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1.  INTRODUCTION

Nowadays, with the development of technology, the Internet 
of Things (IoT) applications have become parts of our daily life. 
Consequently, the number of devices used in these applications 
will increase, leading to the creation of huge amounts of data. This 
data will be transferred to cloud computing for processing, and 
because the cloud is far from these devices, there will be a delay in 
the response. From here, it was necessary to find a new technology 
closer to the Internet of Things devices and overcome the problems 
in the cloud. So, Cisco proposed fog computing in 2012 [1], which 
placed between cloud computing and the IoT devices (end users). 
Fog computing is an emerging computing paradigm that extends 
cloud computing from the core of the network to the edge of the 
network. It aims to bring computation, storage and networking ser-
vices close to users [2].

Internet of Things applications is connecting every physical object 
like cameras, vehicles, sensors, wearables, and home appliances [3]. 
Many applications require low latency, mobility, location aware-
ness, high response time. Although many researchers have devel-
oped algorithms to improve the performance of cloud computing 
about the IoT applications, there are still many challenges regard-
ing the requirements of the IoT applications and mobile services 
such as low latency, high response time, cost, support for mobility 
and geo-distributions [4]. They can be addressed these challenges 
by fog computing [5]. Kazem [6] presents a comparison between 

fog and cloud computing according to their latency and response 
time. As a result of the comparison, fog computing always performs 
better than cloud computing to meet the demands of time-sensitive 
applications by reducing the delay and response time. Through the 
prediction of Cisco, there are more than 50 billion devices that will 
be connected to the internet by 2020. Also, the data produced by 
users, devices and their interactions will reach 500 zettabytes [7].

The general fog computing architecture can be divided into three 
layers, as shown in Figure 1. The first is IoT devices layer that 
includes different types of devices, such as smartphones, smart 
vehicles, tablet computers, and various smart home devices. This 
layer can sense the surrounding environment and collect data 
through sensor devices, and communicate with the fog computing 
layer through 3G, 4G, 5G, WiFi, and Bluetooth technologies. The 
second is the middle layer is the fog computing layer that includes 
routers, gateways, workstations, switches, access points. This layer 
has the capability of computing, networking, and storage. Finally, 
the upper layer is cloud computing that includes cloud servers with 
high computation power [2,8–10].

Changes like user devices in terms of bandwidth, storage, latency 
and computation make resource management in the fog computing 
environment a major issue [11].

Scheduling is the main challenge in fog computing. In a fog envi-
ronment, tasks are divided into two groups: tasks requiring the 
computing intensity and tasks requiring the data intensity. While 
scheduling the tasks requiring computing intensity, the scheduler 
migrates the data to the high productivity resource, and hence, the 
task execution time is reduced. On the other hand, while scheduling  
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A B S T R AC T
Over the last recent years, applications related to the internet of things have become the most important techniques in the 
world that facilitate interactions among humans and things to enhance the quality of life. So, the number of devices used in 
these applications will increase, leading to the creation of huge amounts of data. Cisco proposed fog computing in 2012, which 
located between the end-users (Internet of Things devices) and cloud computing. Fog computing is not a replacement for cloud 
computing, but it reduces the drawbacks of cloud computing, makes it efficient and provides storage and computing services 
at the edge of the internet. Resource management is the key factor that decides the performance of fog computing. Whereas 
scheduling plays an important role in managing resources in fog computing, task scheduling is the ability to map tasks to the 
appropriate resources in fog computing. The task is a small part of a work that must be performed within a specific time. Because 
fog computing contains heterogeneous and distributed resources, task scheduling becomes complex. Task scheduling is an NP-
hard problem that needs to apply effective task scheduling strategies to reach an ideal solution. There were many proposed 
algorithms about scheduling in the previous years; most of them were applied in cloud computing, while the minority were 
applied in fog computing. This paper aims to comprehensively review and analyze the most important up-to-date scheduling 
algorithms in fog computing.
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the tasks requiring data intensity, it is attempted to reduce the 
number of data migration. As a result, the time of data transfer is 
reduced [12].

Nowadays, the number of IoT devices is increasing, which - in turn- 
increases the load on fog and cloud nodes for processing. Hence, 
it requires an efficient technique to schedule tasks and to manage 
resources of fog and cloud environments [11]. Many authors 
have improved heuristic algorithms to obtain a better scheduling  
performance [13].

There are some studies related to fog computing, and its architec-
ture, its characteristics and the challenges it faces. Liu et al. [10] 
present a definition and an architecture of fog computing. Also, they 
discussed the framework of resource allocation for latency reduc-
tion combined with reliability, fault tolerance, privacy, and under-
lying optimization problems. Hu et al. [8] present an overview and 
summarize fog computing architecture, application, key technolo-
gies, challenges, and open issues. Mahmud et al. [14] analyze the 
challenges in the fog environment and present a taxonomy of fog 
computing according to the identified challenges and its key fea-
tures. Atlam et al. [15] present a review of fog computing including 
a discussion of fog characteristics, architecture, and benefits. Also, it 
focuses on different IoT applications that will be improved through 
the fog. Kraemer et al. [16] provide a review on fog computing 
within healthcare informatics, and explore, classify, and discussed 
different application use cases presented in the literature. Also, they 
discuss where the fog computing tasks can be executed, on which 
level of the network. They provide tradeoffs concerning require-
ments relevant to healthcare. Hao et al. [2] present a description of 
fog computing and discussed its research challenges and problems. 
Also, they propose a flexible software architecture that can incorpo-
rate different design choices and user-specified policies. Moreover, 
they discuss the design of WM-FOG. Wadhwa and Aron [17] dis-
cuss the concept, architecture of fog computing and implemented 
application. They also highlight resource provisioning techniques 
to identify the overutilization of fog nodes. Yousefpour et al. [18] 
present a taxonomy on fog computing and its related computing 
paradigms, including their similarities and differences. Also, they 
provide a survey of research topics in fog computing and provide 
challenges and future directions for research in fog computing.

Despite the importance of scheduling approach in fog computing, 
there are no surveys on the scheduling algorithms in fog environ-
ment that help the researcher necessities on scheduling tasks and 

Figure 1 | Fog computing architecture.

resource allocation field. Therefore, this paper aims to review and 
analyze the most important recent scheduling algorithms in fog 
computing comprehensively. After reading most of the current 
papers in the scheduling algorithms, only the most relevant sched-
uling algorithms papers have been taken into consideration. The 
scheduling problems have also been classified into five main cat-
egories: task scheduling, resource scheduling, resource allocation, 
job scheduling, and workflow scheduling.

The rest of this paper is organized as follows: Section 2 mentions 
related survey papers in the scheduling approaches in fog comput-
ing. Section 3 provides Scheduling objectives in fog computing. In 
Section 4, we mention the major five scheduling problems in fog 
computing and literature reviews of them. Section 5 shows a dis-
cussion and comparison of existing scheduling algorithms in fog 
computing. Finally, we conclude the survey in Section 6.

2.  RELATED SURVEYS

This section illustrates some related review and survey papers in 
the scheduling approaches in the fog environment.

Ghobaei-Arani et al. [19] present a systematic literature review on 
the resource management techniques in fog environment. In this 
paper, they compare the resource management techniques with 
each other according to the important factors such as case study, 
performance metrics, utilized techniques, and evaluation tools as 
well as discussing their advantages and disadvantages.

Sharma and Rani [20] provide a review on fog computing includ-
ing advantages, limitations, features, threats, and comparison of the 
different scheduling algorithms.

Rahbari and Nickray [21] present a review of the task scheduling 
and resource allocation in cloud, edge and fog computing. They 
also propose machine learning methods for intelligent task sched-
uling and offloading in distributed computing.

Naha et al. [9] provide a survey including an overview of fog com-
puting and the differences between fog and cloud. Also, they inves-
tigate fog computing architectures and describe the components of 
these architectures in detail. Moreover, they mention some resource 
allocation and scheduling algorithms in the fog environment.

Hosseinioun et al. [22] present a survey to analyze the research 
works in task scheduling techniques in fog computing from 2015 
to 2018. Also, they classify the task scheduling approaches in two 
fields: dynamic and static.

Mon et al. [23] provide a survey of different resource schedul-
ing and load balancing algorithms in cloud and fog computing. 
They mention some limitations of scheduling and load balancing  
processes.

Briefly, the previous review and survey papers suffer from some 
weaknesses as follows:

•	 All papers do not contain the new current scheduling algorithms.

•	 Some papers focus on a part of scheduling approaches such as 
resource management [19], task scheduling [22] and resource 
scheduling [20,23].

•	 The papers do not study the topic of scheduling problems in fog 
computing.
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The mentioned reasons above motivate us to prepare a survey 
paper on the scheduling algorithms in fog computing to overcome 
all these weaknesses.

3.  SCHEDULING OBJECTIVES

Scheduling aims to find an optimal solution for scheduling a set 
of tasks or workflows on a set of machines. Scheduling parameters 
are effective in the success of the scheduling problem. Scheduling 
parameters are classified into two groups based on the service 
approach: consumer services and service providers [24].

3.1.  Consumer Services

•	 Make-span is defined as the overall time required to execute and 
complete all tasks. In other words, it is the duration from which 
the user sends the job to the time he/she completes and gives 
results [25].

•	 The cost of an application includes computation cost, data trans-
fer cost, and storage cost. When a resource is assigned to some 
tasks, data is transferred between the tasks and this transfer-
ring cost is calculated as Transfer cost = the size of the output 
data given by task/the average bandwidth between the Virtual 
Machines (VMs). When parent task and child tasks are sched-
uled on the same VM, the transfer cost becomes zero. Usually, 
the resources are charged per hour of computation and storage 
following the Amazon cloud services prices: (i) $0.1 per CPU 
instance hour for the computation resources. (ii) $0.15 per 
Gigabyte per month for the storage resource [24].

•	 Reliability is the probability of the run successfully and completes 
the execution of the job. Also, it means that all the resources 
work well during the execution of an application [24,26].

•	 Latency is the time duration to execute the whole task assigned 
to the fog node [3].

•	 Response time is the time taken by a user request until the arrival 
of the response at the requesting interface [3].

3.2.  Service Provider

•	 Resource utilization: Increasing resource utilization is beneficial 
to the service provider to get maximum profit by renting the lim-
ited resources to the user in such a way that the resources are 
fully utilized [24].

•	 Energy consumption: It means the total energy consumed by 
the whole system. It is measured by any of the components of 
the system such as sensors, fog nodes, etc [3]. On the other 
hand, CPU utilization and resource utilization directly affect the 
energy consumed by a task. Energy consumption will be high 
when CPUs are not correctly utilized because idle power is not 
effectively used. Sometimes it gives high energy consumption 
due to the heavy demand of the resources, and this may lower 
down the performance [24].

•	 Stability is the probability that the resource node can complete 
the task smoothly [27].

•	 Allocated memory is the total amount of memory of a fog node, 
dedicated to the execution of a given task [4].

•	 The failure rate is the ratio of the number of tasks not completed 
within the deadline to the total number of scheduled tasks [28].

Table 1 shows the metrics considered for the current schedul-
ing algorithms in the fog environment. From this table, we can 
decide the most important metrics used in the current algorithms. 
Considering all the metrics in a single scheduling algorithm is not a 
feasible solution, hence it increases the complexity of the algorithm.

4.  SCHEDULING PROBLEMS

We consider five major scheduling problems in fog computing, 
which include task scheduling, resource scheduling, resource allo-
cation, job scheduling, and workflow scheduling. Currently, there 
are a few existing works on the scheduling in fog computing. After 
reading in-depth the current research works in scheduling, we 
select the most relevant works, compare them, and divide them 
according to the type of scheduling problem as follows.

4.1.  Resource Scheduling

Resource scheduling is aimed to find the best matching resources 
for the client to achieve the optimal scheduling goal such as 
improving resource utilization and reducing the processing delay 
and Quality of Service (QoS) [29].

Li et al. [29] propose an algorithm that combines the Fuzzy 
C-Means (FCM) clustering algorithm [30] with the Particle 
Swarm Optimization (PSO) [31], which is called Fuzzy Clustering 
Algorithm with the PSO (FCAP) algorithm. This algorithm pro-
poses to cluster fog resources into three categories: computing, 
bandwidth, and storage resources. They also propose a Resource 
Scheduling Algorithm based on the FCAP algorithm (RSAF) to 
accomplish resource scheduling. Using MATLAB experiment 
results shows that the objective function of the FCAP algorithm 
has a faster convergence speed than the FCM algorithm [30]. 
Moreover, the RSAF algorithm can quickly match user requests 
with the appropriate resource categories and improve user satis-
faction when compared to the Min–Min algorithm [32]. After all, 
this work does not consider the dynamic changes in resources and 
suffers from low resource utilization.

Sun et al. [27] propose a two-level resource scheduling technique  
in fog computing. The first level is the resource scheduling among 
fog cluster, which specifies which fog cluster will perform the task 
when it arrives. The second level is the resource scheduling among 
fog nodes in the same fog cluster, which specifies which fog resource 
will perform the task when it arrives. They also design a resource 
scheduling mechanism based on an improved Non-dominated 
Sorting Genetic Algorithm II (NSGA-II) [27] to improve the sta-
bility of the task execution and reduce service latency. The exper-
imental results using MATLAB show that the proposed scheme 
gives better performance compared with a Fog-based IoT Resource 
Management Model (FIRMM) [33] and Random scheduling algo-
rithms in terms of service latency and stability. However, the pro-
posed work is not suitable for complex topology and suffers from 
the high cost of resource requesters.
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Wu et al. [34] propose an energy-efficient evolutionary algorithm 
called Estimation of Distribution (EDA-P), to address the resource 
scheduling of three tiers of IoT systems. The EDA-P algorithm is 
used for producing task permutation. The experiments performed on 
both single and multi-application cases show that the proposed algo-
rithm is effective in reducing make-span, the energy consumption 
of devices and prolonging the lifetime of IoT devices. On the other 
hand, the proposed algorithm does not address the application with 
soft or hard deadlines, and it does not consider the execution cost.

4.2.  Task Scheduling

Task scheduling is aimed to assign a set of tasks to fog nodes to 
meet the satisfaction of QoS requirements in such a way the execu-
tion and transmission time of tasks is minimized [12].

Xu et al. [28] propose an associated task scheduling strategy based 
on Laxity-Based Priority and Ant Colony System (LBP-ACS) in the 
cloud-fog environment. The proposed strategy is divided into two 
parts: the LBP Algorithm (LBPA) and Constrained Optimization 
Algorithm based on the ACS (COA-ACS). The first part (LBPA) 
is used to obtain the task priority order, and the second part 
(COA-ACS) is used to obtain the task scheduling scheme. By using 
CloudSim simulation and Compared with Greedy for Energy (GfE), 
Heterogeneous Earliest Finish Time (HEFT) [35], and Hybrid ant 
colony optimization with differential evolution algorithms [36], 
the experimental results show that the proposed algorithm can 
reduce the energy consumption of processing all tasks and reduce 

Table 1 | Metrics considered of current scheduling algorithms in fog environment

Authors and references Make span Cost Resource 
utilization Reliability Stability Energy 

consumption
Allocated 
memory Latency Failure 

rate
Response 

time

Li et al. [29]          
Xu et al. [28]          
Wang and Li [13]          
Nguyen et al. [37]          
Sun et al. [27]          
Boveiri et al. [39]          
Yin et al. [45]          
Pham et al. [46]          
Hoang and Dang [48]          
Bitam et al. [4]          
Stavrinides and Karatza [49]          
Ghobaei‐Arani et al. [12]          
Ghaffari [51]          
Sharma and Saini [3]          
Rafique et al. [11]          
Wu and Lee [73]          
Li et al. [60]          
Xu et al. [72]          
Wu et al. [34]          
Liu et al. [61]          
Rahbari and Nickray [68]          
Ghenai et al. [70]          
Pham et al. [62]          
Agarwal et al. [67]          
Rahbari and Nickray [63]          
Aburukba et al. [66]          
Jamil et al. [79]          
Kabirzadeh et al. [75]          

the failure rate of associated tasks scheduling with mixed deadlines. 
Anyway, the authors consider the scheduling of tasks that include 
only associated tasks with no independent tasks. They do not also 
propose putting the task to a nearby edge server which would be 
more benefit those delay-sensitive tasks.

Wang and Li [13] propose a task scheduling strategy based on a 
Hybrid Heuristic (HH) algorithm for different fog nodes to solve 
the problem of terminal devices with limited computing resources 
and high energy consumption. The HH algorithm combines the 
Improved Particle Swarm Optimization (IPSO) algorithm and 
the Improved Ant Colony Optimization (IACO) algorithm. The 
authors evaluate this work by using MATLAB. The experiment 
results show that the HH algorithm gives the best performance 
compared with IPSO, IACO, and Round Robin (RR) with three 
performance metrics (Make-span, energy consumption, and reli-
ability). After all, this algorithm does not apply to task clustering 
and fog node clustering.

Nguyen et al. [37] propose an algorithm to optimize task schedul-
ing problems for Bag-of-Tasks applications in the cloud-fog envi-
ronment called Time-Cost aware Scheduling (TCaS) algorithm. By 
using iFogSim simulation, the results show that the TCaS algorithm 
gives an improvement of 15.11%, 11.04%, and 44.17% compared 
with Bee Life Algorithm (BLA) [4], Modified PSO (MPSO) [38], 
and RR algorithms, respectively, while achieving a balance between 
make-span and operating costs. However, the proposed algorithm 
does not concern transmission cost, computing resources, and 
energy consumption.
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Boveiri et al. [39] propose a high-performance way based on  
Max–Min Ant System (MMAS) to address the static task graph 
scheduling inhomogeneous multiprocessor environments. Because 
the MMAS is very flexible which allows it to be able to exploit the 
full potentials of an increase in the number of processors, it gives 
the best performance compared with Highest Level First with 
Estimated Times (HLFET) [40], Insertion Scheduling Heuristic 
(ISH) [41], Modified Critical Path (MCP) [42], Earliest Time First 
(ETF) [43], and Dynamic Level Scheduling (DLS) [44] algorithms. 
Consequently, the proposed approach does not consider the hetero-
geneous multiprocessor system, many-core system, grid and cluster 
computing. Moreover, it does not address energy consumption.

Yin et al. [45] propose a task scheduling model by considering the 
role of containers. Also, they designed a task scheduling algorithm 
to guarantee that the number of concurrent tasks for the fog node 
is enhanced and tasks are finished on time. Besides, by the charac-
teristics of the containers, they proposed a reallocation technique 
to reduce task delay. The task scheduler distributes the task when 
its request is accepted. if the task is only completed in either the 
cloud or the fog node, it is directly distributed. Provided that the 
cloud and the fog node both complete the task, the task scheduler 
will need to decide where to place it. The task that has low com-
puting is executed in fog node, but the task with high computing is 
forwarded to the cloud. The proposed algorithm and reallocation 
mechanism reduce task delay and improve the resource utilization 
of fog nodes. Anyhow, the authors ignore the computation time in 
the cloud, but in a real situation, this factor should be taken into 
account. Additionally, the image placement of containers is a signifi-
cant problem, and this must be solved to reduce task execution time.

Pham et al. [46] propose a Cost-Makespan aware Scheduling 
(CMaS) heuristic algorithm for achieving the balance between 
the performance of application execution and the mandatory cost 
for the use of cloud resources. Also, they propose an efficient task 
reassignment mechanism based on the critical path of the directed 
acyclic graph to satisfy the user-defined deadline constraints of the 
system. The experiment results, using CloudSim simulation, show 
that the proposed work achieves a better balance between cost and 
make-span compared with HEFT [35], Greedy for Cost (GfC), and 
Cost-Conscious Scheduling Heuristic (CCSH) [47] algorithms. 
However, this study does not address energy consumption, and it is 
not suitable for large scale application, also it takes high scheduling 
time for task execution.

Hoang and Dang [48] designed a fog-based region architecture 
to provide close computing resources for latency-sensitive appli-
cations. Furthermore, they investigated an efficient scheduling 
algorithm to distribute tasks among regions and remote clouds, 
which called the Fog-Based Region and Cloud (FBRC) algorithm. 
The proposed work gives an efficient result of minimizing latency, 
reducing make-span, and increasing resource utilization compared 
with region-based and cloud-based resource management. On the 
other hand, the proposed work suffers from high time complexity, 
high processing time, low efficiency in service processing rate, and 
it does not consider the energy consumption.

Stavrinides and Karatza [49] propose a hybrid fog and cloud-aware 
heuristic [Hybrid-Earliest Dead-line First (Hybrid-EDF)] for 
dynamic scheduling of real-time IoT workflows in a three-tiered 
architecture. This method is attempted to schedule communica-
tion-intensive tasks with low computational demands in the fog, 

and computationally demanding tasks with low communication 
requirements in the cloud. The proposed scheduling technique 
consists of two phases: the task selection phase and the Virtual 
Machine (VM) selection phase. Tasks are given a priority based on 
the earliest deadline first. If the two tasks or more have the same 
priority, the task with the highest average computational cost is 
selected first. The task is selected by the scheduler, it is allocated 
to the VM that can provide it with the earliest estimated finished 
time. All VMs in the cloud and fog layers are considered. This 
hybrid approach providing on average 76.69% lower deadline miss 
ratio compared with Fog-EDF. However, this comes at a significant 
monetary cost, due to the usage of cloud resources, and it does not 
address energy consumption.

Ghobaei‐Arani et al. [12] propose a Task Scheduling algorithm 
based on a Moth-Flame Optimization (TS-MFO) algorithm to 
meet the satisfaction of QoS requirements of the Cyber-Physical 
System (CPS) applications in fog environment. TS-MFO algo-
rithm was spread like a moth to a flame. The proposed algorithm 
contains two matrices: The first matrix contains a set of fog nodes 
selected for the first task. And each row represents a solution. The 
best solution found for each individual of a population is stored in 
the second matrix as a flame. Both matrices include solutions for 
finding positions on fog nodes. The proposed algorithm is com-
pared to PSO [50], NSGA-II [27], and BLA [4], algorithms by using 
iFogSim. The result shows that the proposed algorithm can min-
imize the total execution time of tasks. It is found that this work 
does not address energy consumption and communication cost.

Ghaffari [51] propose a scheduling method using an ant colony 
algorithm in fog computing. The proposed method is done in three 
steps as follows: Firstly, the tasks are divided into two groups based 
on end time and cost. Secondly, the tasks are prioritized, the tasks 
with the lowest end time have to be scheduled first and the tasks 
with the lowest cost have to be executed first. Finally, the ant colony 
algorithm is used to select an optimal virtual machine for execut-
ing the tasks. Using iFogSim, the simulation results show that the 
proposed method gives an acceptable performance in (the make-
span, response time, and energy consumption) when compared to 
Ant Colony Based Meta-Heuristic approach for load balancing in 
cloud computing [52]. It is stated this method does not concern 
with transmission cost, computing resources and it only tests on 
small datasets.

Sharma and Saini [3] propose a four-tier architecture for delay 
aware scheduling and load balancing in the fog environment. The 
proposed algorithm is simulated by iFogSim and gives better results 
in terms of response time, scheduling time, load balancing rate, 
latency, and energy consumption compared with nine approaches 
CMaS [46], Delay Energy Balanced Task Scheduling (DEBTS) [53], 
BLA [4], NSGA-II [27], HEFT [35], Multi-Population Genetic 
Algorithm (MPGA) [54], Graph partitioning [55], Simple schedul-
ing [56], and Dynamic Resource Allocation Method (DRAM) [57]. 
However, the proposed algorithm does not address the execution 
cost and the authors do not address the data replication techniques 
for managing data in a fog computing network since it can further 
reduce delay and overall dependency.

Rafique et al. [11] propose a Novel Bio-Inspired Hybrid Algorithm 
(NBIHA) which is a hybrid of MPSO and Modified Cat Swarm 
Optimization (MCSO) [58] for task scheduling and efficient 
resources management. MPSO is used to schedule the tasks 
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through the fog devices, and the NBIHA algorithm is used to 
manage resources efficiently. In the proposed NBIHA algorithm, 
the scheduler finds the best match of fog devices for an incoming 
task based on its requested for memory and CPU time. If it does 
not find any match from fog devices, it sends the task to the cloud. 
The result shows that the proposed algorithm is better compared to 
three algorithms [First Come First Serve (FCFS) [59], Shortest Job 
First (SJF), and MPSO] by minimizing the execution time, energy 
consumption, and average response time. However, it does not 
address the communication cost and it is intended to utilize the 
reinforcement learning techniques for managing resources in the 
fog-IoT environment.

Li et al. [60] designed a cloud-fog cooperation scheduling algo-
rithm to reduce energy consumption when considering new 
tasks generated by IoT applications. Also, they proposed a task 
offloading algorithm to complete tasks when their nodes leave. 
They proposed a task execution flag. When the flag value is 1, 
the task is executed on the mobile device layer. If the flag value 
is 2, the task is executed on the fog node layer. Moreover, if the 
flag value is 3, this indicates that the task is executed on the 
cloud server layer. If the task is not allocated, the value of the flag  
is 0. The IoT network is dynamic, and one node could leave the 
system when it runs out of power. If there is an unfinished task 
in the node’s queue, the task will be offloaded to other nodes for 
execution. The experiment results show that energy consumption 
is reduced by approximately 22%, while the delay is 12.5% less 
than the FCFS algorithm. This work only optimizes the energy 
consumption and delay in cloud fog computing with homoge-
neous fog nodes.

Liu et al. [61] present an Adaptive Double Fitness Genetic Task 
Scheduling (ADGTS) algorithm to optimize the make-span of the 
tasks and communication cost of the fog resources for smart cities. 
The simulation results show that the ADGTS algorithm can bal-
ance the performance of communication cost and task make-span 
at the same time, and it has better performance than the Min–Min 
algorithm [32] in task make-span. After all, this work does not 
address energy consumption.

Pham et al. [62] propose a heuristic-based Algorithm to achieve 
the balance between the make-span and the monetary cost of cloud 
resources. It determines the task priority and chooses a suitable 
node to execute each task. The results show that the proposed 
algorithm achieves a better cost-makespan tradeoff value than 
GfC, HEFT [35], and DLS [44] algorithms. On the other hand, the 
scheduling algorithm should be made more strong by considering 
additional constraints, such as deadline constraints of workflow 
execution and Fog provider’s budget. It suffers from high workload 
execution time and low scalability as well.

Rahbari and Nickray [63] propose a Scheduling Algorithm 
[Knapsack Symbiotic Organisms Search (KnapSOS)] using 
SOS [64] based on the knapsack algorithm [65] to reduce the 
delay and energy consumption in the fog networks. KnapSOS 
algorithm was simulated by two-tracker case studies based on 
camera sensors with actuators. The simulation results show 
that the improvement in energy consumption is 18%, total net-
work usage is 1.17%, execution cost is 15% and the lifetime of 
sensors is 5% compared with the original FCFS and knapsack  
algorithms. It is shown that the proposed algorithm suffers from 
high execution time.

Aburukba et al. [66] introduce a customized implementation of 
the Genetic Algorithm (GA) as a heuristic approach to scheduling 
the IoT requests to achieve the objective of minimizing the over-
all latency. The performance of the genetic algorithm is evaluated 
and compared to the performance of Waited Fair Queuing (WFQ), 
Priority-Strict Queuing (PSQ), and RR techniques. The simulation 
results show that the overall latency for the proposed approach is 
21.9–46.6% better than the other algorithms. Also, the proposed 
approach shows significant improvement in meeting the requests 
deadlines by up to 31%. Still, this work can extend the proposed 
model to include critical request scheduling and to allow preemp-
tion. Moreover, multiple objective functions can be included to 
maximize resource utilization and minimize latency.

4.3.  Resource Allocation

Resource allocation is the systematic approach of allocating avail-
able resources to the clients need over the internet [67].

Rahbari and Nickray [68] propose the Greedy Knapsack-based 
Scheduling (GKS) algorithm for allocating resources appropriately 
to modules in fog computing. The proposed method was simu-
lated in iFogSim. The simulation results show that execution cost, 
energy consumption, and sensor lifetime in GKS are better than 
those of the Concurrent, FCFS, and Delay-Priority Algorithms 
[69]. However, the proposed algorithm ignores network usage that 
is an important parameter.

Ghenai et al. [70] propose a resource management approach based 
on the dynamic scheduling of multi-user devices using classifica-
tion methods for cloud servers and heterogeneous devices. This 
approach is applied to manage hospitals that use cloud servers to 
save and treat patient and employee data to improve the employ-
ee’s satisfaction and patient care quality over time. The simulation 
results show that the proposed approach guarantees a decrease in 
the network usage and hence substantiates its efficiency in stream-
lining patient information flow and its accessibility for health care 
providers. Nonetheless, this work does not consider the monetary 
cost of cloud resources and energy consumption, also does not 
apply in large scale applications.

Agarwal et al. [67] propose an efficient architecture and algorithm 
for resource provisioning in fog computing by using the virtualiza-
tion technique. The Efficient Resource Allocation (ERA) algorithm 
is proposed which based on the fog layer. As the request will be per-
formed by the client, this request will be accepted by the fog layer 
and not interrupt the clouds. If the request is not processed within 
its specified time, it will be sent to clouds by the fog layer. So the pro-
posed algorithm is efficient to allocate the resources, maximize the 
throughput, and minimize the response time. The simulation results 
show that the proposed strategy can be allocated resources in an 
optimized way and better than Reconfigure Dynamically with Load 
Balancing (RDLB) and Optimize Response Time (ORT) [71] algo-
rithms in terms of overall response time, bandwidth utilization, and 
the cost of data transfer in fog computing. However, the proposed 
algorithm is not satisfying the requirement of resources during the 
execution of the request. They have only allocated those resources 
to clients who are requesting before processing. Furthermore, the 
proposed algorithm designs for reserved instances only, and it suf-
fers from low availability and high complexity.
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4.4.  Workflow Scheduling

Workflow scheduling aims to assign computing resources with 
different processing abilities to the tasks of workflow application, 
which can minimize the make-span and cost [72].

Wu and Lee [73] propose an Energy Minimization Scheduling 
(EMS) algorithm to minimize the energy consumption for IoT 
workflow on heterogeneous fog computing architectures. They 
consider only two types of edge nodes, fast nodes with more com-
putationally powerful but consume more power and slow nodes 
have a lower power consumption. The experiment results show 
that the EMS algorithm can give the best energy consumption in 
comparison with Longest Time First (LTF) method, Integer Linear 
Programming (ILP) [74] and Random Algorithm. Although they 
do not consider the periodic tasks, they should be finished within 
their period. In addition to this, they only consider two types of fog 
nodes. The task migration between the edge nodes is not taken into 
consideration as well.

Xu et al. [72] propose a workflow scheduling algorithm based on 
IPSO in the cloud-fog environment. In this algorithm, the novel 
update method of inertia weight is designed as a nonlinear decreas-
ing function, which facilitates to balance and adjust the global and 
local abilities of particles. According to the number of workflow 
tasks, each particle in PSO is encoded as a scheduling plan. The 
result shows that the proposed algorithm reduces the completion 
time of workflow compared to the original PSO [31] while the 
economic costs of the two algorithms are close with each other. 
However, they do not address energy consumption.

Kabirzadeh et al. [75] propose a Hyper-Heuristic algorithm to 
find better solutions for the workflow scheduling problem in the 
fog computing environment. The results show that the proposed 
algorithm improved the average energy consumption of 69.99% 
and cost 59.62% relative to the PSO [31], ACO [76], Simulated 
Annealing Algorithm (SA) [77], and GA [78] algorithms. This 
method reduces the simulation time and energy consumption 
by the size of a heuristic algorithm and increases the decision- 
making power for assigning resources with specific constraints to 
users according to the type of workflows. Eventually, this algo-
rithm has low scalability. Also, the authors’ algorithm does not 
address the virtual machine migration, resource provisioning and 
scheduling of applications on the IoT based on fog networks.

4.5.  Job Scheduling

Job scheduling aims to assign a group of jobs to the lowest number 
of fog resources (e.g. less memory) in the shortest CPU execution 
time [4].

Bitam et al. [4] propose a BLA to optimize the distribution of a 
set of tasks among all the fog computing nodes. The proposed 
algorithm gives better performance in the execution time and the 
allocated memory compared to PSO and GA algorithms. Despite 
this, the proposed algorithm suffers from Low scalability. Besides, 
it does not address the dynamic job scheduling. Furthermore, the 
authors of BLA have tested the algorithm only on small datasets, 
and the response time is high for task execution.

Jamil et al. [79] propose an optimized job scheduling algorithm 
called SJF to minimize the delays for latency-critical applications.  

The simulation results show that the delay and network usage of the 
proposed algorithm improves by 32% and 16% respectively, compared 
to the FCFS algorithm. Although the proposed algorithm reduces the 
average waiting time. It can starve tuples with larger lengths.

Table 2 summarizes the main idea of the scheduling algorithms, 
advantages, limitations, and the simulation tool used in them. 
This table helps researchers to compare algorithms in terms of the 
method used to solve a certain type of scheduling problem, what 
are the advantages of using this proposed algorithm and what are 
the challenges it faces. Thus, researches can choose and develop the 
algorithms closest to their studies.

A wide range of proposed scheduling algorithms has been com-
pared in Table 3 in terms of the following issues: the problem 
statement which is categorized by (task/job/workflow scheduling, 
resource scheduling, and resource allocation), metrics used in the 
algorithm, environment (fog or both fog-cloud), a case study in 
terms of the application they use, and finally, the algorithms that 
are compared to the proposed algorithm.

5.  DISCUSSION AND COMPARISON

This section shows a discussion and comparison of current sched-
uling algorithms in fog computing. Figure 2 shows a statistical 
comparison of the scheduling problems. We consider five major 
scheduling problems that include task scheduling, resource sched-
uling, resource allocation, job scheduling, and workflow schedul-
ing. The task scheduling problem has the highest percentage of the 
scheduling algorithms by 57% usage in the literature. Both resource 
scheduling and resource allocation have the same percentage by 
13%, workflow scheduling problem has 10%, and job scheduling 
has 7% usage in fog computing.

The applied case studies of scheduling algorithms in fog computing 
are shown in Figure 3. These case studies include many applica-
tions such as smart production lines, homogeneous multiproces-
sors, large scale applications, and so forth. We notice that most 
studies have a general case study. 

According to Figure 4, 36% of the research papers have imple-
mented the proposed approach using the iFogSim simulation tool. 
Besides, 18% of the research papers used the MATLAB simulator. 
Also, 11% of the studies have presented an evaluation of their case 
study using the CloudSim tool. Other studies used different simu-
lation tools as shown in Figure 4. Moreover, some research studies 
have not specified a measurement environment and simulation tool 
for evaluating their methods. Figure 5 shows an analytical report 
of the performance metrics for evaluating scheduling algorithms. 
It is noticed that the make-span has the most usage in scheduling 
algorithms by 25%, followed by the energy consumption which has 
19%, the cost is next which has 15%. Then, the latency has 13%, 
and resource utilization has 12%. The response time has 7%, and 
the reliability has 3%. Finally, stability, allocated memory, and the 
failure rate has the same percentage of 2%.

To conclude, fog computing has a major role in implementing IoT 
scheduling algorithms. Based on this survey, the task scheduling 
problem in fog computing is a research hotspot, and more research 
needs to be carried out on it. As a future scope new scheduling 
strategies to optimize multiple metrics in a way to address and solve 
other scheduling problems can be found. Make-span and energy 
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Table 2 | A comparison of the current scheduling algorithms in fog environment

Authors and 
references Main ideas Simulation Advantages Limitations

Li et al. [29] Fuzzy Clustering Algorithm with 
the Particle Swarm Optimization 
(FCAP) algorithm is used to clus-
ter fog resources.

MATLAB RSAF algorithm can match user 
requests with the appropriate 
resource categories faster and 
improve user satisfaction.

Not consider the dynamic changes in 
resources.

Resource Scheduling Algorithm 
based on FCAP (RSAF) algorithm 
is used to accomplish resource 
scheduling.

FCAP has faster convergence speed 
than the Fuzzy C-Means (FCM) 
algorithm.

Low resources utilization.

Xu et al. [28] Associated task scheduling strategy 
based on Laxity-based Priority 
and Ant Colony System (LBP-
ACS) algorithm in the cloud-fog 
environment.

CloudSim Reduces the energy consumption of 
processing all tasks.

Consider the scheduling of tasks that 
include only associated tasks with 
no independent tasks.

Reduce the failure rate of associ-
ated tasks scheduling with mixed 
deadlines.

They do not propose to put the task 
to a nearby edge server which 
would be more benefit those 
delay-sensitive tasks.

Wang and Li [13] A task scheduling algorithm called 
Hybrid Heuristic (HH) algorithm 
in fog computing is proposed to 
solve the problem of terminal 
devices with limited computing 
resources and high energy  
consumption.

MATLAB HH algorithm gives the best perfor-
mance comparing with three algo-
rithms Improved Particle Swarm 
Optimization (IPSO), Improved 
Ant Colony Optimization (IACO), 
and RR with three performance 
metrics (completion time, power 
consumption, and reliability).

Not apply on task clustering and fog 
nod clustering.

Nguyen et al. [37] Time-Cost aware Scheduling (TCaS) 
algorithm based on the Genetic 
Algorithm is proposed to optimize 
task scheduling problems for 
Bag-of-Tasks applications in the 
cloud-fog environment in terms of 
execution time and operating costs.

iFogSim TCaS algorithm gives an improve-
ment of 15.11% compared with 
BLA, 11.04% compared to MPSO, 
and 44.17% compared to RR.

Not concerned with transmission 
cost, computing resources, and 
energy consumption.

Each chromosome represents a job 
assignment to a node. Mutation 
and crossover were used to gener-
ate a new population.

This algorithm achieves a balance 
between completing time and 
operating costs.

Sun et al. [27] Multi-objective optimization 
of resource scheduling in fog 
computing using an improved 
Non-dominated Sorting Genetic 
Algorithm II (NSGA-II).

MATLAB Reduce the service latency. Not suitable for complex topology.

Two-level resource scheduling model 
in fog computing. The first level 
is the resource scheduling among 
fog cluster, which specifies which 
fog cluster will perform the task 
when it arrives. The second level is 
the resource scheduling among fog 
nodes in the same fog cluster, which 
specifies which fog resource will 
perform the task when it arrives.

Improve the stability of the task 
execution.

Latency is high due to simple  
architecture.

High cost of resource requesters.

Boveiri et al. [39] This approach is based on the Max–
Min Ant System (MMAS) to treat 
the static task graph scheduling 
in homogeneous multiprocessor 
environments.

Pentium IV 
using Visual 
basic 6.0

The Max–Min Ant System (MMAS) 
is very flexible which allows it to 
be able to exploit the full potentials 
of an increase in the number of 
processors, it gives the best per-
formance compared with Highest 
Level First with Estimated Times 
(HLFET), Insertion Scheduling 
Heuristic (ISH), Modified Critical 
Path (MCP), Earliest Time First 
(ETF), Dynamic Level Scheduling 
(DLS) algorithms.

Not consider the heterogeneous 
multiprocessor system, many-
core system, and grid and cluster 
computing.

Not address energy consumption.
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Table 2 | A comparison of the current scheduling algorithms in fog environment—Continued

Authors and 
references Main ideas Simulation Advantages Limitations

Yin et al. [45] Task scheduling model by considering 
the role of containers.

Linpack with 
java

Reduce task delay. Ignored the computation time in the 
cloud.

Construct a task scheduling algorithm 
to ensure that tasks are completed on 
time and the number of concurrent 
tasks for the fog node is optimized.

Improve the resource utilization  
of fog nodes.

The image placement of containers is 
a significant problem, this problem 
must be solved to reduce task 
execution time.

Reallocation mechanism to reduce 
task delay by the characteristics of 
the containers.

Pham et al. [46] Cost-Makespan aware Scheduling 
(CMaS) for achieving the balance 
between the performance of appli-
cation execution and the mandatory 
cost for the use of cloud resources.

CloudSim More cost-effective and achieves 
better performance compared  
with other existing methods.

Not address power consumption.
Not suitable for large scale  

application.
It takes high scheduling time for task 

execution.
It is static.
Considers a single workflow for 

scheduling.

Efficient task reassignment strategy 
based on the critical path of the 
directed acyclic graph modeling the 
applications to satisfy the user-defined 
deadline constraints of the system.

Hoang and  
Dang. [48]

Fog-based Region and Cloud (FBRC) 
architecture to provide nearby 
computing resources.

Unknown  
simulators

Gives an efficiency result of latency 
response and resource utilization 
compared with region-based and 
cloud-based resource management.

High time complexity.
High processing time.
Low efficiency in service processing 

rate.
 Not consider energy consumption.

Efficient scheduling algorithm (FBRC 
algorithm) to distribute tasks among 
regions and remote clouds.

Bitam et al. [4] Bee Life Algorithm (BLA) is proposed 
to optimize the distribution of a set 
of tasks among all the fog computing 
nodes.

C++ Give better performance in the 
execution time and the allocated 
memory compared with PSO  
and GA algorithms.

Not address the dynamic job sched-
uling approach.

Response time is high for task 
execution.

Only tested on small datasets.
Low scalability.

Stavrinides and 
Karatza [49]

Hybrid approach for dynamic 
scheduling of real-time Internet of 
Things (IoT) workflows in a three-
tiered architecture in fog and cloud 
environments.

C++ Hybrid approach providing on 
average 76.69% lower deadline 
miss ratio.

Increase monetary cost, due to the 
usage of cloud resources.

Not address energy consumption.

This approach attempted to schedule 
computationally demanding tasks 
with low communication require-
ments in the cloud and commu-
nication-intensive tasks with low 
computational demands in the fog.

Ghobaei‐Arani  
et al. [12]

Task scheduling algorithm based on 
a Moth-flame Optimization (MFO) 
algorithm is proposed to minimize 
the total execution time of tasks 
to meet the satisfaction of Quality 
of Service (QoS) requirements 
of Cyber-Physical System (CPS) 
applications.

iFogSim Better compared with three algo-
rithms (PSO, NSGA-II, BLA) by 
minimizing the total execution 
time of tasks.

This work does not address energy 
consumption and communication 
cost.

Ghaffari [51] The proposed algorithm using the ant 
colony algorithm is done in three steps 
as follows: The first step: the tasks are 
divided into two groups based on end 
time and cost. Second step: the tasks 
are prioritized. The tasks with the 
lowest end time have to be scheduled 
first and the tasks with the lowest cost 
have to be executed first. Third step: 
the ant colony algorithm is used to 
select an optimal virtual machine for 
executing the tasks.

iFogSim Give acceptable performance in (the 
end time, delay, energy consump-
tion) when compared with (Ant 
Colony Based Meta-Heuristic 
approach for load balancing in 
cloud computing).

Not concerned with transmission 
cost, computing resources.

Only tested on small datasets.

(Continued)
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Table 2 | A comparison of the current scheduling algorithms in fog environment—Continued

Authors and 
references Main ideas Simulation Advantages Limitations

Sharma and  
Saini [3]

Four tires architecture for delay 
aware scheduling and load balanc-
ing in the fog environment.

iFogSim It gives better results in terms of 
response time, scheduling time, 
load balancing rate, delay, and 
energy consumption compared 
with nine approaches. (CMaS, 
DEBTS, BLA, NSGA-II, etc.)

The proposed algorithm does not 
address the execution cost.

The authors did not address the 
data replication techniques for 
managing data in a fog computing 
network since it can further reduce 
delay and overall dependency.

Rafique et al. [11] NBIHA algorithm which is a hybrid 
of MPSO and MCSO for task 
scheduling and efficient resources 
management.

iFogSim Proposed work is better compared 
with three algorithms [First Come 
First Serve (FCFS), Shortest 
Job First (SJF), Modified PSO 
(MPSO)] through minimizing the 
execution time, energy consump-
tion, and average response time.

Not address the communication 
cost.

It is intended to utilize the rein-
forcement learning techniques for 
managing resources in the fog-IoT 
environment.

MPSO is used to schedule the tasks 
among the fog devices.

NBIHA is used to manage resources 
efficiently.

Wu and Lee [73] Energy Minimization Scheduling 
(EMS) algorithm is used to mini-
mize the energy consumption for 
IoT workflow on heterogeneous 
fog computing architectures.

SPEC CPU2006 EMS algorithm can give the best 
energy consumption compared 
with Longest Time First (LTF), 
Integer Linear Programming 
(ILP), Random algorithms.

Not consider the periodic tasks that 
should be finished within their 
period.

Only consider two types of fog 
nodes, where more types could be 
considered.

Not consider the task migration 
between the edge nodes.

They consider only two types of edge 
nodes, fast nodes with more com-
putationally powerful but consume 
more power and slow nodes have a 
lower power consumption.

Li et al. [60] Cloud-fog cooperation scheduling 
algorithm to reduce energy  
consumption when considering 
new tasks generated by IoT  
applications.

Designed a task offloading algorithm 
to complete tasks when their nodes 
leave.

MATLAB Energy consumption is reduced 
by approximately 22%, while the 
delay is 12.5% less than the FCFS 
algorithm.

Only optimize the energy con-
sumption and delay in cloud fog 
computing with homogeneous fog 
nodes.

Xu et al. [72] Workflow scheduling algorithm 
based on IPSO in the cloud-fog 
environment.

In this algorithm, the novel update 
method of inertia weight is 
designed as a nonlinear decreas-
ing function, which facilitates to 
balance and adjust the global and 
local abilities of particles.

Each particle in PSO is encoded as a 
scheduling plan according to the 
number of workflow tasks.

MATLAB Reduces the completion time of 
workflow compared with the orig-
inal PSO while the economic costs 
of the two algorithms are close 
with each other.

 Not address energy consumption.

Wu et al. [34] Energy-efficient evolutionary 
algorithm called Estimation of 
Distribution (EDA) is proposed to 
address the resource scheduling of 
three tiers of IoT systems.

The EDA algorithm is used for pro-
ducing task permutation.

C++ Proposed algorithm is effective in 
reducing makespan and the energy 
consumption of devices, as well 
as prolonging the lifetime of IoT 
devices.

Not address the application with soft 
or hard deadlines.

Not concerned with execution cost.

Liu et al. [61] Adaptive Double Fitness Genetic 
Task Scheduling (ADGTS) algo-
rithm is proposed to optimize the 
makespan of the tasks and commu-
nication cost of the fog resources 
for smart cities.

Unknown  
simulators

The Adaptive Double Fitness 
Genetic Task Scheduling (ADGTS) 
algorithm has better performance 
than the traditional Min-Min algo-
rithm in task makespan and can 
balance the performance of task 
makespan and communication 
cost at the same time.

Not consider energy consumption
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Table 2 | A comparison of the current scheduling algorithms in fog environment—Continued

Authors and 
references Main ideas Simulation Advantages Limitations

Rahbari and  
Nickray [68]

Greedy Knapsack-based Scheduling 
(GKS) algorithm for allocating 
resources appropriately is proposed 
to modules in fog computing.

iFogSim Energy consumption, execution 
cost, and sensor lifetime in GKS 
are better than those of the FCFS, 
concurrent, and delay-priority 
algorithms.

Ignored network usage that is an 
important parameter.

Ghenai et al. [70] Resource management approach 
based on the dynamic schedul-
ing of multi-user devices using 
classification methods for cloud 
servers and heterogeneous devices 
to minimize latency for IoT  
applications.

iFogSim The proposed approach guarantees a 
decrease in the network usage and 
hence substantiates its efficiency in 
streamlining the patient informa-
tion flow and its accessibility for 
health care providers.

Not consider the monetary cost 
of cloud resources and power 
consumption.

Not apply in large scale  
applications.

This approach was applied to 
manage a hospital that uses cloud 
servers to save and treat patient 
and employee data to improve the 
employee’s satisfaction and the 
patient care quality over time.

Pham et al. [62] Heuristic-based algorithm to achieve 
the balance between the make-
span and the monetary cost of 
cloud resources.

CloudSim The proposed algorithm achieves 
better cost make-span trade-off 
value than Greedy, HEFT, and DLS 
algorithms.

High workload execution time.
Low scalability.
Not consider the important param-

eters like deadline constraints 
of workflow execution and Fog 
provider’s budget.

Determine the task priority and 
choose a suitable node to execute 
each task.

Agarwal et al. [67] Efficient Resource Allocation (ERA) 
for resource provisioning in fog 
computing environments by using 
the virtualization technique.

Cloud Analyst 
(part of Cloud-
Sim)

Proposed strategy can be allocated 
resources in an optimized way and 
better than existing algorithms 
[Reconfigure Dynamically with 
Load Balancing (RDLB) and 
Optimize Response Time (ORT)] 
in terms of overall response time, 
data transfer cost and bandwidth 
utilization in the fog computing 
environment.

Not satisfying the requirement of 
resources during the execution 
of the request. They have only 
allocated those resources to the 
clients who are requesting before 
processing.

Applicable for only reserved 
instances.

Low availability.
High complexity.

Rahbari and  
Nickray et al. 
[63]

Novel scheduling algorithm using 
symbiotic organisms search based 
on the knapsack algorithm to 
reduce the delay and energy con-
sumption in the fog networks.

iFogSim The improvements in the energy 
consumption by 18%, total network 
usage by 1.17%, execution cost by 15%  
and the lifetime of sensors by 5%.

The proposed algorithm is better than 
the original FCFS and knapsack 
algorithms.

High execution time.

Aburukba  
et al. [66]

A genetic algorithm as a heuristic 
approach is proposed to schedul-
ing the IoT requests to achieve the 
objective of minimizing the overall 
latency.

Discrete event 
simulator

The overall latency for the proposed 
approach is 21.9% to 46.6% better 
than the Waited Fair Queuing 
(WFQ), Priority-Strict Queuing 
(PSQ), and RR techniques.

The proposed approach showed 
significant improvement in meeting 
the requests deadlines by up to 31%.

This work can extend the model to 
include critical request scheduling 
and to allow preemption.

Multiple objective functions can be 
included to maximize resource 
utilization and minimize latency.

Jamil et al. [79] Optimized job scheduling algorithm 
(SJF) is proposed to minimize  
the delays for latency-critical 
applications.

iFogSim The delay and network usage of the 
proposed algorithm improves by 
32% and 16% respectively, com-
pared with the FCFS algorithm.

The proposed algorithm can starve 
tuples with larger lengths.

Kabirzadeh  
et al. [75]

A hyper-heuristic algorithm is pro-
posed to find better solutions for 
the workflow scheduling problem 
in the fog computing environment.

iFogSim The proposed algorithm improved 
the average energy consumption of 
69.99% and cost 59.62% relative to 
the PSO, ACO, SA algorithms.

Low scalability.
The authors’ algorithm did not 

address the virtual machine 
migration, resource provisioning 
and scheduling of applications on 
the IoT based on fog networks.
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Table 3 | A detailed comparison of the current scheduling algorithms in fog computing

References 
and year Algorithm Problem Metrics Environment Case study Results compared

[29], 2019 FCAP Resource scheduling User satisfaction Fog General FCM and MIN-MIN
RSAF Make-span

Reliability
[28], 2019 LBP-ACS Task scheduling Energy consumption Cloud-fog General GfE, HEFT, and DEACO

Failure rate
[13], 2019 HH (Hybrid 

heuristic)
Task scheduling Make-span Fog Smart production line IPSO, IACO, and RR

Energy consumption
Reliability

[37], 2019 TCaS Task scheduling Make-span Cloud-fog Bag of tasks applications BLA, MPSO, and RR
Operating costs

[27], 2018 NSGA-II Resource scheduling Latency Fog General FIRMM and Random  
scheduling algorithmStability

[39], 2018 MMAS Task scheduling Resource utilization Fog Homogeneous  
multiprocessor

HLFET, ISH, MCP, ETF,  
and DLS

[45], 2018 Task scheduling Latency Fog Containers for smart 
manufacturing

FT-FQ, FT-RE, DT-FQ,  
and DT-REResource allocation Resource utilization

[46], 2017 CMaS Task scheduling Mandatory cost for 
using the cloud 
resource

Cloud-fog Large scale applications GfC, HEFT, and CCSH

Makespan
[48], 2017 FBRC Task scheduling Latency Cloud-fog Latency sensitive  

applications
Region-based and  

cloud-based resource 
management

Makespan
Resource utilization

[4], 2018 BLA Job scheduling Makespan
allocated memory

Fog General PSO and GA

[49], 2018 Hybrid-EDF Task scheduling Makespan
Deadline miss ratio

Cloud-fog General Fog-EDF

[12], 2019 TS-MFO Task scheduling Makespan Fog CPS applications PSO, NSGA-II, and BLA
[51], 2019 Using-ACO Task scheduling Makespan

Response time
Energy consumption

Fog General Gill

[3], 2019 EDF Task scheduling Response time
Scheduling time
Load balancing rate
Latency
Energy consumption

Fog Video Surveillance /
Object Tracking 
(VSOT) application

CMaS, DEBTS, BLA, 
NSGA-II, HEFT, MPGA, 
Graph partitioning, Simple 
scheduling, and DRAM

[11], 2019 NBIHA Task scheduling
Resource scheduling

Make-span
Energy consumption
Response time

Fog General FCFS, SJF, MPSO

[73], 2018 EMS Workflow scheduling Energy consumption Fog General LFT, ILP, and Random 
algorithms

[60], 2019 STML Task scheduling Energy consumption
latency

Cloud-fog General FCFS

[72], 2018 Workflow 
scheduling 
algorithm 
based on IPSO

Workflow scheduling Make-span
Economic costs

Cloud-fog Workflow applications PSO

[34], 2018 EDA-P Resource scheduling Make-span
Energy consumption

Fog General sEDA

[61], 2017 ADGTS Task scheduling Make-span
Communication cost

Fog Smart cities Min-Min

[68], 2019 GKS Resource allocation Energy consumption
Execution cost
Sensor lifetime

Fog Sensor application FCFS, concurrent, and 
delay-priority algorithms

[70], 2018 Based on the 
dynamic 
scheduling 
of multi-user 
requests

Resource allocation Latency Fog Manage a hospital that 
uses cloud servers to 
save and treat patient 
and employee data to 
improve the employee’s 
satisfaction and patient 
care quality over time

Cloud-based approach
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References 
and year Algorithm Problem Metrics Environment Case study Results compared

[62], 2016 Heuristic-based 
algorithm

Task scheduling Make-span Cloud-fog General Greedy, HEFT, and DLS
Monetary cost of 

cloud server
[67], 2016 ERA Resource allocation Response time Fog General RDLB and ORT

Data transfer cost
Bandwidth  

utilization
[63], 2017 KnapSOS Task scheduling Energy consumption Fog camera sensor with 

actuator
FCFS and knapsack  

algorithmsNetwork usage
Execution cost
Lifetime of sensors

[66], 2019 GA Task scheduling Latency Cloud-fog General WFQ, PSQ, and RR
[79], 2019 SJF Job scheduling Latency Fog Latency-critical  

applications
FCFS

 Network usage
[75], 2017 HH (Hyper- 

heuristic)
Workflow scheduling Energy consumption Fog General PSO, ACO, SA, and GA

Cost
Make-span
Network usage

Table 3 | A detailed comparison of the current scheduling algorithms in fog computing—Continued

Figure 2 | Percentage of the scheduling problems solved by scheduling 
algorithms in fog computing.

Figure 3 | Percentage of the applied case studies of scheduling algorithms 
in fog computing.

Figure 4 | Percentage of the presented evaluation tools in the literature.

Figure 5 | Percentage of performance metrics for evaluating scheduling 
algorithms.

consumption are very important metrics in scheduling algorithms 
of fog computing. Fog computing uses in a very sensitive latency IoT 
applications, so the make-span is a very important metric. Energy 
wastage and potential battery drain in fog computing are new chal-
lenges. The energy of each fog node can be saved by using an efficient  

method in scheduling data. There are some other metrics and 
applications the researches need to take into consideration to make 
their new proposed scheduling algorithm good enough such as 
dynamic task scheduling, periodic tasks, task migration between the 
edge nodes, heterogeneous fog nodes, applications with soft or hard 
deadlines, virtual machine’s migration, and energy consumption  
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in fog nodes. It is thought that the iFogSim tool is good to use 
because it is an open-source simulator and can use more than three 
metrics to evaluate the proposed algorithm.

6.  CONCLUSION

This paper provides a comprehensive review and analysis of the 
most important recent scheduling algorithms in fog computing. 
After we read and analyze most of the current papers in the sched-
uling algorithms, the top scheduling algorithms have been chosen. 
This survey classifies the scheduling problems into five main  
categories: task scheduling, resource scheduling, resource alloca-
tion, job scheduling, and workflow scheduling. From the compared 
result, task scheduling has the highest percentage of the sched-
uling algorithms by 57% usage in the literature. And 36% of the 
research papers have implemented the proposed approach using 
the iFogSim tool. The makespan has the most usage in scheduling  
algorithms by 25%. Hence, most scheduling problems in fog com-
puting are considered a research hotspot and more research need 
to be carried out on it. Moreover, make-span and energy consump-
tion are very important metrics in the scheduling algorithms of  
fog computing.
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