (check_origin(i, v) + compatible (i, I))

      i∈I
12:   if (ϒ ¹ ∅) then
13:    if (is_movable(v)) then ⊲ can v move ?
14:     �i* ← argmax (e dist(i)) ⊲ assign the farthest maneuver

     i∈ϒ
15:    else
16:     �i* ← argmax (e dist(i)) ⊲ assign the nearest maneuver

     i∈ϒ
17:    end if

18:    I← I È {i*} ⊲ update authorized maneuvers list
19:    s ← s È {(i*; k)} ⊲ update the solution
20:   end if
21: end for
22: return sAlgorithm 5 | Tabu-based optimal reorganization scheme search

Require: I, J, D, G, K, NH(u), itmax, ls, s*

  1: s ← get_initial_solution(I, K, G, NH(u)) ⊲ see Algorithm 6
  2: s* ← s
  3: LT ← ∅ ⊲ tabu list initialization
  4: nitr ← 0
  5: while (nitr < itmax) do
  6:   N(s) ← {s¢ |are_neighbors(s¢, s)∧(s¢ Ï LT)} : |N(s)| ≤ ls
  7:   δ ← 1
  8:   if (N(s) ≠ ∅) then

  9:   � s← argmin f(s¢)) ⊲ best neighbor (Equations (14)–(27))

      s¢∈ N(s)

10:     if (f(s) < f(s*)) then ⊲ Equations (14)–(27)

11:      s* ← s
12:     end if
13:     update_list (LT, N(s))
14:     δ ← |N(s)|
15:    else
16:    � s ← argmin (f(s¢)) ⊲ aspiration

     s¢∈LT
17:     LT ← LT\s
18:    end if
19:    nitr ← nitr + δ
20: end while

Table 2 | Fault tolerance factors

Factors Unit/Description – +

Fault scale* Area of the hole U (1;50) U (55;100)
MTBF** Average time

between two
faults

W (a = U (2;10);
b = 3)

W (a = U (100;500);
b = 3)

Fault effect*** Degree of severity 0 U (1;2)
*Value to square; unit is m2. **(Mean Time Between Failures) expressed in seconds (sim-
ulated time). ***nodes displacement = 0, damaged sensing unit = 1, node failure = 2. U ,
Uniform distribution; W, Weibull distribution.

4.2.  Average Hole Elimination Time

In this experiment, hole elimination time was determined by the
simulation program after having received a signal from all the

candidates when reaching their final destinations. The resultant
elimination times were averaged after all sensors died. Note that
the elimination time of an uncovered hole was obtained by sub-
tracting the fault injection time from the simulation duration.

Figure 10a and 10b shows that average hole elimination time
increases according to network size and fault scale when using
all the evaluated protocols. However, CHEAP provides the lowest
values, i.e. approximately half the times obtained with the other
evaluated protocols. This is due to CHEAP’s ability to avoid nodes’
cascaded movements which increase the coverage recovery pro-
cess’ latency. This is particulary true with DECM whose hole
elimination time suffers from the cooperative movement scheme
proposed by its authors. Performance of HORA is also due to the
delay induced by the nodes’ mobile region and the nearest assis-
tant node selection processes. As for ZBFR, its back up nodes

46	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

Figure 10 | Average hole elimination time: (a) effect of network size;
(b) effect of fault scale for network size = 1000.

a

b

Table 3 | Simulation parameters

Parameter Value

Deployment area 1000 m ´ 1000 m
Number of sensors 100 to 1000
Sink’s position (450;200)
Sensors’ communication ranges {15;35;54;70;83;98;117;127} m
Sink’s communication range 250 m
Sensors’ initial energy (Ei) 2.5 J
Self-discharge per second 0.1 μJ
Threshold energy (Ethr) 100 μJ
Eelec 50 nJ/bit
efs 10 nJ/bit/m2

eamp 0.0013 nJ/bit/m4

d0 87 m
Message length (l) 2000 bits
ttlmax 2
Usup 2.7 V
Isens 25 mA
tsens 0.25 ms
Data size(b) 200 bits
Mass (m) 0.5 kg
Maximum velocity (v) 0.06 m/s

Deceleration rate (d) U (1;3)
Chemical efficiency (ea) 90%
Mechanical efficiency (eb) 70%
Electrical efficiency (ec) 95%
Thermal efficiency (ed) 100%
Virtual grid cell length (λ) 7 m
Range offset (Δk) 3
Maximum number of iterations (itmax) 200

Figure 9 | Average hole detection time: (a) Impact of network size;
(b) Impact of fault scale for network size = 1000.

a

b

designation process (sleeping nodes activation + redundancy check
+ sleep rescheduling) conducted by the Zone Monitors contributes
to increasing hole elimination delay.

4.3.  Average Mobilization Ratio

This experiment was aimed to evaluate each protocol’s ability to
minimize the number of candidates required to eliminate a hole.

To do this, the simulation program recorded the set of potential
candidates located two hops from the hole created after fault injec-
tion. After hole elimination, the simulation program calculated the
ratio between the number of potential candidates and the number
of candidates actually used.

After the last sensor died, the experiment was stopped and the
resulting ratios were averaged. Figure 11a and 11b respectively
suggest that regardless of the protocol evaluated, average mobili-
zation ratio decreases while the network size grows but increases
according to fault scale. Intuitively, the higher is the node density
the lower is the number of candidates to be relocated. On the other
hand, the larger is the coverage hole, the higher will be the number
of required candidates. HORA yields the highest ratios (60–55%)
especially when the number of sensors is large. Indeed, the mobil-
ity invitation-based scheme used in HORA tends to move all the
possible candidates, even when the hole is already eliminated. The
performances of DECM are more mitigated with an average ratio of
45% when the network size is 1000 and the hole area is 90 × 90 m2.
This is due to the cooperative movement mechanism applied in
DECM to prevent generating new holes during node movements.
Indeed, this strategy can lead to cascaded movements especially
when node density is low. On the contrary, the strategy based on
nodes’ redundancy and mobility helps ZBFR to better cope with
these cascaded movements, the low average ratios we obtained
(50–42%). A similar strategy was applied in CHEAP; however, the
node motility (i.e. range control) scheme helps to better minimize
the number of moving candidates; hence, the lowest ratios (i.e.
40–35%).

4.4.  Average Elasticity

We carried out this experiment in order to investigate each proto-
col’s ability to prevent new hole formation during candidates’ relo-
cation. After hole elimination, the simulation program searched
for a hole in candidates’ coverage. This metric denotes the ratio
between the number of candidates who did not make any coverage
hole and the total number of candidates. The resulting ratios were
averaged after all sensors died.

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 47

the shorter is the distance to be travelled by candidates (espe-
cially, the boundary nodes) to eliminate any hole; but, for a spe-
cific network size, the larger is a hole, the longer is the distance
travelled. HORA provides the worst ratios (above 90%). Indeed,
in this scheme the only criterion for candidates selection is their
overlapping degrees. Ignoring nodes residual energy inevitably
leads to high distances travelled. When using ZBFR or DECM,
the average migration ratio respectively reaches 82% and 80%.
ZBFR also does not consider candidates’ residual energy but
unlike HORA, the Zone Monitors relocate the nearest backup
nodes (redundant nodes). DECM use a similar scheme when
helping candidates find the shortest path to their safe area.
Regrettably, all these performances are mitigated by the cascaded
movements attached to both solutions. CHEAP outperforms the
three other protocols by providing a 70% ratio on average. This
performance is mainly due to the minimization scheme applied
by the coordinator while selecting candidates. This strategy helps
to avoid using nodes’ cascaded movements. Indeed, when using
CHEAP only mutually compatible movements are allowed, this
strategy prevents new hole formation and minimizes the number

Figure 11 | Average mobilization ratio: (a) effect of network size; (b) effect
of fault scale for network size = 1000.

a

b

Figure 12 | Average elasticity: (a) effect of network size; (b) effect of fault
scale for network size = 1000.

a

b

Figure 13 | Average migration ratio: (a) effect of network size; (b) effect of
fault scale for network size = 1000.

a

b

Figure 12a and 12b shows that elasticity increases according to net-
work size and fault scale irrespective of the protocol used. These
results are due to the fact that when node density is high, hole cre-
ation probability by cascaded movements is low; the same goes for
the number of nodes to be relocated. DECM provides the lowest
ratios (around 55%). This is because DECM can generate unnec-
essary node movements which reduce the Delaunay triangulation
accuracy. This shortcoming is detrimental to safe area calculation
and inevitably leads to new holes while candidates are moved. ZBFR
yields better ratios (65–68%) because the strategy applied is mainly
based on redundant nodes (back up nodes); but an insufficient
number of backup nodes forces ZM to move the nearest neigh-
bor even if a new hole is created. Thus, ZBFR actually eliminates
holes through cascaded movements. The latter scheme is inefficient
for holes located in the area of interest’s periphery. This issue is
addressed by the linear non linear programs respectively proposed
by CHEAP and HORA who both yield ratios above 90%. However,
when using CHEAP, values oscillate between 96% and 99.75%.
Indeed, unlike HORA, CHEAP strives to control both nodes’ ranges
(motility) and mobility. These results prove the relevance of the
strategy that allows each node to define a elbow room since it helps
to take account of all the meaningless and risky movements.

4.5.  Average Migration Ratio

The goal of this experiment was to assess each protocol’s ability to
minimize the travel distance required to eliminate a hole. For that
purpose, after fault injection, the simulation program estimated
and recorded the distance of each potential candidate to the hole’s
centroid. Then, after hole elimination the simulation program cal-
culated for each candidate, the ratio between the distance actually
travelled and the distance supposed to be covered.

Note that for undetected holes the ratio is assumed to be 100% for
each candidate. This experiment was ended after all sensors died.

The results depicted in Figure 13a and 13b suggest that irrespec-
tive of the protocol used, the average migration ratio decreases
according to network size but increases with fault scale. These
performances are due to the fact that the higher is node density

48	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

of movements required for coverage restoration. Furthermore,
unlike DECM and HORA, CHEAP considers both nodes’ resid-
ual energy, nodes’ motility, redundant nodes’ mobility, and obsta-
cles during the candidates selection process.

4.6.  Average Elimination Ratio

In order to evaluate each protocol’s ability to restore the coverage
degree we conducted an experiment where the simulation program
had to calculate the area of the newly created hole just after having
injected a fault. After nodes’ relocation, the resulting coverage ratio
was estimated. Note that each hole which was not eliminated was
assumed to have 0% coverage ratio. This experiment ended after all
sensors died.

Figure 14a and 14b shows that regardless of the protocol used, the
average elimination ratio increases according to network size, but
decreases with fault scale.

This is because when node density is high, the number of can-
didates is large enough to restore the coverage. However, intui-
tively for the same network density, the average elimination ratio
decreases when the area to be restored increases. All the evaluated
protocols, provide ratios greater than 90%. DECM yields the lowest
ratios (between 93% and 95.5%). This is due to the inaccuracy of
Delaunay triangulation. Indeed, as discussed in Section 4.4 this
scheme can lead to some errors when safe areas are calculated espe-
cially with open holes or those located in the outskirts of the area of
interest. These errors are detrimental to hole full coverage. HORA
and ZBFR provide better results (respectively between 95.2% and
95.6% and between 96.5% and 97%) because these schemes mainly
consider redundant nodes when trying to eliminate a coverage
hole; but these performances are mitigated by the fact that cov-
erage redundancy check is a NP-complete problem [51,52] which
requires approximate solutions that often lead to several false nega-
tive cases. The latter prevent efficient candidates mobility and hole
full coverage. CHEAP provides the highest ratios varying between
96.5% and 98%. This is due to the fact that during the hole elim-
ination process, when making decisions coordinator uses candi-
dates’ maximum range while targeting primarily the centroid. The
latter position often provides the highest coverage ratio when using
node’s maximum range.

4.7.  Energy Efficiency and Network Lifetime

In order to estimate the amount of energy depleted during hole
detection and elimination processes, we used the same experimen-
tal setup as described in the previous sections. Since we mainly
aimed at investigating each protocol’s ability to minimize energy
losses, we injected only faults that displaced nodes. We conducted
this experiment respectively until a node died [First Node Dies
(FND)] and until all nodes died [Last Node Dies (LND)].

Figure 15a and 15b then 16a and 16b show that irrespective of
the protocol used and the lifetime definition (FND or LND),
the energy oriented network lifetime decreases while network
size and fault scale grow. These results are due to the fact that
energy losses are mainly due to communication activities. The
latter increase according to nodes’ degree (number of neighbors).
By contrast, large scale disasters (especially when several nodes

Figure 14 | Average elimination ratio: (a) effect of network size; (b) effect
of fault scale for network size = 1000.

a

b

Figure 15 | Network lifetime (until First Node Dies): (a) effect of network
size; (b) effect of fault scale for network size = 1000.

a

b

Figure 16 | Network lifetime (until Last Node Dies): (a) effect of network
size; (b) effect of fault scale for network size = 1000.

a

b

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 49

become isolated) tend to decrease nodes’ average degree and
reduce therefore their energy consumption. However, since faults
are essentially local, they have a relatively small impact on the
network’s lifetime. CHEAP obtains the best results. They are actu-
ally due to its performances in terms of message complexity and
average migration or mobilization ratio, as discussed in previous
sections. By contrast DECM, ZBFR, and HORA use more energy
consuming strategies such as cascaded movements. Indeed, ZBFR
uses heart-beat signalization scheme for hole detection while
DECM leads to unnecessary node movements due to Delaunay
triangulation inaccuracy (see Section 4.4). HORA does not con-
sider residual energy to select candidates for coverage recovery.
The latter strategy is particularly energy inefficient.

4.8.  Coverage Resilience Index

In order to evaluate each protocol’s ability to maximize network
resilience denoted by φ, we propose to aggregate the metrics dis-
cussed above using a weighted geometric mean as expressed by
Equation (34). Let τm, ls, τg, τe, and ε respectively be the average
mobilization ratio, the average elasticity, the migration ratio, the
average elimination ratio, and the average energy consumption
ratio.

j t t t e= (1) (1) (1) , =11 2 3 4 5

=1

5

- ´ ´ - ´ ´ - åm
w w

g
w

e
w w

i
ils w � (34)

where w1…w5 denote the weighting coefficients of the aggre-
gated metrics. We chose to use an equal weighting scheme (i.e.
" Îi wi{1, .., 5}, = 0.2).

By definition, a candidate’s energy consumption ratio is the amount
of energy lost during the entire coverage maintenance process
divided by its residual energy at the time of fault injection.

Figure 17a and 17b shows that regardless the protocol used, resil-
ience increases according network size, but decreases as fault scale
grows. These results are due to the fact that high node density intu-
itively fosters coverage recovery speed and ratio. Since this resil-
ience index is a composite metric, any performance depends on
the results discussed in previous section. CHEAP provides a cov-
erage resilience index between 70% and 74.2%. In other words, our

contribution enables network to efficiently maintain coverage in
70–74.2% of all cases; while the three other protocols’ results oscil-
late between 45% and 57%. These results prove that the coordina-
tion and location-allocation-based strategy combined with nodes’
range control is more relevant than any iterative movements-based
scheme to eliminate coverage holes.

5.  CONCLUSION

In this paper we addressed the area coverage restoration problem
in self-organized mobile WSNs with the objective of maximizing
the network’s resilience. We proposed a localized solution referred
to as CHEAP that uses first, a geometric approach based on nodes’
sensing disks crossings to effectively detect any type of holes; then
a tabu search based heuristic that combines nodes’ redundancy,
motility and mobility-based strategies to restore the lost coverage.
Simulation results have confirmed that regardless of the type of
hole, CHEAP outperforms several major previous schemes. The
coverage resilience index metric we proposed, explicitly revealed
that the location-allocation-based scheme we applied helps to
effectively minimize risks of new hole formation, average distance
travelled, nodes’ movements, overlapped areas, and total power
consumption; while maximizing coverage ratio.

In future work, we plan to extend this solution to three-dimensional
environments.

CONFLICTS OF INTEREST

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

REFERENCES

[1]	 Y. Wang, Y. Zhang, J. Liu, and R. Bhandari, Coverage, connec-
tivity, and deployment in wireless sensor networks, in: S. Patnik,
X. Li, Y.M. Yang (Eds.), Recent Development in Wireless Sensor
and Ad-hoc Networks. Signals and Communication Technology,
Springer, India, 2014, pp. 25–44.

[2]	 T. Ojha, S. Misra, N.S. Raghuwanshi, Wireless sensor networks
for agriculture: the state-of-the-art in practice and future chal-
lenges, Comput. Electron. Agric. 118 (2015), 66–84.

[3]	 L. Muduli, D.P. Mishra, P.K. Jana, Application of wireless sensor
network for environmental monitoring in underground coal
mines: a systematic review, J. Netw. Comput. Appl. 106 (2018),
48–67.

[4]	 S. Chouikhi, I.E. Korbi, Y. Ghamri-Doudane, L.A. Saidane, A
survey on fault tolerance in small and large scale wireless sensor
networks, Comput. Commun. 69 (2015), 22–37.

[5]	 S. Abdollahzadeh, N.J. Navimipour, Deployment strategies in
the wireless sensor network: a comprehensive review, Comput.
Commun. 91–92 (2016), 1–16.

[6]	 H. Yetgin, K.T.K. Cheung, M. El-Hajjar, L.H. Hanzo, A survey
of network lifetime maximization techniques in wireless sensor
networks, IEEE Commun. Surv. Tutor. 19 (2017), 828–854.

[7]	 N.D. Trong, N.P. Le, P.V. Hau, N.V. Khanh, A distributed proto-
col for detecting and updating hole boundary in wireless sensor

Figure 17 | Resilience: (a) effect of network size; (b) effect of fault scale for
network size = 1000.

a

b

https://doi.org/10.1007/978-81-322-2129-6_2
https://doi.org/10.1007/978-81-322-2129-6_2
https://doi.org/10.1007/978-81-322-2129-6_2
https://doi.org/10.1007/978-81-322-2129-6_2
https://doi.org/10.1007/978-81-322-2129-6_2
https://doi.org/10.1016/j.compag.2015.08.011
https://doi.org/10.1016/j.compag.2015.08.011
https://doi.org/10.1016/j.compag.2015.08.011
https://doi.org/10.1016/j.jnca.2017.12.022
https://doi.org/10.1016/j.jnca.2017.12.022
https://doi.org/10.1016/j.jnca.2017.12.022
https://doi.org/10.1016/j.jnca.2017.12.022
https://doi.org/10.1016/j.comcom.2015.05.007
https://doi.org/10.1016/j.comcom.2015.05.007
https://doi.org/10.1016/j.comcom.2015.05.007
https://doi.org/10.1016/j.comcom.2016.06.003
https://doi.org/10.1016/j.comcom.2016.06.003
https://doi.org/10.1016/j.comcom.2016.06.003
https://doi.org/10.1109/COMST.2017.2650979
https://doi.org/10.1109/COMST.2017.2650979
https://doi.org/10.1109/COMST.2017.2650979
https://doi.org/10.1145/2833258.2833297
https://doi.org/10.1145/2833258.2833297

50	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51

networks, Proceedings of the Sixth International Symposium
on Information and Communication Technology - SoICT 2015,
ACM Press, New York, USA, 2015, pp. 171–178.

[8]	 T. Amgoth, P.K. Jana, Coverage hole detection and restoration
algorithm for wireless sensor networks, Peer-to-Peer Netw. Appl.
10 (2017), 66–78.

[9]	 P.K. Sahoo, M.J. Chiang, S.L. Wu, An efficient distributed cover-
age hole detection protocol for wireless sensor networks, Sensors
16 (2016), 386.

[10]	 G. Dai, H. Lv, L. Chen, B. Zhou, P. Xu, A novel coverage holes
discovery algorithm based on voronoi diagram in wireless sensor
networks, Int. J. Hybrid Inf. Technol. 9 (2016), 273–282.

[11]	 D. Šoberl, N.M. Kosta, P. Škraba, Decentralized computa-
tion of homology in wireless sensor networks using spanning
trees, in: A. Holzinger, P. Kieseberg, A. Tjoa, E. Weippl (Eds.),
Machine Learning and Knowledge Extraction. Lecture Notes in
Computer Science, Springer International Publishing, Cham,
2017, pp. 25–40.

[12]	 S. Patra, B. Sau, Detecting hole boundary nodes in WSN under
distributed environment, 2016 IEEE 6th International Confe-
rence on Advanced Computing (IACC), IEEE, Bhimavaram,
India, 2016, pp. 716–721.

[13]	 A. More, V. Raisinghani, A survey on energy efficient cover-
age protocols in wireless sensor networks, J. King Saud Univ.
Comput. Inform. Sci. 29 (2017), 428–448.

[14]	 B. Wang, Sensor activity scheduling, in: Coverage Control in
Sensor Networks, Computer Communications and Networks,
Springer, London, 2010, pp. 121–153.

[15]	 F. Li, J. Luo, W. Wang, Y. He, Autonomous deployment for load
balancing k-surface coverage in sensor networks, IEEE Trans.
Wireless Commun. 14 (2015), 279–293.

[16]	 D. Saha, A. Das, Coverage area maximization by heterogeneous
sensor nodes with minimum displacement in mobile networks,
2015 IEEE International Conference on Advanced Networks
and Telecommuncations Systems (ANTS), IEEE, Kolkata, India,
2015, pp. 1–6.

[17]	 T.Y. Lin, H.A. Santoso, K.R. Wu, Global sensor deployment and
local coverage-aware recovery schemes for smart environments,
IEEE Trans. Mobile Comput. 14 (2015), 1382–1396.

[18]	 K.P. Sharma, T.P. Sharma, ZBFR: zone based failure recovery in
WSNs by utilizing mobility and coverage overlapping, Wireless
Netw. 23 (2016), 2263–2280.

[19]	 M. Amac Guvensan, A. Gokhan Yavuz, Hybrid movement strat-
egy in self-orienting directional sensor networks, Ad Hoc Netw.
11 (2013), 1075–1090.

[20]	 L. Cooper, Location-allocation problems, Oper. Res. 11 (1963),
331–343.

[21]	 H.A. Eiselt, G. Laporte, Objectives in location problems, in
Facility Location: A Survey of Applications and Methods,
Springer Nature, New York, 1995, pp. 151–180.

[22]	 R. Beghdad, A. Lamraoui, Boundary and holes recognition in
wireless sensor networks, J. Innov. Dig. Ecosyst. 3 (2016), 1–14.

[23]	 S. Das, M.K. DebBarma, Hole detection in wireless sensor net-
work: a review, in: P. Sa, S. Bakshi, I. Hatzilygeroudis, M. Sahoo
(Eds.), Recent Findings in Intelligent Computing Techniques.
Advances in Intelligent Systems and Computing, Springer,
Singapore, 2018, pp. 87–96.

[24]	 W. An, N. Qu, F.M. Shao, X. Xiong, S. Ci, Coverage hole problem
under sensing topology in flat wireless sensor networks, Wireless
Commun. Mobile Comput. 16 (2014), 578–589.

[25]	 Z. Kang, H. Yu, Q. Xiong, Detection and recovery of coverage
holes in wireless sensor networks, J. Netw. 8 (2013), 822–828.

[26]	 C.F. Huang, Y.C. Tseng, The coverage problem in a wireless
sensor network, Mobile Netw. Appl. 10 (2005), 519–528.

[27]	 Y. Bejerano, Coverage verification without location information,
IEEE Trans. Mobile Comput. 11 (2012), 631–643.

[28]	 C. Qiu, H. Shen, K. Chen, An energy-efficient and distributed
cooperation mechanism for k-coverage hole detection and healing
in WSNs, 2015 IEEE 12th International Conference on Mobile Ad
Hoc and Sensor Systems, IEEE, Dallas, TX, USA, 2015, pp. 73–81.

[29]	 W. Li, Y. Wu, Tree-based coverage hole detection and healing
method in wireless sensor networks, Comput. Netw. 103 (2016),
33–43.

[30]	 M.R. Senouci, A. Mellouk, K. Assnoune, Localized movement-
assisted sensor deployment algorithm for hole detection and
healing, IEEE Trans. Parallel Distrib. Syst. 25 (2014), 1267–1277.

[31]	 Q. Fang, J. Gao, L.J. Guibas, Locating and bypassing holes in
sensor networks, Mobile Netw. Appl. 11 (2006), 187–200.

[32]	 W.C. Chu, K.F. Ssu, Location-free boundary detection in mobile
wireless sensor networks with a distributed approach, Comput.
Netw. 70 (2014), 96–112.

[33]	 F. Yan, A. Vergne, P. Martins, L. Decreusefond, Homology-based
distributed coverage hole detection in wireless sensor networks,
IEEE/ACM Trans. Netw. 23 (2025), 1705–1718.

[34]	 D. Diongue, O. Thiare, An energy efficient self-healing mecha-
nism for long life wireless sensor networks, in: T. Sobh, K. Elleithy
(Eds.), Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering, Lecture Notes in
Electrical Engineering, Springer, Cham, 2015, pp. 599–605.

[35]	 G. Wang, G. Cao, T.F. La Porta, Movement-assisted sensor
deployment, IEEE Trans. Mobile Comput. 5 (2006), 640–652.

[36]	 Y. Wang, J. Gao, J.S.B. Mitchell, Boundary recognition in sensor
networks by topological methods, Proceedings of the 12th
Annual International Conference on Mobile Computing and
Networking - MobiCom’06, ACM Press, New York, USA, 2006,
pp. 122–133.

[37]	 Y. Zou, K. Chakrabarty, Sensor deployment and target localiza-
tion based on virtual forces, IEEE INFOCOM 2003. Twenty-
second Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE Cat. No.03CH37428), IEEE,
San Francisco, CA, USA, 2003, pp. 1293–1303.

[38]	 J. Habibi, H. Mahboubi, A.G. Aghdam, Distributed coverage
control of mobile sensor networks subject to measurement error,
IEEE Trans. Autom. Control 61 (2016), 3330–3343.

[39]	 P.K. Sahoo, W.C. Liao, Hora: a distributed coverage hole repair
algorithm for wireless sensor networks, IEEE Trans. Mobile
Comput. 14 (2015), 1397–1410.

[40]	 C. Qiu, H. Shen, A delaunay-based coordinate-free mechanism
for full coverage in wireless sensor networks, IEEE Trans. Parallel
Distrib. Syst. 25 (2014) 828–839.

[41]	 A. Khelil, R. Beghdad, ESA: an efficient self-deployment algo-
rithm for coverage in wireless sensor networks, Proced. Comput.
Sci. 98 (2016), 40–47.

[42]	 M. Rout, R. Roy, Dynamic deployment of randomly deployed
mobile sensor nodes in the presence of obstacles, Ad Hoc Netw.
46 (2016) 12–22.

[43]	 H. Zhao, Q. Zhang, L. Zhang, Y. Wang, A novel sensor deploy-
ment approach using fruit fly optimization algorithm in wireless
sensor networks, 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE,
Helsinki, Finland, 2015, pp. 1292–1297.

https://doi.org/10.1145/2833258.2833297
https://doi.org/10.1145/2833258.2833297
https://doi.org/10.1145/2833258.2833297
https://doi.org/10.1007/s12083-015-0407-2
https://doi.org/10.1007/s12083-015-0407-2
https://doi.org/10.1007/s12083-015-0407-2
https://doi.org/10.3390/s16030386
https://doi.org/10.3390/s16030386
https://doi.org/10.3390/s16030386
http://dx.doi.org/10.14257/ijhit.2016.9.3.25
http://dx.doi.org/10.14257/ijhit.2016.9.3.25
http://dx.doi.org/10.14257/ijhit.2016.9.3.25
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1007/978-3-319-66808-6_3
https://doi.org/10.1109/IACC.2016.138
https://doi.org/10.1109/IACC.2016.138
https://doi.org/10.1109/IACC.2016.138
https://doi.org/10.1109/IACC.2016.138
https://doi.org/10.1016/j.jksuci.2016.08.001
https://doi.org/10.1016/j.jksuci.2016.08.001
https://doi.org/10.1016/j.jksuci.2016.08.001
https://doi.org/10.1007/978-1-84996-059-5_7
https://doi.org/10.1007/978-1-84996-059-5_7
https://doi.org/10.1007/978-1-84996-059-5_7
https://doi.org/10.1109/TWC.2014.2341585
https://doi.org/10.1109/TWC.2014.2341585
https://doi.org/10.1109/TWC.2014.2341585
https://doi.org/10.1109/ANTS.2015.7413629
https://doi.org/10.1109/ANTS.2015.7413629
https://doi.org/10.1109/ANTS.2015.7413629
https://doi.org/10.1109/ANTS.2015.7413629
https://doi.org/10.1109/ANTS.2015.7413629
https://doi.org/10.1109/TMC.2014.2353613
https://doi.org/10.1109/TMC.2014.2353613
https://doi.org/10.1109/TMC.2014.2353613
https://doi.org/10.1007/s11276-016-1291-2
https://doi.org/10.1007/s11276-016-1291-2
https://doi.org/10.1007/s11276-016-1291-2
https://doi.org/10.1016/j.adhoc.2012.11.011
https://doi.org/10.1016/j.adhoc.2012.11.011
https://doi.org/10.1016/j.adhoc.2012.11.011
https://doi.org/10.1287/opre.11.3.331
https://doi.org/10.1287/opre.11.3.331
https://doi.org/10.1016/j.jides.2016.04.001
https://doi.org/10.1016/j.jides.2016.04.001
https://doi.org/10.1007/978-981-10-8636-6_10
https://doi.org/10.1007/978-981-10-8636-6_10
https://doi.org/10.1007/978-981-10-8636-6_10
https://doi.org/10.1007/978-981-10-8636-6_10
https://doi.org/10.1007/978-981-10-8636-6_10
https://doi.org/10.1002/wcm.2555
https://doi.org/10.1002/wcm.2555
https://doi.org/10.1002/wcm.2555
https://doi.org/10.1007/s11036-005-1564-y
https://doi.org/10.1007/s11036-005-1564-y
https://doi.org/10.1109/TMC.2011.85
https://doi.org/10.1109/TMC.2011.85
https://doi.org/10.1109/MASS.2015.115
https://doi.org/10.1109/MASS.2015.115
https://doi.org/10.1109/MASS.2015.115
https://doi.org/10.1109/MASS.2015.115
https://doi.org/10.1016/j.comnet.2016.04.005
https://doi.org/10.1016/j.comnet.2016.04.005
https://doi.org/10.1016/j.comnet.2016.04.005
https://doi.org/10.1109/TPDS.2013.137
https://doi.org/10.1109/TPDS.2013.137
https://doi.org/10.1109/TPDS.2013.137
https://doi.org/10.1007/s11036-006-4471-y
https://doi.org/10.1007/s11036-006-4471-y
https://doi.org/10.1016/j.comnet.2014.05.005
https://doi.org/10.1016/j.comnet.2014.05.005
https://doi.org/10.1016/j.comnet.2014.05.005
https://doi.org/10.1109/TNET.2014.2338355
https://doi.org/10.1109/TNET.2014.2338355
https://doi.org/10.1109/TNET.2014.2338355
https://doi.org/10.1007/978-3-319-06773-5_80
https://doi.org/10.1007/978-3-319-06773-5_80
https://doi.org/10.1007/978-3-319-06773-5_80
https://doi.org/10.1007/978-3-319-06773-5_80
https://doi.org/10.1007/978-3-319-06773-5_80
https://doi.org/10.1109/TMC.2006.80
https://doi.org/10.1109/TMC.2006.80
https://doi.org/10.1145/1161089.1161104
https://doi.org/10.1145/1161089.1161104
https://doi.org/10.1145/1161089.1161104
https://doi.org/10.1145/1161089.1161104
https://doi.org/10.1145/1161089.1161104
https://doi.org/10.1109/INFCOM.2003.1208965
https://doi.org/10.1109/INFCOM.2003.1208965
https://doi.org/10.1109/INFCOM.2003.1208965
https://doi.org/10.1109/INFCOM.2003.1208965
https://doi.org/10.1109/INFCOM.2003.1208965
https://doi.org/10.1109/TAC.2016.2521370
https://doi.org/10.1109/TAC.2016.2521370
https://doi.org/10.1109/TAC.2016.2521370
https://doi.org/10.1109/TMC.2014.2359651
https://doi.org/10.1109/TMC.2014.2359651
https://doi.org/10.1109/TMC.2014.2359651
https://doi.org/10.1109/TPDS.2013.134
https://doi.org/10.1109/TPDS.2013.134
https://doi.org/10.1109/TPDS.2013.134
https://doi.org/10.1016/j.procs.2016.09.009
https://doi.org/10.1016/j.procs.2016.09.009
https://doi.org/10.1016/j.procs.2016.09.009
https://doi.org/10.1016/j.adhoc.2016.03.004
https://doi.org/10.1016/j.adhoc.2016.03.004
https://doi.org/10.1016/j.adhoc.2016.03.004
https://doi.org/10.1109/Trustcom.2015.520
https://doi.org/10.1109/Trustcom.2015.520
https://doi.org/10.1109/Trustcom.2015.520
https://doi.org/10.1109/Trustcom.2015.520

	 G.H.F. Diédié et al. / International Journal of Networked and Distributed Computing 9(1) 33–51	 51

[44]	 A. Ray, D. De, An energy efficient sensor movement approach
using multi-parameter reverse glowworm swarm optimization
algorithm in mobile wireless sensor network, Simul. Modell.
Pract. Theory 62 (2016), 117–136.

[45]	 J. Wang, S. Medidi, M. Medidi, Energy-efficient k-coverage for
wireless sensor networks with variable sensing radii, GLOBECOM
2009 - 2009 IEEE Global Telecommunications Conference, IEEE,
Honolulu, HI, USA, 2009, pp. 1–6.

[46]	 C.T. Vu, Y. Li, Delaunay-triangulation based complete coverage
in wireless sensor networks, 2009 IEEE International Conference
on Pervasive Computing and Communications, IEEE, Galveston,
TX, USA, 2009, pp. 1–5.

[47]	 Y. Qu, S.V. Georgakopoulos, A distributed area coverage algorithm
for maintenance of randomly distributed sensors with adjustable
sensing range, 2013 IEEE Global Communications Conference
(GLOBECOM), IEEE, Atlanta, GA, USA, 2013, pp. 286–291.

[48]	 M. Abolhasan, Y. Maali, A. Rafiei, W. Ni, Distributed hybrid cov-
erage hole recovery in wireless sensor networks, IEEE Sens. J 16
(2016), 8640–8648.

[49]	 K. Lakshmi Joshitha, S. Jayashri, A novel redundant hole iden-
tification and healing algorithm for a homogeneous distributed
wireless sensor network, Wireless Personal Commun. 104 (2018),
1261–1282.

[50]	 A.M. Khedr, W. Osamy, A. Salim, Distributed coverage hole
detection and recovery scheme for heterogeneous wireless sensor
networks, Comput. Commun. 124 (2018), 61–75.

[51]	 H.G. Diédié, M. Babri, S. Oumtanaga, Redundancy detection
protocol for area coverage control in heterogeneous wireless
sensor networks, Int. J. Comput. Sci. Issues 12 (2015), 100–110.

[52]	 H.G. Diédié, B. Aka, M. Babri, Area k-coverage optimization
protocol for heterogeneous dense wireless sensor networks, Int.
J. Adv. Comput. Sci. Appl. 8 (2017), 327–336.

[53]	 J. Krarup, D. Pisinger, F. Plastria, Discrete location problems with
push-pull objectives, Discrete Appl. Math. 123 (2002), 363–378.

[54]	 R.Z. Farahani, M. SteadieSeifi, N. Asgari, Multiple criteria facil-
ity location problems: a survey, Appl. Math. Modell. 34 (2010),
1689–1709.

[55]	 P. Brass, Geometric problems on coverage in sensor net-
works, in: I. Bárány, K.J. Böröczky, G.F. Tóth, J. Pach (Eds.),
Geometry – Intuitive, Discrete, and Convex. Bolyai Society
Mathematical Studies, Springer Nature, Berlin, Heidelberg,
2013, pp. 91–108.

[56]	 S.M. Kwon, J.S. Kim, Coverage ratio in the wireless sensor net-
works using Monte Carlo simulation, 2008 Fourth International
Conference on Networked Computing and Advanced Information
Management, IEEE, Gyeongju, South Korea, 2008, pp. 235–238.

[57]	 Y. Liu, L. Suo, D. Sun, A. Wang, A virtual square grid-based cov-
erage algorithm of redundant node for wireless sensor network,
J. Netw. Comput. Appl. 36 (2013), 811–817.

[58]	 A.K. Idrees, K. Deschinkel, M. Salomon, R. Couturier, Distributed
lifetime coverage optimization protocol in wireless sensor net-
works, J. Supercomput. 71 (2015), 4578–4593.

[59]	 O. Kariv, S.L. Hakimi, An algorithmic approach to network loca-
tion problems. II: the p-medians, SIAM J. Appl. Math. 37 (1979),
539–560.

[60]	 R.J. Fowler, M.S. Paterson, S.L. Tanimoto, Optimal packing and
covering in the plane are NP-complete, Inform. Process. Lett. 12
(1981), 133–137.

[61]	 N. Megiddo, A. Tamir, On the complexity of locating linear
facilities in the plane, Oper. Res. Lett. 1 (1982), 194–197.

[62]	 F. Glover, Future paths for integer programming and links to
artificial intelligence, Comput. Oper. Res. 13 (1986), 533–549.

[63]	 B.S. Panda, D.P. Shetty, Minimum range assignment problem for
two connectivity in wireless sensor networks, in: R. Natarajan
(Ed.), Distributed Computing and Internet Technology, ICDCIT
2014, Springer, Cham, 2014, pp. 122–133.

[64]	 G.H.F. Diédié, B. Aka, M. Babri, Energy-efficient ant colony
based k-hop clustering and transmission range assignment
protocol for connectivity construction in dense wireless sensor
networks, J. Comput. Sci. 14 (2018), 376–395.

[65]	 G.H.F. Diédié, B. Aka, M. Babri, Self-stabilising hybrid con-
nectivity control protocol for WSNs, IET Wireless Sens. Syst. 9
(2019), 6–24.

[66]	 A. Varga, OMNeT++ Simulator, Available from: http://www.
omnetpp.org (accessed on July 2016).

[67]	 W. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An appli-
cation-specific protocol architecture for wireless microsensor
networks, IEEE Trans. Wireless Commun. 1 (2002), 660–670.

[68]	 M.N. Halgamuge, M. Zukerman, K. Ramamohanarao, H.L. Vu,
An estimation of sensor energy consumption, Progr. Electromagn.
Res. B 12 (2009), 259–295.

[69]	 Society of Robots (SOR), Robot Energy, Available from: https://
www.societyofrobots.com/mechanics_energy.shtml (accessed on
July 2020).

https://doi.org/10.1016/j.simpat.2016.01.007
https://doi.org/10.1016/j.simpat.2016.01.007
https://doi.org/10.1016/j.simpat.2016.01.007
https://doi.org/10.1016/j.simpat.2016.01.007
https://doi.org/10.1109/GLOCOM.2009.5425235
https://doi.org/10.1109/GLOCOM.2009.5425235
https://doi.org/10.1109/GLOCOM.2009.5425235
https://doi.org/10.1109/GLOCOM.2009.5425235
https://doi.org/10.1109/PERCOM.2009.4912842
https://doi.org/10.1109/PERCOM.2009.4912842
https://doi.org/10.1109/PERCOM.2009.4912842
https://doi.org/10.1109/PERCOM.2009.4912842
https://doi.org/10.1109/GLOCOM.2013.6831085
https://doi.org/10.1109/GLOCOM.2013.6831085
https://doi.org/10.1109/GLOCOM.2013.6831085
https://doi.org/10.1109/GLOCOM.2013.6831085
https://doi.org/10.1109/JSEN.2016.2613539
https://doi.org/10.1109/JSEN.2016.2613539
https://doi.org/10.1109/JSEN.2016.2613539
https://doi.org/10.1007/s11277-018-6079-5
https://doi.org/10.1007/s11277-018-6079-5
https://doi.org/10.1007/s11277-018-6079-5
https://doi.org/10.1007/s11277-018-6079-5
https://doi.org/10.1016/j.comcom.2018.04.002
https://doi.org/10.1016/j.comcom.2018.04.002
https://doi.org/10.1016/j.comcom.2018.04.002
https://doi.org/10.14569/IJACSA.2017.081043
https://doi.org/10.14569/IJACSA.2017.081043
https://doi.org/10.14569/IJACSA.2017.081043
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1016/j.apm.2009.10.005
https://doi.org/10.1016/j.apm.2009.10.005
https://doi.org/10.1016/j.apm.2009.10.005
https://doi.org/10.1007/978-3-642-41498-5_4
https://doi.org/10.1007/978-3-642-41498-5_4
https://doi.org/10.1007/978-3-642-41498-5_4
https://doi.org/10.1007/978-3-642-41498-5_4
https://doi.org/10.1007/978-3-642-41498-5_4
https://doi.org/10.1109/NCM.2008.248
https://doi.org/10.1109/NCM.2008.248
https://doi.org/10.1109/NCM.2008.248
https://doi.org/10.1109/NCM.2008.248
https://doi.org/10.1016/j.jnca.2012.12.003
https://doi.org/10.1016/j.jnca.2012.12.003
https://doi.org/10.1016/j.jnca.2012.12.003
https://doi.org/10.1007/s11227-015-1558-x
https://doi.org/10.1007/s11227-015-1558-x
https://doi.org/10.1007/s11227-015-1558-x
https://doi.org/10.1137/0137041
https://doi.org/10.1137/0137041
https://doi.org/10.1137/0137041
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1007/978-3-319-04483-5_14
https://doi.org/10.1007/978-3-319-04483-5_14
https://doi.org/10.1007/978-3-319-04483-5_14
https://doi.org/10.1007/978-3-319-04483-5_14
https://doi.org/10.3844/jcssp.2018.376.395
https://doi.org/10.3844/jcssp.2018.376.395
https://doi.org/10.3844/jcssp.2018.376.395
https://doi.org/10.3844/jcssp.2018.376.395
http://10.1049/iet-wss.2018.5116
http://10.1049/iet-wss.2018.5116
http://10.1049/iet-wss.2018.5116
http://www.omnetpp.org
http://www.omnetpp.org
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.2528/PIERB08122303
https://doi.org/10.2528/PIERB08122303
https://doi.org/10.2528/PIERB08122303
https://www.societyofrobots.com/mechanics_energy.shtml
https://www.societyofrobots.com/mechanics_energy.shtml

