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Abstract - Saccharina latissima is one of the potential 

seaweed sources because of its high carbohydrate content. The 

interest of farming of macroalgae has increased in European 

countries. Abundant research results have provided data for the 

biochemical composition of S. latissimi. This paper collects and 

summarize data on carbohydrate content of S. latissima from 

scientific articles published all around the world. The content of 

polysaccharides in S. latissima range from 30 to 50% dw. These 

polysaccharides include alginate, fucoidan, laminarin and 

mannitol. Information of the carbohydrate content of S. latissima 

will be needed for further developments, such as use in biofuel, 

food or health industries. It may also increase the interest of 

cultivation of S. latissima. As a result, S. latissima may become an 

important commodity in aquaculture. 
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I. INTRODUCTION

Seaweed farming mostly undertaken in Asian countries. 

Recently, it also conducted in some African, American and 

European countries. It is a relatively new industry in North 

America and Europe[1]. The production has grown by 119% 

since 1984[2], showing an increased interest of seaweed 

cultivation. The large increase of seaweed production from 

1984 to 1994 includes chlorophytes, rhodophytes and 

phaeophytes, with increase value of 376%, 167% and 97% 

respectively[2]. The global production of seaweed in 2016 

dominated by Euchema spp, Laminaria japonica, Gracilaria 

spp., Undaria pinnatifida, Kappaphycus alvarezii, and 

Porphyra spp.  [3]. 

Seaweed are cultivated both as a raw material for 

seaweed industries and for human food. Seaweed biomass has 

a potential as a source for producing biofuels [4]; 

nutraceuticals or functional food [5, 6]; pharmaceutical or 

medical [7-9] and food [2, 10-12]. The utilization of seaweed 

has also increased for environmental purpose. Studies on 

macroalgae farming close to fish farms have revealed that 

seaweed has the potential for bioremediation services [13, 14].  

The high use of seaweed inseparable from its nutritional 

content, which may up to 50% for the carbohydrate content 

[15]. Beside direct consumption, seaweed are also extracted 

for agars, carrageenans and alginates content. Gracilaria and 

Gelidium are the principal source of agar[16, 17], 

Kappaphycus and Eucheuma are the main sources of 

carrageenans [18], while brown seaweed (class Phaeophyceae 

and orders Laminariales and Fucales) have large contents of 

alginate (up to 55% dw) [19]. Alaria esculenta and Saccharina 

latissima are the potential brown seaweed species most suited 

for cultivation in Europe [13, 20] because they hold valuable 

nutritional content [21]. The objective of this paper is to 

provide detailed information on the carbohydrate composition 

of S. latissima. We believe that the information provided here 

will give the advantages for the industrial uses of this and 

other macroalgae.  

II. CARBOHYDRATE OF Saccharina latissima

Total carbohydrate of S. latissima range from 30 to 50% 

dw[22]. The most abundant carbohydrate in sugar kelp (S. 

latissima) is alginate that  constitutes up to 40% [23]. Handå et 

al. found that the alginate content of sugar kelp was in the 

range between 6 and 27%[13]. Alginate content of Laminaria 

saccharina from Barents Sea were found to be 34.5±1.00% 

dw[24], and Shiener et al. notified an average alginate content 

of 28.5±3.9% of the dry weight for S. latissima from Scottish 

waters [25]. Alginic acid distributed universally among the 

Phaeophyta [26]. Jard et al. suggested that S. latissima is the 

best algae suited for alginate extraction[27]. It is also a key 

species for the food industries, and S. latissima is therefore a 

main candidate for seaweed aquaculture. Total alginate of S. 

latissima is lower than that of Himanthalia elongata (Table 1), 

but the thickening properties of alginate from S. latissima is 

better than that of other brown algae mentioned [27]. 
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TABLE I 

TOTAL ALGINATE OF THE SELECTED BROWN SEAWEED* 

Brown seaweed species 

Total 

alginate 

(x1.18 

uronic 

acid) 

(g/kg 

TS) 

Undaria. 

pinnatifida 

Saccor

hiza. 

polysc

hides 

Sargassu

m. 

muticum 

Sacchari

na. 

latissima 

Himanth

alia. 

elongata 

222 192 160 243 350 

*[27] 

**total alginate contents were obtained from corresponding references. 

Subsequent to alginate, laminaran comprise up to 35% 

dw of brown seaweed [15, 28]. Laminaran, together with 

fucoidan, are primarily found in species of Laminaria and 

Fucus [26]. Laminaran from S. latissima was found around 

3%-9% in the vicinity of salmon farm in Norway [13]. The 

content of laminaran from the fronds of L. saccharina at 

sheltered area has been found to be below 26% dw [29]. 

Studies on the laminaran content of L. saccharina from 

Barents Sea showed that the content of Laminaran were 

11.6±2.65% dw [24]. Comparison of laminaran content of S. 

latissima by Black (1950) suggested that laminaran was higher 

in plants grown in the sheltered zone than in more exposed 

plants [29]. 

Another commercial carbohydrate of brown seaweed is 

fucoidan, which may present contents up to 15% of dw [30]. 

The maximum and minimum fucoidan value of 6.2±0.06 and 

2.3±0.04 % of DM, respectively, was observed in S. latissima 

grown in Danish waters [31]. The highest contents of fucoidan 

has been found in L. saccharina from the Barents Sea, with 

fucoidan contents of 8.8±0.9% dw [24].  

L. saccharina also contains up to 14% of the

polysaccharide mannitol [30]. Other study publish mannitol 

values of 15.04±2.03% dw were found in L. saccharina grown 

in the Barent Sea [24]. Values from the Island of Frøya in 

Norway has shown mannitol content of 2.05%-15.84% DM 

[32]. The average mannitol content S. latissima from Scottish 

waters of 18.6±4.7% are reported was [25]. The higher 

mannitol on L. saccharina are underneath 24% dw reported 

from British Laminariaceae [29] 

III. POTENCY OF COMMERCIAL PRODUCTION OF

SEAWEED BIOMASS 

The worldwide aquaculture production of aquatic plant 

dominated by macroalgae showed production yields above 30 

million tonnes in 2016 [3]. The average world yield of 

macroalgae is higher than those of wheat, maize, sugar beet 

and sugar cane [33]. This makes seaweed available as an 

industrial raw material for commercial product, and it is 

suggested that marine sources has the largest biomass potential 

compare to other sources [34]. In addition to that, huge 

biomass required for the industrialization of seaweed may 

reach through aquaculture.  

S. latissima, as a potential species for seaweed

aquaculture, is one of the fastest growing species of kelp in 

European waters [35, 36], and the species show good growth 

performance [37]. In Norway, the procedure for seedling 

production of S. latissima has been established through 

research activities [36], and further farming activities is 

initiated. Through the MACROSEA project 

(https://www.sintef.no/projectweb/macrosea/), we will also 

contribute to provide a knowledge platform for industrial 

macroalgae cultivation.  

IV. CONCLUSION

S. latissima has a relatively high content of total

carbohydrates. The carbohydrate includes of alginate, 

fucoidan, laminarin and mannitol, components that can be used 

for production of biofuel, food and health products. Protocol 

for the aquaculture of S. latissima has also established in 

Norway.  
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