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ABSTRACT 

The Chinese government has implemented a set of containment measures to control the spread of COVID-19 

pandemic. The epidemic restrictions caused large reductions in human mobility and economic activities, which 

influenced the air quality conditions as well. This study investigates the short-term impact of pandemic restrictions on 

air quality based on the daily city-level air quality data of 31 provincial capitals and municipalities in mainland China. 

In the baseline estimation, a linear regression model with fixed effects is employed to capture the pollution 

improvement effects. The heterogeneity analysis is examined as an extension of the central argument. The results 

indicate that epidemic restrictions significantly improved the air quality in sample cities during the government 

response period. Besides, the magnitudes of pollution improvement are greater in cities with larger population size, 

higher regional GDP, and more industrial activities. The findings highlight the close relationship between human 

activities and air pollution conditions. 
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1. INTRODUCTION 

As a global health emergency event, the outbreak of 

COVID-19 has caused unexpected shocks to the 

economy and society. The governments of most 

countries in the world have implemented containment 

measures on business operations and people's mobility 

to control the spread of this epidemic. These 

comprehensive measures aiming to keep social 

distancing have also changed human behaviors, which 

lead to the change of air quality.  

The reduction in economic activities caused by 

COVID-19 provides a unique opportunity for 

investigating the impact of human activity on air quality 

during unexpected events. This study estimates the 

short-term impact of pandemic restrictions on air quality 

change based on the panel data of 31 provincial capitals 

and municipalities in mainland China. The daily 

city-level air pollution data and matched meteorological 

condition data are explored in the empirical analysis. 

To capture the whole picture of air quality change 

related to COVID-19, this study first adopted a linear 

regression model with fixed effects to capture the impact 

of containment measures on air quality. Then, the 

robustness of research findings was checked by 

accounting for the potential winter heating effect and 

epicenter spillover effect using limited samples. Finally, 

a heterogeneity analysis was carried out to explore the 

underlying channels of the influence mechanism. 

This study contributes to the emerging literature on 

the multidimensional effects of COVID-19 in the view 

of its environmental aspect. The findings show that 

human activities indeed have a huge impact on air 

quality circumstances, and the magnitudes of air quality 

improvement vary with the economic structure and 

population of different cities. 

2. DATA COLLECTION 

2.1. Study Regions 

The sample regions are 31 cities scattered around 

mainland China, including 27 provincial capitals and 4 

municipalities. According to the latest data from the 

2019 China City Statistical Yearbook, the population 

living in the sample cities accounts for 19.12% of the 

national population, and 33.17% of national gross 
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domestic product (current price) are concentrated in 

these regions. 

2.2. Data Collection 

2.2.1. Independent Variable: Air Quality 

The station monitoring air quality data obtained from 

the Ministry of Ecology and Environment of China. The 

dataset includes daily city-level readings of the Air 

quality index (AQI), NO2, PM2.5, PM10, CO, SO2 and O3 

concentrations. Human activities are major sources of 

ambient air pollution. Emission from road traffic, 

industrial operation and residential using all contribute 

to the pollution. 

2.2.2. Dependent Variable: Containment 

Measures 

This study uses the announcement date of level I 

emergency response, which is promulgated by the 

provincial government, as the treatment date to the 

corresponding provincial capitals. The dates of this 

government action are collected from policy reports and 

news media. In the context of level I emergency 

response, the local government can deploy epidemic 

control measures such as restrict public gathering 

activities, shutdown the traffic channel to epidemic 

center. 

2.2.3. Control Variable: Meteorological 

Condition 

The concentration of air pollution is jointly 

influenced by the meteorological condition and emission 

level. Therefore, it is necessary to add weather factors as 

control variables. Meteorological data are collected by 

Web scraping from 2345Tianqi website, which provides 

historical city-level meteorological data. Based on 

previous research and data availability, this study 

includes daily city-level maximum and minimum 

temperatures, maximum wind speed, and record of snow 

or rain as controls, to eliminate the confounding factor 

of weather conditions to air quality change. 

3. EMPIRICAL STRATEGY 

3.1. Baseline Model 

Most of the existing literature use lockdown policy 

as the treatment, but the corresponding dates are not 

always the same in different papers. Actually, the cities 

without a formal lockdown policy implemented other 

similar counter-virus measures [1], which affected 

people’s daily life and industrial operation as well. This 

concern was also pointed out in the research of Liu et al. 

(2020)[2], they indicated that the unlocked cities may be 

affected by the locked cities due to the chain effects. 

Therefore, this study uses the level I emergency 

response announcement as the treatment variable, which 

has a clear treated date. The baseline model of the 

log-linear specification is adopted as below: 

𝑙𝑛(𝐴𝑖𝑟𝑖,𝑡) = 𝛼0 + 𝛽𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖,𝑡 + 𝑊𝑖,𝑡 +
𝜂𝑖 + 𝜇𝑡+𝜀𝑖,𝑡                          (1) 

where i denotes the city and t denotes the date. The 

dependent variable 𝑙𝑛(𝐴𝑖𝑟𝑖,𝑡) is a measure of air quality 

in city i on date t, which equals the logarithms of daily 

air quality measures. The treatment dummy 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖,𝑡  denotes whether the level I emergency 

response is announced in city i on date t, which takes 

value 1 during the response period and 0 otherwise. 𝑊𝑖,𝑡 

is a vector of control variables, which denotes daily 

weather conditions for city i on date t. Both city fixed 

effects 𝜂𝑖 and time fixed effects 𝜇𝑡 are included in the 

regression model. 𝜀𝑖,𝑡  is the random error term. The 

primary interest coefficient β measures the impact of 

COVID-19 restrictions on air quality. 

3.2. Heterogeneity Analysis 

This section investigates whether the effect of 

COVID-19 containment measures on air quality varies 

among different cities according to their socio-economic 

characteristics of the cities. The following grouped 

regression model is fitted to examine the heterogenous 

effects:  

𝑙𝑛(𝐴𝑖𝑟 𝑖∗,𝑡) = 𝛼0 + 𝛽𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖∗,𝑡 +

𝑊 𝑖∗,𝑡 + 𝜂 𝑖∗ + 𝜇𝑡+𝜀 𝑖∗,𝑡  

where 

 𝑖 ∗= {𝑖𝐻, 𝑖𝐿}, 𝑖𝐻 ∈ 𝐼𝐻 =
{𝐴𝑏𝑜𝑣𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝}, 𝑖𝐿 ∈ 𝐼𝐿 =
{𝐵𝑒𝑙𝑜𝑤 𝑚𝑒𝑑𝑖𝑎𝑛 𝑔𝑟𝑜𝑢𝑝}                  

(2) 

The city-level characteristics used for analysis are 

population, regional GDP, regional GDP per capita, and 

the industrial structure of the primary, secondary and 

tertiary industries. Besides, the sample cities are split 

into two groups for separate regression, denoted the 

High group (H) and the Low group (L) based on the 

median value of the examined factors. The time window 

and the description of other variables are the same as the 

baseline model.  

4. EMPIRICAL RESULTS 

4.1. Descriptive Statistics 

The empirical analysis used comprehensive data at a 

day-by-city level from January 1st to June 30th in 2020. 

This study merged the meteorological data into the air 

quality dataset using city and date to identify the unique 

observations. In total, the final dataset consists of 5642 

observations (n=31, T=182). To verify the percentage 

Advances in Social Science, Education and Humanities Research, volume 517

603



change of air quality associated with the COVID-19 

containment measures, this study uses the logarithm 

form of independent variables AQI, NO2, SO2, PM2.5, 

PM10, CO and O3 in regression. The summary statistics 

of the main variables are shown in Table 1.  

Table 1. Summary statistics 

Variable Obs. Mean 
Std. 

Dev. 
Max Min P25 P75 

AQI 5642 77.54 44.21 500 18 49 92 

NO2 5642 31.86 16.30 119 3 20 40 

SO2 5642 9.87 7.10 74 2 6 12 

PM25 5642 40.49 38.43 906 3 19 46 

PM10 5642 67.13 48.34 974 6 35 85 

CO 5642 0.79 0.40 4.70 0.1 0.6 0.9 

O3 5642 96.68 41.78 283 4 69 119 

MaxTemp 5642 17.86 10.73 40 -17 10 27 

MinTemp 5642 8.76 10.70 28 -29 2 17 

Wind 5642 2.24 0.81 6 1 2 3 

Sn_Ra 5642 0.17 0.36 1 0 0 0 

Response  5642 0.24 0.43 1 0 0 0 

4.2. Baseline Regression Results 

In this section, the baseline model is estimated to 

capture the air quality changes associated with the 

announcement of level I emergency response in sample 

cities. AQI and the other six pollutants in turn serve as 

independent variables. Weather conditions are included 

to control for the meteorological confounders to air 

quality. City fixed effects and month fixed effects are 

included to account for the temporal and regional 

variations. Table 2 presents the regression results of the 

baseline models. 

The independent variables from column (1) to 

column (7) are the logarithm of AQI, NO2, SO2, PM2.5, 

PM10, CO and O3. The most primary explanatory 

variable Response is equal to 1 during the period of level 

I emergency response period and 0 otherwise. Except 

for O3 and SO2, the coefficients of AQI and other four 

pollutants are all significantly negative, which suggests 

that, in 31 provincial capitals and municipalities, the air 

quality during the COVID-19 restriction period has been 

improved compared with other sample periods. To be 

specific, the value of AQI and the concentration of NO2, 

PM2.5, PM10 and CO decrease by 10.6%, 37.6%, 9.2%, 

15.4% and 9.9%, respectively. The estimations for AQI, 

NO2, SO2, PM10 and CO are statistically significant at 

1% level, while the estimation of PM2.5 is statistically 

significant at 5% level.  

The coefficient of column (3), which SO2 acts as the 

independent variable, is also a negative value but not 

statistically significant. Generally, the largest sources of 

SO2 emissions are from fossil fuel combustion at power 

plants and other industrial facilities. It is worth noting 

that the livelihood fundamental industries such as 

coal-fired power plants and heating boilers, as well as 

certain heavy chemical industries that have some 

uninterruptible processes still continued operation 

during restriction time periods. This realistic context 

may lead to the weaker economic (lower reduction 

magnitude) and statistical significance (lower significant 

level) of SO2 compared with other air quality measure 

indicators. 

Table 2. The estimation results of baseline model 

Variables 

(1) (2) (3) (4) (5) (6) (7) 

ln (AQI) ln (NO2) ln (SO2) ln (PM2.5) ln (PM10) ln (CO) ln (O3) 

Response -0.106*** -0.376*** -0.040 -0.092** -0.154*** -0.099*** 0.224*** 

 (0.030) (0.048) (0.038) (0.035) (0.036) (0.026) (0.027) 

MaxTemp 0.021*** 0.024*** 0.028*** 0.010 0.033*** -0.001 0.050*** 

 (0.005) (0.003) (0.003) (0.006) (0.005) (0.004) (0.006) 

MinTemp -0.013* -0.018*** -0.029*** -0.007 -0.019** -0.000 -0.026*** 

 (0.007) (0.004) (0.006) (0.010) (0.009) (0.004) (0.008) 

Wind -0.112*** -0.279*** -0.136*** -0.218*** -0.095*** -0.163*** 0.014 

 (0.014) (0.018) (0.018) (0.025) (0.022) (0.018) (0.011) 

Sn_Ra -0.199*** 0.012 -0.129*** -0.169*** -0.260*** 0.012 -0.139*** 

 (0.022) (0.020) (0.015) (0.032) (0.027) (0.018) (0.027) 

Constant 4.280*** 3.760*** 2.197*** 3.848*** 3.871*** 0.078 3.743*** 

 (0.067) (0.057) (0.077) (0.078) (0.059) (0.070) (0.071) 

City FE YES YES YES YES YES YES YES 

Moth FE YES YES YES YES YES YES YES 

Observations 5,642 5,642 5,642 5,642 5,642 5,642 5,642 

R-squared 0.407 0.647 0.655 0.504 0.495 0.490 0.593 

Notes: Standard errors are clustered at the city level and reported below the coefficients. 

*** p<0.01, ** p<0.05, * p<0.1. 
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The coefficient of column (7) is significantly 

positive, which means that the concentration of O3 

during the government response period is much higher 

than the other sample time. It can be explained from the 

perspective of atmospheric chemistry that the level of 

precursor emissions was mainly responsible for the 

observed increase of O3 [3]. In addition, the change 

direction between NO2 and O3 are generally opposite. 

The R-squared values of the baseline model are about 

0.5 or a bit higher, which means that the adopted 

regression model is relatively fitted well with 

observations, and there are still some confounding 

factors that affect air quality. 

4.3. Robustness Checks 

To validate the robustness of baseline results, this 

study conducts two additional estimations using the 

limited panel sample. First, the time window is limited 

before the end date of winter heating. This analysis takes 

into account the possibility that air pollution decreased 

because of less emission from heating boilers after the 

winter seasons. The date 15th March 2020 is chosen to 

divide the whole period, that is, only uses the dataset 

before 15th March to fit the baseline model. Second, the 

epicenter Wuhan city is excluded from the original 

sample regions. The most severe lockdown implemented 

in Wuhan since January 23rd, during the lockdown 

period, human activities decreased to the lowest level. 

This analysis drops the observations in Wuhan to 

eliminate the potentially huge impact of the epicenter to 

reduce pollution spillover. The results are shown in 

Table 3. 

Panel A of Table 3 shows the results of winter 

heating check. The coefficients are similar to the 

baseline models with a slightly changed significance 

level. This finding means that the end of heating season 

has a little influence on certain pollutants. Panel B of 

Table 3 presents the results of epicenter spillover check, 

the coefficients and significance are very similar to the 

earlier benchmark results. This indicates that the impact 

of epidemic restrictions on air quality is not driven by 

the most severely attacked area, all sample cities 

experienced a reduction in air pollution during the 

response period. 

 

Table 3. The estimation results of robustness checks  

Variables 
(1) (2) (3) (4) (5) (6) (7) 

ln (AQI) ln (NO2) ln (SO2) ln (PM2.5) ln (PM10) ln (CO) ln (O3) 

Panel A limited sample-before the end of winter heating date with same cities 

ResponseA -0.061 -0.423*** -0.013 -0.020 -0.145*** -0.053* 0.328*** 

 (0.040) (0.048) (0.026) (0.049) (0.044) (0.031) (0.032) 

Observations 2,325 2,325 2,325 2,325 2,325 2,325 2,325 

R-squared 0.494 0.736 0.806 0.559 0.549 0.552 0.525 

Panel B limited sample-drop the epicenter city Wuhan with same time window 

ResponseB -0.112*** -0.380*** -0.061* -0.103*** -0.161*** -0.112*** 0.221*** 

 (0.031) (0.051) (0.034) (0.036) (0.038) (0.025) (0.030) 

Observations 5,460 5,460 5,460 5,460 5,460 5,460 5,460 

R-squared 0.406 0.651 0.661 0.507 0.497 0.496 0.591 

Weather C. YES YES YES YES YES YES YES 

City FE YES YES YES YES YES YES YES 

Moth FE YES YES YES YES YES YES YES 

Notes: Standard errors are clustered at the city level and reported below the coefficients. 

*** p<0.01, ** p<0.05, * p<0.1. 

 

 

 

 

Advances in Social Science, Education and Humanities Research, volume 517

605



4.4. Heterogeneity Analysis 

To test the heterogeneous effects of the air quality 

improvement in sample cities, this section examines the 

different reduction magnitudes according to city-level 

socio-economic characteristics. Figure 1 and Figure 2 

plot the grouped regression results of AQI and the other 

six pollutants, including the coefficient pairs and 

corresponding confidence intervals. Each row means a 

separate regression using a subsample. The short 

horizontal lines are confidence intervals. The diamond 

symbol denotes the High group while the circle symbol 

demotes the Low group. In Figure 1, three subgraphs 

from left to right separately split sample cities according 

to their population, regional GDP and regional GDP per 

capita. In Figure 2, three subgraphs from left to right 

divide sample cities according to their proportion of the 

primary industry, secondary industry, and tertiary 

industry in GDP.  

Three subgraphs in Figure 1 show that the sample 

cities with larger population size, higher regional GDP 

and higher regional GDP per capita experienced a more 

considerable decrease in air pollution due to the 

COVID-19 restrictions. The explanation may be that 

agglomerated economies usually have a higher level of 

energy consumption, accompanied by more 

concentrated economic activities. 

Three subgraphs in Figure 2 explore the 

heterogeneity of restriction impacts relevant to industrial 

structures in different cities. Based on the air quality 

indicator of AQI, these graphs show that the sample 

 
Figure 1 Heterogeneity analysis associated with population, GDP and GDP per capita. 

 

 

Figure 2 Heterogeneity analysis associated with industrial structures. 
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regions with higher proportions of primary industry and 

secondary industry experienced a larger air pollution 

decrease during the government response period, the 

improvement effects are relatively low in the sample 

cities with more developed tertiary industry. In addition, 

different heterogeneity pattern also exists between 

different type of air pollutants. 

5. CONCLUSION AND DISCUSSION 

The COVID-19 pandemic has caused a far-reaching 

impact on the global economy and society. After the 

outbreak, business activity, transport traffic, and 

industry operation have largely decreased due to the 

counter-virus measures. This paper examines the air 

quality change related to epidemic restrictions in the 

Chinese context.  

The research findings show that, in the short-term, 

the containment measures response to COVID-19 

caused an unexpected improvement of air quality. 

Besides, the air quality improvement impact is greater in 

regions with large populations, developed economies, 

and high levels of industrial activity. The limitation is 

that this study only includes weather data in the linear 

specification, which ignores the possible non-linear 

relationship between weather and air quality. 

Overall, this paper provides evidence of the 

unexpected air quality improvement associated with 

COVID-19 containment measures. The bulk of pollution 

reduction is attributed to decreased human travels and 

reduced industry operations relative to normal time. 

These findings highlight the close relationship between 

human activities and air pollution conditions. 
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