
Journal of Statistical Theory and Applications
Vol. 20(1), March 2021, pp. 97–110

DOI: https://doi.org/10.2991/jsta.d.210126.002; ISSN 1538-7887
https://www.atlantis-press.com/journals/jsta

On Seemingly Unrelated Regression Model with Skew Error

Omid Akhgari1, Mousa Golalizadeh2,*

1Department of Statistics, Amin University, Tehran, Iran
2Department of Statistics, Tarbiat Modares University, Tehran, Iran

ART I C L E I N FO
Article History

Received 07 Oct 2018
Accepted 05 Jan 2021

Keywords

Seemingly unrelated regression
Endogenous variable
Exogenous variable
Skew-normal distribution

ABSTRACT
Sometimes, invoking a single causal relationship to explain dependency between variables might not be appropriate particularly
in some economic problems. Instead, two jointly related equations, where one of the explanatory variables is endogenous, can
represent the actual inheritance inter-relationship among variables. Such typical models are called simultaneous equation models
of which the seemingly unrelated regression (SUR) models is a special case. Substantial progress has been made regarding the
statistical inference on estimating the parameters of these models in which errors follow a normal distribution. But, less research
was devoted to a case that the distributions of the errors are asymmetric. In this paper, statistical inference on the parameters
for the SUR models, assuming the skew-normal density for errors, is tackled. Moreover, the results of the study are compared
with those of other naive methodologies. The proposed model is utilized to analyze the income and expenditure of Iranian rural
households in the year 2009.

© 2021 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

Most linear regression models rely on the relationship between a dependent variable to one or more explanatory variables. The main objec-
tive in treating these models is estimating and predicting the average value of dependent variables subject to some explanatory variables.
But in many cases, particularly in some economic problems, the causal relationship represented by a single equation is not appropriate.
The drawback of such single models is twofold. Mainly, not only does the response variable depends on the explanatory variables, but the
response variable also determines some of the explanatory variables. Generally, it can be argued that there are simultaneous or two-sided
relationships between the response and some of the explanatory variables in these cases. Hence, to separate the variables as explanatory and
dependent does not make sense in real-life circumstances. In these situations, the number of equations will, naturally, be more than one.
Precisely, there is an equation for every endogenous or dependent variable. Generally, following Haavelmo [1] when the dependent variable
of a particular model is an explanatory variable, one should use the simultaneous equations models (SEMs). The particular case of these
models is called the seemingly unrelated regression (SUR) model.

Evidence shows that Zellner [2] was the pioneer researcher to estimate the parameters of the SUR model using the generalized least square
method. The history of the frequent approach to such models was somewhat low. But, there were much research on following the Bayesian
approach. The application of the Bayesian approach in the SUR model was first proposed by Zellner [3]. Afterward, other methods for
estimating parameters were used, including the maximum likelihood method [4], Bayesian moment and direct Monte Carlo method [5].The
MCMC application in the SUR model has appeared in many studies under various assumptions. To name some we can mention, for example,
Percy [6], Chib and Greenberg [7], and Smith and Kohn [8]. Recently, Zellner and Ando [5] and also Zellner et al. [9] have investigated
the estimation of the parameters in the SUR model using a hierarchical Bayes approach through the direct Monte Carlo and importance
sampling techniques.

Another important aspect of the SUR models, which was and is worth to study, refers to the type of distribution considered for the error
term. It is quite common to assume the normal density for this case. But, there are numerous examples in which the empirical distribution
of variables often exhibits asymmetric structure and so the normal distribution can no longer be used in these cases. In these situations,
some transformations may be used to make the distribution of data to, relatively, follow normal density. However, such transformations
have their own drawbacks, including the biase of the estimator [10].Using asymmetric distributions possessing the same characteristics as
normal distribution, has recently received significant attention in the literature. The skew-normal distribution is one of the important distri-
butions proposed to tackle the asymmetric feature of data. Historically, the univariate skew-normal distribution was advocated by Azzalini
[11]. Then, Azzalini and Dalla valle [12] proposed the multivariate skew-normal distribution. Azzalini and Capitano [13] further studied
the properties of this density. Several generalizations of this distribution have been presented by Balakrishnan [14], Genton [15], Gupta
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et al. [16], and Arellanovalle et al. [17]. Recently, Azzalini and Regoli [18] have investigated some other properties of the skew-symmetric
distribution. As a new line of research, we consider the SUR model allowing the error in the model to follow the skew-normal distribution.
The estimation of parameters using the maximum likelihood methodology is also treated. Intensive simulation studies are conducted to
evaluate the proposed methods. Application of the model to real-life data is also given.

The present paper is organized as follows: A brief review of the SUR model is presented in Section 2. Then, a likelihood-based approach
to estimate the parameters with the skew distribution for the errors in the SUR models is discussed in Section 3. The simulation study as
well as the analysis of the real data, related to the Iranian rural households income and expenditure on in the year 2009, are presented in
Section 4. General conclusions are provided at the end. The proofs for some of the results are given in the Appendix.

2. SUR MODEL

Suppose Xt is an n × kt matrix of explanatory variables and 𝛽t a column vector of parameters with the length kt. Furthermore, suppose
there are g equations corresponding with g endogenous variables, a column vector with the length n, indicated by y1,… , yg. Hence, the t-th
equation of a linear simultaneous system can be written as

yt = Xt𝛽t + ut, t = 1,… , g, (2.1)

where

E(uti) = 0 Var(uti) = 𝜎tt

Cov(uti, usi) = 𝜎ts, t, s = 1, 2, ..., g i = 1, 2, ..., n.
(2.2)

Let us assume that, g-vectors yi∙ and ui∙ consist of yti and uti, respectively, stacked vertically for fixed t. Accordingly, the k-vector 𝛽∙ is formed
by stacking 𝛽i vertically. Then, the matrix Xt∙ will be of dimension g × k, where k =

∑g
t=1 kt. In fact, it is a block-diagonal matrix with

diagonal blocks Xti also for fixed t with rank 1 × kt. In short, the notations can be summarized as follows:

yi∙ =
⎛
⎜⎜⎝

y1i
⋮

ygi

⎞
⎟⎟⎠
g×1

ui∙ =
⎛
⎜⎜⎝

u1i
⋮

ugi

⎞
⎟⎟⎠
g×1

𝛽∙ =

⎛
⎜⎜⎝

𝛽1
⋮

𝛽k

⎞
⎟⎟⎠k×1

Xi∙ =

⎛
⎜⎜⎝

X1i … 0
⋮ ⋱ ⋮

0 … Xgi

⎞
⎟⎟⎠
g×k

. (2.3)

Based on this notation model (2.1) can be rewritten as

yi∙ = Xi∙𝛽∙ + ui∙, i = 1,… , n, (2.4)

Note that as a common assumption, we now consider ui∙ ∼ N(0g,Σ) where Σ =
{
𝜎ts

}
g×g.

In the present study, we aim to estimate the parameters of this SUR model. This can be achieved via many parametric and nonparametric
estimating procedures including 2SLS1, 3SLS2, GMM3, LIML4 and FIML,5 Anderson and Rubin [19], Theil [20], and Davidson and Mack-
innon [21]. In this paper we focus on FIML according to normal and skew-normal errors assumption. Moreover, a number of important
statistical features pertaining to these models are provided.

Based upon the information provided so far, we can write down the likelihood function to estimate the parameters. As is common, it is
preferred to use the logarithm of the likelihood, in which we write it as l(𝛽∙,Σ), in our problem. It is given by

l(𝛽∙,Σ) = −
ng
2

log 2𝜋 −
n
2

log |Σ| − 1
2

n∑
t=1

[(yt∙ − Xt∙𝛽∙)
TΣ−1(yt∙ − Xt∙𝛽∙)], (2.5)

1Two-stage Least Square
2Three-stage Least Square
3Generalized Method of Moments
4Limited Information Maximum Likelihood
5Fully Information Maximum Likelihood
Pdf_Folio:98
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and should be maximized to obtain the FIML estimators. It is quite straightforward to show (see, e.g. Anderson and Rubin [19]) that the
maximum likelihood estimators of the parameters are given by

𝛽∙ =

[ n∑
t=1

XT
t∙Σ

−1Xt∙

]−1 [ n∑
t=1

X′
t∙Σ

−1yt∙

]

Σ̂ =
1
n

n∑
t=1

[(yt∙ − Xt∙𝛽∙)(yt∙ − Xt∙𝛽∙)
T].

(2.6)

Moreover, via invoking a simple computation, it can be shown that

Var(𝛽∙) =

[ n∑
t=1

,XT
t∙,Σ

−1,Xt∙

]−1

. (2.7)

So far, the estimators have been calculated based on the assumption of normality for the error. However, if the distribution of errors is
asymmetric, such as specifically skew-normal then to obtain the estimators are not as trivial as seen above. To treat this, we first briefly review
the skew-normal distribution in the subsequent section. Then, the FIML estimators of the parameters are obtained under such assumption,
while the model includes endogenous variables.

3. SUR MODELED WITH SKEW-NORMAL DISTRIBUTION

We first recall the definition and a few key properties of the skew-normal distribution, as given by Azzalini and Dalla Valle [12]. Suppose Z
is a k-dimensional random variable, then it follows the multivariate skew-normal distribution if it is continuous with density function

2𝜙k(z; Ψ)Φ(𝜆Tz), (z𝜖ℝk), (3.1)

where𝜙k(z; Ψ) is the k-dimensional normal density with zero mean vector and correlation matrixΨ being of full rank,Φ(.) is the cumulative
distribution function of the k-dimensional standard normal, and 𝜆 is a k-dimensional column vector with constant values. To show this in
short form, it is common to write Z ∼ SNk(0k,Ψ, 𝜆).

The parameter 𝜆 plays a key role in representing the main features of density in (3.1). Since it controls the skewness of density, it is usually
referred to as shape parameter or, also, skewness control. This density function is skewed to the right (left) for positive (negative) values of
𝜆. When 𝜆 = 0, the distribution function (3.1) reduces to N(0k,Ψ), where 0q is a zero vector of length q.

Location and scale parameters can be also added to the skew-normal density of Z given in (3.1). Let us write

Y = 𝜉 + 𝜔Z, (3.2)

where 𝜉 =
(
𝜉1, ..., 𝜉k

)T, and 𝜔 = diag(𝜔1, ..., 𝜔k), are location and scale parameters, respectively. Note that components of 𝜔 are assumed
to be all positive. The density function of Y is then given by

2𝜙k(y − 𝜉; Ω)Φ(𝜆T𝜔−1(y − 𝜉)), (3.3)

where Ω = 𝜔Ψ𝜔T = 𝜔Ψ𝜔 represents the covariance matrix of Y. We use the standard notation Y ∼ SNk(𝜉,Ω, 𝜆) to indicate that Y follows
the density function in (3.3). To have a general graphical view of this density, we provided some plots for particular values of the parameters
in (3.3). The Figure 1 shows the contour plots of bivariate skew-normal density and the histogram of each variable for a bivariate skew-
normal density. Now, we are in a position to concentrate on the estimators in an SUR model under the skew-normal distribution for the
error term. Consider the model (2.4), with altering the index i to t, where

ut∙ = (ut1, ..., utg)T ∼ SNg(0g,Σ, 𝜆), t = 1, ..., n. (3.4)

Now, suppose one is interested in the estimator of parameters in this model through the maximum likelihood approach. Then, corresponding
logarithm of the likelihood function, say 𝓁 = l(𝜆, 𝛽∙,Σ), which is given by

𝓁 = l(𝜆, 𝛽∙,Σ) = n log 2 −
ng
2

log(2𝜋) − n
2

log |Σ|
−

1
2

n∑
t=1

[(yt∙ − Xt∙𝛽∙)
TΣ−1(yt∙ − Xt∙𝛽∙)] +

n∑
t=1

log[Φ1(𝜆
TΣ−1∕2ut∙)],

(3.5)
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Figure 1 Contour plot of bivariate skew-normal density functions when 𝜉T = (0, 0), 𝜆T = (4, 7), 𝜎11 = 4, 𝜎12 = −1, and
𝜎22 = 5.5 plotted in upper panel. Also the marginal histogram of each variable are provided in the lower panel.

needs to be maximized. If we regard 𝜂 = Σ−1∕2𝜆 as a new parameter, instead of 𝜆, it results in splitting the parameters in (3.5) in the following
sense: for fixed 𝛽 and 𝜂, maximization of l with respect to Σ is equivalent to maximizing the analogous function for normal density for fixed
𝛽, which has a well-known solution (see, e.g. Mardia et al. [22]) given by

Σ̂(𝛽∙) = V(𝛽∙) =
1
n

n∑
t=1

(yt∙ − Xt∙𝛽∙)(yt∙ − Xt∙𝛽∙)
T. (3.6)

By substituting this estimation into the expression in (3.5), one will obtain

l∗(𝜂, 𝛽∙) = C −
n
2

log |V(𝛽∙)| −
ng
2

+

n∑
t=1

log 𝜁0(𝜂
Tut∙), (3.7)

where 𝜁0(x) = log(2Φ(x)) and x ∼ N(0, 1). Now, to get the estimators for the rest of the parameters, one needs to maximize l∗(𝜂, 𝛽∙), which
is, in fact, the profile likelihood function [23], with respect to 𝜂 and 𝛽∙. To do so, the partial derivatives of l∗(𝜂, 𝛽∙) with respect to 𝜂 and 𝛽∙Pdf_Folio:100



O. Akhgari and M. Golalizadeh / Journal of Statistical Theory and Applications 20(1) 97–110 101

can be written, respectively, as

𝜕l∗(𝜂,𝛽∙)
𝜕𝜂

=

n∑
t=1

ut∙𝜁1
(
𝜂Tut∙

)
=

n∑
t=1

(
yt∙ − Xt∙𝛽∙

)
𝜁1
[
𝜂′
(
yt∙ − Xt∙𝛽∙

)]

𝜕l∗(𝜂,𝛽∙)
𝜕𝛽∙

= −
n
2
𝜕 log |V(𝛽∙)|

𝜕𝛽∙
−

n∑
t=1

XT
t∙𝜂𝜁1

[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]

= −
n
2

⎛
⎜⎜⎜⎜⎜⎜⎝

tr
(
V−1 𝜕V

𝜕𝛽1

)

tr
(
V−1 𝜕V

𝜕𝛽2

)

⋮

tr
(
V−1 𝜕V

𝜕𝛽k

)

⎞
⎟⎟⎟⎟⎟⎟⎠

−

n∑
t=1

XT
t∙𝜂𝜁1

[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]
,

(3.8)

where 𝜁1(x) = 𝜙(x)∕Φ(x). As seen, one cannot derive some closed solutions (estimators) from the equations in (3.8). Hence, some numerical
maximization procedures need to be implemented for this purpose. There are numerous literature for such numerical computations. See,
for example, Robert and Casella [24]. A common approach is to follow the quasi-Newton algorithm. To do so, we are required to get the
second derivatives of the expression in (3.7). They are given as follows:

𝜕2 l∗(𝜂,𝛽∙)
𝜕𝜂𝜕𝜂T

=

n∑
t=1

(
yt∙ − Xt∙𝛽∙

) (
yt∙ − Xt∙𝛽∙

)T
𝜁2
[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]

𝜕2 l∗(𝜂,𝛽∙)
𝜕𝛽T

∙
𝜕𝛽∙

= −
n
2

⎛
⎜⎜⎜⎜⎝

tr
(
V−1 𝜕2V

𝜕𝛽2
1

)
tr
(
V−1 𝜕2V

𝜕𝛽2𝜕𝛽1

)
… tr

(
V−1 𝜕2V

𝜕𝛽k𝜕𝛽1

)

⋮ ⋮ ⋱ ⋮

tr
(
V−1 𝜕2V

𝜕𝛽1𝜕𝛽k

)
tr
(
V−1 𝜕2V

𝜕𝛽2𝜕𝛽k

)
… tr

(
V−1 𝜕2V

𝜕𝛽2
k

)

⎞
⎟⎟⎟⎟⎠

+
n
2

⎛
⎜⎜⎜⎜⎝

tr
(
V−1 𝜕V

𝜕𝛽1
V−1 𝜕V

𝜕𝛽1

)
tr
(
V−1 𝜕V

𝜕𝛽2
V−1 𝜕V

𝜕𝛽1

)
… tr

(
V−1 𝜕V

𝜕𝛽k
V−1 𝜕V

𝜕𝛽1

)

⋮ ⋮ ⋱ ⋮

tr
(
V−1 𝜕V

𝜕𝛽1
V−1 𝜕V

𝜕𝛽k

)
tr
(
V−1 𝜕V

𝜕𝛽2
V−1 𝜕V

𝜕𝛽k

)
⋯ tr

(
V−1 𝜕V

𝜕𝛽k
V−1 𝜕V

𝜕𝛽k

)

⎞
⎟⎟⎟⎟⎠

+

n∑
t=1

XT
t∙𝜂𝜂

TXt∙𝜁2
[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]

𝜕2 l∗(𝜂,𝛽∙)
𝜕𝛽T

∙
𝜕𝜂

= −

n∑
t=1

{
XT
t∙𝜂

(
yt∙ − Xt∙𝛽∙

)T
𝜁2
[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]
+ XT

t∙𝜁1
[
𝜂T

(
yt∙ − Xt ⋅ 𝛽∙

)]}
,

𝜕2 l∗(𝜂,𝛽∙)
𝜕𝜂T𝜕𝛽∙

=
(

𝜕2 l∗(𝜂,𝛽∙)
𝜕𝛽T

∙
𝜕𝜂

)T
,

(3.9)

where 𝜁2(x) = −𝜁1(x)[x + 𝜁1(x)]. If Υ is the parameter of interest, using the gradient of the function in which this parameter appears, the
quasi-Newton algorithm apply as

Υ(k+1) = Υ(k) − (∇2f)−1
(k)(∇f)(k), (3.10)

where the indices are used to show the value of the estimator at corresponding stage and (ignoring the index)

∇f =

⎛⎜⎜⎜⎜⎝

𝜕l∗(𝜂, 𝛽∙)
𝜕𝜂

𝜕l∗(𝜂, 𝛽∙)
𝜕𝛽∙

⎞⎟⎟⎟⎟⎠
, ∇2f =

⎛⎜⎜⎜⎜⎜⎝

𝜕2l∗(𝜂, 𝛽∙)
𝜕𝛽∙𝜕𝛽

T
∙

𝜕2l∗(𝜂, 𝛽∙)
𝜕𝛽T

∙
𝜕𝜂

𝜕2l∗(𝜂, 𝛽∙)
𝜕𝜂T𝜕𝛽∙

𝜕2l∗(𝜂, 𝛽∙)
𝜕𝜂𝜕𝜂T

⎞⎟⎟⎟⎟⎟⎠

. (3.11)

We conduct some simulation studies using model (2.1) along with normal and skew-normal distributions in the following section. Moreover,
we investigate the application of these methods in real-life data.Pdf_Folio:101
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4. SIMULATION STUDIES AND APPLICATION

Here, we outline our simulation study to evaluate the performance of the parameters estimation for the SUR models given in Section 2.
Suppose we have the following model:

y1 = 𝛽0 + 𝛽1z1 + 𝛽2x1 + u1

y2 = 𝛾0 + 𝛾1z1 + 𝛾2x2 + u2.
(4.1)

To further identification of this model, we need to indicate a distribution for (u1, u2)
T. To start, let us assume u = (u1, u2)

T ∼ N(02,Σ), y1
and y2 are endogenous variables and z1, x1 and x2 are exogenous variables. To compare this model with an alternative, we also consider the
case in which u = (u1, u2)

T ∼ SN(02,Σ, 𝜆).

We fix the parameter in our simulation studies as 𝛽∙ = (6,−3,−4, 9, 3,−2)T, 𝜆= (2, 3)T and

Σ =

(
12 −2
−2 11

)
. (4.2)

To initiate our simulation studies, we take the sample size equal to 1000, in which using two equations in (4.1) ends up with the total
observations 2000. Then, we generate data for 1000 times from skew-normal distribution. Thereafter, the model was fitted by both maximum
likelihood approaches (normal and skew-normal assumptions) as described in previous sections. Particularly, the parameters were estimated
based upon either equations in (2.6) and (3.10), depending on the distribution considered for the errors in the model.

The results gained from our simulation studies for both the normal and skew-normal cases are given in Table 1. As seen, the table is
partitioned into two parts. The three left- hand sides panels are related to the results coming from the normal assumption and the rest on
the right belong to the skew-normal assumption both for error term. The distributions are indicated by N (Normal) and SN (Skew-Normal).
Furthermore, the table includes estimate, standard deviation (SD), and effect size (ES).

Based on the results in Table 1, the estimates for 𝛽1, 𝛽2, 𝛾1, and 𝛾2 have small ES in both cases. The ES for the intercept is high regardless of
which distribution is considered for the error term. However, it is higher in the normal model compared to the skew-normal case. Overall,
the estimates in the SN case are closer to the real value of parameters before conducting the simulation. In general, when response variables
follow a skew-normal distribution in the SUR model, the methods relied on the skew-normal density for the error leads to more accurate
estimation than the normal density case.

One notes that the likelihood ratio test for the null hypothesis 𝜆 = 0 can be considered as a criterion for a comparison in whether or not
the skew-normal distribution should be considered. This test is given by

2
{
𝓁(𝛽∙, Σ̂, �̂�) − 𝓁(�̂�, Ω̂, 0)

}
, (4.3)

where 𝛽∙, Σ̂, and �̂� denote the MLE under the assumption of skew-normality (shorten as SN-ML) and �̂� and Ω̂, are MLE under the assump-
tion of normality (shorten as N-ML) for the errors. Following Casella and Berger [25], the expression (4.3) follows 𝜒2

df where df is the dif-
ference on the dimensions of parameter in the alternative and null hypotheses. The logarithm of the likelihood and AIC criterion for both
methods appear in Table 2. As it can be seen, the logarithm of the likelihood for the SN-ML is higher than that of N-ML. Moreover, the

Table 1 The result of SUR model fitted according to the skew-normal and normal assumptions.
N-ML SN-ML

Parameter Estimate SD ES Estimate SD ES
𝛽0 9.552 0.602 3.552 5.736 0.313 0.264
𝛽1 −3.001 0.018 0.001 −3.003 0.011 0.003
𝛽2 −4.002 0.067 0.002 −3.982 0.023 0.018
𝛾0 18.11 0.751 9.11 8.711 0.451 0.289
𝛾1 3.007 0.063 0.007 3.007 0.029 0.007
𝛾2 −2.013 0.068 0.013 −1.969 0.037 0.031
𝜎11 20.55 4.849 8.55 12.47 1.059 0.474
𝜎22 41.42 5.543 30.42 11.25 3.377 0.258
𝜎12 −9.57 1.414 7.577 −1.72 1.175 0.28
𝜆1 – – – 2.210 0.691 0.210
𝜆2 – – – 3.211 1.080 0.211

Pdf_Folio:102
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Table 2 Criteria to compare two methods of model parameters estimate.
Criteria N-ML SN-ML
AIC 13143.32 13035.198
Log likelihood −6560.66 −6508.599

Table 3 Description of variables utilized in model (4.4).
Variable Names Abbreviation Signs Variable Type Coding
Households expenditure GH Quantitative –
Households income D Quantitative –
Family size C1 Quantitative –
Number of literate in
household

C2 Quantitative –

Number of employees in
household

C3 Quantitative –

Number of people with
income

C4 Quantitative –

Age A Quantitative –
Floor area B1 Quantitative –
Private car B2 Qualitative 1: Use, 0: Nonuse
Internet B3 Qualitative 1: Use, 0: Nonuse
Gas B4 Qualitative 1: Use, 0: Nonuse
Mobile B5 Qualitative 1: Use, 0: Nonuse
Agriculture self-
employment income

D1 Quantitative –

Nonagriculture self-
employment income

D2 Quantitative –

Miscellaneous income D3 Quantitative –
Non-monetary other
incomes

D4 Quantitative –

AIC criterion for the SN-ML is less than that of the N-ML. Therefore, SN-ML outperforms N-ML in this study which means that, in com-
parison with the N-ML distribution, using the skew-normal density for the error term in the SUR model (3.10), leads to an improvement
on the accuracy and bias of the estimators. Here, the likelihood ratio test statistics was LRT = 2

{
𝓁(𝛽∙, Σ̂, �̂�) − 𝓁(�̂�, Ω̂, 0)

}
= 119.48 with

df = 2. Hence, the test is significant at 0.05 level; therefore, it can be stated that the skew parameters (𝜆) is not zero. This supports our initial
assumption on considering the skew-normal distribution for the error terms.

We were interested in applying the proposed model in this paper in real-life data. To do this, we used the Iranian rural households income
and expenditure data collected in the year 2009. It includes 13345 families from 32 provinces. In the present paper, the main goal is a
survey effects of some variables on Iranian rural households income and expenditure. In this study, these two variables are considered as
endogenous variables and other covariates are set as exogenous. Based on a general view and also consulting experts in the Statistical Center
of Iran, the following SUR was utilized to express the inter-relationship between rural households income and expenditure in Iran:

GH = 𝛽0 +

4∑
i=1

𝛽Ci
Ci +

5∑
i=1

𝛽Bi
Bi + 𝛽AA + 𝜖1

D = 𝛾0 +

4∑
i=1

𝛾Di
Di + 𝜖2.

(4.4)

A general description of the considered variables is provided in Table 3. Figures 2–4 present a geometric display of two important variables.

To initiate the analysis, the validity of the normality assumption for the response variables should be tested. We used the Kolmogorov–
Smirnov (KS) test statistics for this purpose. The results of the KS test was significant with p-value < 0.05, rejecting the null hypothesis;
assuming the normality density. To have a visual inspection of the density, the Q-Q plot of the households income and expenditure are also
drawn in Figure 5. They show the departure of univariate normal distribution for both variables. The contour plot in Figure 5 also demon-
strates a departure from the bivariate normal distribution. It can be argued that some transformations, such as logarithm, to make densityPdf_Folio:103
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Figure 2 The scatter plot of Iranian rural households income
and expenditure. Also the marginal histogram of each variable
are provided in the lower panel.

Figure 3 The pairs plot of quantitative variables
described in Table 3.

normal is appropriate. However, the income variable includes some negative values and so we are not allowed to utilize this transformation.
Instead, we preferred to use the skew-normal distribution for the errors and attempted to model the rural households income and expen-
diture in Iran based upon this methodology. Nonetheless, to have a basement for our further comparison, the normal distribution was also
considered for the errors in this example.

The results from employing aforementioned models for our example are appeared in Table 4. As seen, it includes three panels. The first
(second) panel shows the results for the first (second) equation of the model (4.4). Confining ourselves only to those significant estimates
of the parameters at %5 level, the results for the normal and skew-normal densities are provided in both panels. The last panel shows the
estimation for the components of the covariance matrix and shape parameters. A test was conducted to check whether or not the skewness
parameter (𝜆) is equal to zero. This led to LRT = 2

{
𝓁(𝛽∙, Σ̂, �̂�) − 𝓁(�̂�, Ω̂, 0)

}
= −24385.1 − (−24444.4) = 59.3 with df = 2. Since the

test was significant at 0.05 level, we accept that the skew parameter is not zero, and using the skew-normal MLE is more effective than the
normal MLE.

Based on the results given in the first panel of Table 4, using facilities (including the Internet, gas, and mobile), has a direct effect on family
households expenditure in Iran. In other words, using these facilities can increase family households expenditure. It is also seen that, family
size, number of literate, employees, and people with income in household and age have direct link with family households expenditure.Pdf_Folio:104
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Figure 4 The pairs plot of quantitative variables
described in Table 3.

Figure 5 The contour plot of rural households income and expenditure along
with the Q-Q plot for each variable.
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Table 4 The result of fitting the seemingly unrelated regression ( SUR) model in (4.4)
considering the skew-normal and normal distributions assumption for the response in the
Iranian rural households income and expenditure data on year 2009.

Estimation Std.error
Parameter N-ML SN-ML N-ML SN-ML

𝛽0 −1.50 −1.34 0.047 0.006
𝛽C1

0.036 0.040 0.009 0.001

𝛽C2
0.082 0.046 0.010 0.002

𝛽C3
0.106 0.059 0.011 0.004

𝛽C4
0.061 −0.024 0.014 0.004

𝛽B1
0.003 0.003 0.0006 0.0001

𝛽B2
0.004 0.002 0.0002 0.0005

𝛽B3
0.649 0.531 0.024 0.013

𝛽B4
0.689 0.490 0.051 0.032

𝛽B5
0.064 0.031 0.018 0.0085

𝛽A 0.276 0.137 0.025 0.0064
𝛾0 0 −0.103 0.025 0.0038
𝛾D1

0.544 0.499 0.013 0.0039

𝛾D2
0.503 0.487 0.013 0.0039

𝛾D3
0.412 0.352 0.013 0.0039

𝛾D4
0.033 0.030 0.013 0.0038

𝜎11 0.656 0.051 0.011 0.009
𝜎21 0.084 0.009 0.009 0.001
𝜎22 0.315 0.018 0.008 0.004
𝜆1 – 1.181 – 0.104
𝜆2 – 0.869 – 0.097

Moreover, regarding the second panel of Table 4, the agriculture self-employment, non-agriculture self-employment, miscellaneous income,
and non-monetary other incomes have direct effect on the family incomes.

5. CONCLUSION

There are some examples of encountering with data having an asymmetric histogram. Considering some skew-normal distributions is
usually a solution to construct a model. The problem will be harder if one should take SEMs into account. Confining to the SUR model,
which is a particular case of SEM, we discussed the method of estimation for the parameters of this model in this paper. Here, the response
variables were following the skew-normal distribution. Performance of the proposed method has been compared with an alternative case
in which the normal density is incorrectly assumed for the error. Then, we applied the methods discussed in this paper on real data. Results
shown superiority of our approach to other methods relied on normal distribution for the error. There is still room to extend the model
in this paper. One of the possible options is to investigate the performance of the Bayesian approach on the SUR model with skew-normal
assumption for the error term. Moreover, to check how other skew distributions such as skew-t density works on the SUR models worth to
study.
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APPENDIX

Theorem: For any fixed (p × p) matrix A > 0.

f(Σ) = |Σ|−n∕2 exp
{
−

1
2
trΣ−1A

}
(5.1)

is maximized over Σ > 0 by Σ = n−1A, and so f(n−1A) = |n−1A|−n∕2e−
np
2 .

In Equation (3.8), 𝜕V
𝜕𝛽j

is determined as follows:

Suppose Ai = yti − Xti𝛽
∗
i is the i-th observation from i-th equation and 𝛽∗i is ki-vector and XT

ti is a ki-vector. Also consider

A∗
t =

⎛
⎜⎜⎜⎜⎝

A1 A2 … Ag

0 A2 … Ag
⋮ ⋮ ⋱ ⋮

0 0 … Ag

⎞
⎟⎟⎟⎟⎠g× g

, 𝛽∙ =

⎛
⎜⎜⎝

𝛽∗1
⋮

𝛽∗g

⎞
⎟⎟⎠k× 1

,Xt∙ =

⎛
⎜⎜⎜⎜⎝

Xt1 0 … 0
0 Xt2 … 0
⋮ ⋮ ⋱ ⋮

0 0 … Xtg

⎞
⎟⎟⎟⎟⎠g× k

(5.2)

where k =
∑g

i=1
ki. Here, the main goal is to get the derivative ofVwith respect to j-th parameter of 𝛽∙, that is 𝛽j (for j = 1,… , k). Therefore,

we define k-vector whose that its j-th element is 1 and the other ones are all zero. Similarly, we determine 𝛽j a g-vector in which its the i-th
element is 1 and the other ones are zero. Since X∗

t(j) is only appears in i-th equation in a particular manner, we define:

a =

⎛
⎜⎜⎜⎜⎝

0
⋮

1
⋮

0

⎞
⎟⎟⎟⎟⎠
k× 1

, b =

⎛
⎜⎜⎜⎜⎝

0
⋮

1
⋮

0

⎞⎟⎟⎟⎟⎠
g× 1

. (5.3)

Hence,X∗
t(j) = bTXt∙awhereX∗

t(j) is the corresponding variable to 𝛽j. The last step for determining the derivative ofV is to set the matrixCtj as

Ctj =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 … 0
0 0 … 0
⋮ ⋮ ⋱ ⋮

−X∗
t(j) … 0
⋮ ⋮ ⋱ ⋮

0 0 … 0

⎞⎟⎟⎟⎟⎟⎟⎠g×g

A∗
t . (5.4)

As it can be seen, the first column and i-th row of Ctj is equal to −X∗
t(j). Finally, for all other observations, the corresponding derivative is

given as:

𝜕V
𝜕𝛽j

=
1
n

n∑
t=1

(Ctj + CT
tj
). (5.5)

As a general rule, the Hessian matrix is required if one is interested in utilizing the quasi-Newton algorithm. The relevant derivatives to
construct such a matrix are as follows:

𝜕2𝓁∗

𝜕𝛽T
∙
𝜕𝜂

=
𝜕

𝜕𝛽T
∙

[ n∑
t=1

(
yt − Xt∙𝛽∙

)
𝜁1
(
𝜂T

(
yt − Xt∙𝛽∙

))]

=

n∑
t=1

[
𝜕

𝜕𝛽T
∙

yt𝜁1
(
𝜂T

(
yt − Xt∙𝛽∙

))
−

𝜕

𝜕𝛽T
∙

Xt∙𝛽∙𝜁1
(
𝜂T

(
yt − Xt∙𝛽∙

))]

=

n∑
t=1

[
−XT

t∙𝜂y
T
t 𝜉2

(
𝜂T

(
yt − Xt∙𝛽∙

))
− XT

t∙𝜁1
(
𝜂T

(
yt − Xt∙𝛽∙

))
+ XT

t∙𝜂𝛽
T
∙
XT
t∙𝜁2

(
𝜂T

(
yt − Xt ∙ 𝛽∙

))]

= −

n∑
t=1

[
XT
t∙𝜂

(
yt − Xt∙𝛽∙

)T
𝜁2
(
𝜂T

(
yt − Xt∙𝛽∙

))
+ XT

t∙𝜁1
(
𝜂T

(
yt − Xt∙𝛽∙

))]
.

(5.6)
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Notice that we used the property
(

𝜕2𝓁∗

𝜕𝜂T𝜕𝛽∙

)T
=

𝜕2𝓁∗

𝜕𝛽T
∙
𝜕𝜂

. The second derivative of 𝓁∗ subject to 𝜂 is straightforward. However, the computation

of 𝜕2𝓁∗

𝜕𝛽∙𝜕𝛽
T
∙

is too tough. To obtain this derivative, we applied formula (5.5) to get:

𝜕2𝓁∗

𝜕𝛽∙𝜕𝛽
T
∙

=
𝜕

𝜕𝛽∙

⎧
⎪⎪⎨⎪⎪⎩

−
n
2

⎛
⎜⎜⎜⎜⎝

tr
(
V−1 𝜕V

𝜕𝛽1

)

⋮

tr
(
V−1 𝜕V

𝜕𝛽k

)

⎞
⎟⎟⎟⎟⎠

T

−

n∑
t=1

𝜂TXt∙𝜁1
[
𝜂′
(
yt∙ − Xt∙𝛽∙

)]
⎫
⎪⎪⎬⎪⎪⎭

= −
n
2

𝜕

𝜕𝛽∙

⎛⎜⎜⎜⎜⎝

tr
(
V−1 𝜕V

𝜕𝛽1

)

⋮

tr
(
V−1 𝜕V

𝜕𝛽k

)

⎞⎟⎟⎟⎟⎠

T

+

n∑
t=1

XT
t∙𝜂𝜂

TXt∙𝜁2
(
𝜂T

(
yt − Xt∙𝛽∙

))

= −
n
2

⎛
⎜⎜⎜⎜⎝

𝜕

𝜕𝛽1
tr
(
V−1 𝜕V

𝜕𝛽1

)
𝜕

𝜕𝛽2
tr
(
V−1 𝜕V

𝜕𝛽1

)
⋯

𝜕

𝜕𝛽k
tr
(
V−1 𝜕V

𝜕𝛽1

)

⋮ ⋮ ⋱ ⋮

𝜕

𝜕𝛽1
tr
(
V−1 𝜕V

𝜕𝛽k

)
𝜕

𝜕𝛽2
tr
(
V−1 𝜕V

𝜕𝛽k

)
⋯

𝜕

𝜕𝛽k
tr
(
V−1 𝜕V

𝜕𝛽k

)

⎞
⎟⎟⎟⎟⎠

+

n∑
t=1

XT
t∙𝜂𝜂

TXt ∙ 𝜁2
(
𝜂T

(
yt − Xt ∙ 𝛽∙

))

= −
n
2

⎛⎜⎜⎜⎜⎝

tr
(
V−1 𝜕2V

𝜕𝛽2
1

)
tr
(
V−1 𝜕2V

𝜕𝛽2𝜕𝛽1

)
… tr

(
V−1 𝜕2V

𝜕𝛽k𝜕𝛽1

)

⋮ ⋮ ⋱ ⋮

tr
(
V−1 𝜕2V

𝜕𝛽1𝜕𝛽k

)
tr
(
V−1 𝜕2V

𝜕𝛽2𝜕𝛽k

)
… tr

(
V−1 𝜕2V

𝜕𝛽2
k

)

⎞⎟⎟⎟⎟⎠

+
n
2

⎛⎜⎜⎜⎜⎝

tr
(
V−1 𝜕V

𝜕𝛽1
V−1 𝜕V

𝜕𝛽1

)
tr
(
V−1 𝜕V

𝜕𝛽2
V−1 𝜕V

𝜕𝛽1

)
… tr

(
V−1 𝜕V

𝜕𝛽k
V−1 𝜕V

𝜕𝛽1

)

⋮ ⋮ ⋱ ⋮

tr
(
V−1 𝜕V

𝜕𝛽1
V−1 𝜕V

𝜕𝛽k

)
tr
(
V−1 𝜕V

𝜕𝛽2
V−1 𝜕V

𝜕𝛽k

)
… tr

(
V−1 𝜕V

𝜕𝛽k
V−1 𝜕V

𝜕𝛽k

)

⎞⎟⎟⎟⎟⎠

+

n∑
t=1

XT
t∙𝜂𝜂

TXt∙𝜁2
[
𝜂T

(
yt∙ − Xt∙𝛽∙

)]
.

(5.7)

On getting (5.7), we employed the following equality in which F is a non-singular matrix:

𝜕2 log |F|
𝜕xi𝜕xj

=

𝜕tr(F−1 𝜕F
𝜕xj
)

𝜕xi
= tr

(
F−1 𝜕2F

𝜕xi𝜕xj

)
− tr

(
F−1 𝜕2F

𝜕xi𝜕xj

)
(5.8)

The components of the second matrix in the last expression (5.7) are determined using (5.5). Assuming 𝛽j is a member of i-th equation in
the SUR, we have:

B = Ctj + CT
tj
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 … −X∗
t(j)A1 … 0

0 … −X∗
t(j)A2 … 0

⋮ ⋱ ⋮ ⋱ ⋮

−X∗
t(j)A1 … −2X∗

t(j)Ai … −X∗
t(j)Ag

⋮ ⋱ ⋮ ⋱ ⋮

0 … −X∗
t(j)Ag … 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.9)
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where all of the arrays equal zero except i-th row and column. The main diagonal of the favorite matrix 𝛽j is a member of i-th equation and so

𝜕2V
𝜕𝛽2

j
=

⎛⎜⎜⎜⎜⎜⎝

0 … 0 … 0
⋮ ⋱ ⋮ ⋱ ⋮

0 … 2X∗
t(j) … 0

⋮ ⋱ ⋮ ⋱ ⋮

0 … 0 … 0

⎞⎟⎟⎟⎟⎟⎠

, j = 1, ..., k. (5.10)

If both 𝛽j and 𝛽l are members of i-th equation in a SUR, then; we have:

𝜕2V
𝜕𝛽j𝛽l

=

⎛
⎜⎜⎜⎜⎜⎝

0 … 0 … 0
⋮ ⋱ ⋮ ⋱ ⋮

0 … 2X∗
t(j)X

∗
t(l) … 0

⋮ ⋱ ⋮ ⋱ ⋮

0 … 0 … 0

⎞
⎟⎟⎟⎟⎟⎠

, j, l = 1, ..., k, (5.11)

where all of the arrays are zero except the element in the (i, i) position. If 𝛽j is a member of i-th equation and 𝛽l is a member of m-th equation
where i ≠ m, then; we have:

𝜕2V
𝜕𝛽j𝛽l

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 … … 0 … 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 … … X∗
t(j)X

∗
t(l) … 0

0 X∗
t(j)X

∗
t(l) … … … 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

0 … … 0 … 0

⎞⎟⎟⎟⎟⎟⎟⎠

, j, l = 1, ..., k (5.12)

where all of the arrays are zero except (i,m)-th and (m, i)-th components.
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