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ABSTRACT
Earlier works on spatial prediction issue often assume that the spatial data are realization of Gaussian random field. However,
this assumption is not applicable to the skewed and kurtosis distributed data. The closed skew normal distribution has been used
in these circumstances. As another alternative, we apply generalized skew Laplace distributions for defining a skew and heavy
tailed random field for Bayesian prediction. Simulation study and a real problem are then applied to evaluate the performance
of this model.
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1. INTRODUCTION

Spatial prediction is an important subject in statistical analysis of environmental data which are often spatially correlated. In such cases it
is supposed that data come from a Gaussian random field (RF). When spatial data are non-Gaussian but a Gaussian transformation for
them exist, Oliveira et al. [1], Oliveira and Ecker [2], Oliveira [3] propose spatial prediction for transformed RFs. However, normalizing
transformation is unknown in application and interpretation of the transformed data is also more difficult than original data [4,5]. When
distribution of data has an appropriate number of similarities with normal distribution but is asymmetric, Kim andMallick [6] used a skew
Gaussian (SG) RF. Hosseini et al. [7,8] made inference on spatial generalized linear mixed models (SGLMMs) with SG latent variables.
Because of some shortage in SG distribution such as nonclosing under conditioning, Dominguez-Molina et al. [9] defined multivariate
closed skew normal (CSN) distribution. Karimi and Mohammadzadeh [10,11] and Karimi et al. [12] used CSN RF for Bayesian spatial
prediction, Bayesian spatial regression and inversion of seismic data. Hosseini and Mohammadzadeh [13] have done Bayesian prediction
for SGLMM with CSG latent variables. However, CSN random variables are not appropriate for modeling data with heavy tails. Since t-
distribution is an applicable distribution to real data with heavy tails, Røislien and Omre [14] defined a t-distributed RF, but this RF could
not be suitable for modeling the skew data. An appropriate choice for modeling skew and heavy tailed data which is well defined for RF
and has some similar characteristics with Gaussian field is multivariate generalized asymmetric Laplace (GAL) distribution introduced
by Kozubowski et al. [15]. In this paper, we have applied multivariate GAL distributions for defining the skew and heavy tail RFs. The
Bayesian predictions are then achieved by using this RF. A simulation study is performed to check the validity of themodel and the proposed
prediction method is used on an environmental data set.

A review on the multivariate GAL distribution is presented in Section 2. As in Section 3, the GAL RF is defined, the Bayesian spatial
prediction has been considered by GAL RF in Section 4. A simulation study is discussed in Section 5 followed by application of the GAL
RF to environmental real data in Section 6.
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2. MULTIVARIATE GAL RANDOM VARIABLE

In this section, we review the definition and basic setup of the multivariate GAL distribution introduced by [15].

Definition 2.1. Multivariate GAL law. A continuous p-dimensional random vector X has a GAL distribution, denoted by X ∼
GALp

(
𝝁,𝛴, q

)
, if its characteristic function at t ∈ Rp is

𝜙 (t) =
(

1
1 + 1

2 tT𝛴t − i tT𝝁

)q

(1)

where the location 𝝁 ∈ Rp, nonnegative definite dispersion p×pmatrix𝛴 and extension q > 0 are its parameters, and T denotes the matrix
transpose. When q = 1, we deal with asymmetric Laplace (AL) distribution, denoted by X ∼ ALp (𝝁,𝛴). By [15], “The significance of AL
distribution is partially due to the fact that these arise rather naturally as the only distributional limits for (appropriately normalized) random
sums

X1 + … + XNg (2)

of independent and identically random vector Xi with finite secondmoments as g converges to zero, where the integer-valued random variable Ng
is independent of {Xi} and has a Geometric distribution with mean 1

g . Sums similar to (2) frequently appear in many applied problems of fields
such as Biology, Economics, Insurance mathematics, Reliability and other fields (Kalashnikov [16]; Klebanov et al. [17]). Thus, AL distributions
have a wide variety of applications (Kotz et al. [18]). The AL distributions play an analogous role among the heavy tailed Geometric stable laws
approximating sums (2) without the restriction of finite second moment [17]. From amongst the stable laws, Gaussian distributions have finite
moments of all orders, and their theory is elegant and straight forward. However, in spite of finiteness of moments, their tails are substantially
longer than those of the Gaussian laws. This, coupled with the fact that they allow for asymmetry, makes them more flexible in modeling heavy
tailed and asymmetrical data.”

If matrix Σ is positive-definite, the distribution is truly p-dimensional and has a probability density function of the following form:

fX (x) = 2e𝝁T𝛴−1
x

(2𝜋)
p
2 Γ

(
q
)
|𝛴|

1
2

(
Q(x)

Ψ
(
𝛴, 𝝁

)
)q− p

2

K
q− p

2
(Q (x,𝛴)Ψ (𝝁,𝛴)) , (3)

whereKu (u) is the modified Bessel function or Bessel function of type 3 with index u,Q (x,𝛴) = √xTΣ−1x andΨ (𝝁,𝛴) = √2 + 𝝁T𝛴−1𝝁.

We have the following representation for multivariate GAL random variable

X = 𝝁G +√GN, (4)

where G has a standard Gamma distribution with shape parameter q and N ∼ Np (0, 𝚺), showing that GAL distributions are location-
scale mixtures of normal distributions. By Equation (4), this distribution has some similarities with normal distribution. Therefore, it is
appropriate to modeling data which has some similar characteristics with Gaussian data but are skew and heavy tailed. The stochastic
representation (4) leads to many further properties of GAL random vectors, including moments, marginal, conditional distributions and
linear transformations (Kozubowski et al. [15]). Here, we only review some of useful results for our work.

If X ∼ GALp
(
𝝁,𝛴, q

)
then

E (X) = 𝝁 q (5)

Cov (X) = q
(
𝛴 + 𝝁𝝁T) (6)

If A be a real matrix l × p. Then,

AX ∼ GALl
(
A𝝁,A𝛴AT, q

)
(7)

Also, letX ∼ GALp
(
𝝁,𝛴, q

)
and consider the partitionXT =

(
XT
1 ,XT

2
)
with dim (X1) = p1, dim (X2) = p2 = p−p1 and the corresponding

partition of the parameters (𝝁, 𝚺). Then

X1 ∼ GALp1
(
𝝁1, 𝚺11, q

)
(8)
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If q = 1, the conditional distribution of X2 given X1 = x1 is the generalized p2 dimensional hyperbolic distribution Hp2 (λ, α, β, δ,m, Δ). By
Kotz et al. [18], for conditional mean and variance we have the following results:

E
(
X2|X1 = x1

)
= 𝚺21𝚺−111 x1 +

(
𝛍2 − 𝚺21𝚺−111 𝛍1

) Q (x1, 𝚺11)
Ψ (𝝁1, 𝚺11)

R
1− p1

2
(Ψ (𝝁1, 𝚺11)Q (x1, 𝚺11)) (9)

Var
(
X2|X1 = x1

)
= Q (x1, 𝚺11)
Ψ (𝛍1, 𝚺11)

(
𝚺22 − 𝚺21𝚺−111 𝚺12

)
R
1− p1

2
(Ψ (𝛍1, 𝚺11)Q (x1, 𝚺11))

+
(
𝛍2 − 𝚺21𝚺−111 𝛍1

) (
𝛍2 − 𝚺21𝚺−111 𝛍1

)T (Q (x1, 𝚺11)
Ψ (𝛍1, 𝚺11)

)2

G
(
x1, 𝛍1, 𝚺11, p1

)
(10)

where R𝜁 (x) =
K𝜁+1(x)
K𝜁(x)

and

G
(
x1, 𝛍1, 𝚺11, p1

)
= R

1− p1
2
(Ψ (𝛍1, 𝚺11)Q (x1, 𝚺11))R2− p1

2
(Ψ (𝛍1, 𝚺11)Q (x1, 𝚺11)) −

⎛⎜⎜⎝R1−
p1
2

(Ψ (𝛍1, 𝚺11)Q (x1, 𝚺11))
⎞⎟⎟⎠
2

3. SPATIAL MODEL

First of all, we use the following definition for GAL RF.

Definition 3.1. A RF 𝒵 = {Z (s) ∶ s ∈ D ⊆ Rd} is termed a GAL RF if Z = (Z (s1) , … ,Z(sn)) ∼ GALn
(
𝝁, 1qC − 𝝁𝝁T, q

)
for all configu-

rations (s1, … , sn) ∈ D × … × D and all n ∈ N .

The parameters in this RF has been determined

Let Z (s1) , … ,Z(sn) be the observations from a GAL RF {Z (s) ∶ s ∈ D ⊆ Rd} at n locations (s1, … , sn). For predicting Z (s0) at new location

s0, based on the observations Z = (Z (s1) , … ,Z(sn)), we define Z∗ =
(
Z (s0) ,ZT)T. Then we have Z∗ ∼ GALn+1

(
F∗𝛽, 𝚺∗, q

)
where

𝚺∗ = C∗

q
− F∗ββTF∗T, f (s0) =

(
f1 (s0) , … , fr (s0)

)T, F∗ = (
f (s0) , FT

)T, F = [fj (si)]n×r are known regression functions (covariates), 𝛽 is the

regression coefficients, C∗ =
(
C00 cT
c C

)
is spatial covariance matrix for all observations and prediction, c = (C0i)n×1, C = Var (Z) and

Cij = Cov
(
Z (si) ,Z

(
sj
))
.

Note 3.1. In some works such as Karimi and Mohammadzadeh [10] that have used CSN models, they used C∗ as scale matrix of Z∗. This
choice does not consider spatial structure properly, since Var

(
Z∗

)
≠ C∗. Also, there is no another choice for parameters in CSN model

which results in Var
(
Z∗

)
= C∗. Here for GAL model, we consider C∗

q
− F∗ββTF∗T as the scale matrix of Z∗ that by Equation (6) results in

Var
(
Z∗

)
= C∗. In Section 5 we will show the efficiency of choosing C∗

q
− F∗ββTF∗T over C∗ through a simulation study, too.

Now, the best predictor of Z (s0) based on the square error loss function L
(
Ẑ (s0) ,Z (s0)

)
= E [

(
Ẑ (s0) − Z (s0)

)2] is given by E(Z (s0) |Z),
that can be computed by conditional distribution of Z (s0) |Z. In applications, the regression coefficients and spatial correlation structure
are unknown and they have to be estimated. For parameter estimation we can only use the observation vector Z which has n-dimensional
GAL distribution, Z ∼ GALn

(
F𝛽, C

q
− Fβ βTFT, q

)
. We assume a stationary GAL RF with stationary spatial covariance function C (h) =

𝜎2𝜌 (h,𝜃), where 𝜌 (.,𝜃) is a known correlation function, 𝜃 is spatial correlation parameter and 𝜎2 is variance of the RF. Let 𝜼 =
(
𝛃T , 𝜎2,𝜃

)T
and choose the priors 𝛃 ∼ Nr (𝛃0, 𝚺0), 𝜎2 ∼ IG

(
𝜑, ζ

)
and also suitable improper prior 𝜋 (𝜃) = 1, then the posterior density of 𝜼 is given by

𝜋
(
𝜼|Z

)
∝ f(Z|𝜼)𝜙r (𝛽, 𝛃0, 𝚺0)

𝜁𝜑
Γ (𝜑)

( 1
𝜎2

)𝜑+1
e
−𝜁
2𝜍2 𝜋 (𝜃) . (11)

This posterior density has a complicated form. Therefore we use Markov chain Monte Carlo (MCMC) method to generate sample from the
posterior distribution of the parameters. To use Gibbs sampler, the derived full conditional distributions are given by

𝜋
(
𝛽|Z, 𝜎2,𝜃

)
∝ f(Z|𝜼)𝜙r (𝛽, 𝛃0, 𝚺0) (12)

𝜋
(
𝜎2|Z, 𝛽,𝜃

)
∝ f

(
Z|𝜼

) 𝜁𝜑
Γ (𝜑)

( 1
𝜎2

)𝜑+1
e
−𝜁
2𝜍2 (13)
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𝜋
(
𝜃|Z, 𝛽, 𝜎2) ∝ f

(
Z|𝜼

)
(14)

These distributions do not have a closed form solution. For generating data from these densities, we use Metropolis–Hastings (MH) algo-
rithms in Gibbs sampler. The proposal distribution g𝛽

(
y
)
∶ Nr

(
𝛃, diag

(
b2
))

is used for (12), where b is a suitable number that con-
trols efficiency in MH sampling. The proposal distributions for (13) and (14) are g𝜍2

(
y
)
∶ Gamma

(𝛼0, 1
𝜍2

)
and gθ

(
y
)
= 1, respectively.

After generating a random sample 𝜼1, … , 𝜼N∗ with size N∗ of the parameter 𝜼 =
(
𝛃T , 𝜎2,𝜃

)T, in the second stage if q = 1 we compute
E
(
Z (s0) |Z, 𝛈i

)
then

E
(
Z (s0) |Z

)
= 1

N∗ ∑
N∗

i=1
E
(
Z (s0) |Z, ηi

)
. (15)

The conditional expectations in summation of Equation (15) is provided in following theorem.

Theorem 4.1. Suppose Z∗ ∼ GALn+1
(
F∗𝛽, 𝚺∗, 1

)
, then

E
(
Z (s0) |Z, 𝜼

)
= lT𝛤−1Z +

(
fT (s0) − lT𝛤−1F

)
𝛽 Q (Z, 𝚪)
Ψ (F𝛃, 𝚪)R1− n

2
(ψ (F𝛃, 𝚪)Q (Z, 𝚪))

where 𝚪 = C − F𝛃𝛃TFT and l = c − F𝛃𝛃TfT (s0).

Proof. Let Z∗ =
(
Z (s0) ,ZT)T ∼ GALn+1

(
F∗𝛽, 𝚺∗, q

)
. We use Equation (9) in order to compute E

(
Z (s0) |Z, 𝜼

)
. From F∗𝛽 =

(
f T (s0)
F

)
𝛽

it can be easily concluded that 𝛍2 = f T (s0) 𝛽 and 𝝁1 = F𝛃. We only need to find suitable matrices 𝚺12 and 𝚺11. So we have to partition the
matrix 𝚺∗.

𝚺∗ = C∗

q
− F∗𝛃𝛃TF∗T =

(
C00 cT
c C

)
−
(
f T (s0)
F

)
𝛽𝛃T

(
f (s0) , FT

)
=
(

C00 − f T (s0) 𝛽𝛃Tf (s0) cT − f T (s0) 𝛽𝛃TFT

c − F𝛽𝛃Tf (s0) C − F𝛽𝛃TFT

)

Therefore, 𝚺12 = c − F𝛽𝛃Tf (s0) and 𝚺11 = C − F𝛽𝛃TFT that complete proof.

For computing variance of prediction, Var
(
Z (s0) |Z, 𝜼

)
, we use Equation (10) with the same replacements of 𝛍1 = F𝛃, 𝛍2 = f T (s0) 𝛽,

𝚺12 = c − F𝛽𝛃Tf (s0), 𝚺11 = C − F𝛽𝛃TFT. There is no necessity for prediction in one location at a fix stage. By using Theorem 4.1, we can
predict in more than two locations. If q ≠ 1 we generate samples Z1, … ,ZM from Z (s0) |Z, 𝛈i for all i = 1, … ,N∗ for generated parameters
𝜼1, … , 𝜼N∗ , respectively. Since for q ≠ 1, Z (s0) |Z, 𝛈i does not have a closed form, we use MH algorithm in order to generate a sample, then

E
(
Z (s0) |Z

)
= 1

N∗ ∑
N∗

i=1
E
(
Z (s0) |Z, 𝛈i

)
= 1

N∗ ∑
N∗

i=1

1
Ni

∑Ni

j=1
Zij (16)

where Zij is the jth sample generated from distribution of Z (s0) |Z, 𝛈i. Here, we use proposal distribution gZ0

(
y
)
∶ N

(
Z0, b21

)
in MH

algorithm.

4. SIMULATION STUDY

In order to study the performance of GAL model, a simulation study is performed with calculations done in R. To generate, say 50 real-
izations, from Z (.) , we used a stationary GAL RF with exponential covariance function C

(
|h|

)
= 𝜎2 exp

(
−|h|/𝜃

)
on a regular lattice

500 × 500 with parameters 𝛽 = (4, 7), 𝜎2 = 1, 𝜃 = 4. Other parameters are β0 = (5, 6), 𝚺0 = diag (2), 𝜁 = 2, 𝜑 = 1, b = 2 and 𝛼0 = 2. The
histogram and P-P plot of simulated data given in Figure 1, shows that data are skewed and not Gaussian. The parameters are firstly esti-
mated by using Gibbs sampler with 5000 iteration. Parameter estimates are 𝛽̂ = (3.84, 7.32), ̂𝜎2 = 1.76 and ̂𝜃 = 4.11. Plots of convergence
for mean of simulated parameters given in Figure 2, show that the Bayes estimators have converged to the real parameters. In the next step,
the sample was divided at random into an estimation set of size n and a validation set of sizem. We choosem = 10 and in this 10 random
selected locations (test set), prediction is done by the other 40 locations (training data set).

Comparing the real and estimated values at these locations given in Table 1, shows plausible results. The used sample size N∗ in (19) is 60.
From Table 1, we conclude that the estimation for q = 1 and 𝚺∗ is more precise than q ≠ 1 and C∗. To compare the performance of four
used methods in Table 1, the leave-one-out method is used. In this method, we choose m = 1 and repeat this process n times for n − 1
remaining observations. The prediction mean of square errors (PREMS) are computed by

PREMS
(
Ẑl
)
=
∑

i≠l

(
Ẑl − Zi

)2
n , (17)
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Figure 1 Histogram and normal Q-Q plot for simulated data show basic similarities
with generalized asymmetric Laplace (GAL) distribution with respect to skewness, heavy
tail and non-Gaussian.

Figure 2 Plot of convergence for parameters.

and are illustrated in Table 2, for all 4 methods. From the results in Table 2, we observe that the best results are derived by applying 𝚺∗ for
q = 1. As we expected, the estimation in GAL model for q = 1 has less error than GAL model for q ≠ 1, since for q = 1, the conditional
expectation E

(
Z (s0) |Z, 𝜼

)
has closed form but for q ≠ 1 this conditional expectation has to be computed by MCMC algorithms. Also, this

comes from Table 2 that more precise predictions are given by using 𝚺∗ instead of C∗. As is mentioned in Note 1, 𝚺∗ properly considers the
spatial covariance structure while C∗ does not completely consider this structure.

In order to have a knowledge about sensitivity of prediction with respect to the estimated parameters, we did predicted Z by assuming
parameters, 𝛽e = (3, 9), 𝜎2

e = 2.5 and 𝜃e = 2.5 which have remarkable difference with real parameters. Results show that this prediction
has a very weak sensitivity to the value of estimated parameters. However, when the difference in assumed parameters and their real values
is increasing, the required sample size N∗ in (16) has to increase in order to have a good prediction. Sensitivity of prediction on the values
of q is very negligible, somewhat conditional expectation in Theorem 4.1 is a very appropriate approximation for the case q ≠ 1.

5. APPLICATION TO REAL DATA

In this section, we analyze a real data set of 45 metals in 811 locations at a region near to Darab city of Iran. The histogram and Normal
Q-Q plot of all metals show the skewness, heavy tail and non-Gaussian behavior of almost all data. However due to limited space we do notPdf_Folio:80
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Table 1 Real values in 10 locations and their predictions (prediction error) for different models.

Real Value q = 1 Real Value q ≠ 1

Σ∗ C∗ Σ∗ C∗

30.54 30.50 (1.07) 30.59 (1.13) 183.33 183.34 (0.71) 183.36 (1.40)
14.40 14.25 (0.72) 14.60 (0.96) 34.11 33.99 (1.90) 33.97 (1.81)
15.30 15.34 (0.11) 16.10 (0.74) 16.14 16.30 (2.13) 15.8 (2.30)
57.81 57.80 (1.12) 57.42 (1.06) 17.52 17.91 (1.17) 17.86 (0.90)
65.02 64.98 (0.36) 65.70 (0.60) 34.08 33.92 (0.04) 35.10 (0.11)
19.60 19.54 (0.85) 20.50 (0.76) 9.47 9.63 (1.86) 9.94 (1.64)
4.41 4.23 (0.21) 4.90(0.50) 84.23 84.29 (2.09) 84.72 (1.83)
5.13 5.18 (1.00) 5.63 (1.27) 15.16 15.63 (0.14) 15.87 (0.27)
58.71 58.46 (.06) 59.40 (0.49) 66.74 66.71 (1.91) 67.13 (2.13)
3.71 3.77 (0.13) 3.80 (0.09) 64.98 65.42 (2.47) 65.48 (2.58)

Table 2 The prediction mean of square errors (PREMS) in simulated generalized
asymmetric Laplace (GAL) model for different models.

Model q = 1 q ≠ 1

Method Σ∗ C∗ Σ∗ C∗

PREMS
(
Ẑ
)

0.374 0.560 0.547 0.810

Figure 3 Histogram and normal Q-Q plot for metals Na and Mg.

include all diagrams. The Histogram and Q-Q plot of two metals Sodium (Na) and Magnesium (Mg) have been shown in Figures 3. These
two metals are selected because of their similarities to the GAL distribution. Figure 3, shows that GAL density functions has a good fitness
to these data, where the parameters are estimated by using the maximum likelihood estimation method. Normal Q-Q plot of data shows
that data are non-Gaussian. Also, the small p-values of Kolmogorov–Smirnov test and Shapiro–Wilk test for both two data set confirm that
data are not Gaussian. In remainder of this section, we only consider Mg data. The scatter plots of data with respect to its coordinates given
in Figure 4, show existence of some outliers in data, which we have ignored them for the time being. The scatter plots of 102 remained data
show no trend in data.Pdf_Folio:81
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We use 100 observations as the training set and 2 observations as the test set. Although we have used spatial covariance function throughout
the paper, the variogram function is used for selecting a valid model. This comes from the fact that the variogram is more precise in model
selection [19]. The empirical variogram of data is plotted in Figure 5.

The isotropic exponential model 𝛾
(
‖h‖

)
= 𝜏2+𝜎2

(
1− exp {− ‖h‖

𝜃 }
)
has been fitted to the empirical variogram. The variogram parameters

are estimated by using package geoR. The estimates 𝜎2 = 3, 𝜃 = 12521, 𝜏2 = 4.5, p = 7.5 are used as starting values in MH algorithm.
The Gibbs sampler with 5000 iterations in order to estimate parameters is also applied. Final estimated parameters by MCMC method are
𝛽̂ = (7.2, 7.5), 𝜎2 = 3.67 and ̂𝜃 = 11719. In order to compare performance of GAL model with a full Gaussian model, we predicted in a
test location by two methods. Table 3 shows surprising results of this comparison.

Figure 4 Panels a1 and a2 are scatter plots of Mg versus coordinates of locations and panels b1
and b2 are scatter plots of data with removed outliers.

Figure 5 Empirical variogram and fitted isotropic
exponential model.

Pdf_Folio:82
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Table 3 Comparison between Kriging and generalized asymmetric Laplace (GAL).

Predicted Value (Standard Deviation)

Real Value Kriging GAL

Σ∗ C∗ Σ∗ C∗

15.29 15.52, NaN 16.63 (1.86) 15.29 (1.4) 16.21 (3.4)
18.05 19.45, NaN 17.69 (1.87) 17.93 (1.3) 14.74 (2.8)
NaN, refers to not a number.

Figure 6 3D plot of surface prediction based on (left).

This comparison shows the efficiency of GAL model with respect to Kriging. It is remarkable that using 𝚺∗ insteadof C∗ has more precise
in GAL model. However, as expected, there is no benefit in using 𝚺∗ instead of C∗ for Gaussian model. The negative estimate of predic-
tion variance in Gaussian model based on 𝚺∗ shows that this model is not basically well defined. Prediction surfaces in Figure 6 show no
smoothness for predictions based on C∗, while prediction based on 𝚺∗, is more smooth.

Contour graph of surface prediction is shown in Figure 7. Because of having an erratic shape of surface prediction based on C∗, the contour
graph only has plotted for the left panel of Figure 6. From Figure 7, we can see spatial structure in predicted value of Mg in whole of region.
This point comes from this fact that contour lines with near numbers are in a neighborhood. Surface of prediction error in Figure 8, shows
less prediction error for inner locations. This result has a logical justification in statistical point of view. There is more information for
prediction in an inner location than a marginal location by considering the number of observations that have basic rule in prediction for
mentioned location.

6. DISCUSSION AND CONCLUDING REMARKS

In order to define a RF in terms of the multivariate skew distributions, we propose the multivariate GAL distribution which is shown to be
an appropriate choice for modeling skew and heavy tailed data. A Bayesian approach was then used for spatial interpolation. The simulation
study and the analysis of a real data set show the reliable performance of this model. The proposed RF can be also used for many spatial
purposes such as spatial regression and spatial generalized mixed linear models which have been previously studied by SN RF and CSN RF
(see, e.g., Karimi and Mohammadzadeh [11] and Hosseini and Mohammadzadeh [13]).
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Figure 7 Contour plot of surface for predictions based on.

Figure 8 3D and contour plot of surface for prediction errors.
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