
 

 

Multivariate Time Series Data Forecasting Using 

Multi-Output NARNN Model
 

Hermansah1,2,* Dedi Rosadi1 Abdurakhman1 Herni Utami1 Gumgum Darmawan1,3 

1 Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia 
2 Department of Mathematics Education, Riau Kepulauan University, Batam, Indonesia 
3 Department of Statistics, Padjadjaran University, Bandung, Indonesia 
*Corresponding author. Email: bankhermansah@gmail.com 

ABSTRACT 

This research proposes the multi-output Nonlinear Autoregressive Neural Network (NARNN) method to forecast 

multivariate time series data containing the input layer, one hidden layer, and the output layer. The multi-output NARNN 

method is performed by applying the logistic activation function and the resilient backpropagation learning algorithm. 

The stage of determining the input variable is chosen based on the number of data frequencies. The number of neurons 

in the hidden layer is half of the number of input variables. Simulation and empirical studies are conducted to test 

whether the proposed method works well for multivariate time series data forecasting. The simulation results show that 

the best performance is the simulation data generated from the MESTAR nonlinear model. The simulation study results 

are as expected. Empirical studies on Indonesia’s inflation and Bank Indonesia interest rate data show that the multi-

output NARNN method provides better forecasting accuracy than the VAR, VMA, and VARMA methods with a total 

MSE value of 0.054655 and a total MAPE of 0.026853 in the testing data. 

Keywords: Multivariate Time Series Forecasting, Logistic Function, Resilient Backpropagation Learning, 

Multi-Output NARNN Model.

1. INTRODUCTION 

In daily life, time-series data are often found 

consisting of many interrelated variables known as 

multivariate time series data. Statistical methods that 

have been widely used for modeling and forecasting 

multivariate time series data are the Vector 

Autoregressive (VAR), Vector Moving Average (VMA), 

and Vector Autoregressive Moving Average (VARMA) 

models. These models are linear and require assumptions 

such as data stationarity [1]. This assumption is not 

practical considering the movement of time series data, 

especially in the financial sector, is very dynamic. 

Nowadays, a more flexible approach has been 

developed to model linear and nonlinear relationships 

known as Neural Network (NN) model. The NN model 

is an alternative that is widely used because it does not 

require assumptions on data that are often difficult to 

fulfill [2]. The most popular and widely used NN model 

for modeling and forecasting time series data is the 

Nonlinear Autoregressive Neural Network (NARNN) 

model, also known as the Multilayer Perceptron (MLP) 

or Feedforward Neural Network (FFNN). In its 

application, the NARNN model contains a limited 

number of parameters. How to get the appropriate 

NARNN model, namely, how to determine the right 

combination between the number of input variables and 

the number of neurons in the hidden layer [3]. 

The [4] introduced the NARNN model for 

multivariate time series data forecasting, which in this 

study is called the multi-output NARNN method. They 

use statistical concepts to determine the multi-output 

NARNN method that is most suitable for multivariate 

data. They used two statistical tests, namely the Wald 

test, to obtain optimal input variables and the F test to 

determine the number of neurons in the hidden layer. 

This study proposes obtaining input variables through [5] 

approach based on the number of data frequencies 

without stepwise selection. If the data frequency is m (m 

> 3), then consecutive m lag starting from lag 1 will be 

taken. For example, for monthly data, 1:12 lag will be 

taken. However, if the condition m > 3 is not met, 1:4 lag 

is used. The [5] was further extended in [6] by 

implementing a combination of learning algorithms, 

activation functions, and ensemble operators. The [6] 
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approach was used the stepwise selection to obtain the 

most suitable NARNN model on univariate data. As an 

extension, this research was conducted, and the number 

of neurons in the hidden layer is half of the number of 

input variables. The multi-output NARNN method is 

performed by applying the logistic activation function 

and the resilient backpropagation learning algorithm. 

Furthermore, simulation and empirical studies are 

carried out to test whether the proposed method works 

well for forecasting multivariate time series data. For 

reasons of simplicity of the model, research is carried out 

for bivariate cases. Three simulation data models are 

generated: the linear VAR model, the nonlinear 

Multivariate Exponential Smooth Transition 

Autoregressive (MESTAR), and MIXED (mixed of 

both). Empirical studies were conducted on Indonesia’s 

inflation and Bank Indonesia’s interest rate data. 

Measuring the forecasting accuracy is done with the 

value of Mean Squared Error (MSE) and Mean Absolute 

Percentage Error (MAPE). MAPE is the average of the 

overall percentage of error between the actual data and 

forecasting data. A method has excellent performance if 

the MAPE value is below 10% and has good performance 

if the MAPE value is between 10% and 20% [7]. Besides, 

forecasting accuracy with the VAR, VMA, and VARMA 

methods is also provided. 

2. RESEARCH METHOD 

2.1. Multi-Output NARNN Model 

The multi-output NARNN modeling architecture has 

as many neurons in the output layer as the multivariate 

series used. Suppose the weight from the input layer to 

the hidden layer is denoted as 𝑣 and the weight from the 

hidden layer to the output layer is 𝑤 , and 𝛼 =
(𝛼1, 𝛼2, … , 𝛼ℎ)  and 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚)  are the bias 

vectors in input and hidden layers. The output of the 

multi-output NARNN method can be written as follows: 

𝑍𝑡 = 𝑤 𝐹(𝑍𝑣 + 𝛼) + 𝛽 + 𝜀𝑡 (1) 

and 

𝐹(𝑍𝑣 + 𝛼) =
1

1+exp (−(𝑍𝑣+𝛼))
 (2) 

For example, 𝑍𝑡 = (𝑍1,𝑡 , … , 𝑍𝑚,𝑡) is a time series process 

consisting of 𝑚 variables that are affected by lag-𝑝 values. 

The input vector can be written: 

𝑍 = (𝑍1,𝑡−1, … , 𝑍1,𝑡−𝑝, … , 𝑍𝑚,𝑡−1, … , 𝑍𝑚,𝑡−𝑝) (3) 

Furthermore, there are 𝑝 × 𝑚 neurons in the input layer. 

If the scalar ℎ denotes the number of hidden units, the 

matrix weight (network parameter) for the hidden layer 

has the dimension (𝑝 × 𝑚) × ℎ, where  

𝑣 =

[
 
 
 
 
 
 
 
𝑣1,𝑡−1,1 𝑣1,𝑡−1,2 ⋮ 𝑣1,𝑡−1,ℎ
⋮

𝑣1,𝑡−𝑝,1
⋮

𝑣𝑚,𝑡−1,1
⋮

𝑣𝑚,𝑡−𝑝,1

⋮
𝑣1,𝑡−𝑝,2
⋮

𝑣𝑚,𝑡−1,2
⋮

𝑣𝑚,𝑡−𝑝,2

⋱
⋮
⋱
⋮
⋱
⋮

⋮
𝑣1,𝑡−𝑝,ℎ
⋮

𝑣𝑚,𝑡−1,ℎ
⋮

𝑣𝑚,𝑡−𝑝,ℎ]
 
 
 
 
 
 
 

   (4) 

The input unit constants are involved in the architecture 

and connected to each neuron in the hidden and output 

layers. This generates a bias vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼ℎ) 
in the hidden layer and 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚) in the output 

layer. Since there are 𝑚 variables in the output layer, the 

output layer’s matrix weight will be as follows: 

𝑤 = [

𝑤1,1 𝑤1,2 … 𝑤1,ℎ
𝑤2,1
⋮

𝑤𝑚,1

𝑤2,2
⋮

𝑤𝑚,2

…
⋱
…

𝑤2,ℎ
⋮

𝑤𝑚,ℎ

]  (5) 

Then the output from the multi-output NARNN method 

can be defined as follows: 

𝑍𝑡 = 𝑤 𝐹(𝑍𝑣 + 𝛼) + 𝛽 + 𝜀𝑡  

Or more explicitly, 

𝑍𝑙,𝑡 = ∑ 𝑤𝑙,𝑘
ℎ
𝑘=1 𝐹𝑘(∑ ∑ 𝑣𝑖,𝑡−𝑗,𝑘

𝑝
𝑗=1 𝑍𝑖,𝑡−𝑗 + 𝛼𝑘

𝑚
𝑖=1 ) +

𝛽𝑙 + 𝜀𝑙,𝑡, for 𝑙 = 1,… ,𝑚    (6) 

Where 𝜀𝑡 = (𝜀1,𝑡, … , 𝜀𝑚,𝑡) is the error vector, and 𝐹 is the 

transfer function operated to the vector element 𝑍𝑣 + 𝛼. 

The function that is commonly used is the logistics 

function. The 𝐹 function in the above model becomes 

𝐹𝑘(∑ ∑ 𝑣𝑖,𝑡−𝑗,𝑘
𝑝
𝑗=1 𝑍𝑖,𝑡−𝑗 + 𝛼𝑘

𝑚
𝑖=1 ) =

1

1+exp (−(∑ ∑ 𝑣𝑖,𝑡−𝑗,𝑘
𝑝
𝑗=1

𝑍𝑖,𝑡−𝑗+𝛼𝑘
𝑚
𝑖=1 ))

    (7) 

In this study, the input variable was taken based on 

the number of data frequencies. If the data frequency is  

𝑚 > 3, then consecutive lag 𝑚 from lag 1 will be taken. 

For example, for monthly data, 1:12 lag will be taken. 

However, if the condition 𝑚 > 3 is not met, the 1:4 lag 

is used. For descriptions and implementation details of 

determining input variables, see [5, 6, 8]. Furthermore, 

the number of neurons in the hidden layer is half of the 

number of input variables. The multi-output NARNN 

method is carried out by implementing the logistic 

activation function and the resilient backpropagation 

learning algorithm.  

2.2. Logistic Function 

Each neuron contains an activation function and a 

threshold value, which is the minimum needed by input 

to activate it. The activation function is applied, and the 

output is passed to the next neurons in the networks. It is 

designed to ensure the neuron’s output limitation, usually 

to values between 0 to 1 or −1 to +1. In most cases, the 

same function is used for every neuron in a network. 
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The logistic function is also known as the sigmoid 

function. The activation tool is most commonly applied 

due to its ability to obtain a real-valued number and 

crushes it into numbers ranging from 0  to 1 . This 

involves classifying large negative numbers as 0, while 

positive ones are 1 using the following equation. 

𝑓(𝑥) =
1

1+exp (−𝑐𝑥)
    (8) 

where parameter 𝑐  is a constant, the function became 

popular partly because it is possible to interpret the 

function’s output as the probability of the artificial 

neuron ring. 

2.3. Resilient Backpropagation Learning 

Resilient backpropagation is defined as a significant 

new learning scheme applied to adapt the weight step 

concerning the local gradient information directly. An 

individual update-value ∆𝑖,𝑗  was introduced by [9] to 

ensure each weight strictly decides the weight-update 

size. The evolution of this adaptive update-value was 

observed in the learning process because of the local sight 

on the error function, 𝐸 , through the learning-rule 

presented as follows: 

∆𝑖,𝑗
(𝑡)
=

{
 
 

 
 𝜂+ ∗ ∆𝑖,𝑗

(𝑡−1),   𝑖𝑓 
𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡−1)
∗

𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡)
> 0

𝜂− ∗ ∆𝑖,𝑗
(𝑡−1),   𝑖𝑓 

𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡−1)
∗

𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡)
< 0

∆𝑖,𝑗
(𝑡−1),   𝑒𝑙𝑠𝑒                              

 (9) 

where 0 < 𝜂− < 1 < 𝜂+. 

The working principle of the adaptation-rule is such 

that each time there is a change in the sign of the 

corresponding weight 𝑤𝑖,𝑗 partial derivative to show the 

last update was too enormous and that there is a jump of 

the algorithm on a local minimum, there is usually a 

reduction in the update-value ∆𝑖,𝑗  by the factor 𝜂− . 

Meanwhile, in a situation the sign is retained, there is 

usually a slight increase in the update-value to ensure the 

acceleration of convergence in shallow regions. 

The weight-update is also usually a straight-forward 

rule after the adaption of the update-value for each 

weight, and, in a situation the derivative is positive 

(increasing error), there is a reduction in the weight using 

the update-value, but an adverse condition usually leads 

to the update-value addition 

∆𝑤𝑖,𝑗
(𝑡)
=

{
 
 

 
 −∆𝑖,𝑗

(𝑡),   𝑖𝑓 
𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡)
> 0

+∆𝑖,𝑗
(𝑡),   𝑖𝑓 

𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡)
< 0

0,   𝑒𝑙𝑠𝑒           

 (10) 

𝑤𝑖,𝑗
(𝑡+1)

= 𝑤𝑖,𝑗
(𝑡)
+ ∆𝑤𝑖,𝑗

(𝑡)
 (11) 

There is, however, one exception, and this is a 

situation there is a change in the sign on the partial 

derivative such that the initial step was observed to be too 

large while the minimum was missed, there is going to be 

the reversion of the previous weight-update 

∆𝑤𝑖,𝑗
(𝑡)
= −∆𝑤𝑖,𝑗

(𝑡−1),   𝑖𝑓 
𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡−1)
∗

𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡)
< 0 (12) 

The backtracking weight-step is expected to change 

the sign on the derivative once again in the following step 

without allowing the update-value to be adapted to avert 

double punishment. It is possible to practically achieve 

this through the setting of 
𝜕𝐸

𝜕𝑤𝑖,𝑗

(𝑡−1)
: = 0  in the ∆𝑖𝑗  

previous adaptation-rule. Meanwhile, there are changes 

in the update-values and weights each time there is a 

presentation of the whole pattern set once to the network 

(learning by epoch). It is, however, possible to use 

resilient backpropagation with and without weight 

backtracking. In this study applied resilient 

backpropagation with weight backtracking. A detailed 

description of the learning algorithm can be seen in [9, 

10]. 

2.4. Forecast Measure 

In order to evaluate the forecast accuracy of the 

models, two forecast error measurements are used: Mean 

Squared Error (MSE) and Mean Absolute Percent Error 

(MAPE). MSE is defined as follows: 

𝑀𝑆𝐸 = ∑
(𝐴𝑡−𝐹𝑡)

2

𝑁
= ∑

𝑒𝑡
2

𝑁

𝑁
𝑡=1

𝑁
𝑡=1  (13) 

where 𝑒 is error and 𝑁 is the number of data. 

MAPE is defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑁

𝑡=1  (14) 

where 𝐴𝑡 is actual values at data time 𝑡 and 𝐹𝑡 is forecast 

values at data time 𝑡. 

3. RESULTS 

3.1. Simulation Study 

Simulation studies are conducted to see the multi-

output NARNN method’s accuracy in modeling and 

forecasting multivariate time series data. Furthermore, 

simulations are carried out for the bivariate case for 

reasons of model simplicity. Simulation data is generated 

from three models, namely linear of Vector 

Autoregressive (VAR), nonlinear of Multivariate 

Exponential Smooth Autoregressive Transition 

(MESTAR), and MIXED (mixed of both). Simulation 

data consists of 400 data divided into training and testing 

data. Guidelines for sharing training and testing data, in 

general, have not been standardized. This study uses 350 

data for training and the rest for testing. The software 

used is software R. 
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Mathematically, the simulation data generated from 

VAR linear model in this study are: 

𝑥1,𝑡 = 0.3 𝑥1,𝑡−1 + 0.5 𝑥2,𝑡−1 + 𝑢1,𝑡  

𝑥2,𝑡 = −0.7 𝑥1,𝑡−1 + 0.8 𝑥2,𝑡−1 + 𝑢2,𝑡  

MESTAR nonlinear model simulation data, namely: 

𝑥1,𝑡 = 6.5 𝑥1,𝑡−1 exp[−0.25 𝑥1,𝑡−1
2 ]

+ 3.5 𝑥2,𝑡−1  exp[−0.45 𝑥2,𝑡−1
2 ] + 𝑢1,𝑡 

𝑥2,𝑡 = 4.3 𝑥1,𝑡−1 exp[−0.15 𝑥1,𝑡−1
2 ]

+ 3.7 𝑥2,𝑡−1  exp[−0.25 𝑥2,𝑡−1
2 ] + 𝑢2,𝑡 

Simulation data for the MIXED model, namely: 

𝑥1,𝑡 = −0.8 𝑥1,𝑡−1 + 𝑢1,𝑡  

𝑥2,𝑡 = 2.9 𝑥1,𝑡−1 exp[−0.15 𝑥1,𝑡−1
2 ]

+ 3.1 𝑥2,𝑡−1  exp[−0.25 𝑥2,𝑡−1
2 ] + 𝑢2,𝑡 

with 𝑢𝑡  ~ 𝐼𝐼𝐷𝑁(0, 0.5
2). 

 

Figure 1 The plot of the results of the multi-output 

NARNN method on the simulation data of the VAR 

linear model. 

 

Figure 2 The plot of the results of the multi-output 

NARNN method on the simulation data of the MESTAR 

nonlinear model. 
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Figure 3 The plot of the results of the multi-output 

NARNN method on the simulation data of the MIXED 

model. 

The multi-output NARNN method uses one hidden 

layer where the number of hidden neurons is half the 

input variables. The number of neurons in the output 

layer is as much as the multivariate time series data used. 

In this study, the input variable was taken based on the 

number of data frequencies. The number of frequencies 

in the simulation data is 1, then the lag 1:4 is taken on the 

𝑥1,𝑡  and 𝑥2,𝑡  variables, namely 𝑥1,𝑡−1 , 𝑥1,𝑡−2 , 𝑥1,𝑡−3 , 

𝑥1,𝑡−4 , 𝑥2,𝑡−1 , 𝑥2,𝑡−2 , 𝑥2,𝑡−3 , and 𝑥2,𝑡−4 . The simulation 

study provides a multi-output NARNN architecture with 

the input variable being 8 neurons in the input layer, 4 

neurons in the hidden layer, and 2 neurons in the output 

layer. The study results from the three models’ simulation 

data are illustrated in Figure 1, Figure 2, and Figure 3. In 

the figure, the black line is the original simulation data, 

blue is the result of the training data, and red is the result 

of the testing data. It can be seen that the data plots of the 

two variables generated by the multi-output NARNN 

method are close to the original simulation data. These 

results indicate that the multi-output NARNN method 

can work well for forecasting simulation data of the linear 

VAR, nonlinear MESTAR, and MIXED models. 

In the end, the comparison of forecasting errors for 

the multi-output NARNN method from the three 

simulation data uses the MAPE. The results of the 

comparison of forecasting errors can be seen in Table 1. 

Based on the MAPE values in the table, it can be 

concluded that the multi-output NARNN method 

provides the best performance on simulation data 

generated from the MESTAR nonlinear model.  

3.2. Empirical Study 

Empirical studies were conducted on data on the 

Indonesian inflation rate and the Bank Indonesia interest 

rate. Data used are monthly data observed from July 2005 

to August 2016. The model formation was carried out on 

the first 129 data from July 2005 to March 2016 (training 

data), and the last 5 data from April 2016 to August 2016 

used to evaluate the accuracy of forecasting (testing 

data). 

The multi-output NARNN architecture provides 24 

neurons in the input layer, 12 neurons in the hidden layer, 

and 2 neurons in the output layer based on the monthly 

data frequency. The plot of the multi-output NARNN 

method on data on the Indonesian inflation rate and the 

Bank Indonesia interest rate is illustrated in Figure 4. The 

black line is the original simulation data, blue is the result 

of the training data, and red is the result of the testing 

data. 

 Table 1. MSE and MAPE results of the multi-output NARNN method on simulation data. 

Simulation data 
MSE of testing data MAPE of testing data 

𝑥1,𝑡 
𝑥2,𝑡 Total 𝑥1,𝑡 

𝑥2,𝑡 Total 

VAR 0.046351 0.042731 0.044541 4.613215 1.454693 3.033954 

MESTAR 0.257786 0.381383 0.319584 0.732585 0.577299 0.654942 

MIXED 0.048242 0.053111 0.050676 1.219823 0.404704 0.812263 
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The multi-output NARNN method’s accuracy is 

compared with the VAR, VMA, and VARMA methods. 

The comparison results of the four methods can be seen 

in Table 2. The multi-output NARNN, VAR, and 

VARMA methods give a total MAPE value below 10%, 

so it can be concluded that the three methods have 

excellent performance. Simultaneously, the VMA 

method has good performance because the total MAPE 

value is between 10% and 20%. Compared to the multi-

output NARNN method with the VAR, VMA, and 

VARMA methods, the multi-output NARNN method is 

superior because it provides the smallest total MAPE 

value.   

4. CONCLUSION 

The NARNN model for multivariate time series data 

in this study is called the multi-output NARNN method, 

which contains an input layer, one hidden layer, and an 

output layer. This modeling’s architecture has as many 

neurons in the output layer as the multivariate time series 

used. The activation function used is a logistic function 

at the hidden layer and a linear function at the output 

layer. Parameter estimation is done by applying a 

resilient backpropagation learning algorithm, and input 

variables are taken based on the number of data 

frequencies. Simulation and empirical studies were 

conducted to test whether the proposed multi-output 

NARNN method works well for modeling multivariate 

time series data. The simulation study provides a multi-

output NARNN architecture with the input variable being 

8 neurons in the input layer, 4 neurons in the hidden layer, 

and 2 neurons in the output layer. The simulation results 

show that the best performance is the simulation data 

generated from the MESTAR nonlinear model. The 

simulation study results are as expected. Furthermore, 

empirical studies on the Indonesian inflation rate and the 

Bank Indonesia interest rate provide 24 neurons in the 

input layer, 12 neurons in the hidden layer, and 2 neurons 

in the output layer. The empirical studies show that the 

multi-output NARNN method provides better forecasting 

accuracy than the VAR, VMA, and VARMA methods. 
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Figure 4 The plot of the multi-output NARNN method on data on the Indonesian inflation rate and the Bank 

Indonesia interest rate. 

 

 

 

 

 

 

 

 

 

 

Table 2. The comparison between the multi-output NARNN, VAR, VMA and VARMA methods on the Indonesian 

inflation rate and the Bank Indonesia interest rate. 

Method 
MSE of testing data MAPE of testing data 

Inflation Interest rate Total Inflation Interest rate Total 

Multi-output NARNN  0.101603 0.007708 0.054655 0.045213 0.008494 0.026853 

VAR(2) 0.056952 0.041704 0.049328 0.060560 0.029746 0.045153 

VMA(3) 0.450419 0.015718 0.233068 0.200310 0.011816 0.106063 

VARMA(1,1) 0.059634 0.050119 0.054876 0.064748 0.032761 0.048754 
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