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ABSTRACT
In this paper, we are concerned with a robustifying high-dimensional (RHD) structured estimation in finite mixture of multino-
mial models. This method has been used in many applications that often involve outliers and data corruption. Thus, we intro-
duce a class of the multinomial logistic mixture models for dependent variables having two or more discrete categorical levels.
Through the optimization with the expectation maximization (EM) algorithm, we study two distinct ways to overcome sparsity
in finite mixture of the multinomial logistic model; i.e., in the parameter space, or in the output space. It is shown that the new
method is consistent for RHD structured estimation. Finally, we will implement the proposed method on real data.

© 2021 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

The Bernoulli mixture model (BMM) is applied for a binary dependent variable and showing how the model is estimated using the regular-
ized maximum likelihood. The development and application of BMMs have gained increasing attention. Grantham [1] focused on BMMs
for binary data clustering. Grilli et al. [2] used a binomial finite mixture to model the number of credits. Melkersson and Saarela [3] applied
the binomial finite mixture model for nonzero counts. Brooks et al. [4] studied fetal deaths in litters with different types of finite mixture
models including binomial finite mixture model.

The high-dimensional estimation under an additional sparse error vector for computing corrupted observations in recent studies has been
widely considered (Wang et al. [5]; Nguyen and Tran [6]; Chen et al. [7]; Tibshirani andManning [8]). Yang et al. [9] added an outlier error
parameter for modeling the corrupted response. They applied two techniques for outlier modeling in GLMs. The first approach is in the
parameter space, which is a convex optimization approach under stringent conditions. The second, which is in the output space, yields the
nonconvexmethodwithmilder conditions. In this study, these two outliermodelingswere used in binomial finitemixturemodeling.We also
used the multinomial logistic mixture models (MLMMs) to examine the problem of data corruption. Finally, the expectation maximization
(EM) algorithm was considered for robust estimation.

The rest of this article is organized as follows: Section 2. introduces the Bernoulli finite mixture model (BMM) framework for binary data.
Section 3. describes the MLMMs for dependent variables having two or more discrete categorical levels. In Section 4. we study properties
of our approach by using the proposed method on real data.

2. MODELING OUTLIER ERRORS IN BMMs

In this paper, we examine the classification data set, the response variable yc of this set consisting of two classes -1 and 1, which are consid-
ered diametrically opposite such as pass/fail, win/lose, alive/dead. Bernoulli distribution is an effective method for studying the grouping
variables. Assume that P(Yc = 1) = 1 − P(Yc = −1) = p. So, it can be expressed that P(Yc = yc) = pI1(Yc)(1 − p)1−I1(Yc).

A binary logisticmodel has a dependent variablewith two possible values that are expressed by an indicator variable y = I1(yc), where the two
values are labeled as 0 and 1. Eskandari and Meshkani [10] presented the maximum likelihood equations from the probability distribution
of the logistic regression and solved them using the Newton-Raphsonmethod for nonlinear systems of equations. Biohning [11] applied the
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lower bound principle in the Newton-Raphson iteration instead of the Hessian matrix, which led to a monotonically converging sequence
of iterates.

In real-world problems, we are interested in studying the logistic regression model in high-dimensional data problems with a small number
of nonzero observations. Due to the presence of sparse parameters vector and outliers, the desirable theoretical properties of standard
methods do not hold exactly. To solve this challenge and obtain a robust estimator for the lack of our model assumptions, we propose
modeling outlier errors on BMM. Detail of the two approaches (i.e., modeling outlier errors in the parameter space and output space
respectively) on Bernoulli mixture models will be explained later. Before that, we discuss the performance of the standard 𝓁1 penalized
BMMs over the uncorrupted version of the dataset. Let y = (y1,⋯ , yn) be a random sample of binary vectors. We consider yi arises from
a finite mixture density p(yi|𝚿) =

∑K

k=1
𝜋kp(yi|pik) of order K, where the mixture component density p(yi|pik) is Bernoulli with success

probability of pik:

p(yi|𝚿) =

K∑
k=1

𝜋k exp
{
yi ln

( pik
1 − pik

)
+ ln(1 − pik)

}
(1)

where 𝚿̃ = (𝜃∗1 , ..., 𝜃
∗
K, 𝜋) is a vector of mixture parameters and 𝜋 = (𝜋1, ...𝜋K) are mixing weights, such that 𝜋k > 0 and

∑K

k=1
𝜋k = 1.

In logistic regression, equate the logit function to the linear component of a covariate vector xi ∈ ℝ
p for the ith observation and the true

regression parameter vector 𝜃∗ ∈ ℝ
p as follows:

ln
( pik
1 − pik

)
=
⟨
𝜃
∗
k , xi

⟩
= xti𝜃

∗
k , i = 1,⋯ , n

Since the BMMs are presented in high-dimensional data problems, we assume p is significantly larger than n. An 𝓁1-penalized version of
the maximum likelihood estimator (MLE) is defined to cope with observations that deviate from the true model. Suppose that

{
(xi, yi)

}n
i=1

is an independent sample of observations from (1). The negative log-likelihood function over n values is given by

lp = −
1
n

n∑
i=1

log

{ K∑
k=1

𝜋k exp
{
yi
⟨
𝜃
∗
k , xi

⟩
− ln

(
1,+, exp,

⟨
, 𝜃

∗
k , , , xi,

⟩)}}
(2)

Now we estimate Θ̂ = (𝜃̂∗1 ,⋯ , 𝜃̂∗K) by imposing the 𝓁1 regularized maximum likelihood constrained proposed by Stadler et al. [12]:

𝜃̂∗K ∈ argmin lp + 𝜆n,𝜃

K∑
k=1

𝜋k ∥ 𝜃
∗
k ∥1

∥ 𝜃∗k ∥2≤ a0

(3)

where a0 denotes a constant independent of n and p. Note that ∥ . ∥1 for a vector is sum of absolute values and ∥ . ∥2 is the usual Euclidean
norm. To compute this parameter, we proposed an iterative EM algorithm. At iteration m, the algorithm consists of Expectation (E-step)
and Maximization (M-step) and seeks minimization of (2) using the complete negative log-likelihood function:

lc(𝚿̃) = −
1
n

i=1∑
n

k=1∑
K
𝜈ik

{
log𝜋k + yi

⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)}
+ 𝜆n,𝜃

k=1∑
K
𝜋k ∥ 𝜃

∗
k ∥1 (4)

Based on the following Algorithm 1 for BMM, Steps 3 marks the E-step of the algorithm, where 𝜔(m)

ik is updated by E[𝜈ik|x,y] where unob-
served imaginary indicator variables 𝜈ik show the component membership of the ith observation in the model. The conditional expectation
of l c(𝚿̃) with respect to 𝜈ik is

Q(𝚿̃, 𝚿̃
(m)

) = −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik

{
yi
⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)}
−

1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k + 𝜆n,𝜃

K∑
k=1

𝜋k ∥ 𝜃
∗
k ∥1 (5)

Steps 4 and 5 show the M-step, where𝚿(m+1) is obtained by minimizing (5) with respect to𝚿. Algorithm 1:

To motivate robust high-dimensional estimators, we begin with modeling the outlier errors approach on the parameter space in the next
section.
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Algorithm 1: EM Algorithm for BMM
step 1: Begin with initial values 𝜃∗0k and 𝜋0

k for all k.

step 2: Compute P(m)

k = (p(m)

1k ,⋯ , p(m)

nk ) for all i’s and k’s as follows:

p(m)

ik =
exp

{⟨
𝜃∗k

(m), xi
⟩}

1 + exp
{⟨

𝜃∗k
(m), xi

⟩}

step 3: Compute 𝜔(m)

k = (𝜔
(m)

1k ,⋯ , 𝜔
(m)

nk ) for all i’s and k’s as follows:

𝜔
(m)

ik =
𝜋k exp

{
yi
⟨
𝜃∗k

(m), xi
⟩
− ln

(
1 + exp

⟨
𝜃∗k

(m), xi
⟩)}

K∑
l=1

𝜋l exp
{
yi
⟨
𝜃
∗
l
(m)

, xi
⟩
− ln

(
1 + exp

⟨
𝜃
∗
l
(m)

, xi
⟩)}

step 4: Compute 𝜃̂∗k via the EM algorithm and the following equations:

𝜃
(m+1)
k = 𝜃

(m)

k + (X′

(diag(𝜔(m)

k )P(m)

k (1 − P(m)

k ))X)
−1
X′diag(𝜔(m)

k )(y − P(m)

k ) (6)

where X = (x′

1,⋯ , x′

n)

step 5: Determine 𝜋(m+1)
k via under formula (for all k).

𝜋
(m+1)
k =

1
n

n∑
i=1

𝜔
(m)

ik

step 6: Assignm + 1 ← m + 2 and iterate steps 2, 3 and 4 until reaching a predefined convergence criterion.

2.1. Parameter Space

Based on the i-th response yi that is drawn from (1) and the reformulation of logit function with a corrupted parameter
⟨
𝜃∗k , xi

⟩
+
√
ne∗ik,

we propose the robust estimators for general high-dimensional problems by modeling outlier errors in the parameter space. We can then
write down the negative log-likelihood as

lp = −
1
n

n∑
i=1

log

{ K∑
k=1

𝜋k exp
{
yi
⟨
𝜃
∗
k , xi

⟩
+
√
ne∗ik) − ln

(
1 + exp

{⟨
𝜃
∗
k , xi

⟩
+
√
ne∗ik

})}}
(7)

The robust estimator problem can be solved with the following constrained 𝓁1 regularized maximum likelihood where a0, b0 are constants
independent of n and p.

(𝜃̂∗k , ê
∗
k) ∈ argmin lp + 𝜆n,𝜃

K∑
k=1

𝜋k ∥ 𝜃
∗
k ∥1 +𝜆n,e

K∑
k=1

𝜋k ∥ e∗k ∥1

∥ 𝜃∗k ∥2≤ a0
∥ e∗k ∥2≤

b0√
n

(8)

We now focus on the EM algorithm and provide the complete negative log-likelihood function as follows:

lc(𝚿̃) = 𝜆n,𝜃

k=1∑
K
𝜋k ∥ 𝜃

∗
k ∥1 +𝜆n,e

k=1∑
K
𝜋k ∥ e∗k ∥1 −

1
n

i=1∑
n

k=1∑
K
𝜈ik

{
log𝜋k + yi

(⟨
𝜃
∗
k , xi

⟩
+
√
ne∗ik

)
− ln

(
1 + exp

{⟨
𝜃
∗
k , xi

⟩
+
√
ne∗ik

})} (9)
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In the E-step, the conditional expectation of l c(𝚿̃) with respect to 𝜈ik given the data (xi, yi) is

Q(𝚿̃, 𝚿̃
(m)

) = 𝜆n,𝜃

K∑
k=1

𝜋k ∥ 𝜃
∗
k ∥1 +𝜆n,e

K∑
k=1

𝜋k ∥ e∗k ∥1 −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k

−
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik

{
yi
(⟨

𝜃
∗
k , xi

⟩
+
√
ne∗ik

)
− ln

(
1 + exp

{⟨
𝜃
∗
k , xi

⟩
+
√
ne∗ik

})} (10)

By adding the estimation of outlier errors parameter, Algorithm 2 is obtained. In the M-step, the estimates of ฀̃ = (e∗1 ,⋯ , e∗K, 𝜃
∗
1 , ..., 𝜃

∗
K, 𝜋)

are updated by Steps 4–6.

Algorithm 2: EM Algorithm for modeling errors in the parameter space in BMM (PBMM)
step 1: Begin with initial values 𝜃∗k

0, 𝜋0
k and e∗k

0 for all k’s.

step 2: Compute P(m)

k = (p(m)

1k ,⋯ , p(m)

nk ) at the mth itration for all i’s and k’s as follows:

p(m)

ik =

exp
{⟨

𝜃∗k
(m), xi

⟩
+
√
ne∗ik

}

1 + exp
{⟨

𝜃∗k
(m), xi

⟩
+
√
ne∗ik

}

step 3: Compute 𝜔(m)

k = (𝜔
(m)

1k ,⋯ , 𝜔
(m)

nk ) for all i’s and k’s:

𝜔
(m)

ik =
𝜋k exp

{
yi(⟨𝜃∗k , xi⟩+√ne∗ik)−ln(1+exp

{⟨𝜃∗k , xi⟩+√ne∗ik
}
)
}

K∑
l=1

𝜋l exp{yi(
⟨
𝜃
∗
l , xi

⟩
+
√
ne∗il) − ln(1 + exp{

⟨
𝜃
∗
l , xi

⟩
+
√
ne∗il})}

step 4: Obtain 𝜃∗k
(m+1) from the EM algorithm and following equation:

𝜃
∗
k
(m+1) = 𝜃

∗
k
(m) + (X′

(diag(𝜔(m)

k )P(m)

k (1 − P(m)

k ))X)
−1
X′diag(𝜔(m)

k )(y − P(m)

k )

Where X = (x′

1,⋯ , x′

n)

step 5: Obtain e∗k
(m+1) via the EM algorithm as follows:

e∗k
(m+1) = e∗k

(m) + (
√
nP(m)

k (1 − P(m)

k ))
−1
(y − P(m)

k )

step 6: Assign 𝜋
(m+1)
k ←

1
n

∑n

i=1
𝜔
(m)

ik .
step 7: Considerm + 1 ← m + 2 and iterate steps 2-6 until reaching a predefined convergence criterion.

Although the optimization problem is convex, stringent conditions are needed to achieve a consistent estimator. The constraint ∥ e∗k ∥2≤
b0√
n

ensures that the consistent optimum exists as discussed in Yang et al. [9]. To investigate the larger errors, we introduce modeling errors in
the output space.

2.2. Output Space

In this section, we give statistical error directly in the response space of BMM (RBMM). Under the certain assumption, the group random
variable yic −

√
ne∗i has two values 1 −

√
ne∗i and −1 −

√
ne∗i . Therefore, based on indicator variable y′

i = I1−√ne∗i
(yic −

√
ne∗i ) drawn from

the conditional distribution in (1) with logit function
⟨
𝜃∗k , xi

⟩
for each component, we have

p(yi|xi) =
K∑
k=1

𝜋k exp
{
I1−√ne∗i

(yic −
√
ne∗i )

⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)}

Our starting point is the following negative log-likelihood function:

lp = −
1
n

n∑
i=1

log

{ K∑
k=1

𝜋k exp
{
I1−√ne∗i

(yic −
√
ne∗i )

⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)}}
(11)
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The EM iteration alternates between performing E- and M-steps. The E-step creates a function for the expectation of the log-likelihood
evaluated using the current estimate for the parameters:

l c(𝚿̃) = −
1
n

L∑
i=1

K∑
k=1

𝜈ik
{
log𝜋k + y′

i
⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)}
(12)

The M-step computes parameters maximizing the expected log-likelihood found on the E-step.

Q = −
1
n

L∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k

−
1
n

L∑
i=1

K∑
k=1

𝜔
(m)

ik

{
y′

i
⟨
𝜃
∗
k , xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
k , xi

⟩)} (13)

To this end, in an RBMM approach, iterate Algorithm 1 for each value in the set L ∈ {2, 3,⋯ , n} and choose the parameters estimates that
have the least empirical prediction errors.

3. MODELING OUTLIER ERRORS IN THE MLMM

In the MLMM, we consider vector yi = (yi1,⋯ , yiJ), i = 1,⋯ , n, with yij = 0 for all j except one j′ with yij′ = 1 and corresponding
probability pij′ . Let J represent the number of levels of the dependent variable. To simulate sparsity, we arbitrarily corrupt some of the
observations yi. For logistic regression models, the corrupted response yi is obtained by yi =

(
1 − yi

)
, which suggests

E(yi) =
⎛
⎜⎜⎜⎝

pi1
pi2
pi3

⎞
⎟⎟⎟⎠
, Cov(yi) =

⎛
⎜⎜⎜⎝

pi1(1 − pi1) −pi1pi2 −pi1pi3
−pi1pi2 pi2(1 − pi2) −pi2pi3
−pi1pi3 −pi2pi3 pi3(1 − pi3)

⎞
⎟⎟⎟⎠

Recall that yi follows a finite mixture of multinomial model of order K with the conditional density function as

p(yi|xi) =
K∑
k=1

𝜋k exp
{
yi1 ln

(pi1k
pi3k

)
+ yi2 ln

(pi2k
pi3k

)
+ ln(pi3k)

}
(14)

where the multinomial logit-model is given by

ln
(pi1k
pi3k

)
=
⟨
𝜃
∗
1k, xi

⟩
, ln

(pi2k
pi3k

)
=
⟨
𝜃
∗
2k, xi

⟩
(15)

The conditional log-likelihood function of 𝚿̃ has the form

lp = −
1
n

n∑
i=1

log

[
K∑
k=1

, 𝜋k, exp,
{
yi1

⟨
𝜃∗1k, xi

⟩
+ yi1

⟨
𝜃∗2k, xi

⟩
-ln(1 + exp

⟨
𝜃∗1k, xi

⟩
+
⟨
𝜃∗2k, xi

⟩
)
}]

(16)

The 𝓁1 penalized version of the classical MLE is as follows:

(𝜃̂∗1k, 𝜃̂
∗
2k) ∈ argmin lp + 𝜆n,𝜃1

K∑
k=1

𝜋k ∥ 𝜃
∗
1k ∥1 +𝜆n,𝜃2

K∑
k=1

𝜋k ∥ 𝜃
∗
2k ∥1

∥ 𝜃∗1k ∥2≤ a10
∥ 𝜃∗2k ∥2≤ a20

(17)

In this situation, the joint estimation of (𝜃∗1k, 𝜃
∗
2k) is achieved through the complete-case framework required by the EM algorithm.

l c(𝚿̃) = −
1
n

n∑
i=1

K∑
k=1

𝜈ik
{
log𝜋k + yi1

⟨
𝜃∗1k, xi

⟩
+ yi2

⟨
𝜃∗2k, xi

⟩
− ln

(
1 + exp

⟨
𝜃∗1k, xi

⟩
+ exp

⟨
𝜃∗2k, xi

⟩)}
(18)
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where 𝚿̃ = (𝜃∗11, ..., 𝜃
∗
1K, 𝜃

∗
21, ..., 𝜃

∗
2K, 𝜋). By using (18) we can rewrite the new conditional expectation of l c(𝚿̃):

Q(𝚿̃, 𝚿̃
(m)

) = −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik

{
yi1

⟨
𝜃
∗
1k, xi

⟩
+ yi2

⟨
𝜃
∗
2k, xi

⟩
− ln

(
1 + exp

⟨
𝜃
∗
1k, xi

⟩
+ exp

⟨
𝜃
∗
2k, xi

⟩)}

The following Algorithm 3 illustrates the procedure employed for estimating the parameters:

Algorithm 3: EM Algorithm for multinomial logistic mixture models
step 1: Begin with initial values (𝜃∗1k

0, 𝜃∗2k
0) and 𝜋0

k for all k.

step 2: Compute (P(m)

1k , P(m)

2k , P(m)

3k ) for all i’s and k’s as follow:

p(m)

irk =
exp

{⟨
𝜃∗rk

(m), xi
⟩}

1 +
2∑

r=1
exp

{⟨
𝜃
∗
rk
(m)

, xi
⟩}

, r = 1, 2

p(m)

i3k =
1

1 +
2∑

r=1
exp

{⟨
𝜃
∗
rk
(m)

, xi
⟩}

step 3: Compute 𝜔(m)

k = (𝜔
(m)

1k ,⋯ , 𝜔
(m)

nk ) for all i’s and k’s:

𝜔
(m)

ik =

𝜋
(m)

k exp

{ 2∑
r=1

yir
⟨
𝜃
∗
rk
(m)

, xi
⟩
− ln

(
1 +

2∑
r=1

exp
⟨
𝜃
∗
rk
(m)

, xi
⟩)}

K∑
l=1

𝜋
(m)

l exp

{ 2∑
r=1

yir
⟨
𝜃
∗
rl
(m)

, xi
⟩
− ln

(
1 +

2∑
r=1

exp
⟨
𝜃
∗
rl
(m)

, xi
⟩)}

step 4: Compute (𝜃̂∗1k, 𝜃̂
∗
2k) from the EM algorithm and the following equations:

(
𝜃
(m+1)
1k
𝜃
(m+1)
2k

)
=

(
𝜃
(m)

1k
𝜃
(m)

2k

)
+

(
X′W(m)

1 X X′V(m)

1.2 X

X′V(m)

1.2 X X′W(m)

2 X

)−1 (
X′diag(𝜔(m)

k )(y1k − P(m)

1k )

X′diag(𝜔(m)

k )(y2k − P(m)

2k )

)

where X = (x′

1,⋯ , x′

n) and

W(m)

1 = diag(𝜔(m)

k P(m)

1k (1 − P(m)

1k ))

W(m)

2 = diag(𝜔(m)

k P(m)

2k (1 − P(m)

2k ))

V(m)

1.2 = diag(−𝜔(m)

k P(m)

1k P(m)

2k )

step 5: Determine 𝜋(m+1)
k from the following formula (for all k).

𝜋
(m+1)
k =

1
n

n∑
i=1

𝜔
(m)

ik

step 6: Assignm + 1 ← m + 2 and iterate steps 2, 3 and 4 until reaching a predefined convergence criterion.

We studied the standard 𝓁1 penalized finite mixture of the multinomial logistic model over the corrupted data. We also introduce two other
methods, modeling outlier errors in the parameter space and output space, respectively. Finally, we will compare the performance of these
three methods.Pdf_Folio:26
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3.1. Parameter Space

As in the previous section, we assume that yi follows the conditional distribution of (14) with the new multinomial logit-model:

ln
(pi1k
pi3k

)
=
⟨
𝜃
∗
1k, xi

⟩
+
√
ne∗ik, ln

(pi2k
pi3k

)
=
⟨
𝜃
∗
2k, xi

⟩
+
√
ne∗ik

We can rewrite the log-likelihood function as follows:

lp = −
1
n

n∑
i=1

log

[ K∑
k=1

𝜋k, exp,
{ 2∑

r=1
yir

(⟨
𝜃∗rk, xi

⟩
+
√
ne∗ik

)
− ln(1+

2∑
r=1

exp
{⟨

𝜃∗rk, xi
⟩
+
√
ne∗ik

})} (19)

A penalized log-likelihood function is defined as

(𝜃̂∗1k, 𝜃̂
∗
2k, ê

∗
k) ∈

argmin lp + 𝜆n,𝜃1

K∑
k=1

𝜋k ∥ 𝜃
∗
1k ∥1 +𝜆n,𝜃2

K∑
k=1

𝜋k ∥ 𝜃
∗
2k ∥1 +𝜆n,e

K∑
k=1

𝜋k ∥ e∗k ∥1

∥ 𝜃∗1k ∥2≤ a10
∥ 𝜃∗2k ∥2≤ a20
∥ e∗k ∥2≤

b0√
n

(20)

where 𝓁1-norm penalty function is

pn(𝚿̃) = 𝜆n,𝜃1

K∑
k=1

𝜋k ∥ 𝜃
∗
1k ∥1 +𝜆n,𝜃2

K∑
k=1

𝜋k ∥ 𝜃
∗
2k ∥1 +𝜆n,e

K∑
k=1

𝜋k ∥ e∗k ∥1

The complete log-likelihood function, after substituting 𝜈ik, is

l c(𝚿̃) = pn(𝚿̃) −
1
n

n∑
i=1

K∑
k=1

𝜈ik

{
log𝜋k +

2∑
r=1

(
yir

⟨
𝜃
∗
rk, xi

⟩
+
√
ne∗ik

)
− ln

(
1 +

2∑
r=1

exp{
⟨
𝜃
∗
1k, xi

⟩
+
√
ne∗ik}

)} (21)

where 𝚿̃ = (e∗1 ,⋯ , e∗K, 𝜃
∗
11, ..., 𝜃

∗
1K, 𝜃

∗
21, ..., 𝜃

∗
2K, 𝜋). Note that after taking the conditional expectation of (21), we have

Q(𝚿̃, 𝚿̃
(m)

) = pn(𝚿̃) −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k −
1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik

{ 2∑
r=1

(
yir

⟨
𝜃
∗
rk, xi

⟩
+
√
ne∗ik

)
− ln

(
1 +

2∑
r=1

exp
{⟨

𝜃
∗
1k, xi

⟩
+
√
ne∗ik

})} (22)

To obtain the EM algorithm 4, we use the Newton-Raphson method, which involves calculating the first and second derivatives of (22).

3.2. Output Space

In the response space corrupted data for MLMM (RMLMM), the dependent variable yic −
√
ne∗i has three levels. Therefore, we have the

conditional distribution as follows:

p(yi|xi) =
K∑
k=1

𝜋k exp

{I1−√ne∗i
(yic −

√
ne∗i ) ln(

pi1k
pi3k

) + I
−1−

√
ne∗i

(yic −
√
ne∗i ) ln(

pi2k
pi3k

) + ln(pi3k)}
(23)
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Algorithm 4: EM Algorithm for modeling errors in the parameter space on multinomial logistic mixture models (PMLMM)
step 1: Begin with initial values (𝜃∗1k

0, 𝜃∗2k
0, e∗k

0) and 𝜋0
k for all k’s.

step 2: Compute (P(m)

1k , P(m)

2k , P(m)

3k ) for all i’s and k’s as follows:

p(m)

irk =

exp
{⟨

𝜃∗rk
(m), xi

⟩
+
√
ne∗ik

}

1 +
2∑

r=1
exp

{⟨
𝜃
∗
rk
(m)

, xi
⟩
+
√
ne∗ik

} , r = 1, 2

p(m)

i3k =
1

1 +
2∑

r=1
exp

{⟨
𝜃
∗
rk
(m)

, xi
⟩
+
√
ne∗ik

}

step 3: Compute 𝜔(m)

k = (𝜔
(m)

1k ,⋯ , 𝜔
(m)

nk ) for all i’s and k’s as follows:

𝜔
(m)

ik =

𝜋
(m)

k exp

{ 2∑
r=1

yir
⟨
𝜃
∗
rk
(m)

, xi
⟩
− ln

(
1 +

2∑
r=1

exp
⟨
𝜃
∗
rk
(m)

, xi
⟩)}

K∑
l=1

𝜋
(m)

l exp{
2∑

r=1
yir

⟨
𝜃
∗
rl
(m)

, xi
⟩
− ln(1 +

2∑
r=1

exp
⟨
𝜃
∗
rl
(m)

, xi
⟩
)}

step 4: Compute (𝜃̂∗1k, 𝜃̂
∗
2k) via the EM algorithm and following equations:

(
𝜃
(m+1)
1k
𝜃
(m+1)
2k

)
=

(
𝜃
(m)

1k
𝜃
(m)

2k

)
+

(
X′W(m)

1 X X′V(m)

1.2 X

X′V(m)

1.2 X X′W(m)

2 X

)−1 (
X′diag(𝜔(m)

k )(y1k − P(m)

1k )

X′diag(𝜔(m)

k )(y2k − P(m)

2k )

)

where X = (x′

1,⋯ , x′

n) and

W(m)

1 = diag(𝜔(m)

k P(m)

1k (1 − P(m)

1k ))

W(m)

2 = diag(𝜔(m)

k P(m)

2k (1 − P(m)

2k ))

V(m)

1.2 = diag(−𝜔(m)

k P(m)

1k P(m)

2k )

step 5: Obtaining e∗k
(m+1) from the EM algorithm as follows:

e∗k
(m+1) = e∗k

(m) + (
√
nP(m)

3k (1 − P(m)

3k ))
−1
(y3k − P(m)

3k )

step 6: Determine 𝜋(m+1)
k for all k from the following formula.

𝜋
(m+1)
k =

1
n

n∑
i=1

𝜔
(m)

ik

step 7: Assignm + 1 ← m + 2 and iterate steps 2, 3 and 4 until reaching a predefined convergence criterion.

We consider multinomial logit-model (15) and y′

i = (y′

i1, y
′

i2, y
′

i3), where

y′

i1 = I1−√ne∗i
(yic −

√
ne∗i ), y′

i2 = I
−1−

√
ne∗i

(yic −
√
ne∗i )

Let the complete log-likelihood function be

l c(𝚿̃) = −
1
n

n∑
i=1

K∑
k=1

𝜈ik

{
log𝜋k +

2∑
r=1

y′

ir
⟨
𝜃
∗
rk, xi

⟩
− ln

(
1 +

2∑
r=1

exp
⟨
𝜃
∗
rk, xi

⟩)}
(24)
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Using the log-likelihood function, it is clear the errors in the model of the RMLMM will affect the total number the sum of observations
present.

Q(𝚿̃, 𝚿̃
(m)

) = −
1
n

L∑
i=1

K∑
k=1

𝜔
(m)

ik

{ 2∑
r=1

yir
⟨
𝜃
∗
rk, xi

⟩
− ln

(
1 + exp

2∑
r=1

⟨
𝜃
∗
rk, xi

⟩)}
−

1
n

n∑
i=1

K∑
k=1

𝜔
(m)

ik log𝜋k

Therefore, it is sufficient that we repeat Algorithm 3 with the different numbers of observations L ∈ {2, 3,⋯ , n}.

4. APPLICATION TO THE ANALYSIS OF REAL DATA

We consider two different finite mixture of logistic models: M1 and M2 models. M1 model has two components whereas M2 model has
three components. We employ the real binary classification dataset from Yang et al. [9]. Australian dataset was obtained from LIBSVM
(http//:www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/). The dataset consists of n = 690 units and the dimension of the true parameter is
p = 14, therefore we can set 𝜆n,𝜃 = 0. That is, there is no need to add further sparsity 𝓁1 regularization to the parameters according to (p ⟨n) .
We divide our dataset into two groups; 40% of data as the training and 60% as the test data. By scaling the number of corrupted samples (r)
of training examples (m), we make various datasets.

We compare the performances of the standard 𝓁1 penalized mixture models and modeling outlier errors in parameter and output space.

To evaluate the performance of our proposed method, we use the Ratio of Generalized Mean Square Error (RGMSE) index that is defined
as the ratio of generalized mean square error (GMSE) ofM1 toM2, i.e.,

ĜMSE(𝜃̂∗k ) = (𝜃̂∗k − 𝜃
∗
k )Ê(XX

′

)(𝜃̂∗k − 𝜃
∗
k )

where Ê(XX′

) =
1
n

∑n

i=1
x′

ixi. And, we have

R̂GMSEj =
GMSE(Mj1)

GMSE(Mj2)
, j = 1, ..., 2000

This quantity was computed in each run and then the mean of R̂GMSEs over 2,000 runs was reported in Table 1. The lower R̂GMSE shows
that fitting the mixture of two populations (M1) is better than fitting it with 3 components (M2).

Figure 1 plots the RGMSE of the parameter estimates, against the number of samples n. We compare three methods:

(1) the standard 𝓁1 penalized finite mixture of generalized linear models (FMGLM) over the corrupted data (BMM, 𝓁1reg),

(2) our first M-estimator that models errors in the parameter space (error in parameters, PBMM),

(3) our second M-estimator, which models error in the output space (error in output, RBMM).

Each row shows different types of outliers on the dataset: (w/o) original dataset without adding outliers (i.e., Log, Sqrt and Linear), where
the number of outliers r scaled to three different ways as (r = log(m),

√
m, 0.1(m)).

Each column shows three different fraction of training dataset: 25% (Left column), 50% (Center), and 100% (Right column).

Table 2 (modelM1) and Table 3 (modelM2) represent estimates and their standard deviations.

5. DISCUSSION

In this paper, for the modeling sparsity of the outlier response vector on the BMMs, we randomly have selected a small number of r samples
from n observations, and corrupted them arbitrarily.We have considered the performance of the proposedmethod onAustralian real binary

Table 1 Comparisons of the mean of RGMSEs under different models.
25% 50% 1000%r

BMM PBMM RBMM BMM PBMM RBMM BMM PBMM RBMM
w/o 0.6852 0.4112 0.3109 0.6135 0.4688 0.2969 0.0061 0.4629 0.4335
Log 0.0079 0.1498 0.2638 0.2970 0.3970 0.3467 0.2911 0.2920 0.1946
Sqrt 0.7193 0.0549 0.1168 0.2634 0.1067 0.2821 0.0673 0.2280 0.1181
Linear 0.1115 0.1503 0.1080 0.1055 0.1545 0.2747 0.0399 0.3961 0.1153
BMM, Bernoulli mixture model; PBMM, parameter space in BMM; RBMM, response space of BMM.
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Figure 1 Comparison of RGMSE for different types of outliers; the share of the samples used in the training
dataset: 25% (left column), 50% (Center), and 100%(right column).

Table 2 Estimates and their standard deviations based on 2,000 runs on the original dataset without adding artificial
outliers.

BMM PBMM OBMMk
𝜽̂ sd 𝜽̂ sd 𝜽̂ sd

−1.1318 0.3898 −2.4252 0.4315 −1.1469 0.3962
−0.0339 0.0223 −0.0819 0.0153 −0.0343 0.0224
−0.0616 0.0385 0.0121 0.0324 −0.0614 0.0386
0.0186 0.4617 1.2399 0.3242 0.0285 0.4632

(Continued)
Pdf_Folio:30
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Table 2 Estimates and their standard deviations based on 2,000 runs on the original dataset without adding artificial
outliers. (Continued)

0.1380 0.0491 0.2159 0.0457 0.1384 0.0490
−0.1279 0.0927 0.0399 0.0808 −0.1278 0.0928

1 0.2291 0.0818 0.3160 0.0704 0.2301 0.0817
2.0894 0.4519 4.6841 0.4094 2.1055 0.4628
−0.7119 0.6548 −2.3642 0.5815 −0.7503 0.6907
0.1330 0.1288 0.3511 0.0894 0.1357 0.1307
−1.0179 0.3795 −1.8398 0.3286 −1.0262 0.3790
0.2971 0.4797 −1.0341 0.4926 0.2990 0.4802
−0.0016 0.0010 −0.0034 0.0010 −0.0016 0.0010
0.0002 0.0009 0.0006 0.0002 0.0002 0.0009
0.0113 0.3189 −0.1207 0.3782 0.0113 0.3189
−0.0043 0.0148 −0.0183 0.0177 −0.0043 0.0148
−0.0023 0.0338 0.0392 0.0384 −0.0023 0.0338
0.0325 0.3526 1.0210 0.3784 0.0325 0.3526
0.1339 0.0439 0.2152 0.0573 0.1339 0.0439
0.1282 0.0820 0.4095 0.1049 0.1282 0.0820

2 0.0108 0.0560 −0.0293 0.0704 0.0108 0.0559
4.0875 0.4269 8.6061 0.8816 4.0875 0.4269
1.2307 0.4384 1.0877 0.5550 1.2307 0.4384
0.1042 0.0661 0.2849 0.1026 0.1043 0.0661
0.16908 0.3102 0.1089 0.3531 0.1691 0.3102
−2.6615 0.4601 −6.0474 0.7829 −2.6615 0.4601
−0.0025 0.0012 −0.0061 0.0013 −0.0025 0.0012
0.0009 0.0001 0.0019 0.0004 0.0009 0.0001

BMM, Bernoulli mixture model; PBMM, parameter space in BMM.

Table 3 Estimates and their standard deviations based on 2,000 runs on the original dataset without adding artificial
outliers.

BMM PBMM OBMMk
𝜽̂ sd 𝜽̂ sd 𝜽̂ sd

−1.2010 0.3741 −1.4134 0.5099 −1.2166 0.3770
−0.0370 0.0223 −0.0447 0.0239 −0.0376 0.0212
−0.0422 0.0362 0.0279 0.0386 −0.0426 0.0349
0.2765 0.4392 0.4722 0.4717 0.3072 0.4206
0.1517 0.0462 0.1629 0.0511 0.1494 0.0466
−0.0574 0.0874 0.0323 0.0946 −0.0527 0.0864

1 0.1541 0.0756 0.1795 0.0852 0.1551 0.0730
2.2690 0.4286 2.6910 0.9504 2.2529 0.4337
−1.2131 0.5075 −1.4257 0.4287 −1.2208 0.4859
0.2220 0.0651 0.2452 0.0737 0.2192 0.0658
−1.1937 0.3391 −1.3085 0.3758 −1.2083 0.3281
0.0563 0.4798 −0.1952 0.6393 0.0511 0.4619
−0.0028 0.0009 −0.0029 0.0009 −0.0028 0.0009
0.0003 0.0001 0.0003 0.0002 0.0003 0.0001
0.1157 0.3198 −0.0833 0.3290 0.1096 0.3275
−0.0104 0.0148 −0.0125 0.0160 −0.0103 0.0144
−0.0090 0.0351 0.0135 0.0365 −0.0062 0.0329
0.2715 0.3605 1.4226 0.4718 0.2767 0.3599
0.1379 0.0446 0.1502 0.0555 0.1362 0.0447
0.2050 0.0837 0.2431 0.1198 0.2042 0.0822

2 0.0534 0.0617 −0.0488 0.0615 −0.0521 0.0603
4.4087 0.4109 5.1751 1.8911 4.3724 0.3989
0.9351 0.4350 0.9548 0.4725 0.9199 0.3903
0.1620 0.0558 0.1816 0.0829 0.1592 0.0572
0.1720 0.3284 0.1467 0.3258 0.1577 0.3027

(Continued)
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Table 3 Estimates and their standard deviations based on 2,000 runs on the original dataset without adding artificial
outliers. (Continued)

−2.9528 0.4649 −3.5070 1.4356 −2.9171 0.4669
−0.0042 0.0011 −0.0045 0.0013 −0.0042 0.0010
0.0010 0.0002 0.0012 0.0004 0.0010 0.0002
−0.2239 0.3374 −0.2846 0.3565 −0.2295 0.3403
−0.0021 0.0146 −0.0033 0.0155 −0.0019 0.0146
−0.0027 0.0347 −0.0209 0.0365 −0.0290 0.0335
0.4231 0.3952 0.2910 0.4358 0.4132 0.3933
0.1379 0.0491 0.1505 0.0570 0.1362 0.0492
−0.0482 0.0862 −0.03477 0.0934 −0.0488 0.0855

3 0.2206 0.0773 0.2411 0.08556 0.2204 0.0755
4.0891 0.4534 4.7372 1.5019 4.0570 0.4535
1.5783 0.4913 1.6599 0.5687 1.5755 0.4643
0.0348 0.1026 0.0484 0.1032 0.0326 0.1033
0.0196 0.3324 0.1495 0.3233 0.1865 0.3130
−2.1498 0.5279 −2.6216 1.1565 −2.1277 0.5287
−0.0001 0.0009 −0.0001 0.0009 −0.0001 0.0009
0.0006 0.0002 0.0007 0.0003 0.0007 0.0002

BMM, Bernoulli mixture model; PBMM, parameter space in BMM.

classification dataset obtained from LIBSVM.We have obtained two distinct ways to analyze sparsity in the finite mixture of the generalized
linear model (FMGLM); the parameter space of the GLM, and the space output. Using the EM algorithm that is a convenient approach for
the optimization of finite mixture models, we have shown our performance is improved. Comparing results and figures in the paper, we
saw that the proposed robust methods, as well as and are better than the finite mixture of the logistic regression with multiple components.
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