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ABSTRACT 

Nowadays mathematics has been widely used to program and control robots. One type of robots that exists is a 

robot with a type of propulsion in the form of legs, which is more effective for uneven and uphill terrain compared 

to the type of wheel drive. The study discusses quadruped robot motion with two motors using max-plus algebra. 

The study provides conclusions about the mechanically construct a four-legged robot with two motors, modeling 

the motion of a quadruped legged robot, and analyze of motion modeling of a quadruped legged robot. 
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1. INTRODUCTION 

Technology in modern times is developing very 

rapidly. Many uses of technology can help or 

facilitate human’s work. One of the rapid 

technological developments is in the field of 

robotics. Robot is an electrical or electronic 

mechanical device that works automatically can 

work alone without outside control. Meanwhile, in a 

broad sense the robot means a system consisting of 

mechanical mechanisms that have an electrical 

control to carry out certain tasks [1]. At this time, the 

robot can not only make a sound but can also move 

[2]. Many examples of robots that can move such as 

the address finder using colours, flying robots, 

animalia robots, legged robots, and so on. 

Nowadays mathematics has been widely used to 

program and control robots. One type of robot that is 

there is a robot with the type of propulsion in the 

form of legs, which is more effective for uneven and 

uphill terrain compared to the type of wheel drive 

type. Max-Plus algebra, in particular Switching 

Max-Plus Algebra has been used to model the legged 

locomotion. Research that has been done has 

modelled, optimized and controlled this legged robot 

by using Max-Plus algebra. The legged robot that is 

discussed is a quadruped robot, where the arms on 

the legs use a motor as movers. This robot moves 

based on the kinematics of motion applied to each 

leg arranged by servo motors [3]. Quadruped robot 

has a cycle of movement of footsteps that will 

continue to alternate, until the robot is ordered to 

work or stop. We develop the previous study [5] 

about switching max-plus model for legged 

locomotion using four motors. In the study, we use 

two motors to discuss the mechanical construction of 

a four-legged robot, modelling and analyzing the 

motion of the robot while walking using Max-Plus 

Algebra 

2. BASIC THEORY 

 

2.1. Max-Plus Algebra [4] 
Max-Plus algebra is a set ℝ ∪ {−∞} with ℝ the 

set of all real numbers that are equipped with a 

maximum operation, denoted by ⊕ and the sum 

operation ⊗. Next (ℝ ∪ {−∞},⊕,⊗) denoted by 

ℝ𝑚𝑎𝑥  and −∞ denoted with 𝜀. The ε element is a 

neutral element for operations ⊕ and 0 is the identity 

element for operations ⊗ [4]. A sum matriks Max-

Plus 𝐴, 𝐵 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑚 defined by 

[𝐴 ⊕ 𝐵]𝑗𝑖 = [𝐴]𝑗𝑖⊕ [𝐵]𝑗𝑖 (1) 

for 𝑖 = 1,2, . . , 𝑚 and 𝑗 = 1,2, … , 𝑛 

The matrix product 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×1  and 𝐵 ∈ ℝ𝑚𝑎𝑥

1×𝑚 

defined by 

[𝐴 ⊕ 𝐵]𝑗𝑖 = 
𝑙
⊕
𝑘 = 1

([𝐴]𝑗𝑖⊕ [𝐵]𝑗𝑖)  
(2) 

 
= 𝑚𝑎𝑥 {[𝐴]𝑗𝑖 ⊕ [𝐵]𝑗𝑖}  

for 𝑖 = 1,2, . . , 𝑚 and 𝑗 = 1,2, … , 𝑛 
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Given 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛  with all circuits in 𝐺(𝐴) having 

non-positive weights, defined by  

𝐴0
∗ ≔ 𝐸⊕𝐴0⊕…⊕𝐴0

⊗𝑛⊕𝐴0
⊗𝑛+1⊕… and  

𝐴0
+ ≔ 𝐴0⊗𝐴0

∗ , with 𝐸 is the identity matrix in 

Max-Plus algebra. 

The max-plus linear (MPL) systems are linear in 

max-plus algebra. The MPL systems are the discrete 

event systems where the events are synchronized, 

there are no concurrent events and there are no 

choices to be made that determine the order of 

events. These systems are described by 

𝑥(𝑘)  =  𝐴(𝑘)  ⊗  𝑥(𝑘 −  1)  ⊕  𝐵(𝑘)  ⊗
 𝑢(𝑘)  

(3) 

𝑦(𝑘)  =  𝐶(𝑘)  ⊗  𝑥(𝑘)  

where 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 , 𝐵 ∈ ℝ𝑚𝑎𝑥

𝑛×𝑚, 𝐶 ∈ ℝ𝑚𝑎𝑥
𝑝×𝑛

, where 𝑚 

is the number of inputs, 𝑛 is the number of states and 

𝑝 is the number of outputs. The matrices 𝐴, 𝐵, 𝐶 

often indicate the sum of maximization of transport 

times, or internal process times, etc. 𝑥(𝑘 + 1) 
indicates when the internal events happen for the 

(𝑘 + 1)𝑡ℎ time, 𝑢(𝑘) indicates when the inputs 

became available for the 𝑘𝑡ℎ time and 𝑦(𝑘) indicates 

when the output events happen for the (𝑘)𝑡ℎ time. In 

these systems the stade-vector is often the output. 

This means that 𝑦 (𝑘)  =  𝑥 (𝑘). Therefore, it is 

often left out of the equation and the rest is rewritten 

as 

𝑥(𝑘)  =  𝐴(𝑘)  ⊗  𝑥(𝑘 −  1)  ⊕  𝐵(𝑘)  ⊗
 𝑢(𝑘)  

(4) 

This form is called the explicit model as it only 

depends on the known values 𝑥 (𝑘 −  1), 𝑢 (𝑘). The 

implicit form has the following format 

𝑥(𝑘)  =  𝐴0(𝑘)  ⊗  𝑥(𝑘)  ⊕ 𝐴1(𝑘)  ⊗
 𝑥(𝑘 −  1)  ⊕ 𝐵0(𝑘)  ⊗  𝑢(𝑘)  

(5) 

If the matrices 𝐴0 (𝑘), 𝐴1 (𝑘), and 𝐵0 (𝑘) are 

carefully constructed such that 𝐴0
∗  exists, which 

means 𝐴0 is either nilpotent or has averages circuit 

mean of 𝑒 or less, than 𝐴0
∗ ⊗𝐴1 =  𝐴, 𝐴0

∗   𝐵0 (𝑘)  =
 𝐵 (𝑘) and (5) can be rewritten into (4). 

The switching of modes is controlled by a 

switching mechanism. This mechanism is 

represented by the switching variable 𝑧(𝑘) which 

may depend on the previous state-vectors 𝑥(𝑘 −  1), 
the previous mode 𝑙(𝑘 −  1), the input variable 𝑢(𝑘) 
and a control variable 𝑣(𝑘): 
𝑧(𝑘)  =  𝜙(𝑥(𝑘 −  1), 𝑙(𝑘 −

 1), 𝑢(𝑘), 𝑣(𝑘))  ∈  ℝ𝑚𝑎𝑥
𝑛𝑧 ,  

(6) 

where ℝ𝑚𝑎𝑥
𝑛𝑧  is partitioned in 𝑛𝑚 subsets 𝑍(𝑖), 𝑖 = 1,

… , 𝑛𝑚. The set to which 𝑧(𝑘) belongs determines 

what mode the system will be in. In other words, if 

𝑧 (𝑘)  ∈  𝑍(𝑖) then l(𝑘) =  𝑖. The implicit model is 

described by 

𝑥(𝑘) = 𝐴0
𝑙(𝑘)(𝑘) ⊗ 𝑥(𝑘) ⨁ 𝐴1

𝑙(𝑘) ⨂ 𝑥(𝑘 −

1)  ⨁  𝐵0
𝑙(𝑘)(𝑘) ⨂ 𝑢(𝑘)  

(7) 

The concepts of eigenvalues and eigenvectors about 

matrices in Max-Plus Algebra are given below 

 

Definition 1 [4] The matrix 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛  is called 

irreducible if the weight graph is strongly connected. 

 

Definition 2 [4] Let 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 . The scalar 𝜆 ∈ ℝ𝑚𝑎𝑥 

is called eigenvalue Max-Plus of matrix A if there is 

a vector 𝑣 ∈ ℝ𝑚𝑎𝑥
𝑛  where 𝑣 ≠ 𝜀𝑛×1 that 𝐴⨂𝑣 =

𝜆⨂𝑣. The vector 𝑣 is called eigenvector Max-Plus of 

matrices A that corresponding to 𝜆. 

 

Definition 3 [4] A SLMI (A, B, C, 𝑥0) is called to be 

periodic with period 𝜆, if 𝑥(𝑘) = 𝜆⨂
𝑘
 ⨂  𝑥(0), for 

𝑘 = 1,2,3, … 
 

Definition 4 [4] The eigenvectors Max-Plus of 

matrix 𝐴 that corresponding to eigenvalue 𝜆𝑚𝑎𝑥(𝐴) 
called the fundamental Max-Plus eigenvector. 

 

Theorem 1 [4] Let 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 . The scalar 𝜆𝑚𝑎𝑥(𝐴) 

is the maximum average of the elementary circuit in 

𝐺(𝐴), and is the eigenvalue Max-Plus of matrix 𝐴. 

 

Theorem 2 [4] Let 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 . If the scalar 𝜆 ∈ ℝ is 

the eigenvalue from Max-Plus algebra of matrix 𝐴, 

then 𝜆 is the average weight of the circuit in 𝐺(𝐴). 
 

Theorem 3 [4] If matrix 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛  irreducible, then 

A has an eigenvalue Max-Plus algebra. 

 

2.2. Basic Legged Robot Motion 

 

2.2.1. Max-Plus Gait Scheduler [5] 
 

The first step taken to model the motion of a 

Quadruped robot is to determine the value of the 

variables for the transition event. Let 𝑙𝑖(𝑘) is the 

time when leg 𝑖 lift off and 𝑡𝑖(𝑘) is the time when 

the robot touchdown for 𝑘-th time iteration. For the 

leg i the time instance it touches down is equal to the 

time instance it lifted off the ground for the last time 

plus the time it stayed in flight, denoted by 𝜏𝑓 

𝑡𝑖(𝑘) = 𝑙𝑖(𝑘) + 𝜏𝑓  (8) 

The time instance leg 𝑖 lifts off is equal to the 

time it touched down the last time plus the time it 

stayed in stance denoted by τg. This can then be 

written as 

𝑙𝑖(𝑘) = 𝑡𝑖(𝑘 − 1) + 𝜏𝑔  (9) 

Suppose now our goal is to equate leg 𝑖 with leg 𝑗 
so that leg 𝑖 is raised at 𝜏∆ seconds after leg j has 

touched the ground. So we get a relationship 
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𝑙𝑖(𝑘) = [𝜏𝑔 𝜏∆] ⨂ [
𝑡𝑖(𝑘 − 1)

𝑡𝑗(𝑘 − 1)
] (10) 

 

2.2.2. Modelling motion Quadruped robot 
 

Consider the relations written down in equation 

(8) and (9) and let the state vector for an 𝑛-legged 

robot be defined by 

𝑥(𝑘) = [𝑡1(𝑘) … 𝑡𝑖(𝑘)⏟        
𝑡(𝑘)

𝑙1(𝑘) … 𝑙𝑖(𝑘)⏟        
𝑙(𝑘)

 ]𝑇  
(11) 

Based on equation (7) the term 𝐵0
𝑙(𝑘)(𝑘) ⨂ 𝑢(𝑘) 

can be left out since there is no inputs 𝑢(𝑘). The 

system equations then take the form of 

𝑡(𝑘)

𝑙(𝑘)
=

 τ𝑓⨂𝐸

 
⨂
𝑡(𝑘)

𝑙(𝑘) 
 

(12) 
𝐸

𝐸
⨁

τ𝑔⨂𝐸

 𝑡(𝑘 −1)

𝑙(𝑘 −1)
⨂

 

 

Two E matrices were added to the 𝐴1 matrix 

which adds the requirement that the current 

touchdown event does not happen before the 

previous touchdown event and the current lift-off 

event does not happen before the previous lift-off 

event. Next the leg synchronization as described in 

equation (10) are added to this equation by adding 

the matrices 𝑃 and 𝑄, which will be explained after 

this. The resulting implicit model is then defined as: 

𝑡(𝑘)

𝑙(𝑘)
=

 

𝑃

τ𝑓⨂𝐸

 
⨂
𝑡(𝑘)

𝑙(𝑘)
 

(13) 

𝐸

𝐸
⨁
τ𝑔⨂𝐸⨁𝑄

 𝑡(𝑘 −1)

𝑙(𝑘 −1)
⨂

 

Model (11) can be rewritten as explicit model by 

using the solution of the the max-plus linear 

equation 𝑥(𝑘)  =  𝐵 ⊗  𝑥(𝑘)  ⊕  𝑐 which is 𝑥 =
 𝐵∗  ⊗  𝑐. Substitute 𝐵 for 𝐴0 and 𝑐 for 𝐴1  ⊗
 𝑥(𝑘 −  1), this results in 

𝑥(𝑘)  =  𝐴0
∗ ⊗ 𝐴1⊗  𝑥(𝑘 −  1)  

(14) 

𝑥(𝑘)  =  𝐴 ⊗  𝑥(𝑘 −  1)  

Where A0
∗ ⊗ A1 is called the system matrix, A0

∗  

has to exist in order to be able to solve this 

𝜀

𝜀 𝜏𝑓⨂𝐸

𝑃
𝐴0 =

  

(15) 

𝜀𝐸

𝜏𝑓⨂𝐸⨁𝑄
𝐴1 =

𝐸   

(16) 

So obtained 

𝐴 = 𝐴0
∗ ⊗ 𝐴1  (17) 

Suppose 𝐿1, … , 𝐿𝑚 be sets of integers and let an 

𝑛-legged system [6], such that 

⋃𝐿𝑝 = {1,… , 𝑛}

𝑚

𝑝=1

 (18) 

where ∀𝑖 ≠ 𝑗, 𝑙𝑖 ∩ 𝑙𝑗 = ∅ 

𝐿𝑝 is considered to contain the indices of a set 

of legs that recirculates simultaneously. Define 𝑟𝑝 =

#𝐿𝑝. A gait G is defined as an ordering relation of 

groups of legs: 

𝑮 = 𝐿1 ≺ 𝐿2 ≺ ⋯ ≺ 𝐿𝑚  (19) 

Based on [6], the matrices 𝑃 and 𝑄 in equation 

(14) can be generated by: 

[𝑃]𝑝𝑞 =

{
𝜏∆∀𝑗∈ {1, . . , 𝑚 − 1} ; ∀𝑝 ∈ 𝑙𝑗+1 ; ∀𝑞∈ 𝑙𝑗

𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(20) 

[𝑄]𝑝𝑞 = {
𝜏∆ ∀𝑗∈ 𝑙1 ;  ∀𝑞∈ 𝑙𝑚
𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

Next, the motion of footsteps 𝑮 on a Quadruped 

robot consists of three possibilities of matrix 𝑃 and 

𝑄 is obtained in each step of the gait step, are: 

 

Table 1. Matrix P and Q from each leg group 

 

Leg 

Group 
Matrix 𝑃 Matrix 𝑄 

{1,2}
≺ {3,4} 

[

𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝜏∆ 𝜏∆ 𝜀 𝜀
𝜏∆ 𝜏∆ 𝜀 𝜀

] [

𝜀 𝜀 𝜏∆ 𝜏∆
𝜀 𝜀 𝜏∆ 𝜏∆
𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀

] 

{1,3}
≺ {2,4} 

[

𝜀 𝜀 𝜀 𝜀
𝜏∆ 𝜀 𝜏∆ 𝜀
𝜀 𝜀 𝜀 𝜀
𝜏∆ 𝜀 𝜏∆ 𝜀

] [

𝜀 𝜏∆ 𝜀 𝜏∆
𝜀 𝜀 𝜀 𝜀
𝜀 𝜏∆ 𝜀 𝜏∆
𝜀 𝜀 𝜀 𝜀

] 

{1,4}
≺ {2,3} 

[

𝜀 𝜀 𝜀 𝜀
𝜏∆ 𝜀 𝜀 𝜏∆
𝜏∆ 𝜀 𝜀 𝜏∆
𝜀 𝜀 𝜀 𝜀

] [

𝜀 𝜏∆ 𝜏∆ 𝜀
𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀
𝜀 𝜏∆ 𝜏∆ 𝜀

] 

3. RESULT AND DISCUSSION 

We develop quadruped legged robot with two 

motors based on the previous study [5]. We also use 

the Max-Plus Algebra concept regarding the 

quadruped legged robot [4,5]. We divide three parts 

to analyze the motion of quadrupped legged robot 

with two motors, as below. 
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Figure 1 Quadruped Robot with two motors and 

its component 

3.1. Quadruped Robot Construction With 

Two Motor 
 

The robot that used in this study is the Lego 

Mindstorms EV3 robot. The Quadruped Robot used 

for simulation of leg movements is shown in Figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of Figure 1: 

1. Robot Body Construction 

Robot body construction is composed of Lego 

and other components. 

2. EV3 Brick 

EV3 Brick functions as a controller (as a brain 

and robot power source). Program compiled in 

Pyhton are then uploaded to EV3 Brick for 

compilation. EV3 Brick has processor to carry 

out different function together. 

3. Two Motors 

In the Lego Mindstorms EV3 robot, the motor 

used is the DC Servo motor which is equipped 

with an encoder that serves as feedback, so the 

control center can provide a current that matches 

the load on the motor. Two driving motors are 

programmed to move two legs while stepping 

together such as: {1,2}  ≺  {3,4}, {1,4}  ≺  {2,3} 
and {1,3}  ≺  {2,4}. 

4. Connector  

The connector serves to connect the EV3 Brick 

with two motors to drive the steps of the robot's legs. 

Two connectors are used and connected through two 

slots on EV3 Brick (slots B and C) and slots on both 

motors. 

 

3.2. Modelling Motion Quadruped Robot 

with Two Motors 
 

The following are the symbols used in the 

modelling of quadruped robot motion. 

 

 

 

 

Table 2. The Symbols of modelling Motion 

Quadruped Robot  

Symbol  Definition 

𝑙𝑖(𝑘) Lift off time for leg 𝑖 at iteration 𝑘 

𝑡𝑖(𝑘) 
Touch down time for leg 𝑖 at iteration 

𝑘 

𝜏𝑔 
Time leg spends on the ground 

(stance) 

𝜏𝑓 Time leg spends in flight (swing) 

𝑥(𝑘) 
Full state vector of the touchdown and 

lift off events 

𝜏𝛥 Double time stance time 

 

Based on the results of experiments, with slow 

motion, the values of parameters 𝜏𝑓 = 1, 𝜏𝑔 = 2, and 

𝜏𝛥 = 1. In the first part will be modeled when the 

movements of each foot start to move also in each 

iteration. For example, it is chosen for the foot group 

{1,2}  ≺  {3,4}, then using equations (8) and (9), 

modeling the time for each leg group shown in Table 

3. 

Table 3. Modelling the movement time of each leg 

Leg 

Group 

Time of Leg 

Motion 
Time Modelling  

{1,2}
≺ {3,4} 

𝑡1(𝑘 + 1)
= 𝑡2(𝑘 + 1) 

= max(𝑡1(𝑘) + 𝜏𝑔
+ 𝜏𝑓 , 𝑡3(𝑘) + 𝜏∆
+ 𝜏𝑓) 

= max(𝑡1(𝑘) + 𝜏𝑔
+ 𝜏𝑓 , 𝑡4(𝑘) + 𝜏∆
+ 𝜏𝑓) 

𝑙1(𝑘 + 1)
= 𝑙2(𝑘 + 1) 

= max(𝑡1(𝑘)

+ 𝜏𝑔, 𝑡3(𝑘) + 𝜏∆) 

= max(𝑡1(𝑘)

+ 𝜏𝑔, 𝑡4(𝑘) + 𝜏∆) 

{3,4}
≺ {1,2} 

𝑡3(𝑘 + 1)
= 𝑡4(𝑘 + 1) 

= max(𝑡3(𝑘) + 𝜏𝑔
+ 𝜏𝑓 , 𝑡1(𝑘 + 1)

+ 𝜏∆ + 𝜏𝑓) 

= max(𝑡3(𝑘) + 𝜏𝑔
+ 𝜏𝑓 , 𝑡2(𝑘 + 1)

+ 𝜏∆ + 𝜏𝑓) 

𝑙3(𝑘 + 1)
= 𝑙4(𝑘 + 1) 

= max(𝑡1(𝑘)

+ 𝜏𝑔, 𝑡1(𝑘 + 1)

+ 𝜏∆) 

= max(𝑡1(𝑘)

+ 𝜏𝑔, 𝑡2(𝑘 + 1)

+ 𝜏∆) 
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Then, the quadruped robot motion will be 

modelled with two motors on the three steps of 

footwork (Matrix A). To determine matrix A, matrix 

𝐴0
∗  will be determined first by using the MATLAB 

program [4] and inputting matrix 𝐴0 according to 

equation (15) and (16), obtained in Table 4. 

 

Table 4. Matrix 𝐴0
∗  of each leg group 

 

𝐴0
∗  Matrix 

𝐴0
∗
{1,2}≺{3,4}

 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 1 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 1 𝜀 𝜀
2 2 0 𝜀 3 3 1 𝜀
2 2 𝜀 0 3 3 𝜀 1
𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀
1 1 𝜀 𝜀 2 2 0 𝜀
1 1 𝜀 𝜀 2 2 𝜀 0]

 
 
 
 
 
 
 

 

𝐴0
∗
{1,3}≺{2,4}

 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 1 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 1 𝜀 𝜀
2 2 0 𝜀 3 3 1 𝜀
2 2 𝜀 0 3 3 𝜀 1
𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀
1 1 𝜀 𝜀 2 2 0 𝜀
1 1 𝜀 𝜀 2 2 𝜀 0]

 
 
 
 
 
 
 

 

𝐴0
∗
{1,4}≺{2,3}

 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 1 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 1 𝜀 𝜀
2 2 0 𝜀 3 3 1 𝜀
2 2 𝜀 0 3 3 𝜀 1
𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 𝜀 𝜀 0 𝜀 𝜀
1 1 𝜀 𝜀 2 2 0 𝜀
1 1 𝜀 𝜀 2 2 𝜀 0]

 
 
 
 
 
 
 

 

 

After finding the matrix 𝐴0
∗ , then the matrix 𝐴1 

construction will be searched. To determine the 

matrix 𝐴1 , we use equation (15) and are obtained in 

Table 5. 

Next, the structure of matrix A based on 

equation (17) will be determined using the MATLAB 

Program [4], and it is found in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Matrix 𝐴1 of each leg group 

 

𝐴1 Matrix 

𝐴1{1,2}≺{3,4} 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀
2 𝜀 1 1 0 𝜀 𝜀 𝜀
𝜀 2 1 1 𝜀 0 𝜀 𝜀
𝜀 𝜀 2 𝜀 𝜀 𝜀 0 𝜀
𝜀 𝜀 𝜀 2 𝜀 𝜀 𝜀 0]

 
 
 
 
 
 
 

 

𝐴1{1,2}≺{3,4} 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀
2 𝜀 1 1 0 𝜀 𝜀 𝜀
𝜀 2 1 1 𝜀 0 𝜀 𝜀
𝜀 𝜀 2 𝜀 𝜀 𝜀 0 𝜀
𝜀 𝜀 𝜀 2 𝜀 𝜀 𝜀 0]

 
 
 
 
 
 
 

 

𝐴1{1,2}≺{3,4} 

[
 
 
 
 
 
 
 
0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀 𝜀
𝜀 𝜀 𝜀 0 𝜀 𝜀 𝜀 𝜀
2 𝜀 1 1 0 𝜀 𝜀 𝜀
𝜀 2 1 1 𝜀 0 𝜀 𝜀
𝜀 𝜀 2 𝜀 𝜀 𝜀 0 𝜀
𝜀 𝜀 𝜀 2 𝜀 𝜀 𝜀 0]

 
 
 
 
 
 
 

 

A matrix of all is modelling the quadruped robot 

motion with two motors and the leg already defined. 

Matrix A is also used to determine the periodization 

of the motion steps of each group of legs adjusted to 

their respective eigenvectors. A is a matrix system 

constructed from equation (11) which contains a 

combination of 𝑡𝑖(𝑘) and 𝑙𝑖(𝑘), where 𝑡𝑖(𝑘) is the 

time when foot 𝑖 touch down at iteration 𝑘 and 𝑙𝑖(𝑘) 
is the time when foot 𝑖 lift off at iteration 𝑘. Because 

𝑖 =  1,2,3,4 then the size of matrix A is 8 ×  8. 
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Table 6. Matrix structure of each leg group 

𝐴1 Matrix 

𝐴{1,2}≺{3,4} 

 

[
 
 
 
 
 
 
 
0 𝜀 2 2 1 𝜀 𝜀 𝜀
3 3 2 2 𝜀 1 𝜀 𝜀
5 5 4 4 3 3 1 𝜀
5 5 4 4 3 3 𝜀 1
𝜀 𝜀 1 1 0 𝜀 𝜀 𝜀
2 2 1 1 𝜀 𝜀 𝜀 𝜀
4 4 3 3 2 2 0 𝜀
4 4 3 3 2 2 𝜀 0]

 
 
 
 
 
 
 

 

𝐴{1,2}≺{3,4} 

 

[
 
 
 
 
 
 
 
0 𝜀 2 2 1 𝜀 𝜀 𝜀
3 3 2 2 𝜀 1 𝜀 𝜀
5 5 4 4 3 3 1 𝜀
5 5 4 4 3 3 𝜀 1
𝜀 𝜀 1 1 0 𝜀 𝜀 𝜀
2 2 1 1 𝜀 𝜀 𝜀 𝜀
4 4 3 3 2 2 0 𝜀
4 4 3 3 2 2 𝜀 0]

 
 
 
 
 
 
 

 

𝐴{1,2}≺{3,4} 

 

[
 
 
 
 
 
 
 
0 𝜀 2 2 1 𝜀 𝜀 𝜀
3 3 2 2 𝜀 1 𝜀 𝜀
5 5 4 4 3 3 1 𝜀
5 5 4 4 3 3 𝜀 1
𝜀 𝜀 1 1 0 𝜀 𝜀 𝜀
2 2 1 1 𝜀 𝜀 𝜀 𝜀
4 4 3 3 2 2 0 𝜀
4 4 3 3 2 2 𝜀 0]

 
 
 
 
 
 
 

 

3.3. Analysis of Quadruped Robot Motion 

with Two Motors 

After modelling the quadruped robot motion, the 

periodic system of each motion will be discussed 

next. By using the Scilab Program [7] because the 

matrix 𝐴 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛  is irreducible, then according to 

Theorem 3, the matrix 𝐴 has a single Max-Plus 

algebra eigenvalue for each leg group ({1,2}  ≺
 {3,4} , {1,3}  ≺  {2,4}, {1,4}  ≺  {2,3}) i.e. λ = 4. 

Because 𝜆 ∈ ℝ is the eigenvalue of the Max-Plus 

matrix A, then according to Theorem 2, λ = 4 is the 

average weight of a circuit in 𝐺(𝐴). Next, will 

determined the eigenvectors from each of the 

following groups of legs. 

Table 7. Eigenvectors of Each Leg Group 

Leg Group Eigenvectors (𝒗𝟎) 

{1,2} ≺ {3,4} [3 3 5 5 2 2 4 4]𝑇 

{1,3} ≺ {2,4} [3 5 3 5 2 4 2 4]𝑇 

{1,4} ≺ {2,3} [3 5 5 3 2 4 4 2]𝑇 

Based on Table 7, it is known that the 

eigenvectors for all groups of robot legs are the same 

size, which is 8 × 1. The first four rows represent the 

time of the leg 𝑖 touch down (𝑡𝑖), where 𝑖 =  1, . . . , 4 

and rows 5 to 8 represent the time of the leg 𝑖 lift off 

(𝑙𝑖) for 𝑖 =  5, . . . , 8. Based on this table it is also 

known that the eigenvectors for all groups of legs in 

the robot are different from each other. This can be 

seen in the different eigenvector matrix structures. 

This difference is caused by the elements in the 

eigenvectors produced in accordance with the order 

of the movement of the legs in each group of robot 

legs. For example eigenvectors  

[3 3 5 5 2 2 4 4]𝑇 represents the lift 

off and touch down time of each foot in the foot 

group {1,2}  ≺  {3,4}. Note that the first and second 

rows have the same value, that is 3, and the fifth and 

sixth rows are equal to 2. This shows that when 𝑡 =
 3, legs 1 and 2 touch down and then when 𝑡 =  2, 

legs 1 and 2 lift off.  Furthermore, as the initial time 

runs, then there must be at least a vector component 

with a zero value or in other words each vector is 

reduced by the smallest vector component, i.e 2 so 

that it becomes: 

𝒗𝟎
∗ = [1 1 3 3 0 0 2 2]𝑇. The same 

explanation also applies to feet 3 and 4. 

Quadruped robot has two motors with the speed 

of both motors and the time of the two motors to 

move the legs of the robot are the same. From this, 

the initial position of the robot to move cannot be in 

a perfect standing position (the robot does not stand 

up straight). If in a state of perfect standing, then the 

legs of the robot will step simultaneously so that the 

robot moves like dragging. Therefore, the positions 

of the feet are arranged so that the robot can move 

periodically. The eigenvector signifies that the foot 

starts periodic movements in an iteration. This can 

be seen in Table 8 and Table 9. The following two 

tables will show the periodic iteration of each leg 

group: 

Table 8. Periodic Iteration all-of the legs with 

𝑥(0) = 0 

Leg 

Group 

Periodic Iteration 

𝑘 𝑡1 𝑡2 𝑡3 𝑡4 𝑙1 𝑙2 𝑙3 𝑙4 

{1,2} ≺
{3,4}  

0 0 0 0 0 0 0 0 0 
1 3 3 5 5 2 2 4 4 
2 7 7 9 9 6 6 8 8 
3 11 11 13 13 10 10 12 12 
4 15 15 17 17 14 14 16 16 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

{1,3} ≺
{2,4}  

0 0 0 0 0 0 0 0 0 

1 3 5 3 5 2 4 2 4 

2 7 9 7 9 6 8 6 8 

3 11 13 11 13 10 12 10 12 

4 15 17 15 17 14 16 14 16 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

{1,4} ≺
{2,3}  

0 0 0 0 0 0 0 0 0 

1 3 5 5 3 2 4 4 2 

2 7 9 9 7 6 8 8 6 

3 11 13 13 11 10 12 12 10 

4 15 17 17 15 14 16 16 14 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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Table 9. Periodic Iteration all of the legs with 

𝑥(0) = 𝒗𝟎
∗  

 

Leg 

Group 

Periodic Iteration 

𝑘 𝑡1 𝑡2 𝑡3 𝑡4 𝑙1 𝑙2 𝑙3 𝑙4 

{1,2} ≺
{3,4}  

0 1 1 3 3 0 0 2 2 

1 5 5 7 7 4 4 6 6 
2 9 9 11 11 8 8 10 10 
3 13 13 15 15 12 12 14 14 
4 17 17 19 19 16 16 18 18 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

{1,3} ≺
{2,4}  

0 1 3 1 3 0 2 0 2 

1 5 7 5 7 4 6 4 6 

2 9 11 9 11 8 10 8 10 

3 13 15 13 15 12 14 12 14 

4 17 19 17 19 16 18 16 18 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

{1,4} ≺
{2,3}  

0 1 3 3 1 0 2 2 0 

1 5 7 7 5 4 6 6 4 

2 9 11 11 9 8 10 10 8 

3 13 15 15 13 12 14 14 12 

4 17 19 19 17 16 18 18 16 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Based on Table 8, it is known that initially all 

robot legs are in the same condition namely touch 

down or 𝑥(0) = [0 0 0 0 0 0 0 0]𝑇. 

Next, suppose we take one of the conditions in the 

foot group {1,2}  ≺  {3,4}, from Table 8 we can 

observe that leg 1 and 2 begin to lift off at 𝑡 = 2 and 

begin to touch down again at = 3 . Furthermore, 

when 𝑡 =  4, feet 3 and 4 lift off and touch down 

back when 𝑡 = 5. It is clear that it takes time 𝑥(0) =
[0 0 0 0 0 0 0 0]𝑇 for each leg to touch 

down simultaneously and this corresponds to the 

value of the parameter 𝜏∆ used. In the first iteration 

the time needed for each leg starting from a 

stationary position is different, where as in the 

second iteration, the time of lift off and touch down 

required by each leg increases according to the 

eigenvalue 𝜆 =  4. Note, in the second iteration, the 

time required for each leg to make movements when 

lift off and touch down is the same as the eigenvector 

structure. After the second iteration the movement of 

all legs starts periodically, increasing by 𝜆 =  4 for 

the next iteration. 

Look at Table 9, according to Definition 4 and 𝒗𝟎
∗  

is a linear combination max-plus of 𝒗𝟎 , then vector 

𝒗∗ is an eigenvector corresponding to 𝑚𝑎𝑥(𝐴). The 

iteration process of the latest eigenvector is the same 

as shown in Table 9, where in it is known that in the 

0th iteration the time used is the same as the 

eigenvector then for the next iteration all legs move 

periodically. The condition of the other leg groups is 

also the same as the leg group {1,2}  ≺  {3,4}, where 

in the second iteration the time required by each leg 

increases with the magnitude corresponding to the 

eigenvalue, so for subsequent iterations each leg 

starts periodically. 

 

4. CONCLUSION 

 
Robot Lego Mainstroms EV3 four-legged robot 

consists of several main constituent components 

such as construction of the robot body, EV3 Brick 

(controlling robot), two motors (moving the robot's 

legs) and connectors (connecting EV3 Brick with the 

motor). There are three groups of legs when walking 

namely {1,2}  ≺  {3,4}, {1,4}  ≺  {2,3} and {1,3}  ≺
 {2,4}. The movement of a quadruped robot with two 

motors means that two legs that are in the same 

group do the same movements both when floating 

and stepping and alternating with other groups of 

legs. Then to model when all the legs move in an 

iteration, just model one of the legs in each group of 

legs as in Table 3. When modelling motion robot, a 

matrix of 8 × 8 is needed. From this matrix, it can be 

seen the total time needed for a leg to make a 

movement in one cycle (lift off then touch down) by 

looking at the eigenvalue. The eigenvalues obtained 

for all foot groups are the same. In addition, from this 

matrix, we can find out when each leg starts to make 

periodic movements, which is when the time needed 

for each leg to do floating and tread movements is 

the same as the elements in the eigenvector 
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