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ABSTRACT
This study introduces generalized transmuted family of distributions. We investigate the special cases of our generalized
transmuted distribution to match with some other generalization available in literature. The transmuted distributions are applied
to Weibull distribution to find generalized rank map transmuted Weibull distribution. The distributional characteristics such as
probability curve, mean, variance, skewness, kurtosis, distribution of largest order statistics, and their characteristics studied to
compare with ordinary Weibull distribution. Hazard rate functions and distributional characteristics of largest order statistics of
transmuted distributions are also studied. It is observed that the transmuted distributions are more flexible to model real data,
since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher
degree of skewed distribution can explore this generalized transmuted family of distributions for future use.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The ideas of developing new distributions are important issues in recent literatures. Numerous families of distributions have proposed by
several authors for modeling data in several areas such as engineering, economics, finance and actuarial science, medical and life sciences.
However, in many applied areas like lifetime analysis, insurance analysis we need extended distributions, that is, new distributions which
are more flexible to model real data, since the data can present a high degree of skewness and kurtosis.

Lee et al. [1] provided an overview of most method used to generate family of continuous distributions earlier in 1980. For more details
about these methods can be referred to Pearson [2], Johnson [3], and Tukey [4]. Recently several literatures were discussed generalized
method to generate extended generalized family of distributions. For more details about the recent development may refer to Johnson et al.
[5], Eugene et al. [6], Jones [7], Alzaatreh et al. [8], Bourguignon et al. [9], Afify et al. [10], Granzotto et al. [11], Al-Kadim and Mohammed
[12], Jayakumar and Babu [13], Mahdavi and Kundu [14], Alizadeh et al. [15], Al-Kadim [16], Pobocikova et al. [17], Elgarhy et al. [18],
Afify et al. [19], and references therein. Apart from the above, a more extended generalized nth degree transmuted method suggested in this
study to generate transmuted distributions. An application of the generated transmuted map is extended to the Weibull distribution. The
distributional characteristics of the generated transmuted distributions are also simulated to compare with traditional Weibull distribution.

This paper is organized in the following way: In Section 2, we developed nth degree generalized transmutation map based on continuous
family of distribution. Particular cases are also discussed. Some other members of generalized transmutation map are identified. In Section
3, the survival function, hazard rate function, and reserved hazard rate function of newly generated generalized transmuted distribution
are discussed. In Section 4, we developed the nth degree generalized transmutation map based on Weibull distribution. Also, probability
density function (pdf ) graphs are simulated and presented in figure to compare each other. In Section 5, some distributional characteristics
such as mean variance, skewness, and kurtosis are simulated and presented in tabular form to compare each other for different parametric
set of values. The Section 6 is based on discussion and proof of some theorems related to order statistics (OS) of generalized transmuted
Weibull distribution (TWD). Simulated distributional characteristics of largest OS of quadratic TWD are also presented in section 6. The
Section 7, states conclusion and then inserted references.
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2. GENERALIZED nth RANK TRANSMUTATION MAP

The construction of the generalized n-degree transmutation map considered here is simple and intuitive. Let X1,X2,… ,Xn be a random
sample from an absolutely continuous population with pdf g (x) , x ∈ (a, b) corresponding to cumulative distribution function (cdf ) G (x)

with ∫
b

a
f (x) dx = ∫

𝜓

𝜑

f
[
h(t)

]
h′(t)dt; x = h (t). This is valid under the following conditions:

i) f (x) is continuous on some interval A ≤ x ≤ B containing the original limits of integration, (a, b).

ii) The equalities a = h (𝜑) and b = h (𝜓) holds.

iii) h (t) and its derivative h′ (t) are continuous on the interval 𝜑 ≤ t ≤ 𝜓 .

iv) As t varies from 𝜑 to 𝜓 , the function h (t) always varies in the same direction from h (𝜑) = a to h (𝜓) = b.

Let X1∶n ≤ X2∶n ≤ … ≤ Xn∶n be the OS obtained by arranging the preceding random sample in increasing order of magnitude. The cdf of
Xr∶n (1 ≤ r ≤ n) is given by

Gr∶n (x) = P
(
Xr∶n ≤ x

)
=

n∑
i=r

(
n
i

)
[G (x)]i[1 − G (x)]n−i = IG(x) (r, n − r + 1) , (1)

where, the beta function with B
(
p, q

)
= B1

(
p, q

)
, and Ix

(
p, q

)
=

Bx(p,q)
B(p,q)

is incomplete beta function ratio. The corresponding pdf is given
by

gr∶n (x) =
𝜕

𝜕x

[
Fr∶n (x)

]
=

n!
(r−1)!(n−r)!

[G (x)]r−1[1 − G (x)]n−rg (x)

= g (x) b [G (x) ; r, n − r + 1] ; −∞ < x < ∞, 1 ≤ r ≤ n,
(2)

where b
(
t; p, q

)
=

1
B(p,q)

tp−1(1 − t)q−1, 0 ≤ t ≤ 1.

Now, consider the random variable, Y as

Y ∼ gr∶n (x) with probability 𝜋r∶n (r = 1, 2, 3,… , n; n = 1, 2, 3,…),

where 0 ≤ 𝜋r∶n ≤ 1 and
n∑
r=1

𝜋r∶n = 1.

Hence, generalized transmuted cdf of nth rank mapped (n = 1, 2, 3, ...) distribution is given by

FY (x) =
n∑
r=1

𝜋r∶nIG(x) (r, n − r + 1) =
n∑
r=1

mr∶n (x) , (3)

and corresponding generalized transmuted pdf of nth rank mapped distribution is

fY (x) =
𝜕

𝜕x
[
FY (x)

]
=

n∑
r=1

𝜕

𝜕x
[
mr∶n (x)

]
=

n∑
r=1

𝜋r∶n
𝜕

𝜕x
[
IG(x) (r, n − r + 1)

]
(4)

= g (x)
n∑
r=1

𝜋r∶n b [G (x) ; r, n − r + 1] , (5)

where mr∶n (x) = 𝜋r∶nIG(x) (r, n − r + 1) and b (.; ., .) is same as before.

Now,

b
(
t; p, q

)
=

1
B(p,q)

tp−1(1 − t)q−1 =
1

B(p,q)
tp−1

q−1∑
i=0

(−1)q−1−i
(
n
i

)
tq−1−i

=
1

B(p,q)

q−1∑
i=0

(−1)q−1−i
(
n
i

)
tp+q−2−i

(6)
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Using (6) in (5) to get

fY (x) = g (x)
n∑
r=1

n−r∑
j=0

(−1)n−r−j𝜋r∶n
B (r, n − r + 1)

(
n − r
j

)
[G (x)]n−1−j

= g (x) [G (x)]n−1
n∑
r=1

n−r∑
j=0

krj (x) = g (x) [G (x)]n−1
n∑
r=1

kr,
(7)

where, ki =
n−i∑
j=0

kij and kij =
(−1)n−i−j𝜋i∶n
B(i,n−i+1)

(
n − i
j

)
[G (x)]−j.

Expression (3) and (7) will also be helpful for simulation study for the cdf and pdf respectively.

2.1. Particular Cases

i) Put n = 2, 𝜋1∶n = 𝜋, i.e., 𝜋2∶2 = 1 − 𝜋 and 𝜆 = 2𝜋 in (3) and (7) to get the quadratic transmutation map of Shaw and Buckley [20]

F (x) = 𝜆G (x) + (1 − 𝜆)G2 (x)

and the corresponding pdf of quadratic transmutation map of Shaw and Buckley [20] is

f (x) = g (x) [G (x) + 𝜆 {1 − G (x)}] .

ii) Put n = 3, 𝜋3∶3 = 1 − 𝜋1∶3 − 𝜋2∶3 and 𝜆1 = 3𝜋1∶3, 𝜆2 = 3𝜋2∶3 in (3) and (7) to get the cubic ranking transmutation map of Granzotto
et al. ([11], Eq. (3), pp. 2761)

F (x) = 𝜆1G (x) +
(
𝜆2 − 𝜆1

)
G2 (x) +

(
1 − 𝜆2

)
G3 (x)

and the pdf of cubic ranking transmutation map of Granzotto et al. [11] is

f (x) = g (x)
[
𝜆1 + 2

(
𝜆2 − 𝜆1

)
G (x) + 3

(
1 − 𝜆2

)
G2 (x)

]
.

iii) Put 𝜋1∶n = 1 and 𝜋i∶n = 0∀ 2 ≤ i ≤ n in (3) and (7) to develop the simple transmutation map of Eugene et al. [6] on using beta
distribution as a generator.

F (x) = IG(x)
(
p, q

)

and the pdf of simple transmutation map of Eugene et al. [6] is

f (x) = g (x) b
[
G (x) ; p, q

]
.

iv) Put n = 3, 𝜆 = 𝜆1 = 3𝜋1∶3 = −𝜆2, 𝜆2 = 3𝜋2∶3 in (3) and (7) to develop the cubic ranking transmutation map of Al-Kadim and
Mohammed [12] with cdf

F (x) = (1 + 𝜆)G (x) − 2𝜆G2 (x) − 𝜆G3 (x)

and the corresponding pdf of the cubic ranking transmutation map of Al-Kadim and Mohammed [12] is

f (x) = (1 + 𝜆) g (x) − 4𝜆G (x) g (x) − 3𝜆G2 (x) g (x) .

It may be noted that the general formula of the transmuted distribution of Al-Kadim [16] can also be deduced from (3) as a particular
case for odd and even n respectively.Pdf_Folio:134
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v) Put n = 4, 𝜆i = 2𝜋i∶4; 1 ≤ i ≤ 4 in (3) and (7) to develop the generalized Quartic ranking transmutation map which is new cdf as
suggested.

F (x) = 2𝜆1G (x) + 3
(
𝜆2 − 𝜆1

)
G2 (x) + 2

(
𝜆1 − 2𝜆2 + 𝜆3

)
G3 (x) +

(
1 − 𝜆1 + 𝜆2 − 2𝜆3

)
G4 (x) (8)

and the corresponding generalized Quartic ranking transmutation map with new pdf as suggested is given by

f (x) = g (x)
[
2𝜆1 + 6

(
𝜆2 − 𝜆1

)
G (x) + 6

(
𝜆1 − 2𝜆2 + 𝜆3

)
G2 (x) + 4

(
1 − 𝜆1 + 𝜆2 − 2𝜆3

)
G4 (x)

]
. (9)

vi) Put n = 5, 𝜆i = 5𝜋i∶5; 1 ≤ i ≤ 5 in (3) and (7) to develop the generalized Quintic ranking transmutation map with a new cdf
suggested as

F (x) = 𝜆1G (x) + 2
(
𝜆2 − 𝜆1

)
G2 (x) + 2

(
𝜆1 − 2𝜆2 + 𝜆3

)
G3 (x)

+
(

3𝜆2 − 𝜆1 − 3𝜆3 + 𝜆4
)
G4 (x) +

(
1 − 𝜆2 − 𝜆3 − 𝜆4

)
G5 (x)

(10)

and the corresponding pdf of generalized Quintic ranking transmutation map which is a new pdf as suggested is

f (x) = g (x) [𝜆1 + 4
(
𝜆2 − 𝜆1

)
G (x) + 6

(
𝜆1 − 2𝜆2 + 𝜆3

)
G2 (x)

+4
(

3𝜆2 − 𝜆1 − 3𝜆3 + 𝜆4
)
G3 (x) + 5

(
1 − 𝜆2 − 𝜆3 − 𝜆4

)
G4 (x)].

(11)

vii) Put 𝜆i = n𝜋i∶n; 1 ≤ i ≤ n, and n = 6, 7, 8,… in (3) and (7) to develop the cdf of suggested generalized desired nth (n ≥ 6) ranked
transmutation map as well as the corresponding pdf of generalized desired nth ranked transmutation map.

viii) If one put, 𝜋i∶n =
1
n

for 1 ≤ i ≤ n, then F (x) = G (x)

ix) If we put, 𝜋i∶n =

(
n
i

)
∕ (2n − 1), for all 1 ≤ i ≤ n and n = 2, 3, 4,…, then from (3) and (7) we get another new generalized nth

ranked transmuted map with cdf for generating families of distributions is

FTDn (x) =
n∑
r=1

𝜋r∶nIG(x) (r, n − r + 1) =
n∑
r=1

mr∶n (x) , (12)

where mr∶n (x) =
[(

n
r

)
∕ (2n − 1)

]
IG(x) (r, n − r + 1)

and the corresponding generalized nth ranked transmuted map of pdf for generating families of distribution are given by

fTDn (x) = g (x) [G (x)]n−1
n∑
r=1

kr, (13)

where, ki =
n−i∑
j=0

kij and kij =
(−1)n−i−j

(2n−1)B(i,n−i+1)

(
n
i

)(
n − i
j

)
[G (x)]−j.

Some Specific Cases of (12) and (13)

2.1.1. Quadratic rank transmuted distribution (TD2)

For n = 2 in (12) and (13), the new form of quadratic map ranked transmuted cdf is given by

FTD2 (x) =
1
3
[
4G (x) − G2 (x)

]
=

1
3
G (x) [3 + {1–G (x)}] (14)

and the corresponding new form of quadratic map ranked transmuted pdf is given by

fTD2 (x) =
g (x)

3
[4 − 2G (x)] =

2g (x)
3

[1 + {1 − G (x)}] . (15)
Pdf_Folio:135
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2.1.2. Cubic rank transmuted distribution (TD3)

For n = 3 in (12) and (13), the new form of cubic ranked transmuted cdf is given by

FTD3 (x) =
1
7
[
9G (x) − 2G3 (x)

]
(16)

and the corresponding new form of cubic ranked transmuted pdf is given by

fTD3 (x) =
g (x)

7
[
9 − 6G2 (x)

]
. (17)

2.1.3. Quartic rank transmuted distribution (TD4)

For n = 4 in (12) and (13), the new form of quartic ranked transmuted cdf is given by

FTD4 (x) =
1

15
[
16G (x) + 12G2 (x) − 16G3 (x) + 3G4 (x)

]
(18)

and the corresponding new form quartic ranked transmuted pdf is given by

fTD4 (x) =
g (x)
15

[
16 + 24G (x) − 48G2 (x) + 12G3 (x)

]
. (19)

2.1.4. Quintic rank transmuted distribution (TD5)

For n = 5 in (12) and (13), the new form of quintic ranked transmuted cdf is given by

FTD5 (x) =
1

31
[
25G (x) + 50G2 (x) − 50G3 (x) + 6G5 (x)

]
(20)

and the corresponding new form of quintic ranked transmuted pdf is given by

fTD5 (x) =
g (x)
31

[
25 + 100G (x) − 150G2 (x) + 30G4 (x)

]
. (21)

In a similar manner, one can generate any desired higher order (n ≥ 6) rank transmuted map from (12) and (13).

3. HAZARD FUNCTION

The survival function S (x), hazard rate function h (x), and reserved hazard rate function r (x) of newly generated generalized transmuted
cdf FTDn (x) (Eq. 12) corresponding to pdf fTDn (x) (13) are respectively given by

STDn (x) = 1 − FTDn (x) (22)

hTDn (x) = fTDn (x) ∕STDn (x) = fTDn (x) ∕
{

1 − FTDn (x)
}

(23)

rTDn (x) = fTDn (x) ∕FTDn (x) , (24)

where, fTDn (x) and FTDn (x) are as before.

Use (3) in (22) to get survival function for newly derived nth ranked transmuted distribution as

STDn (x) = 1 −

n∑
r=1

mr∶n (x) . (25)

Use (7) and (22) in (23) to get hazard rate function for newly derived nth ranked transmuted distribution as

hTDn (x) =
g (x) [G (x)]n−1

∑n

r=1
kr

1 −
∑n

r=1
mr∶n (x)

. (26)
Pdf_Folio:136
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Use (3) and (7) in (24) to get reserved hazard rate function for newly derived nth ranked transmuted distribution as

rTDn (x) =
g (x) [G (x)]n−1

∑n

r=1
kr∑n

r=1
mr∶n (x)

, (27)

where, mr∶n (x) and kr are as before.

For more about the hazard function one can refer to Zubair et al. [21] and references therein.

Theorem 3.1. The quadratic generalized transmuted hazard rate function is given by

hTD2 (x) =
2g (x) [2 − G (x)]

3 − G (x) [4 − G (x)]
.

Proof. From (23) and for n = 2, we get the generalized transmuted hazard rate function as

hTD2 (x) =
fTD2 (x)

1 − FTD2 (x)
. (28)

Now using (14) and (15) in (28) and on algebraic simplification gives the proof of the theorem.

Theorem 3.2. The quadratic generalized transmuted Weibull hazard rate function is given by

hTWD2 (x) =
2𝛼x𝛼−1

[
e−(x∕𝛽)𝛼 + e−(x∕𝛽)2𝛼

]

3𝛽𝛼
[

1 −
2
3
e−(x∕𝛽)𝛼 + 1

3
e−(x∕𝛽)2𝛼

] .

Proof. From (28) and on using (29) and (30) gives the proof of the theorem.

Simulated hazard function (WD, TWD2 to TWD5) for some specific sets of parameters (𝛼, 𝛽) values are presented in Figures 1–4 to compare
among themselves. The hazard function is one of the most important quantities to character life phenomenon. Compare with many other
modified Weibull distributions, the shape of the hazard function is easy to decide. It can be derived from (23) and it is flexible. As we know,
it is very common for a bathtub-shaped hazard function of a system or component to have a long useful lifetime with low constant rate
portion in the middle and sharp change in the initial and wear-out of phase, so a distribution which can fit this kind of hazard rate would
be very useful in reliability studies.

4. TRANSMUTED WEIBULL DISTRIBUTION

The Weibull distribution which was proposed by Weibull [22] is a very important lifetime distribution and is widely used in many fields.
However, the hazard function of the traditional Weibull distribution can only be increasing, decreasing, or constant. To meet the need
of fitting complex modes and the bathtub-shaped hazard rate, researchers have proposed many improved flexible models based on the
traditional Weibull distribution. To know more about modified or improved models based on the traditional Weibull distribution, one may
refer to Johnson et al. [5], Xie et al. [23], Bebbington et al. [24], Nassar et al. [25], Afify et al. [19], and references therein. Still even available
modified Weibull model are not enough to represent or fit the data obtain all cases such as engineering, economics, finance and actuarial

Figure 1 Hazard rate curve for 𝛼 = 1.0, 𝛽 = 1.4.
Pdf_Folio:137
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Figure 2 Hazard rate curve for 𝛼 = 0.4, 𝛽 = 0.6.

Figure 3 Hazard rate curve for 𝛼 = 0.6, 𝛽 = 1.4.

Figure 4 Hazard rate curve for 𝛼 = 2.6, 𝛽 = 2.4.

science, medical and life sciences. Our proposed transmuted model will be more flexible and will cover such limitation for which data
present a higher degree of skewness and kurtosis.

A random variable X is said to have traditional Weibull distribution (WD) with parameters (𝛼 > 0, 𝛽 > 0, 𝜃 ≥ 0) if its cdf is given by

G (x) = 1 − exp
{
−

(
x − 𝜃
𝛽

)𝛼}
; x ≥ 𝜃 (29)

and corresponding pdf is given by

g (x) = 𝛼

𝛽

(
x − 𝜃
𝛽

)𝛼−1

exp
{
−

(
x − 𝜃
𝛽

)𝛼}
; x ≥ 𝜃, (30)

where, 𝛼 is the shape parameter, 𝛽 is the scale parameter, and 𝜃 is the location parameter. Throughout the paper take 𝜃 = 0 without loss of
generality, then (29) and (30) transform into cdf and pdf of 2-parameters traditional Weibull distribution, respectively.Pdf_Folio:138
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i) Quadratic ranked map TransmutedWeibull distribution (TWD2)
Using (29) in (14); (29) and (30) into (15) to get the new Quadratic map ranked transmuted Weibull cdf as

FTWD2 (x) =
[

1 − exp
{
−

(
x
𝛽

)𝛼}][
1 +

1
3
exp

{
−

(
x
𝛽

)𝛼}]
(31)

and the corresponding new Quadratic map ranked transmuted Weibull pdf is given by

fTWD2 (x) =
2𝛼
3𝛽

(
x
𝛽

)𝛼−1

exp
{
−

(
x
𝛽

)𝛼}[
1 + exp

{
−

(
x
𝛽

)𝛼}]
. (32)

ii) Cubic ranked map TransmutedWeibull distribution (TWD3)
Using (29) in to (16); (29) and (30) into (17) to get the new Cubic map ranked transmuted Weibull cdf as

FTWD3 (x) =
1
7

[
9
[

1 − exp
{
−

(
x
𝛽

)𝛼}]
− 2

[
1 − exp

{
−
(

x
𝛽

)𝛼}]3]
(33)

and the corresponding new cubic map ranked transmuted Weibull pdf is given by

fTWD3 (x) =
𝛼

7𝛽

(
x
𝛽

)𝛼−1

exp
{
−

(
x
𝛽

)𝛼}[
9 − 6

(
1 − exp

{
−
(

x
𝛽

)𝛼})2]
. (34)

iii) Quartic ranked map TransmutedWeibull distribution (TWD4)
Using (29) in to (18); (29) and (30) into (19) to get the new Quartic map ranked transmuted Weibull cdf as

FTWD4 (x) =
1

15

[
16

{
1 − exp

{
−

(
x
𝛽

)𝛼}}
+ 12

{
1 − exp

{
−
(

x
𝛽

)𝛼}}2

−16
{

1 − exp
{
−
(

x
𝛽

)𝛼}}3
+ 3

{
1 − exp

{
−
(

x
𝛽

)𝛼}}4] (35)

and the corresponding new Quartic ranked transmuted Weibull pdf is given by

fTWD4 (x) =
𝛼

15𝛽

(
x
𝛽

)𝛼−1

exp
{
−

(
x
𝛽

)𝛼}[
16 + 24

{
1 − exp

{
−

(
x
𝛽

)𝛼}}

−48
{

1 − exp
{
−
(

x
𝛽

)𝛼}}2
+ 12

{
1 − exp

{
−
(

x
𝛽

)𝛼}}3]
.

(36)

iv) Quintic ranked map TransmutedWeibull distribution (TWD5)
Using (29) in to (20); (29) and (30) into (21) to get new the Quartic map ranked transmuted Weibull cdf as

FTWD5 (x) =
1

31

[
25

{
1 − exp

{
−

(
x
𝛽

)𝛼}}
+ 50

{
1 − exp

{
−
(

x
𝛽

)𝛼}}2

−50
{

1 − exp
{
−
(

x
𝛽

)𝛼}}3
+ 6

{
1 − exp

{
−
(

x
𝛽

)𝛼}}5] (37)

and the corresponding new quartic ranked transmuted Weibull pdf is given by

fTWD5 (x) =
𝛼

15𝛽

(
x
𝛽

)𝛼−1

exp
{
−

(
x
𝛽

)𝛼}[
25 + 100

{
1 − exp

{
−

(
x
𝛽

)𝛼}}

−150
{

1 − exp
{
−
(

x
𝛽

)𝛼}}2
+ 18

{
1 − exp

{
−
(

x
𝛽

)𝛼}}4]
.

(38)
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Figure 5 TWDn curve for 𝛼 = 1.4, 𝛽 = 1.2.

Figure 6 TWDn curve for 𝛼 = 2.6, 𝛽 = 1.3.

Figure 7 TWDn curve for 𝛼 = 1.8, 𝛽 = 0.8.

In a similar way one can find new any desired rank map transmuted cdf of Weibull distribution by using (29) in to (12); corresponding pdf
by using (29) and (30) into (13).

The simulated pdf curves of different ranked TWD for some specific sets of parametric values (𝛼, 𝛽) were plotted in Figures 5–8 to observe
and compare the change of skewness and the pdf curve shapes with the change of transmutation rank.

It is observed from the above Figures 5–8 that the TWDs are more skewed compare to ordinary Weibull distribution. The degree of skewness
of TWDn curves increases if the rank of transmutation map increases. So, the newly generated TWDs have advantages to fit if the data sets
are more skewed.Pdf_Folio:140
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Figure 8 TWDn curve for 𝛼 = 1.0, 𝛽 = 1.2.

5. DISTRIBUTIONAL CHARACTERISTICS

The kth (k = 1, 2, 3,…) raw moment corresponding to generalized nth rank transmuted map of Weibull pdf (30) are given from (13) as

𝜇′
k = E

(
Xk) = ∫

∞

0
xkf (x) dx =

n∑
r=1

kr, (39)

where, ki =
n−i∑
j=0

kij, kij =
(−1)n−i−j

(2n − 1)B (i, n − i + 1)

(
n
i

)(
n − i
j

)
Mk,n−1−j

and Mk,m = ∫
∞

0
xkg (x)Gm (x) dx.

Now on using (29) and (30), we have

Mk,m =
𝛼

𝛽 ∫
∞

0
xk
(
x
𝛽

)𝛼−1

exp
{
−

(
x
𝛽

)𝛼}[
1 − exp

{
−
(

x
𝛽

)𝛼}]m
dx

=
𝛼

𝛽𝛼 ∫
∞

0
xk+𝛼−1e

−

(
x
𝛽

)𝛼 m∑
i=0

(−1)i
(
m
i

)
exp

{
−

(
x
𝛽

)𝛼i
}

dx

=
𝛼

𝛽𝛼

m∑
i=0

(−1)i
(
m
i

)
∫

∞

0
xk+𝛼−1exp

{
−

(
x
𝛽

)𝛼i+1
}

dx.

We know that ∫
∞

0
xn exp

{
−
(
qx
)m} dx =

Γ
(

n+1
m

)

mqn+1 , m, n > 0 and real. For more about it refer to Jeffrey and Dai ([26], p. 272). So that

Mk,m = 𝛼𝛽k
m∑
m

(−1)i
(
m
i

) Γ
(

k+𝛼
𝛼i+1

)

(𝛼i + 1)
= 𝛼𝛽k

m∑
i=0
𝛿im, (40)

where, 𝛿im = (−1)i
(
m
i

)
Γ

(
k+𝛼
𝛼i+1

)

(𝛼i+1)
.

5.1. Moments for Quadratic TWD2

For n = 2 in (39), the kth raw moment of the quadratic TWD is given by

𝜇′
k = E

(
Xk) = ∫

∞

0
xkf (x) dx =

𝛽k

3

[
2Γ

(
k + 𝛼
𝛼

)
+ Γ

(
k + 𝛼

2𝛼

)]
(41)
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and for k = 1, 2, 3, 4, the first four moments of the quadratic TWD are given by

Mean = 𝜇′
1 =

𝛽

3

[
2Γ

(1 + 𝛼

𝛼

)
+ Γ

(1 + 𝛼

2𝛼

)]

𝜇′
2 =

𝛽2

3

[
2Γ

(2 + 𝛼

𝛼

)
+ Γ

(2 + 𝛼

2𝛼

)]

𝜇′
3 =

𝛽3

3

[
2Γ

(3 + 𝛼

𝛼

)
+ Γ

(3 + 𝛼

2𝛼

)]

and𝜇′
4 =

𝛽4

3

[
2Γ

(4 + 𝛼

𝛼

)
+ Γ

(4 + 𝛼

2𝛼

)]
.

The central moments are given by

Var (X) = 𝜇2 =
𝛽2

3

[
2Γ

(2 + 𝛼

𝛼

)
+ Γ

(2 + 𝛼

2𝛼

)]
−
𝛽2

9

[
2Γ

(1 + 𝛼

𝛼

)
+ Γ

(1 + 𝛼

2𝛼

)]2

𝜇3 = 𝜇
′
3 − 3𝜇′

2𝜇
′
1 + 2

(
𝜇′

1
)3

and𝜇4 = 𝜇
′
4 − 4𝜇′

3𝜇
′
1 + 6𝜇′

2
(
𝜇′

1
)2

− 3
(
𝜇′
)4
.

Pearson’s four coefficients, based upon the first four central moments are

𝛽1 =
𝜇2

3

𝜇3
2
, 𝛾1 = +

√
𝛽1 and 𝛽2 =

𝜇4

𝜇2
2
, 𝛾2 = 𝛽2 − 3.

It may be noted that these coefficients are true numbers independent of units of measurement.

The pth
[
p ∈ (0, 1)

]
percentile point of quadratic TWD (32) is given by

xp = 𝛽

[
− ln

{
1 − 2

(
1 −

√
1 − 3p∕4

)}]1∕𝛼

and random observation can be generated from the following inverse function

X = 𝛽

[
− ln

{
1 − 2

(
1 −

√
1 − 3U∕4

)}]1∕𝛼
, where U ∼ U (0, 1).

5.2. Moments for Cubic TWD3

For n = 3 in (39), the kth raw moment of the Cubic TWD is given by

𝜇′
k = E

(
Xk) =

3∑
r=1

kr = k1 + k2 + k3,

where, k1 =

2∑
j=0

k1j = k10 + k11 + k12, k2 =

1∑
j=0

k1j = k20 + k21, k3 = k30.

k10 =
9
7
Mk,2, k11 =

18
7
Mk,1, k12 =

9
7
Mk,0, k20 = −

18
7
Mk,2, k21 =

18
7
Mk,1, k30 =

3
7
Mk,2.

Mk,0 = 𝛼𝛽k𝛿00, Mk,1 = 𝛼𝛽k
(
𝛿01 + 𝛿11

)
, Mk,2 = 𝛼𝛽k

(
𝛿02 + 𝛿12 + 𝛿22

)
.

𝛿00 = Γ (k + 𝛼), 𝛿01 = Γ (k + 𝛼), 𝛿02 = Γ (k + 𝛼), 𝛿11 = −
1

1+𝛼
Γ
(

k+𝛼
1+𝛼

)
, 𝛿12 = −

2
1+𝛼

Γ
(

k+𝛼
1+𝛼

)
, 𝛿22 = −

1
1+2𝛼

Γ
(

k+𝛼
1+2𝛼

)
.

From (34), the rth raw moment of TWD3 is given by

𝜇′
k = E(X)k = 𝛽k

7

[
3Γ

(
𝛼 + k
𝛼

)
+ 6Γ

(
𝛼 + k

2𝛼

)
− 2Γ

(
𝛼 + k

3𝛼

)]
. (42)
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Mean = 𝜇′
1 =

𝛽

7

[
3Γ

(
𝛼 + 1
𝛼

)
+ 6Γ

(
𝛼 + 1

2𝛼

)
− 2Γ

(
𝛼 + 1

3𝛼

)]
,

𝜇′
2 =

𝛽2

7

[
3Γ

(
𝛼 + 2
𝛼

)
+ 6Γ

(
𝛼 + 2

2𝛼

)
− 2Γ

(
𝛼 + 2

3𝛼

)]

𝜇′
3 =

𝛽3

7

[
3Γ

(
𝛼 + 3
𝛼

)
+ 6Γ

(
𝛼 + 3

2𝛼

)
− 2Γ

(
𝛼 + 3

3𝛼

)]
,

𝜇′
4 =

𝛽4

7

[
3Γ

(
𝛼 + 4
𝛼

)
+ 6Γ

(
𝛼 + 4

2𝛼

)
− 2Γ

(
𝛼 + 4

3𝛼

)]
.

and Var (X) = 𝛽2

7

[
3Γ

(
𝛼 + 2
𝛼

)
+ 6Γ

(
𝛼 + 2

2𝛼

)
− 2Γ

(
𝛼 + 2

3𝛼

)]

−
𝛽2

49

[
3Γ

(
𝛼 + 1
𝛼

)
+ 6Γ

(
𝛼 + 1

2𝛼

)
− 2Γ

(
𝛼 + 1

3𝛼

)]2
.

Other central moments and Pearson’s four coefficients can be obtained from the above by simple algebraic manipulation.

5.3. Moments for Quartic TWD4

For n = 4 in (39), the kth raw moment of the TWD4 is given by

𝜇′
k = E(X)k = 𝛽k

15

[
4Γ

(
𝛼 + k
𝛼

)
+ 18Γ

(
𝛼 + k

2𝛼

)
− 4Γ

(
𝛼 + k

3𝛼

)
− 3Γ

(
𝛼 + k

4𝛼

)]
. (43)

5.4. Moments for Quintic TWD5

For n = 5 in (39), the kth raw moment of the TWD5 is given by

𝜇′
k = E

(
Xk) = 𝛽k

31

[
5Γ

(
𝛼 + k
𝛼

)
+ 40Γ

(
𝛼 + k

2𝛼

)
+ 10Γ

(
𝛼 + k

3𝛼

)

−30Γ
(
𝛼 + k

4𝛼

)
+ 6Γ

(
𝛼 + k

5𝛼

)]
.

(44)

For example, some distributional properties like mean, variance, skewness, and kurtosis are simulated and presented below in Table 1 for
some specific values of the parameters (𝛼, 𝛽) to observe and compare differentiation of traditional Weibull distribution (30) along with some
other different ranked map TWD (TWDn, n = 2,3, 4, 5), where, n indicates nth rank (31–38) map. It is observed that skewness of transmuted
distribution is more flexible as rank of transmutation increases. So, one can use flexible desired rank map transmuted distribution to fit
desired skewed data set. For all simulation work MATLAB R2015a version is used.

Table 1 Distributional characteristics of nth, n = 2, 3, 4, ... degree mapof transmuted Weibull distribution (TWDn, n = 2, 3, 4, ...).

Different Combination of Parameter (𝛼, 𝛽) ValuesDistributional
Characteristics

𝜶 = 0.4
𝜷 = 0.3

𝜶 = 1.0
𝜷 = 1.0

𝜶 = 1.3
𝜷 = 1.2

𝜶 = 1.4
𝜷 = 1.2

𝜶 = 1.5
𝜷 = 1.3

𝜶 = 1.5
𝜷 = 1.2

𝜶 = 0.5
𝜷 = 0.3

𝜶 = 2.0
𝜷 = 0.3

𝜶 = 0.6
𝜷 = 1.3

𝜶 = 0.5
𝜷 = 0.1

WD 0.9970 1.0000 1.1083 1.0937 1.1736 1.0833 0.6000 0.2659 1.9559 0.2000
TWD2 0.7566 1.0000 1.1714 1.1714 1.2715 1.1737 0.4886 0.2998 1.6909 0.1629
TWD3 0.5841 0.8988 1.0684 1.0717 1.1662 1.0765 0.3993 0.2771 1.4330 0.1331
TWD4 0.4571 0.7511 0.8879 0.8890 0.9658 0.8915 0.3255 0.2280 1.1889 0.1085

Means

TWD5 0.3654 0.6025 0.6980 0.6951 0.7515 0.6936 0.2673 0.1743 0.9806 0.0891
WD 9.8060 1.0000 0.7391 0.6266 0.6349 0.5410 1.8000 0.0193 11.8246 0.2000

(Continued)
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Table 1 Distributional characteristics of nth, n = 2, 3, 4, ... degree mapof transmuted Weibull distribution (TWDn, n = 2, 3, 4, ...). (Continued)

Different Combination of Parameter (𝛼, 𝛽) ValuesDistributional
Characteristics

𝜶 = 0.4
𝜷 = 0.3

𝜶 = 1.0
𝜷 = 1.0

𝜶 = 1.3
𝜷 = 1.2

𝜶 = 1.4
𝜷 = 1.2

𝜶 = 1.5
𝜷 = 1.3

𝜶 = 1.5
𝜷 = 1.2

𝜶 = 0.5
𝜷 = 0.3

𝜶 = 2.0
𝜷 = 0.3

𝜶 = 0.6
𝜷 = 1.3

𝜶 = 0.5
𝜷 = 0.1

TWD2 6.6876 0.6287 0.3727 0.2819 0.2473 0.2107 1.2411 0.0001 8.1840 0.1379
TWD3 4.4160 0.5232 0.3566 0.2867 0.2715 0.2314 0.8456 0.0041 5.7940 0.0940
TWD4 2.8471 0.5209 0.4601 0.4087 0.4322 0.3683 0.5756 0.0156 4.2317 0.0640

Variances

TWD5 1.7331 0.3269 0.2397 0.1943 0.1842 0.1570 0.3615 0.0022 2.7453 0.0402
WD 142644.2686 35.0000 21.4433 15.4247 19.0513 11.7856 372.0816 0.0013 67852.7372 0.5104
TWD2 63555.1105 18.5292 13.1605 9.9132 12.7894 7.9119 166.8259 0.0010 30860.4307 0.2288
TWD3 26345.0289 9.9275 8.1805 6.4000 8.5316 5.2779 69.9412 0.0008 13291.0082 0.0959
TWD4 10238.2132 5.4371 5.1186 4.1148 5.6021 3.4656 27.6680 0.0005 5489.6068 0.0380

Skewness

TWD5 3764.5469 3.2185 3.4063 2.7832 3.8259 2.3668 10.4650 0.0004 2226.7486 0.0144
WD 305.6793 24.0000 25.1054 26.5616 28.4265 28.4265 100.8000 43.4273 52.9786 100.8000
TWD2 438.1475 41.5948 70.8843 95.9613 139.5531 139.5531 141.3656 741.4459 73.7997 141.3656
TWD3 645.9979 40.8002 56.3043 68.9036 87.7369 87.7369 195.8565 642.8510 94.8898 195.8565
TWD4 967.0436 27.9066 24.9716 25.6054 26.6692 26.6692 263.1634 36.1091 111.1517 263.1634

Kurtosis

TWD5 1578.6245 48.6008 69.6797 87.7467 115.7325 115.7325 404.0340 455.9642 160.7934 404.0340

6. ORDER STATISTICS

OS and functions of OS play an important role in statistical theory and methodology. Floods and droughts, longevity, breaking strength,
aeronautics, oceanography, duration of humans, organisms, components, and devices of various kinds can be studied by the theory extreme
values. Life tests provide an ideal illustration of the advantage of OS in censored data. Since such an experiment may take a long time to
complete, it is often advantageous to stop after failure of the first r out of n similar items under test. For more details and development of
OS one may refer to Sarhan and Greenberg [27], Arnold and Balakrishnan [28], Balakrishnan and Cohen [29], Arnold et al. [30], Ali [31],
and David and Nagaraja [32].

The pdf of rth OS for the TD2 (15) is given by
(
fr∶n

)
TD2 = B (r, n − r + 1)

[
FTD2 (x)

]r−1[1 − FTD2 (x)
]n−rfTD2 (x) . (45)

The pdf of extreme OS follows from (45) at r = 1 and r = n respectively given by
(
f1∶n

)
TD2 = n

[
1 − FTD2 (x)

]n−1fTD2 (x) . (46)

(
fn∶n

)
TD2 = n

[
FTD2 (x)

]n−1fTD2 (x) . (47)

Theorem 6.1. For n = 2, 3,…, the recurrence relation between the pdf of largest OS of quadratic rank transmuted distribution given in
(47) and any ordinary distribution is given by

(
fn∶n

)
TD2 (x) = n(4∕3)n

n−1∑
i=0

(−1∕4)i
(
n − 1
i

)[ gn+i∶n+i
n + i

−
gn+i+1∶n+i+1

2 (n + i + 1)

]
, (48)

where, gm∶m = mGm−1 (x) g (x). G (x) and g (x) are cdf and pdf of any continuous distribution, respectively.

Proof. From (47) and on using (14) and (15), we have

(
fn∶n

)
TD2 (x) = n

[
1
3

{
4G (x) − G2 (x)

}]n−1 g(x)
3

[4 − 2G (x)]

= n(4∕3)nGn−1 (x)
[

1 −
1
4
G (x)

]n−1 [
1 −

1
2
G (x)

]
g (x)

= n(4∕3)n
n−1∑
i=0

(−1∕4)i
(
n − 1
i

)[
Gn+i−1 (x) − 1

2
Gn+i (x)

]
g (x) .
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Now using gm∶m = mGm−1 (x) g (x) to get the required result.

Theorem 6.2. For n = 2, 3,…, the recurrence relation between kth order moment of largest OS for the pdf (47) of quadratic rank trans-
muted distribution and kth order moment of largest OS for the pdf of ordinary continuous distribution is given by

(
𝜇
(k)
n∶n

)
TD2

= n(4∕3)n
n−1∑
i=0

(−1∕4)i
(
n − 1
i

)[
𝜇
(k)
n+i∶n+i

n + i
−
𝜇
(k)
n+i+1∶n+i+1

2 (n + i + 1)

]
. (49)

Proof. Multiplying both sides of (48) by Xk and then take expectation to get the result of the theorem.

Theorem 6.3. For n = 2, 3,…, the recurrence relation between largest OS pdf of (47) of quadratic rank transmuted distribution and
largest OS pdf of Weibull distribution (30) is given by

(
fn∶n

)
TWD2 (x) = n

(
4
3

)n
𝛼

𝛽

(
x
𝛽

)𝛼−1
[n−1∑

i=0

n+i−1∑
j=0

(−1)i+j

4i

(
n − 1
i

){(
n + i − 1

j

)

−
1
2

(
n + i
j

)}
e−(x∕𝛽)(j+1)𝛼

−

n−1∑
i=0

(−1)n+2i

4i
1
2

(
n − 1
i

)
e−(x∕𝛽)

(n+i+1)𝛼

]
.

(50)

Proof. We know that

gm∶m = mGm−1 (x) g (x)

= m 𝛼

𝛽

(
x
𝛽

)𝛼−1
e−(x∕𝛽)𝛼

[
1 − e−(x∕𝛽)𝛼

]m−1 [
Using (29) and (30)

]

=
m𝛼
𝛽

(
x
𝛽

)𝛼−1 m−1∑
j=0

(−1)j
(
m − 1

j

)
e−(x∕𝛽)(

j+1)𝛼 [
on binomial expansion

]
.

Now using this result in (48) and on algebraic manipulation, we get the required result.

Theorem 6.4. For n = 2, 3,…, the kth order moment of largest OS for the pdf (32) of quadratic rank TWD is given by

(
𝜇
(k)
n∶n

)
TWD2

= n(4∕3)n𝛽k
[n−1∑

i=o

n+i−1∑
j=0

(−1)i+j(
j + 1

)
4i

(
n − 1
i

){(
n + i − 1

j

)

−
1
2

(
n + i
j

)}
Γ
{

k+𝛼
(j+1)𝛼

}
+

n−1∑
i=0

(−1)n+i+1
(
n − 1
i

)

2 (n + i + 1) 4i
Γ

{
k + 𝛼

(n + i + 1) 𝛼

}⎤⎥⎥⎥⎥⎦
.

(51)

Proof. For Weibull distribution defined in (29) and (30), we have

gm∶m (x) = mGm−1 (x) g (x) .

By expanding above expression binomially, we get

gm∶m(x) = m
(

1 − exp
{
−
(

x
𝛽

)𝛼})m−1 (
𝛼

𝛽

)(
x
𝛽

)𝛼−1
exp

{
−
(

x
𝛽

)𝛼}

=
m𝛼
𝛽𝛼

x𝛼−1
m−1∑
j=0

(−1)j
(
m − 1

j

)
exp

{
−

(
x
𝛽

)(j+1)𝛼
}
.

(52)

Now kth order moment of largest OS of Weibull distribution (30) is given by

𝜇
(k)
m∶m =

∞

∫
0

xk gm∶m (x) dx

=
m𝛼
𝛽𝛼

m−1∑
j=0

(−1)j
(
m − 1

j

) ∞

∫
0

xk+𝛼−1exp

{
−

(
x
𝛽

)(j+1)𝛼
}

dx on using (52) .
Pdf_Folio:145



146 M. A. Ali and H. Athar. / Journal of Statistical Theory and Applications 20(1) 132–148

Since ∫
∞

0
xn exp

{
−
(
qx
)m} dx =

Γ
(

n+1
m

)

mqn+1 , m, n > 0.

Therefore,

𝜇
(k)
m∶m =

m𝛼
𝛽𝛼

m−1∑
j=0

(−1)j
(
m − 1

j

)
𝛽k+𝛼(
j + 1

)
𝛼
Γ

{
k + 𝛼(
j + 1

)
𝛼

}
,

= m𝛽k
m−1∑
j=0

(−1)j
(
m − 1

j

)
1

j + 1
Γ

{
k + 𝛼(
j + 1

)
𝛼

}
.

(53)

Now using (53) in (49) for m = n + i and m = n + i + 1 then the kth order moment of largest OS for the pdf (32) of quadratic rank TWD
is given by

(
𝜇
(k)
n∶n

)
TWD2

= n(4∕3)n
n−1∑
i=0

(−1∕4)i
(
n − 1
i

)[
𝛽k

n+i−1∑
j=0

(−1)j
(
n + i − 1

j

)
1

j + 1
Γ

{
k + 𝛼(
j + 1

)
𝛼

}

−𝛽k
1
2

n+i∑
j=0

(−1)j
(
n + i
j

)
1

j + 1
Γ

{
k + 𝛼(
j + 1

)
𝛼

}]

= n(4∕3)n𝛽k
n−1∑
i=0

(−1∕4)i
(
n − 1
i

)[n+i−1∑
j=0

(−1)j
{(

n + i − 1
j

)
−

1
2

(
n + i
j

)}
1

j + 1
Γ

{
k + 𝛼(
j + 1

)
𝛼

}

+
(−1)n+i+1

2 (n + i + 1)
Γ

{
k + 𝛼

(n + i + 1) 𝛼

}]
.

Now on algebraic manipulation, we have

= n(4∕3)n𝛽k
[n−1∑

i=o

n+i−1∑
j=0

(−1)i+j(
j + 1

)
4i

(
n − 1
i

){(
n + i − 1

j

)
−

1
2

(
n + i
j

)}
Γ

{
k + 𝛼(
j + 1

)
𝛼

}

+

n−1∑
i=0

(−1)n+i+1
(
n − 1
i

)

2 (n + i + 1) 4i
Γ

{
k + 𝛼

(n + i + 1) 𝛼

}⎤⎥⎥⎥⎥⎦
.

Hence the theorem.

Table 2 Distributional characteristics of largest OS of TWD2 (48) for different parametric values and sample size.
𝜶 = 1.5, 𝜷 = 0.5 𝜶 = 0.5, 𝜷 = 0.9 𝜶 = 2.0, 𝜷 = 2.0

n
Mean Var Skew Kurto Mean Var Skew Kurto Mean Var Skew Kurto

2 0.2533 0.3362 1.2027 1.8339 2.0547 23.3801 25.5977 56.0054 0.8056 3.9894 1.4560 1.8314
3 0.3605 0.4288 0.3614 1.0651 2.8803 32.3545 18.0286 41.2666 1.1767 5.1747 0.4353 0.9362
4 0.4428 0.4923 0.0961 0.8081 3.6262 40.2543 14.0814 33.6843 1.4542 5.9506 0.1244 0.6501
5 0.5112 0.5401 0.0097 0.7112 4.3217 47.2606 11.6460 29.0873 1.6804 6.5160 0.0184 0.5415
6 0.5708 0.5779 0.0053 0.6877 4.9808 53.4868 9.9987 26.0429 1.8741 6.9525 0.0013 0.5097
7 0.6242 0.6084 0.0482 0.7061 5.6114 59.0147 8.8196 23.9196 2.0454 7.3006 0.0325 0.5195
8 0.6731 0.6334 0.1233 0.7526 6.2186 63.9072 7.9448 22.3947 2.2003 7.5835 0.0946 0.5553
9 0.7184 0.6539 0.2231 0.8201 6.8060 68.2150 7.2812 21.2858 2.3425 7.8156 0.1789 0.6095
10 0.7608 0.6706 0.3435 0.9048 7.3763 71.9799 6.7727 20.4830 2.4746 8.0067 0.2807 0.6779
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7. CONCLUSIONS

In this paper we have generated new generalized transmuted family of distributions (TDn). Some generalized transmuted distributions
available in literature are found as particular cases of our transmuted family of distributions. These new generalized transmuted families of
distributions are applied to Weibull distribution to find generalized rank map transmuted Weibull distribution (TWDn). Simulated hazard
function, pdf curves, and some distributional characteristics such as mean, variance, skewness, and kurtosis for some specific paramet-
ric values of generalized transmuted families of Weibull distribution are presented in Figures 1–8 and in Table 1 respectively to make a
comparative study among changes of rank maps. Also simulated quadratic ranked transmuted largest os’s distributional characteristics are
studied and presented in Table 2. These new distributions are more flexible and skewed compare to ordinary Weibull distribution. Flexi-
bility prominently increases as degree of rank of transmutation map increases. These are observed in pdf curves (Figure 4–8) plotting as
well as in distributional characteristics presented in Table 1. It is observed that the transmuted distributions are more flexible to model real
data, since the data can present a high degree of skewness and kurtosis. If someone is interested to locate more flexible and higher degree
of skewed distribution can explore this generalized transmuted family of distributions for future use.
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