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ABSTRACT
In this paper, we first illustrate the restricted empirical likelihood function, as an alternative to the usual empirical likelihood.
Then, we use this quasi-empirical likelihood function as a basis for Bayesian analysis of AR(r) time series models. The efficiency
of both the posterior computation algorithm, when the estimating equations are linear functions of the parameters, and the EM
algorithm for estimating hyper-parameters is an appealing property of our proposed approach. Moreover, the competitive finite-
sample performance of this proposed method is illustrated via both simulation study and analysis of a real dataset.
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1. INTRODUCTION

The empirical likelihoodmethod is one of themost useful statistical tools that allows us to refer to under some regularity conditions. Initially,
this statistical method was introduced by Thomas and Grunkemeier [1] and subsequently further developed by Owen [2,3].

Nowadays, many statisticians use this statistical method in different fields of applications. Owen [2,3] have used the empirical likelihood
ratio statistic to test the assumptions assumed by nonparametric statistics. They have shown that this statistic has an asymptotic chi-square
distribution. Moreover, they have used this statistic to construct a confidence region and to perform a hypothesis testing of parameters.
Asymptotic properties and some necessary corrections of this statistic have been studied by DiCiccio and Romano [4] and Hall and Scala
[5]. Furthermore, Qin and Lawless [6] has demonstrated that in the nonparametric scheme, the empirical likelihood, along with estimating
equations, fits the data well. For more details, see Newey and Smith [7], Chen and Cui, [8,9]), and Qin and Lowless [6].

Inmany statistical methods, estimating equations are commonly used to estimate the parameters of assumedmodel. Among them, themost
well-known ones include the maximum likelihood (ML) method, the least square method, and the moment method. In this regard, the
empirical likelihood approach, by applying unbiasedness constraint on estimating functions, leads to the maximum empirical likelihood
(MEL) estimation, which is obtained by maximizing the empirical likelihood function, under the unbiasedness imposed on estimating
equations involving the unknown probability p1, p2,… , pn. The works from Chen et al. [9], Hjort et al. [10], Tang and Leng [11], Leng and
Tang [12], and Chang et al. [13] have shown that empirical likelihood estimators perform well when the dimension p of parameters and the
number r of estimating equations grow slower than the sample size n, i.e. p = o(n) and r = o(n).

Tang and Leng [11], Leng and Tang [12], and Chang and Chen [13] have investigated the properties of empirical maximal likelihood
estimators for high-dimensional datawith sparse parameter vector. Practically, this is done by incorporating some suitable penalty functions.
However, there are some challenges in employing empirical likelihood for large-scale data. Tsao [14] has shown that for a large enough n
and fixed p, the probability of the corresponding confidence region containing true parameter values can be substantially smaller than its
nominal value, which leads to an under-coverage problem.

In the meantime, the use of empirical likelihood method for time series data analysis has also been a topic of interest for researchers.
For more details, interested readers are referred to Mykland [15], Kitamura [16], Chan and Ling [17], and Chan and Liu [18]. Monti [19]
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has developed the empirical likelihood method for the analysis of stationary time series. The author has used the M-estimator method,
introduced by Whittle [21], for periodogram ordinates in time series models. Later, Yau [21] has extended the results in Monti [19] to long
memory time series. Nordman and Lahiri [22] has argued that Monti’s results were based on the assumption of normal distribution for the
error term, and thus has extended the classical empirical likelihood to the one based on spectral distribution via Fourier transforms. Their
results apply to both short and long memory dependencies; see Nordman and Lahiri [24] for details.

To the best of our knowledge, all the studies on empirical likelihood for time series rely on the unbiasedness property of estimating equations.
But it seems that the unbiasedness condition alone, when data contains outliers, will produce misleading estimates for the parameters of
interest (Bayati et al. [24]). In other words, in the usual empirical likelihood approach, features such as the dispersion of estimator functional,
which depends on the dispersion of data itself, are not included in the statistical inference process. Therefore, it is necessary to use a pseudo-
empirical likelihood that is a squaring function of the estimating equations. In this paper, for the first time we introduce the restricted
empirical likelihood (REL) for the AR(r) time series models and present its Bayesian analysis. To our best knowledge, Bayati et al. [24] is the
only one that has also used the idea of REL. Nevertheless, Bayati et al. [24] and this paper are very different in the sense that Bayati et al.
[24] has studied the REL for independent observations while this paper investigates the REL for the more sophisticated case of dependent
observations specifically from autoregressivemodels. In this paper, we not only prove the asymptotic normality of REL estimator for general
models, but also give the detailed Bayesian analysis of AR(r) time series models using the REL and as well develop efficient algorithm for
computing posterior and estimating hyper-parameters.

This article is organized as follows. After a glance at the empirical likelihood approach, we will illustrate the REL methodology in
Section 2. The Bayesian analysis using the REL is discussed in Section 3. Bayesian analysis of AR(r) time series models, using the REL, are
given in Section 4. A simulation study and an application to a real-world dataset are embedded in Section 5.

2. PRELIMINARIES

In this section, we first review the concept of empirical likelihood and then introduce the REL which is the main method proposed in this
paper. The notations and definitions are provided along with other content.

2.1. Empirical Likelihood

Suppose x = (x1, x2,… , xn)′ ∈ Rn are n independent observations obtained from the unknown distribution function f and they relate to
the vector of parameters 𝝓 = (𝜙1, ..., 𝜙r)

′.Moreover, we assume that gj(x;𝝓), j = 1,… , r, are some estimating functions to estimate 𝜙 and
they satisfy the unbiasedness conditions

𝔼𝒫{gj(x;𝝓)} =

n∑
i=1

pigj(xi;𝝓) = 0, j = 1,… , r, (1)

where𝒫 = {p1,… , pn}.Moreover, let g(x;𝝓) =
(
g1(x;𝝓), ..., gr(x;𝝓)

)′.
In the usual empirical likelihood approach, the estimates of probabilities pi’s are obtained by maximizing the empirical likelihood function

L(𝝓) ∝

n∏
i=1

pi (2)

under conditions (1) and
∑n

i=1 pi = 1. Equivalently,

L(𝝓) = sup
𝒫

{ n∏
i=1

pi ∶ pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(xi;𝝓) = 0
}

. (3)

So, it is straightforward to see that

pi ∝
1

1 + 𝝀(𝝓)′g(xi;𝝓)
,

where 𝝀(𝝓) =
(
𝜆1(𝝓), 𝜆2(𝝓),… , 𝜆r(𝝓)

)′ is the vector of Lagrange multipliers (see Owen [2] and Qin and Lawless [6]). So, the empirical
likelihood function is given as

L(𝝓) ∝

n∏
i=1

1
1 + 𝝀(𝝓)′g(xi;𝝓)

. (4)
Pdf_Folio:12
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By using (4), the MEL estimator of 𝝓 is given by

𝝓̂
EL

= argmin
𝝓

max
𝝀

[ n∑
i=1

log
{
1 + 𝝀(𝝓)′g(xi;𝝓)

}]
.

There is a modified two-layer coordinate descent algorithm to compute 𝝓̂EL (Tang and Wu [25]).

2.2. Restricted Empirical Likelihood

In previous subsection, the empirical likelihood function is given by (4). Now, by inequality a′b ≤ a′a+b′b
2

=
∥a∥2+∥b∥2

2
for any arbitrary

vectors a and b, we have

n∏
i=1

1

1 + ∥𝝀(𝝓)∥2+∥g(xi;𝝓)∥2

2

≤
n∏
i=1

1
1 + 𝜆(𝝓)′g(xi;𝝓)

. (5)

We hope that the value of 𝝓 that maximizes the left side of (5) approaches to the maximizing value of 𝝓 for the right side. The left side of
(5) can be rewritten as

n∏
i=1

1

1 + ∥𝝀(𝝓)∥2+∥g(xi;𝝓)∥2

2

=

n∏
i=1

2w(𝝓) 1
1 + w(𝝓) ∥ g(xi;𝝓)∥2

= [2w(𝝓)]n
n∏
i=1

1
1 + w(𝝓) ∥ g(xi;𝝓)∥2

, (6)

where w(𝝓) = 1
2+∥𝝀(𝝓)∥2

. Therefore, the pseudo-empirical maximum likelihood estimator (MLE) of 𝝓 is given by

𝝓̂ = argmin
𝝓∈Φ

max
w∈ℝ+n

[ n∑
i=1

log
{
1 + w(𝝓) ∥ g(xi;𝝓)∥2

}
− n logw(𝝓)

]
.

Indeed, the above equation is equivalent to the case that the function
n∑
i=1

log
[
1 + w(𝝓) ∥ g(xi;𝝓)∥2

]
is optimized under the penalty function

− logw(𝝓). It gives us the idea that we can extend the expression (6) to a general form given by

e−nH(w,𝝓)
n∏
i=1

1
1 + w′g∗(xi;𝝓)

, (7)

where w = (w1,… ,wr)
′ and g∗(x;𝝓) =

(
g21(x;𝝓),… , g2r (x;𝝓)

)′
. Here, we assume H(w,𝝓) plays the role of a penalty function and define

our REL, an alternative to the usual empirical likelihood, as

LR(w,𝝓) =
n∏
i=1

1
1 + w′g∗(xi;𝝓)

. (8)

Practically, the REL LR(w,𝝓) has two appealing properties in contrast to L(𝝓) given in (4). First, we can assume in LR(w,𝝓) that the elements
of vectorw are independent of𝝓, while in L(𝝓) dependency of 𝝀 on 𝜽 is a basic assumption. This means that LR(w,𝝓) can be considered as a
semi-parametric version of the usual EL function. Second, by assuming sparsity of vectors𝝓 andw (to reduce the number of parameters and
the number of the estimating equations respectively) and − logREL being convex, we can use the REL method for high-dimensional data.
For more details on the appealing properties of the REL LR(w,𝝓), readers are referred to Bayati et al. [24]. With these appealing properties,
we propose the REL estimator of 𝝓 as given by

(𝝓̂
REL

, ŵREL) = arg min
𝝓∈ℝr,w∈ℝ+r

[ n∑
i=1

log
{
1 + wTg∗(xi;𝝓)

}
+ nH(w,𝝓)

]
.

Under some regularity conditions on g∗ andH, the REL estimator 𝝓̂REL has an asymptotically multivariate normal distribution. This result
is presented in following theorem with details. Its proof is straightforward and thus omitted to save space.Pdf_Folio:13
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Theorem 2.1. Under some well-known regularity conditions on g∗ and H, i.e.,
||||
𝜕2g∗(x;𝝓) }
𝜕𝜙i𝜕𝜙j

|||| < ∞ and
||||
𝜕2H(w,𝝓) ]
𝜕𝜙i𝜕𝜙j

|||| < ∞, when x1, x2,… , xn
are i.i.d., it holds that

√
n(𝝓̂ − 𝝓) → Nr

(
0, I−1(𝝓)

)
,

where

I(𝝓) =

[
E

(
𝜕2

[
log

{
1 + wTg∗(x;𝝓)

}
+H(w,𝝓)

]
𝜕𝜙i𝜕𝜙j

)]

i,j=1,…,r

and w is replaced with its estimate ŵREL.

Proof. Since 𝝓̂ is the maximizer of
∑n

i=1 log
{
1 + wTg∗(xi;𝝓)

}
+ nH(w,𝝓), so we define

Tn(𝝓) =
1
n

[ n∑
i=1

log
{
1 + wTg∗(xi;𝝓)

}
+ nH(w,𝝓)

]

=
1
n

n∑
i=1

[
log

{
1 + wTg∗(xi;𝝓)

}
+H(w,𝝓)

]
.

It is obvious that 𝝓̂ is the MLE when Tn(𝝓) is log-likelihood function normalized by 1
n
. Therefore, the proof is the same as asymptotic nor-

mality ofMLEs.Moreover, under the given regularity conditions,MLE 𝝓̂ is constant, i.e., 𝝓̂ → 𝝓 as n → ∞. □

In the next section, we focus on Bayesian analysis of 𝝓, considering the REL as the usual likelihood function.

3. BAYESIAN ANALYSIS WITH REL

Our main purpose in this paper is the Bayesian analysis of 𝝓, viewing the REL as playing the role of a regular likelihood function. Based on
this idea, we hope that the Bayesian estimation of 𝝓 can provide an acceptable approximation of the true values. For simplicity, we assume
that the penalty functionH(w,𝝓) is an additive function, i.e.,H(w,𝝓) = H1(w) +H2(𝝓), and moreover assume e−nH(w,𝝓) is proportional to
a multivariate density. Consequently, we assume that

𝜋1(w) ∝ e−nH1(w) and 𝜋2(𝝓) ∝ e−nH2(𝝓), (9)

are the corresponding prior densities. We have the following two points to make on the densities.

1. We assume in (9) that the two vectors w and 𝝓 are independent. This assumption is often considered for simplicity and computational
purposes.

2. Unlike the usual way, the priors 𝜋1 and 𝜋2 are dependent of n. This is often assumed in Bayesian statistical analysis; for more details
see Bhattacharya et al. [26] and Ghoreishi [27]. However, the functions H1 and H2 can also be chosen in such a way that the effect of
sample size is ignorable.

Based on the above assumptions, using (8) and (9) along with observations D = {x1,⋯ , xn}, the joint posterior density of (w,𝝓) is

𝜋 (w,𝝓 |D ) ∝ LR(w,𝝓)𝜋1(w)𝜋2(𝝓). (10)

Given the estimating functions g∗ and the priors𝜋1 and𝜋2, one can estimate the desired parameters using the Bayesian approach. In practice,
the marginal posterior distribution of parameters often do not have a closed form, therefore any inference is derived using samples via
MCMCmethods. However, inmany statistical models in which the estimating functions are usually linear of the parameters, the conditional
posterior distributions have the closed form and they are easy to sample using Gibbs sampling method. In the next section, we discuss this
issue with more details for autoregressive models of order r, i.e., AR(r).Pdf_Folio:14
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4. REL FOR AR(r) MODELS

4.1. Basic Concepts

Autoregressive models show a random process where the output variable is a linear function of the same variable. Specifically, the AR(r)
model is defined as

Xt = 𝜙1Xt−1 + 𝜙2Xt−2 +⋯ + 𝜙rXt−r + 𝜖t, t = r + 1,… , n, (11)

where 𝜙1, 𝜙2,… , 𝜙r are the model parameters, and 𝜖t’s are white noises with mean 0 and constant variance 𝜎2. In our empirical approach,
we assume the distribution of 𝜖t’s is totally unknown. In practice, there are several methods to estimate the model coefficients. A popular
approach is Yule-Walker’s system of equations, i.e.,

n∑
t=r+1

Xt−j
(
Xt − 𝜙1Xt−1 − 𝜙2Xt−2 −⋯ − 𝜙rXt−r

)
= 0, j = 1, 2,… , r,

where

gjt(X,𝝓) = Xt−j
(
Xt − 𝜙1Xt−1 − 𝜙2Xt−2 −⋯ − 𝜙rXt−r

)
, j = 1, 2,… , r (12)

are the estimating equations. Later in our Bayesian approach, we will use the weighed Yule-Walker’s system of equations as our estimating
equations.

As we see, the estimating equations (12) are linear functions of parameters 𝜙1, 𝜙2,… , 𝜙r. Therefore, we hope that the posterior conditional
distributions have a closed form when we use the REL function instead of a regular likelihood function. Moreover, in the autoregressive
model (11), the conditional distribution of (xr+1,… , xn) given (x1,… , xr) is

f(xr+1,… , xn|𝝓, x1,… , xr) =
n∏

t=r+1
f(xt|𝝓, xt−1,… , xt−r) =

n∏
t=r+1

pt.

where pt ∶= f(xt|𝝓, xt−1, xt−2,… , xt−r). On the other hand, the corresponding likelihood function is

L(𝝓) =
n∏

t=r+1
pt, (13)

Since the probabilities pt’s are practically unknown, we try to estimate them here using our REL approach. We assume that the observation
xt is weighted with its corresponding conditional density function value pt as the weight. This means that up to a normalizing constant, the
estimating equations (12) satisfy

𝔼𝒫{gjt(x;𝝓)} =
n∑

t=r+1
ptgj(x,𝝓)

=

n∑
t=r+1

ptxt−j
(
xt − 𝜙1xt−1 − 𝜙2xt−2 −⋯ − 𝜙rxt−r

)
= 0,

(14)

where𝒫 = {pr+1, pr+2,… , pn}. Finally, combining (8), (13) and (14) gives the corresponding REL as

LR(𝝓,w) =
n∏

t=r+1

1
1 +

∑r
j=1 wjx2t−j

(
xt − 𝜙1xt−1 − 𝜙2xt−2 −⋯ − 𝜙rxt−r

)2 . (15)

4.2. Posterior Conditional Distributions

Without loss of generality, for Bayesian analysis using the REL (15), we assume wj, 𝜙j and sj are i.i.d. with the following common priors

wj ∼ 𝜋1 = inv.gamma(n, 𝛽0),
𝜙j ∼ 𝜋2 = N(0, 𝜎2

0 ),

sj ∼ f(uj) = Exp(1),
(16)

Pdf_Folio:15
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where the additional variables sr+1, sr+2,… , sn (the argument ur+1,… , un in their respective distribution functions) appeared in equality

LR(𝝓,w) =

n∏
t=r+1

1
1 +

∑r
j=1 wjx2t−j

(
xt − 𝜙1xt−1 − 𝜙2xt−2 −⋯ − 𝜙rxt−r

)2

= ∫ ∞

0 ⋯ ∫ ∞

0 e−
∑n

t=r+1 ut
(
1+

∑r
j=1 wjx2t−j(xt−

∑r
𝜈=1 𝜙𝜈xt−𝜈)

2
)
dur+1 ⋯ dun.

Then the conditional posterior distributions have closed forms given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut ∼ Exp

(
2 +

r∑
j=1

wj x2t−j
(
xt − 𝜙1xt−1 −⋯ − 𝜙rxt−r

)2
)
, t = r + 1,… , n,

wj ∼ gIG(2
n∑

t=r+1
utx2t−j

(
xt − 𝜙1xt−1 −⋯ − 𝜙rxt−r

)2
+ 1, 2𝛽0,−n), j = 1,… , r,

𝜙l ∼ N
(
𝜇l, 𝜎

2
l

)
, l = 1,… , r,

(17)

where gIG stands for the generalized inverse Gaussian distribution and

𝜇l =

n∑
t=r+1

r∑
j=1

utwjx2t−jxtxt−l −
n∑

t=r+1

r∑
j=1

utwjx2t−j
r∑

k≠l
xt−lxt−k𝜙k

n∑
t=r+1

r∑
j=1

utwjx2t−jx
2
t−l +

1
2𝛽0

,

𝜎l =

[
2

n∑
t=r+1

r∑
j=1

utwjx2t−jx
2
t−l +

1
𝛽0

]−0.5

.

4.3. EM Algorithm for Estimating Hyper-parameters

One of themajor challenges in sampling from the conditional posterior densities (17) is that the hyper-parameters 𝛽0 and 𝜎2
0 are unknown in

practice. However, there are several methods to estimate these quantities. In this subsection, we introduce an EM algorithm for this purpose.

From (15) and (16), the marginal density of the observations, x, is obtained as

f(x|𝛽0, 𝜎2
0 , x1,… , xr) = ∫ ⋯ ∫ e−

∑n
t=r+1 st

(
1+

∑r
j=1 wjx2t−j(xt−

∑r
𝜈=1 𝜙𝜈xt−𝜈)

2
)

×
1

𝜎

r
2
0

e
−

1
2𝜎2

0

r∑
j=1

𝜙2
j
×

r∏
j=1

𝛽n0

wn+1
j

e
−
𝛽0
wj ds dw d𝝓.

(18)

Now consider the logarithm of the integrand in (18) as a function of 𝛽0 and 𝜎2
0 given by

I(𝛽0, 𝜎2
0 ) = −

n∑
t=r+1

st
⎛
⎜⎜⎝
1 +

r∑
j=1

wjx2t−j

(
xt −

r∑
𝜈=1

𝜙𝜈xt−𝜈

)2⎞
⎟⎟⎠
−

r
2
log 𝜎0

−
1

2𝜎2
0

r∑
j=1

𝜙2
j + nr log 𝛽0 − (n + 1)

r∑
j=1

logwj −

r∑
j=1

𝛽0

wj
.

(19)

Our proposed EM algorithm for estimating 𝛽0 and 𝜎0 has the following steps:

1. Select the initial estimates 𝛽(0)0 (> 0) and 𝜎
2(0)
0 (> 0) and start with k = 1.

2. Given 𝛽
(k)
0 (> 0) and 𝜎

2(k)
0 (> 0), produce a sample of size N from the conditional distributions (17).

Pdf_Folio:16
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3. E-step: Calculate the averaged I(𝛽0, 𝜎2
0 ) given by (19) using the generated samples in Step 2. Here, it should be noted that it is enough

to calculate the mean of that expression in I(𝛽0, 𝜎2
0 ) which only depend on 𝛽0 and 𝜎2

0 .

4. M-step: Update 𝛽0 and 𝜎2
0 by maximizing the following two quantities with respect to 𝛽0 and 𝜎2

0 respectively:

⎧⎪⎪⎨⎪⎪⎩

Q3(𝜎
2
0 ) =

r
4
log 𝜎2

0 +
1

2𝜎2(k)
0

r∑
j=1

E
𝜎2
0 ,𝛽

(k)
0

[
𝜙2
j

]
,

Q4(𝛽0) = nr log 𝛽0 − (n + 1)
r∑

j=1
E
𝜎
2(k)
0 ,𝛽

(k)
0
logwj − 𝛽0

r∑
j=1

E
𝜎
2(k)
0 ,𝛽

(k)
0

[
1
wj

]
.

The updated estimates at time (k + 1) are obtained as

𝜎
2(k+1)
0 =

1
r

r∑
j=1

E
𝜎
2(k)
0 ,𝛽

(k)
0

(
𝜙2
j

)
, 𝛽

(k+1)
0 =

nc
r∑

j=1
E
𝜎
2(k)
0 ,𝛽

(k)
0

[
1
wj

] .

Repeat Steps 2-4 until the algorithm converges.

4.4. Model Evaluation Criteria

In practice, there are several criteria in literature for evaluating the efficiency of time series models. One of those is the mean squared
prediction error defined asMSPE =

1
n
∑n

t=1 (xt − x̂t)
2
. In this article, we will use a similar criterion to BIC. This criterion, for AR(r) model,

is constructed based on the REL function, abbreviated as EBIC, defined as

EBIC = r log n +

n∑
t=1

log

{
1 +

r∑
j=1

wjx2t−j
(
xt − 𝜙̂1xt−1 − 𝜙̂2xt−2 −⋯ − 𝜙̂rxt−r

)2
}

.

In practice, a small EBIC value confirms the adequacy of the model, whereas a large value indicates the inadequacy of the model.

5. SIMULATION STUDY AND APPLICATION

In this section, we first carry out a simulation study to confirm our theoretical results and then apply the proposedmethods to a real dataset.

5.1. Simulation Study

Our simulation study focuses on the following autoregressive model of order 2:

Xt = 𝜙1Xt−1 + 𝜙2Xt−2 + 𝜖t, t = 3, 4,… , n.

For this model, we assume several scenarios for 𝝓 = (𝜙1, 𝜙2) and n. In order for the AR(2) model to look like a nonparametric model, we
assume that 𝜖t’s are generated from the following a little more complex distribution (a combination of normal and Cauchy distributions)

𝜖i ∼ 0.5 N(0, 2) + 0.5 C(0, 1).

Here, we run the corresponding Gibbs sampling scheme (12) for two sample sizes n = 50 and 500. With the generated data under each
scenario, we try to fit the following three models:

∙ Model I:

Xt = 𝜙1Xt−1 + 𝜖t

with estimating equation g(X, 𝜙1) = Xt−1(Xt − 𝜙1Xt−1).
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∙ Model II:

Xt = 𝜙2Xt−2 + 𝜖t

with estimating equation g(X, 𝜙2) = Xt−2(Xt − 𝜙1Xt−2).

∙ Model III:

Xt = 𝜙1Xt−1 + 𝜙2Xt−2 + 𝜖t

with estimating equations g1(X, 𝜙1, 𝜙2) = Xt−1(Xt − 𝜙1Xt−1 − 𝜙2Xt−2) and g2(X, 𝜙1, 𝜙2) = Xt−2(Xt − 𝜙1Xt−1 − 𝜙2Xt−2).

Moreover, for simplicity, we assume w ∶= w1 = w2. We ran the sampling scheme (17) in order to generate 5000 samples from the marginal
distributions of 𝜙1 and 𝜙2, and each time we fit Models I–III to the data. In addition to the estimates of (𝜙1, 𝜙2) and their standard errors,
the MSPE and EBIC criteria are also computed. The numerical results are presented in Table 1. As we can see from it, Model III fits the data
much better than the other two competitor models.

Table 1 The REL and EL estimates of (𝜙1, 𝜙2) under various models (and their standard errors inside the parentheses) and the associated
MSPE and EBIC.

(𝝓1,𝝓2) Method 𝝓̂1 𝝓̂2 MSPE EBIC
(−0.5, −0.8) REL −0.319(0.127) - 50.941 10.693

n = 50 EL −0.221(0.191) - 54.627
(0.5, −0.8) REL −0.355(0.108) - 34.713 10.261

Model I EL −0.312(0.123) - 39.101
(−0.5, −0.8) REL −0.302(0.168) - 58.121 14.180

n = 500 EL −0.223(0.172) - 61.001
(0.5, −0.8) REL 0.368(0.143) - 33.975 13.990

EL 0.311(0.144) - 42.214

(−0.5, −0.8) REL - −0.146(0.221) 55.914 8.573

n = 50 EL - −0.121(0.243) 67.423
(0.5, −0.8) REL - −0.417(0.197) 39.128 7.857

Model II EL - 0.314(0.202) 44.121
(−0.5, −0.8) REL - −0.586(0.200) 56.842 10.000

n = 500 EL - −0.372(0.213) 71.001
(0.5, −0.8) REL - −0.222(0.209) 28.613 8.156

EL - 0.199(0.266) 37.813

(−0.5, −0.8) REL −0.547(0.032) −0.767(0.047) 20.542 4.705

n = 50 EL −0.570(0.035) −0.726(0.052) 22.117
(0.5, −0.8) REL 0.546(0.041) −0.642(0.032) 21.222 4.440

(Continued)

Pdf_Folio:18



M. Bayati et al. / Journal of Statistical Theory and Applications 20(1) 11–20 19

Table 1 The REL and EL estimates of (𝜙1, 𝜙2) under various models (and their standard errors inside the parentheses) and the associated
MSPE and EBIC. (Continued)

(𝝓1,𝝓2) Method 𝝓̂1 𝝓̂2 MSPE EBIC

Model III EL 0.561(0.043) −0.689(0.033) 22.473
(−0.5, −0.8) REL −0.505(0.012) −0.805(0.014) 17.124 6.805

n = 500 EL −0.515(0.013) −0.821(0.017) 17.921
(0.5, −0.8) REL 0.491(0.011) −0.798(0.011) 16.978 6.508

EL 0.484(0.012) −0.811(0.012) 17.008

Table 2 Total Index of Consumer Goods and Services and their fitted values in urban areas of Iran from 1990 to 2017.
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
xt 1.00 1.20 1.50 1.80 2.50 3.70 4.50 5.30 6.30 7.50 8.50 9.40 10.90 12.60
x̂t - - 1.14 1.51 1.87 2.79 4.22 4.92 5.85 7.09 8.55 9.70 10.86 12.92
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
xt 14.50 16.10 18.00 21.30 26.70 29.50 33.20 40.30 52.60 70.90 81.90 91.70 100.00 109.6
x̂t 15.04 17.39 19.31 21.85 26.19 32.76 34.96 39.65 48.56 62.91 82.94 90.53 100.02 108.18

5.2. Application

In this subsection, we analyze a real dataset on the Total Index of Consumer Goods and Services in urban areas of Iran for the period 1990–
2017, extracted by The Central Bank of the Islamic Republic of Iran. The data are shown in Table 2 which demonstrates the presence of time
dependency. A primary analysis reveals that an AR(2) model fits the data well after removing the trend. For this purpose, we first estimate
the trend using a cubic polynomial given by

xt = 𝛼 + 𝛽t3 + 𝜖t,

𝜖t = 𝜙1𝜖t−1 + 𝜙2𝜖t−2 + ut,
(20)

where the error terms ut’s have an unknown distribution with mean 0 and variance 𝜎2. With the cubic polynomial, we obtain the estimates
𝛼̂ = −0.639 and 𝛽 = 0.004, by fitting a linear regressionmodel. Kolmogorov–Smirnove test statistic for 𝜖t is equal to 0.233 with Sig = 0.000.
This shows that the residuals do not have a normal distribution. Since the size of the data in not large enough, there is no strong evidence that

𝜖t = xt − 𝛼̂ − 𝛽t3

follow any particular distribution. Thus, we will use our proposed REL method to fit a time series model to 𝜖t’s. Using the posterior con-
ditional distributions (17), the Bayesian estimates of 𝜙1 and 𝜙2 in model (20) are 𝜙̂1 = 1.335 and 𝜙̂2 = −0.465 respectively. The results
indicate that the two-level model (20) fits the data well with the determination coefficient R2 = 0.996,MSPE = 3.96, and EBIC = 6.327.

6. CONCLUSION

In this paper, a Bayesian method using the REL has been proposed for fitting the AR(r) time series model. An useful algorithm for comput-
ing the posterior has been developed for this approach. Moreover, the competitive performance of the proposed method has been clearly
demonstrated via both simulation studies and a real data application. It is important to note that this method can be easily applied to other
general linear models.
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