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1. INTRODUCTION

Interest in passive immune therapy for the treatment of infectious 
diseases has long existed [1–3]. There have been many examples 
of application for either prevention or active treatment, but vari-
able efficacies occur in the many scenarios in which such treatment 
has been applied. During the epidemic of severe acute respiratory  
syndrome (SARS), equivalent approaches were resurrected, but 
largely thereafter abandoned, as the SARS prevalence came to a 
conclusive end in a relatively short period of time. Contemporary 
but meagre progress had been made in response to the Middle East 
Respiratory Syndrome (MERS), but the COVID-19 pandemic has 
again rekindled considerable interest. Indeed, a recent large ran-
domized placebo-controlled trial of convalescent plasma infusion 
was conducted in which there was a lack of efficacy for severely 
ill patients on either clinical status or mortality; that analysis has 
reminded the medical and scientific communities to approach any 
such therapy with due diligence [4]. The lack of obvious effective 
antiviral therapy continues to be a source of frustration despite 
the advent of several seemingly effective vaccines. As vaccine 
distribution widens and long-term vaccine efficacy continues to 

be gauged, active treatment of COVID-19 is yet in need of other  
preventive or treatment strategies. In the context of the publication 
of Simonovich et al. [4] and its implications to passive therapy for 
SARS-CoV-2 infections, this review examines the promise, applica-
tion, and future of passive immunotherapy.

2.  LESSONS FROM COMPARATIVE  
CORONAVIROLOGY

Preceding or shortly following SARS and apart from MERS, and 
COVID-19, several coronaviruses were found to cause human 
respiratory illnesses and less common complications [5]. None of 
these four virus (OC43, 229E, NL63, HKU1) infections were effec-
tively studied for passive immunotherapy or vaccination, but it was 
shown at least for some that serum neutralizing or respiratory anti-
body presence correlated with protection [6]. Similar themes on 
protection were also evident through experimentation or natural 
infection with animal respiratory or enteric coronaviruses [7]. For 
the latter, passive immunotherapy proved effective, and this was 
especially typified by the understanding of protective antibody 
transfer from mother to offspring [7]. Table 1 highlights some key 
findings in passive immunity for these coronaviruses which have 
relevance to similar efforts for SARS-CoV-2 infections [8,9]. Passive 
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A B S T R AC T
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory 
syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might 
initially be conceived as a simplified donor–recipient process, the intricacies of donor plasma, IV immunoglobulins, and 
monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on 
virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding 
domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment 
outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and 
distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential 
roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional 
polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and 
protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product 
must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for 
improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the 
virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. 
An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions 
between immunotherapy and virus.

© 2021 International Academy for Clinical Hematology. Publishing services by Atlantis Press International B.V. 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Email: ncimolai@mail.ubc.ca
Peer review under responsibility of the International Academy for Clinical Hematology

Clinical Hematology International 
Vol. 3(2); June (2021), pp. 47–68

DOI: https://doi.org/10.2991/chi.k.210328.001; eISSN 2590-0048 
https://www.atlantis-press.com/journals/chi/

http://orcid.org/0000-0003-2743-0556
http://creativecommons.org/licenses/by-nc/4.0/
mailto:ncimolai%40mail.ubc.ca?subject=
https://doi.org/10.2991/chi.k.210328.001
https://www.atlantis-press.com/journals/chi/


48 N. Cimolai / Clinical Hematology International 3(2) 47–68

immunity has potential for protection and treatment, but there is 
usually a dose- and time-dependent effect. This is applicable to 
convalescent plasma, hyperimmune serum, purified immunoglob-
ulin, or monoclonal antibodies. Different monoclonal antibodies 
behave variably but are more often better active in combinations.

There has been considerable debate over the role of human endemic 
respiratory coronaviruses for providing some protection for SARS-
CoV-2 infections [23–27]. The finding of common and conserved 
epitopes initially provided the stimulus, but a more precise analy-
sis of antibody evolution and cell-mediated immune reactivity led 
to further insight. Neutralizing cross-reactive antibodies between 
these viruses and SARS-CoV-2 are generally lacking in humans, 
and yet there are some pan-coronavirus cross-reactive epitopes 
[26–28]. Dugas et al. [29] have found evidence suggesting a lesser 
severe disease with COVID-19 if patients possessed higher levels 
of antibodies to the endemic coronaviruses. Others found a rise 
in antibody levels to endemic respiratory coronaviruses during 
SARS-CoV-2 infection [30]. Also, immunity from other corona-
virus infections might protect against COVID-19 over time, and 

susceptibility to serious infection appears to be age-accrued. These 
issues may be explained in part by differences in T cell responses 
and background humoral immunity [31].

3. COVID-19

3.1. Immunogens and Humoral Immunity

Characterization of viral immunoreactive epitopes is becoming 
more apparent as virus-directed antigens are being better charac-
terized [32]. The tools for any such characterization were largely 
available prior to the onset of the pandemic, and further progress 
often relies on the application of past knowledge to the context of 
SARS-CoV-2.

The Spike (S) protein is a dominant immunoreactive protein and 
has several recognized regions, including the receptor binding 
domain [33–39]. Other recognized antigens commonly include 
Nucleocapsid (N), Membrane (M), orf3a, orf6, orf8, orf10, and 

Table 1 | Key translational findings in studies of passive immunity for human endemic respiratory coronavirus, SARS-CoV-1, and MERS infections

References Model system Treatment Outcomes

Human endemic respiratory coronavirus infections
[8] Human experimental 

infection with 229E
None; volunteers examined for  

preceding immunity
Viral challenge modulated by previous immunity; both  

circulating and local antibody were associated with protection
[9] Human experimental 

infection with 229E
None; repeat infections after 1 year Intranasal infection protects against repeat nasal challenge; 

post-infection antibody wanes; those primarily challenged but  
not seemingly infected maintained secondary challenge reduc-
tion in illness

SARS-CoV-1 infection
[10] Murine Post-infectious serum given intraperitoneal; 

equivalent to 700–1750 mL/70 kg person
Reduced lung titres of virus post-challenge; dose-responsiveness

[11] Murine Neutralizing human MAb given intraperitoneal; 
4–80 mg/kg

Reduced lung titres of virus post-challenge and reduced  
histopathology of disease

[12] Murine Engineered human MAb given intraperitoneal; 
200 mcg

Prevented and mitigated infection

[13] Human Convalescent plasma 1:160–1:2560 ‘antibody  
titre’ given in dose of 200–400 mL intravenous

Reduced hospital stay and mortality (note: method of antibody 
assessment not mentioned)

[14] Human Convalescent plasma 1:160–1:2560 ‘antibody  
titre’ given in dose of 160–640 mL intravenous 
9–22 days

Trend for reduced mortality and reduction in some disease 
parameters; timing-dependent (note: method of antibody 
assessment not mentioned)

MERS infection
[15] Murine Humanized murine MAb given intravenous  

10 mg/kg
Reduced lung titres of virus and lung disease

[16] Murine Humanized murine MAb given intravenous  
2 mg/kg

Reduced lung disease and mortality

[17] Murine Human MAb given intraperitoneal; 1–200 mcg Reduced lung titres or virus and lung disease two MAb were 
superior to any one

[18] Murine Chicken IgY given intraperitoneal  
500 mcg twice

Given after onset of infection and improved some infection 
parameters

[19] Murine Equine serum (200 mcL), equine IgG (500 mcg),  
or F(ab¢)2 (500 mcg) given intraperitoneal

Reduced lung titres of virus

[20] Murine Human convalescent serum (100 mcL titre 
>1:5000) or human MAb (20 mcg) given  
intraperitoneal four times

Reduced viral load in lungs and improved survival

[21] Marmoset Human MAb given intravenously; 10–25 mg/kg Effected prevention more than treatment of active infection
[22] Marmoset Hyperimmune marmoset plasma (1 mL; titre 

1:3840) or single human MAb (5 mg) given 
intravenously early after infection and repeated 
subcutaneously later

Both decreased signs of disease but only plasma reduced  
viral load

MAb, monoclonal antibody.
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Nsp5 (Mpro or 3CLpro) (Figure 1) [36,37,39–44]. The latter may or 
may not include structural proteins of intact virus and may arise as 
proteins derived during the processes of infection. There are poten-
tially several more virus-directed proteins that may attract humoral 
responses [40]. Some of the latter appear to be shared with common 
non-SARS-CoV-2 coronaviruses [34,45]. For unknown reasons, 
the Envelope (E) protein which is virus surface-exposed does not 
attract humoral immune reactivity very well [46]. Antigen-specific 
antibody responses can vary, and stereotypic de novo responses 
occur [34,35,37,47–49]. An immunodominance of anti-Receptor  
Binding Domain (RBD) in the neutralizing antibody profile has 
been proposed [33,50]. Others found a lesser dominance in anti-
RBD [34,48]. Smits et al. [44] suggest that the N protein is immu-
nodominant. Recognition of immunogenic proteins or other 
structures is yet provisional.

Whether for enzyme immunoassay-detected antibody (or similar) 
or neutralizing antibody, the total specific antibody level peaks 
after 3–10 weeks [30,51–60]. As anticipated, IgM reactivity dimin-
ishes over the first few months while IgG reactivity continues to be 
detected for a much longer interval [54,56,57,59,61–67]. The find-
ing of rapid IgG response relative to IgM suggests a possible prim-
ing from past exposure to endemic respiratory coronaviruses [34]. 
Circulating IgA responses generally parallel those of IgG although 
not as prolonged [56,62,64,65,68–70]. One study found consid-
erable IgA titres associated with severe respiratory disease [71]. 
Others have found no consistent IgG/IgA correlation for intensity 
of production [34]. Quantitation by most methods increase with 
the severity of infection [33,34,36,41,50,52,56,60,70–87]. Severe 
disease may be associated with a delay of the humoral response 
[88]. Children with multisystem inflammatory syndrome amount 
stronger antibody responses akin to more severely ill adults, and 

in contrast to either children or adults with mild illness [89].  
A greater quantitation of antibody at the time of disease presenta-
tion may be associated with lesser mortality [30,90]. Others have 
found little difference of IgG reactivity to S protein among moder-
ate to severe infections [88,91]. Affinity maturation is time accrued 
[50,78]. A small proportion do not seroconvert after infection, 
and thus not all post-infectious sera may be useful, even though 
other aspects of post-infection immunity via cell-mediated immu-
nity may have arisen in these patients [33,34,68,72–74,77,92–94]. 
A lack of antibody response is particularly noticeable for asymp-
tomatic and out-patients [33,64,68,73,77,85,89,95]. Using a given 
threshold of anti-RBD antibody, Bartsch et al. [89] define a limit 
above which other immune responses and effector functions are 
recruited. Immunocompromise may also be a risk factor for lack of 
antibody production [96,97]. A portion of the latter patients may 
not develop IgG or neutralizing antibodies [34,35,95]. Variation in 
antibody production among different ethnicities, but not gender, 
is consistent with the genetic variation that would be anticipated 
[52,64,77,92]. Other authors provide evidence for a gender dif-
ference [35,58,76,80,82,86]. Patients with older age also appear to 
have higher antibody quantities, although they are also at risk for 
more severe infections [35,36,72,79,80,82,83]. Some authors have 
not found an age-related variance [52,64,81]. Dyssynchronous 
adaptive immunity may be associated with a propensity to worse 
disease [98,99].

Different antibody responses decay variably and dependent 
on the nature of the antibody target and severity of disease 
[33,50,54,59,61,68,75,76,78,83,87,95,96,100–103]. The latter includes 
measurable neutralizing antibody, and the decay in some patients 
after 1 month can be such that donations with desirable high titres 
elapse quickly in convalescence after infection [49,54,103–106].  
Neutralization antibodies may decline although maturation in 
Fc effector functions may persist [66]. Key antibody responses 
are followed by memory B cell persistence [28,39,48,49, 
57,65,66,78,102,107]. Likewise, T cell recognition lasts well after 
declining humoral immunity markers [23,57,67]. The memory B 
potential increases with severity of infection [39]. Some groups 
have found a degree of anti-S2 subunit and anti-N IgG reactivity in 
infection-naïve individuals [45,107]. Gaebler et al. [78] have pro-
posed that antibody maturation may be a function of prolonged 
antigenic exposure. Binding affinity to S is time accrued [28].

3.2.  Correlations with Immunity  
or Protection

T cell immunity arises, as anticipated, during infection, and the 
quality and quantity of the same varies according to the intensity 
of disease. [31,48,51,63,65,67,68,70,74,89,91,93,94,98,102,109–111]. 
As passive immunotherapy is conventionally ascribed to immu-
noglobulins in a cell-free product, the translocation of such pre-
formed cell-mediated immunity cannot be accomplished apart 
from immunoglobulin-related effector functions. Even if cell- 
mediated immunity could conceivably be ‘donated’ with alternate 
allogeneic blood products or stem cells, the prospect of complex 
incompatibility immune reactions would complicate usage. It may 
also be that preceding low-avidity T cell responses may commonly 
exist among humans, and that post-infection T cell responses may 
vary also in such avidity, according to disease intensity [94,109]. 

Figure 1 | Provisional structural and non-structural immunogens of 
SARS-CoV-2. N, nucleocapsid protein functions in virus packaging and 
transcription complex; Nsp5, non-structural protein 5 also referred to 
as main protease [Mpro or 3CLpro] functions to process several virus 
proteins; M, membrane protein functions to promote intracellular 
virus assembly; Spike, spike protein including RBD functions in virus 
attachment and entry; Orf3a, open reading frame protein 3a functions as 
an ion channel and promoter of virus budding; Orf6, open reading frame 
protein 6 functions in cellular and extracellular immunomodulation; Orf 8,  
open reading frame protein 8 functions in cellular and extracellular 
immunomodulation; Orf10, open reading frame protein 10 possibly 
functions in cellular immunomodulation but its role is controversial if any.
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Mild infections may nevertheless attract memory T cell presence 
[23,65,102]. In a rhesus macaque model, CD8+ T cells may have 
a functional role even when circulating specific antibody levels 
are low [112]. These findings are consistent with the proposal that 
good quality humoral and cell-mediated responses may require a 
particular intensity of disease, such that the immune system must 
cross a particular barrier after which quality and prolongation arise 
[89]. Immunosuppression in animal models facilitates more vir-
ulent infection [113]. Cohen et al. [31] portray a scenario where 
differential T cell responses give rise to varying disease susceptibil-
ity for young and older ages. The latter is also supported by other 
age-related differences shown for B and T cell clonal expansions 
after infection [114]. These variations on age-related responses 
may also be superimposed on the differential character of innate 
immune reactivity [115].

In other systems, the contributions of both neutralizing and 
immunoglobulin effector functions may be relevant to the per-
sistence of protective antiviral immunity [89,116]. That a humoral 
immune response occurs does not necessarily imply that such 
reactivity has mature effector functions [34,99]. Effector func-
tion variability in donor plasma samples is considerable [34]. 
Antibody effector functions can be Fc-mediated and may include 
such entities as antibody-dependent natural killer cell activation 
and degranulation, antibody-dependent cellular phagocytosis  
by monocytes and neutrophils, antibody-mediated comple-
ment deposition, Fc-mediated macrophage polarization, antigen  
presentation, and B cell activation.

There are many potential approaches to detecting neutralizing 
antibodies, and there are many more variations that are techni-
cally possible (Table 2) [117–119]. It is more critical to establish 
correlates of any such neutralization with actual protection or 
treatment because of potential concerns over veritable markers for 
the latter [118]. Whereas correlations between neutralizing anti-
body measures are generally good, there are nevertheless import-
ant subtle differences, and some measures may consistently show 
higher surrogate neutralization titres than more conventional and 
historic assays [119]. The presence of neutralizing antibodies as 
measured by pseudo-typed lentivirus particles correlated with pro-
tection [120]. It is not clear if pan-coronavirus antigen reactivity 

correlates with protection even though it may be associated with 
neutralization [45]. Lv et al. [121] proposed that SARS-CoV-1 and 
SARS-CoV-2 may have cross-reactive antibody to the S protein 
but not necessarily cross-neutralizing antibody. From studies with 
human monoclonal antibodies, it is apparent that in vitro measures 
of neutralization do not always correlate with in vivo efficacy of 
relative potency [122].

The presence of anti-viral IgM can correlate with neutralization 
potential [34]. Klingler et al. [123] suggest that IgM and IgG1 
contribute considerably to neutralization and lesser so for IgA. 
In developing mucosal IgA, the circulating serum antibody does 
not necessarily have to be robust [71]. Dimeric mucosal IgA has 
greater potency to neutralize than monomeric IgA [69]. There is 
a general trend for an association of seropositivity with a lesser 
opportunity for apparent repeat infections over time, although 
these are preliminary observations [124]. Shields et al. [125] found 
a pre-vaccination high seroprevalence of anti-S antibody among 
dental professionals. A particular IgG EIA threshold was found to 
correlate with protection against subsequent infection and seropos-
itivity was retained for many months.

Anti-S antibody levels correlate well with those of neutralizing 
antibodies, including anti-RBD [30,33,38,48,62,64,81,86,88,90,106, 
126–132]. Piccoli et al. [50] have proposed that some 90% of neu-
tralizing activity is due to anti-RBD antibody, and they have par-
ticularly mapped two dominant subepitopes. Wendel et al. [105] 
found good correlation of anti-N antibody and neutralization. 
Among convalescent plasma from a voluntary donor program, a 
correlation was found for high IgG anti-N titres and neutraliza-
tion titres ≥1/160 [105]. Another study found that both moderate 
and high EIA anti-N antibody correlate with neutralization titres 
>1:80 [43]. Others found a modest correlation of anti-S1 antibody 
as detected with a commercial EIA to neutralization titres >1:100 
[133]. Salazar et al. [33,129] found a better correlation between 
anti-RBD response and neutralization titres in convalescent patient 
samples. Bryan et al. [134] determined that the presence of anti-N 
IgG correlated with a reduction in 30-day mortality. Secchi et al. 
[37] found a correlation of anti-RBD IgG with survival. Antibody 
avidity matures after infection and is correlated with duration of 
infection and higher neutralizing antibodies [28,135]. The avidity 

Table 2 | Key methods for determining SARS-CoV-2 neutralizing antibody

Methods Approach Methodological nuances

Live virus neutralization Live virus pre-admixed with patient serum  
dilutions is applied to viable cell line

Cell line susceptibility variable; different reporter systems possible 
for measuring virus infection; requires viable SARS-CoV-2 with 
inherent biosafety issues; non-cytopathic effect reporter systems 
possible facilitating through-put; lesser susceptible cell lines  
can be transduced with ACE2 or TMPRSS2 receptors to  
enhance assay

 Cytopathic effect
 Plaque-reduction
 Focus-reduction

Pseudo-type neutralization Alternate virus with SARS-CoV-2 antigen is  
pre-admixed with patient serum and applied to 
detector cell line; reporter signal detected variably

Non-infectious for SARS-CoV-2 thus avoiding many biosafety 
concerns; detector cell lines can be transformed to enhance 
assay; many potential forms of detector signals; high through-
put possibilities

 Vesicular stomatitis virus
 Lentivirus
 Murine leukemia virus
 HIV-1
Surrogate neutralization SARS-CoV-2 attachment protein-bound surrogate  

is directly pre-mixed with patient serum or 
assessed in a competitive immunoassay;  
reporter signal can vary

Non-viral surrogate approach markedly lessens biosafety concerns; 
attachment protein can have various conformations or lengths; 
very amenable to high through-put; attachment nullification 
simplifies concept of neutralization whereas live virus method 
may be assessing multi-modal virus attachment and non- 
attachment inhibitions
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of anti-S correlates better than anti-N. Li et al. [36] found an asso-
ciation of low IgG anti-S, anti-RBD, and anti-N with a longer dura-
tion of viral RNA shedding. Antibody mapping has the potential 
to further define relevant antigens [136–138]. Microarrays offer a 
more complex mechanism to define immunoreactive epitopes even 
when honed down to a few larger but common antigens such as  
S and N proteins [42,139]. Neutralizing antibody levels may also 
correlate well with particular adaptive T cell responses [111].

3.3.  The Potential Perils of  
Neutralization Escape

The D614G mutation in the S protein did not associate with neu-
tralization escape [39,63,73]. Variant mutations of concern have 
recently included at least UK B.1.1.7, South Africa B.1.351, and 
Brazil B.1.1.28.1 [140–150]. Other groups have more recently 
shown that escape mutants are time accrued in tissue culture or 
animal models, have particular mutations, and may completely 
escape neutralization [150,151]. Such mutants may develop over 
the course of an infection [152]. Mutants can potentially escape 
neutralization by some but not other convalescent sera, and it is 
thus evident that an individual’s repertoire of antibody production 
should be identified; this would have bearing on the use of single 
donor plasma donations and their variable efficacy [153–156]. It 
may also be possible that the exposure to donor antibody may select 
further for viral mutants [157]. Likewise, resistance to therapeutic 
monoclonal antibodies may also arise [144,158]. In some elaborate 
studies of human monoclonal anti-RBD antibody, specific muta-
tions did not affect neutralization efficacy [159]. Yet more contem-
porary studies suggest that mutations for S protein, including the 
RBD, can be constructed in vitro which do indeed have the poten-
tial to escape antibody recognition and neutralization [160,161].  
A choice of more conserved targets or products with more than one 
target have the opportunity to overcome any such future dilemma 
[162,163].

The goals of an effective passive immunotherapy would preferen-
tially include activity to key exposed and targeted viral antigens, 
sufficient antibody, ease of administration, persistence, resilience 
to escape mutation, and capability to enact effector functions.

3.4. Antibody-dependent Enhancement

For convalescent plasma, IV immunoglobulins (IVIG), or purified 
antibody (monoclonal or not), there remains the possibility that 
other beneficial or harmful effects could follow administration 
that are outside the role of protective immunoglobulin. The use of 
blood products to modulate immunity specifically in the setting 
of immunological storm attracts interest [164]. Likewise, there is 
a time-honored use of plasma for effecting compensatory physi-
ological changes such as for severe hypoalbuminemia and fluid 
third-spacing dynamics.

In theory, antibody-dependent enhancement (ADE) reflects 
the potential of virus-specific antibody to promote the disease 
or create other complications [7,165]. Vaccination with various 
viruses in animal models best illustrates this phenomenon. Yang 
and colleagues raised concern about viral entry enhancement in 
the context of SARS-CoV-1 [166]. To some extent, similar clinical 

effects may have been seen in past human vaccine trials [7]. Most 
such effects, whether experimental or clinical, appear to occur after 
reinfection or vaccination, but have largely either not been seen or 
looked for in the context of passive immunotherapy [7]. It is also 
not clear that any such event, categorized in preliminary form as 
ADE, attracts similar clinical consequences or has the same patho-
genesis [167]. From a purely in vitro perspective, there are some 
methods to gauge the potential for ADE to occur [159,168]. While 
it is yet an issue that attracts attention, the prospect that any such 
categorized events will prove to complicate SARS-CoV-2 immuno-
therapy is becoming less likely, as the experience progresses. Such 
concerns nevertheless may transfer to in vitro re-creation of anti-
bodies (monoclonal or purified plasma) which have modifications 
of effector function domains. In this context, Zhou et al. [131] have 
suggested that non-overlapping RBD epitopes may attract differ-
ential immune responses which determine whether a humoral 
immune outcome will foster virus neutralization or ADE.

3.5.  Monoclonal Antibody Derivation  
and Applications

If passive immunity confers a beneficial effect, the potential to 
harness protection through individual antibodies or pools thereof 
becomes an attractive proposition, especially when a non-human 
donor source is available at high production capability. As reviewed 
by Walker and Burton [169], the derivation, modification, and 
application of monoclonal antibodies are yet in their infancy, 
despite the vast research that has been conducted thus far. This also 
applies to their application in the field of coronavirology. Atyeo 
et al. [170] illustrate how modifications can affect pathological 
outcomes. Yet, others describe how human monoclonal antibody 
derivation can vary on the basis of the maturation that occurs in 
memory B cells [78].

One study found key neutralizing antibodies directed to RBD, 
N-terminal domain, and quaternary S structures otherwise [171]. 
Human monoclonal antibodies to RBD have been assessed singly 
or in tandem [12,122,159,172]. Others have examined cocktails of 
two monoclonal antibodies which recognize non-overlapping epi-
topes of the S protein [173]. Anti-S human monoclonal antibody 
produced neutralization in a hamster model [113].

Neutralizing murine monoclonal antibodies have been produced 
which target RBD [168]. These were thereafter ‘humanized’ into 
a chimeric antibody through the combination of the murine V 
region to human IgG1/kappa. The revised antibody retained neu-
tralization capacity. In general, the production of humanized anti-
SARS-CoV-2 monoclonal antibody has promise and has quickly 
progressed to human trials.

3.6. Animal Models of Passive Immunity

Variations of animal models used to assess passive immunity for 
SARS-CoV-2 infections and their implications for human treat-
ment are detailed in Table 3. Emergent themes include an antiviral  
effect of convalescent serum which includes both pre-infection pro-
tection and amelioration of active disease. Effects are seen to impact 
on viral replication and pulmonary histopathology. The latter car-
ries through to post-vaccination donor serum or purified IgG.  
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Efficacy has been largely dose-dependent. These studies sup-
ported the ability of humoral immunity transfer to be of clinical 
value outside of the role of innate or cellular immunity, and give 
way to credibility for monoclonal antibodies to work singly or in 
combination.

Considerable work has been done with monoclonal antibodies, 
especially human-derived. Again, there are variable benefits both 
for prophylaxis and active treatment in a dose-dependent manner. 
Reductions are seen in both viral load and lung disease. A multi-
plicity of monoclonal antibodies can perform better than a single 
one. Such a strategic tactic was able to protect while giving promise 
to avoid escape mutations. Most such antibodies are targeted to the 

N-terminal of the S protein or the RBD. Effector functions of the 
antibody Fc fragments can either improve or complicate infection 
and, thus, considerations on best contour of that region of the anti-
body are important. There is potential for such immunity to aug-
ment protection for immunocompromised patients.

3.7. Human Trials of Passive Immunity

Human monoclonal antibody LY-CoV555 (bamlanivimab) was  
trialed among outpatients with mild to moderate infections, and the 
investigators reported an interim analysis [184]. Patients were ran-
domized to one of three (700, 2800 or 7000 mg) single intravenous  

Table 3 | Key contributions for animal models of passive immunity in SARS-CoV-2 infection

References Model system Treatment Outcomes

[12] Murine Bioengineered human anti-RBD 200 mcg  
intraperitoneal

Both protection and treatment efficacy

[38] Murine Human MAb anti-N terminal S protein; 200 mcg  
of single or dual antibodies intraperitoneal

Protective effect

[112] Macaque Convalescent macaque donor purified IgG;  
2.5–250 mg/kg for prevention and 25–250 mg/kg  
for treatment both intravenously

Dose-dependent for prevention, but higher  
dose only effective in treatment

[113] Hamster Human MAb 30 mg/kg subcutaneous Protective for immunocompetent and  
immunosuppressed animals

[122] Murine and hamster Human MAb anti-RBD intraperitoneal; single  
8 mg/kg or dual 1.8–16 mg/kg

Both protection and treatment efficacy;  
Fc functions relevant to outcomes

[159] Murine and hamster Human MAb 2–36 mg/kg intraperitoneal Both protection and treatment efficacy
[168] Murine Two humanized murine MAb 20 mg/kg  

intraperitoneal four hours post-challenge
Decreased viral load in lung and associated 

histopathology
[170] Murine and hamster Human MAb anti-RBD modulated for Fc  

functions; murine 200 mcg and hamster  
5 mg/kg intraperitoneal

Improved treatment outcomes for native MAb 
but enhancement of disease with some Fc  
engineered-variations

[172] Murine and rhesus monkey Human MAb anti-RBD single or double; murine 
200–400 mcg intraperitoneal and monkey  
50 mg/kg intravenous

Decreased viral load in lung and associated  
histopathology; combination of antibodies 
additive

[173] Hamster and macaque Human MAb REGN-COV2 combination;  
hamster 50 mg/kg and macaque 0.6–150 mg/kg 
intravenous

Both dose-dependent protection and treatment 
efficacy

[174] Hamster Hamster convalescent serum 2 mL intraperitoneal Inhibited viral replication
[175] Murine Post-vaccination donor serum 600 mcl  

intraperitoneal; animals immunized with  
S-carrier virus

Reduced lung histopathology

[176] Murine Human convalescent plasma intravenously Diminished lung histopathology and prevented 
mortality; dose-dependent effect

[177] Murine Human MAb 20 mg/kg intraperitoneal given  
a few hours after challenge

Prevented disease and benefitted active  
treatment

[178] Murine Human MAb anti-RBD 1 mg intraperitoneal Reduced lung viral load and reduced mortality; 
dose-dependent

[179] Murine and hamster Human MAb anti-RBD 0.4–10 mg/kg  
intraperitoneal

Both protection and treatment efficacy; murine 
dose-dependent; Fc modulation affects  
treatment use but not protective capacity

[180] Hamster Human MAb 8 mcg–2 mg intraperitoneal Prevented disease; prevention correlated with 
circulating antibody levels

[181] Rhesus monkey Single human MAb anti-RBD given intravenously;  
20 mg/kg once for prevention and 50 mg/kg twice 
for treatment

Both protection and treatment efficacy

[182] Murine ‘Bi-specific’ engineered non-overlapping anti-RBD; 
antibody derived from two human MAb; 150 mcg 
given intraperitoneally pre-challenge

Prevented disease

[183] Murine, hamster, and macaque Human MAb anti-RBD; 10 mg/kg intraperitoneal  
for rodents and 10 mg/kg for macaques

Preventative and therapeutic for mice; reduced 
viral load in hamsters; reduced viral load and 
lung pathology in macaques

MAb, monoclonal antibody; RBD, receptor binding domain of Spike protein; S, Spike.
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doses. The primary endpoint of viral load was the lowest for the 
2800-mg dose at day 11, but overall the differences were not dra-
matic. There was a trend for lower severity of illness among recipi-
ents compared to placebo, and there were trends for lower hospital 
need and visits to an emergency room. Further studies have used 
similar doses for randomized placebo-controlled trials among mild 
to moderate infections with LY-CoV555 and LY-CoV016 (etese-
vimab) [185]. A reduction in viral load was seen, but the effects for 
secondary outcome measures were variable.

Pre-pandemic IVIG batches from both Europe and the USA did 
not find significant neutralization titres to SARS-CoV-2, despite 
the presence of considerable neutralization activity for endemic 
respiratory coronavirus 229E [186]. In contrast, other IVIG sources 
from donations collected elsewhere yielded lots which variably 
neutralized SARS-CoV-1 and SARS-CoV-2, but not MERS-CoV 
[187]. The latter investigators also found other sources with anti-
body cross-reactivity to all three of the latter coronaviruses [188]. 
As the pandemic progresses, there has been considerable improve-
ment in the degree of anti-SARS-CoV-2 seropositivity in IVIG 
lots, presumably reflecting the seroprevalence that accumulates 
[189]. Huang et al. [190] retrospectively reviewed cohorts with and 
without IVIG administration and did not find a beneficial effect. 
The latter study did not adjust for increased age or increased mor-
bidities found in the treatment group and the dosing was variable 
(10–20 g/day for 3–5 days). The source of IVIG was not detailed 
(i.e., pre- or post-pandemic), and no data were provided on the 
presence of neutralizing or other anti-SARS-CoV-2 antibody. The 
benefits of IVIG are debatable, but several studies have not deter-
mined the pre-existing antiviral potency of the same [191–195]. 
Such studies do not preclude the potential benefit of IVIG in other 
niche situations, such as immune thrombocytopenia, ascending 
polyneuropathy, or multisystem inflammatory disorder attribut-
able to COVID-19 [196–198]. On this theme, however, there is yet 
potential for the creation of IVIG specifically from donors with 
convalescent COVID-19 infection. Such ‘super’ infusions have the 
theoretical appeal to concentrate what might be beneficial from 
convalescent plasma otherwise. This concept also allows donor 
sera of lower neutralization capability to be concentrated, thus 
allowing for expansion of a donor pool. Concentration of conva-
lescent sera in this fashion may require a considerable number of 
donor samples.

The development of convalescent donor plasma programs for 
COVID-19 occurred in short order [199–201]. A proportion of 
proven-infected donors may not have measurable antibody, and 
some asymptomatic infections may yet be associated with signif-
icant seropositivity [200,201]. EIA or neutralizing antibody stan-
dards were provisionally set for donor units [103]. The use of donor 
plasma can soon outstrip the availability in highly endemic sce-
narios [202]. At screening, however, there is a considerable range 
of antibody levels [79,80,200,203–205]. There may be some non- 
serological reasons why prospective donors may be rejected [201]. 
The collection of convalescent plasma from donor systems should 
exclude infectiousness, given the detection by some of viral RNA in 
blood. Andersson et al. [206] found viral RNA in 12.7% of donor 
blood product, but could not find infectious virus in a small sample 
of the latter. Others have not found viral RNA in the donor some 
weeks to months among post-infection donors [207]. ABO com-
patibility would be prudent [208,209]. In addition, donor samples 
with high neutralizing capacity would seem to be the best prospects, 

but not all single measures of antibody will capture seroconverters 
[204]. In post-infectious donors, neutralizing antibody ≥1/160 was 
found in approximately 64% at 28 days after clinical recovery and 
in approximately 41% when deemed negative for virus by RNA 
amplification [105]. Another study found 42% of samples had 
neutralization titres >1:100 [133]. After defining a potential donor 
however, there is a relatively small window in time for continued 
collection of similar-titred neutralizing samples. It can generally 
be inferred that high-titred neutralizing donations are better than 
others. Bradfute et al. [126] found that different measures of recip-
ient antivirus antibody did not change pre- and post-infusion, but 
relatively low-titred initially unscreened plasma lots had been used. 
Others have reported no major change in pre- and post-infusion 
antibody levels in patients despite the use of presumed high EIA-
titred donations [127]. Xia et al. [210] found a correlation between 
plasma donor antivirus antibody quantitation and such antibody 
in recipient blood. Donor plasma led to increased anti-S1 and anti-
RBD antibody but not anti-N antibody levels in recipients. Libster 
et al. [211] found increased serum antiviral IgG 24 h after infusion, 
but the prevailing antibody at that time did not correlate with pro-
tection. Donor sera immunoglobulin possess non-neutralization  
effector functions which may be of variable intensity [34]. It is 
also relevant to consider that donor plasma may also have other 
non-immune effects of a salutary nature [166].

The use of convalescent plasma has been anecdotally documented 
in small patient series as referenced in representative samples 
[212–238]. These are very difficult to gauge for therapeutic efficacy, 
given the patient and product variability, concomitant variation in 
support and other treatment strategies, and the lack of controls 
[239]. Despite the latter, these studies nevertheless gave some 
promise that obvious adverse reactions were not common and, 
hence, provided at least some fodder for test of concept [79]. Such 
studies were cautiously required especially in the context of severe 
disease where immunological aberrations of the infection were 
forefront in concerns. Subsequently, very large reviews of imme-
diate post-infusion safety have been tabulated, and there is a low  
incidence of acute morbidity directly related to the transfusion 
product [208,239–241]. Generally, the frequency is <4% [241]. 
Some have proposed that infusions might be associated with a 
reduction in excreted viral load [242]. The latter is contrasted with 
the lack of association found in one study between persistence of 
virus RNA detection in respiratory samples and presence of circu-
lating anti-S antibody [84].

Studies with modest to high numbers of patients have now been 
published for various trials of convalescent plasma prevention and 
treatment (Table 4). Some generalizations can be extracted, but  
consistent protocols, doses, and measures among studies are lacking.  
Given the latter, it would be considerably precarious to assess the 
data through meta-analyses, although there is often the temptation 
to do so. In a simulation analysis from sub-Saharan Africa, it was 
suggested that convalescent plasma therapy was associated with a 
50% mortality reduction [272]. The pointed example detailed by 
Kemp et al. [157], albeit in a unique patient context, illustrates the 
potential for SARS-CoV-2 to adapt to selective antibody pressures 
from donor plasma influence.

The concept of therapeutic plasma exchange followed by conva-
lescent plasma therapy has been discussed [273]. However, it is 
unclear how removal of potentially pre-existing antibody may 
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juxtapose with subsequent donor immunity and final outcomes. 
Another unique but related approach has been piloted by Selzman 
et al. [274] with the use of therapeutic donor human amniotic fluid. 
Given intravenously, there is the potential for immunomodulating 
effects on active COVID-19, but when donated by a convalescent 
mother who suffered active infection prior to birth, there is also the 
potential for transfer of maternal virus-directed IgG for a form of 
passive therapy.

Overall, the findings thus far suggest a dose-dependency and a 
correlation with better outcome for higher doses of administered 
donor plasma. The latter approach must also weigh the complicat-
ing factors of volume expansion in the short term, if higher doses 
are met with the need for larger transfusions. A time-dependency 
with regards to stage of illness also emerges. Repeat donations will 
need further evaluation. The definition of protective correlates 
continues to be a high priority.

4. CURRENT PROSPECTS

In 2020, emergency use authorizations for convalescent plasma in 
COVID-19 treatment were being adopted throughout the world. 
The latter was occurring in a context of relatively limited knowl-
edge but also within a void of effective therapeutic prevention and 
treatment strategies. In the passion to create immediate and effec-
tive products, several aspects of passive immunotherapy have taken 
somewhat lesser priority.

The pharmacokinetics and immunokinetics of any passive anti-
body administration are considerably variable among patients. 
Whether given intravenously or subcutaneously, the volume of 
distribution is relatively small as a first central compartment. 
While the antibody may remain in circulation for a variable 
period of time, entrance into tissue, especially interstitial spaces, 
follows soon after. Much of this secondary compartmentaliza-
tion will include sites where viral replication does not necessarily 
occur. Many of these sites will attract more antibody only due to 
the inflammatory nature of plasma egress. Given the large mole-
cules of immunoglobulins, degradation immediately through liver 
or urinary loss are unlikely. Rather, degradation is more likely to 
occur with proteolytic pathways in sites of active inflammation or 
through usual protein handling routes. If given by subcutaneous 
routes, antibody is primed to migrate through lymphatic systems 
first, rather than direct blood circulatory paths. The handling of 
such protective antibody through intraperitoneal routes in animal 
models does not guarantee comparability for human intravenous 
administration. For monoclonal antibodies, the distribution will 
be product-specific but susceptible to several patient factors [275]. 
Apart from non-specific losses, antibody linking to targeted anti-
gens and antigen-processing cells would be desired, but a local-
ized or generalized inflammatory reaction may have various other 
mechanisms to attract antibody. In addition, some immediate loss 
may be due to the inadvertent immunogenicity of the product 
itself, perhaps more significant in multiple infusions. In advanced 
illnesses, antibody clearance may be enhanced in inverse relation-
ship to the serum albumin concentration which may be low due 
to the existing biological adversity [276]. The pharmacokinetics 
of intravenous immunoglobulin are mainly understood from dis-
tribution to healthy patients [277,278]. It is not known how the 
acute inflammation during COVID-19 may alter the latter. When 

plasma is administered, there will be temporary expansion of the 
intravascular volume from redirection of body fluid, but the distri-
bution of colloid including antibody is expected to depend on the 
physiological state as well [279]. For example, clinical sepsis alone 
can abundantly facilitate capillary leak [280]. The focus of passive 
immunotherapy has largely been on potency, but the factors of dis-
tribution and bioavailability for immunity drivers may be just as, if 
not more, important.

There is some merit to reconsidering what should have greater 
priority given the immediate needs of the populace. Monoclonal 
antibodies may be in favour for many reasons but, practically 
speaking, a polyclonal multiantigen immunotherapy approach 
makes most sense, given the potential ability to focus on mul-
tiple targets while the virus may slowly change. Multiantigen 
immunotherapy may also be seen as one that may target mul-
tiple exposed and newly formed viral immunogens during the 
breadth of the infectious process. The concept of IVIG with 
concentrated polyclonal antivirus activity would allow for a 
broader collection of donor samples even when they are of lesser 
whole sample quality. The latter is only a few steps away from 
the capability of large scale productions. Unfortunately, the latter 
also introduces the precarious potential for complications of 
pooled human transfusion. For simple donor plasma infusions, a 
repeat especially with different donors allows for diversity in the 
antiviral properties but again creates the potential for enhanc-
ing donor-related problems. If virus escape continues to be an 
issue, as anticipated from the analogy with the yearly behavior of 
endemic respiratory coronaviruses, the polyclonal approach with 
donor samples or monoclonal cocktails will take precedence.  
A polyclonal approach also has the potential to better address the 
multifunctional Fc effector attributes that may also contribute to 
the overall beneficial outcomes.

The cumulative laboratory studies suggest that prevention is pos-
sible as is active treatment. Passive immunotherapy has focused 
on the systemic domain but less on mucosal protection. Yet, it is 
abundantly clear that, in the least, earlier prevention benefits from 
mucosal antibody [6,7]. Maternal antibody through lactation has 
one of the greatest potentials for passive protection. Translating 
other human passive immunity into the sphere of mucosal pro-
tection is likely to be highly relevant in the understanding of the 
larger picture.

Proof-of-concept and open-label studies are necessary parts of 
progressive scientific endeavor. There is emphasis nonetheless for 
high quality studies which are placebo-controlled, blinded, and 
randomized [199,281]. Such studies are relatively complex and 
require considerable time and effort. While most desirable, they 
do not preclude lesser attempts which provide cumulative experi-
ence. The complexity of passive immunotherapy for the preven-
tion and treatment of COVID-19 is much more than meets the eye. 
The need for practical and timely interventions necessarily tends 
to shortcut this complexity, but any failure in outcomes must not 
dissuade the medical and scientific community from continuing to 
pursue the next level of design and experimentation, because there 
will always be a better way. For example, the conjoined effects of 
immunotherapy and antiviral agents have considerable potential 
[282]. Passive immunotherapy should and will succeed for some 
patients. Rational approaches will emerge, as long as the clinical 
need for these products continues.
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