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ABSTRACT 
Relationship rice between with height can be described with scatter diagram. Scatter diagram can product the 
quadratic polynomial regression mod els and the qubic polynomial regression mode which possible. The quadratic 
polynomial regression model the best variable height and height2 significant. Then parameter in the quadratic 
polynomial regression model can be estimated with Bayesian INLA with Gaussian and Empirical Bayes Strategy 
compare CCD, GRID Strategy. The posterior marginal intercept β0, coefficient β1 and β2 with Gaussian method and 
different strategy product similar. The posterior marginal of random effects  the grid strategy different with CCD and 
empirical Bayes strategy. 
 
Keywords: Relationship, scatter diagram, quadratic polynomial regression models, Gaussian method, 
Empirical Bayes Strategy, CCD Strategy, Grid Strategy, marginal posterior and Bayesian INLA. 

 
1. INTRODUCTION 

Regression analysis is statistical model used to study 
the relationship between one dependent variable with 
more than one independent variable [1]. The 
construction of a regression model that is suitable for 
statistical data associated with a “scatter diagram” of the 
variable. One regression model that is widely used is 
study the relationship of independent variable with 
dependent variable in the form of polynomial functions 
is polynomial regression. 

The difficulty in the polynomial regression model is 
determining the degree of the polynomial model [2]. 
Determination of the degree of polynomial with the 
Bayesian approach has two choices. First determine the 
degree of polynomial which is a Bayes Factor and 
second the calculation of the posterior probability model 
using Bayesian Information Criterion by [3]. The 
method is used to compute the posterior distribution in 

the Bayesian model is the Markov Chain Monte Carlo. 
The Markov Chain Monte Carlo theory describes of the 
simulate data for several hours or days before 
convergence to the posterior distribution. If the model is 
more complex with many parameters, it will be difficult 
to determine the convergence and feasibility [4].  

In 2009, Rue is developed Integrated Nested Laplace 
Approximation (INLA) as instead Bayesian MCMC 
Methods.  INLA is approximate that has more speed and 
accuracy than MCMC [5]. Polynomial Regression has 
not been studied in more detail using the INLA 
approximation, so this study will discuss the use of 
INLA in polynomial regression in the relationship of 
height between with rice obtained. Based on the 
research background the issues that will be  raised in 
this study are the following: 1) how to scatter diagram 
on data and determine polynomial regression model 
possible, 2) how the z parameterization  of a polynomial 
regression  model with Gaussian method which might 
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use the grid strategy, 3) how the z parameterization of a 
polynomial regression model with Gaussian methods  
which might use the CCD strategy, 4) how the z 
parameterization  of a polynomial regression  model 
with Gaussian methods which might use the empirical 
Bayes strategy. 

 

2. STUDY LITERATURE 

2.1 Polynomial Regression 

 If Y is response variable and x variable 
independent, then polynomial regression model with 
degree j (Mj)  is 

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝛽j𝑥j + 𝜀, 0 < 𝑗 ≤ 𝑑         (1)                                            

There are two ways in choose degree j in model 

a) Keep adding model until the added model is not 
significant variable 

b) Star model with the highest degree the eliminate 
variable not significant [6] 

2.2   The Integrated Nested Laplace 
Approximation. 

     Compute the parameter-parameter joint posterior 
distribution for model with Bayesian is used Markov 
Chain Monte Carlo is ran too long for more the complex 
model and many parameters [7]. In 2009, Rue proposes 
a way of approximation the marginal distribution. This 
compute the marginal distribution faster because is used 
numerical integration method [5]. 

2.3 Compute Bayesian INLA 

If is use the Latent Gaussian Model in compute 
Bayesian INLA necessary the posterior marginal for 
latent parameter θ and hyperparameter ψ follows: 

𝑝(𝜃i|𝑦) = ∫𝑝(𝜃i |Ψ,𝑦) 𝑝(Ψ|𝑦) 𝑑Ψ  𝑖 = 1,2, . . , 𝑛d             (2)                                                          

and    

𝑝(Ψj |𝑦) = ∫𝑝(Ψ|𝑦) 𝑑Ψ-j    j=1,2,…,s                          (3)                                                                                                                                                                                          

Equation (3) is not solution analytic then the posterior 
marginal for latent parameter θ with approximation: 

�̂�(𝜃i|𝑦) = ∫�̂�(𝜃i |Ψ, 𝑦) �̂�(Ψ|𝑦) 𝑑Ψ 𝑖 = 1,2, . . , 𝑛d             (4) 

Equation (4) is not solution analytic then the posterior 
marginal for hyperparameter Ψ with approximation: 

�̂�(Ψj|𝑦) = ∫�̂�(Ψ|𝑦) 𝑑Ψ-j             𝑗 = 1,2, …, 𝑠             (5) 

                                                                 

2.5. Approximation 𝑃(𝑥i|Ψ,𝑦)           

The approximation to the marginals of the 
hyperparameters can be determined by marginalizing 
over  above to obtain . The 
approximation to the marginal of the latent effects 
require integrating the hyperparameters out and 
marginalizing over the latent effects. 

 

2.6 Approximation 𝑃(Ψ|𝑦)    

Rue et all [5] propose two different exploration schemes 
which requiring a reparameterization the Ψ   space of 
several steps.   

a) Compute mode 𝑝(Ψ|𝑦) is obstained by maximize 
log 𝑝(Ψ|𝑦) on Ψ through Newton-Raphson 
Method. 

b) Compute the negative Hessian H matrix on mode. 

c) Compute the eigenvalue decomposition 𝐻-1 =𝑉Λ𝑉T  

d) With application the eigenvalue decomposition for 
each value of the hyperparameter Ψ can 
reparameterization z so that Ψ(𝑧) = Ψ∗ + 𝑉Λ1/2𝑧  
[8] 

       Log 𝑝(Ψ|𝑦) is explored using the z in three different 
schemes depending on the number of hyperparameters 
and required a reparameterization of Ψ space to make 
the density more regular [2] 

i) Using s regular grid on step h centered on the mode 
z=0 and points in the grid are considered if           
𝑙𝑜𝑔 𝑝(Ψ(0)|𝑦) − log 𝑝(Ψ(z)|𝑦) | < 𝛿 where 𝛿 a given 
threshold. Working in along the axis in the z 
parameterization and all intermediate points that 
fulfill the previous condition are added. This will 
provide a set of configuration of the 
hyperparameters about the posterior mode that can 
be used in the numerical integration in popular the 
grid strategy. 

ii) With CCD (central composite design) by [9] 
centered at Ψ(0) can be used so that a few 
strategically placed points are obtained. This can be 
more efficient that the grid strategy as the high 
dimension of the hyperparameter. The CCD strategy, 
a number of points that fill the space are chosen 
using a response surface design. Rue et al. [5], this 
CCD strategy worked well in many cases. 

iii) Empiral Bayes strategy used the large number of 
hyperparameters that will plug the posterior mode of 
Ψ|𝑦. The strategy will work when the variability in 
the hyperparameters does not impact the posterior of 
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the latent effects x. This strategy of plugin 
estimators can be used to fit high parameters model 
and they can provide good strategy in a number 
scheme.  

2.7 Prior in INLA 

 Prior in Bayesian is use definition which is very 
carefully and describe in more detail. If not prior 
distribution a parameter use the default prior. Prior-prior 
in INLA are set in the internal representation of the 
parameter, which have the different scale of the 
parameter in the model [2]. 

 

3. RESULT AND DISCUSSION 

3.1 The Quadratic Polynomial Regression 
Model Bayesian INLA 

3.1.1. Data and scatter diagram 

Table 1. Data about height (cm) and rice (ton/ha) 

Data 
Rice 

height city D 

8.45       114      Luwu Timur    12996        1 
8.72       115      Luwu Timur    13225        1 
7.97       108      Luwu Timur    11664        1 
8.62       114      Luwu Timur    12996        1 
8.77       110      Luwu Timur    12100        1 
8.92       115      Luwu Timur    13225        1 
7.81          115      Luwu Timur    13225        1 
8.55      113      Luwu Timur    12769        1 
7.73      109      Luwu Timur    11881        1 
8.36      109      Luwu Timur    11881        1 
8.79      104      Luwu Timur    10816        1 
8.63      101        Luwu Timur     10201        1 
8.1      112     Pinrang     12544        0 
8.71      113     Pinrang     12769        0 
8.6      109     Pinrang          11881        0 
8.45      114     Pinrang     12996        0 
8.11      110     Pinrang     12100        0 
8.73      113     Pinrang     12769        0 
9.7           116     Pinrang     13456       0 
9.92      115     Pinrang     13225        0 
7.35      112     Pinrang     12544        0 
7.13      109     Pinrang     11881        0 
9.13      104     Pinrang     10816        0 
8.52      103       Pinrang     10609       0 

      

Scatter diagram between tree height (cm) with the 
rice weight (ton/ha) on figure 1. 

  

Figure 1. Scatter diagram between tree height (cm) with 
the rice weight (ton/ha) 

After plotting data will produce scatter diagram on 
figure 1. From identification on figure 1. 

a) Predict the quadratic polynomial regression model 
with form 𝑟𝑖𝑐𝑒i = 𝛽0 + 𝛽1ℎ𝑒𝑔ℎ𝑡i + 𝛽2ℎ𝑒𝑔ℎ𝑡i

2 + 𝜀i  

b) Predict the qubic polynomial regression model 
with form  

𝑟𝑖𝑐𝑒i = 𝛽0 + 𝛽1ℎ𝑒𝑔ℎ𝑡i + 𝛽2ℎ𝑒𝑔ℎ𝑡i
2 + 𝛽3ℎ𝑒𝑔ℎ𝑡i

3 + 𝜀i 

 

3.1.2. The quadratic polynomial regression 
model  

Then quadratic polynomial regression model with 
equation rice = 235.285 - 4.190102 height + 0.019316 
height2 with two independent varible significant. 

Call: 

lm (formula = rice ~ height + height2 , data = datapol) 

Residuals: 

     Min           1Q            Median          3Q          Max  
-1.07345   -0.20009       -0.01153      0.31008   1.03655  
 

Coefficients:  

                        Estimate   Std. Error   t value    Pr(>|t|)    

(Intercept)   235.285499  77.478688  3.037   0.00627 ** 

height             -4.190102   1.422944 -2.945   0.00774 ** 

             0.019316   0.006525  2.960   0.00747 ** 

Signif.codes: 0‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.5518 on 21 degrees of 
freedom 

Multiple R-squared:0.3095, Adjusted R-squared:  
0.2437  
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F-statistic: 4.706 on 2 and 21 DF, p-value: 0.02047 

Value Pr(>|t|) =0.00774 <  for height and    
Pr(>|t|) = 0.00774 <  for  means the 
height and  variable significant the impact height 
tree to rice. 

 

3.1.3. The qubic polynomial regression model  

After the height and height2 variable significant is try 
the qubic polynomial regression model. 

Then qubic polynomial   regresion model with equation 
rice = -3447 + 97.54 height - 0.9166 height2  + 0.002867 
height3 with height, height2, height3, variable not 
significant. 

Call: 

lm (formula = rice ~ height + height2 + height3, data = 
datapol) 

Residuals: 

     Min       1Q          Median       3Q          Max  
-1.15569 -0.24376   0.01995   0.30447   0.95431  

Coefficients: 

                        Estimate     Std. Error   t value   Pr(>|t|) 

(Intercept)     -3.447e+03   2.272e+03  -1.517    0.145  

height             9.754e+01   6.277e+01   1.554    0.136 

height2           -9.166e-01    5.773e-01  -1.588    0.128 

height3             2.867e-03   1.768e-03   1.621     0.121 

Residual standard error: 0.5316 on 20 degrees of 
freedom 

Multiple R-squared:  0.3897, Adjusted R-squared:  
0.2982  

F-statistic: 4.257 on 3 and 20 DF,  p-value: 0.01767 

Because height, height2, height3, varible not significant 
choose the quadratic polynomial Regression model [6]. 

Then compute Bayesian inla quadratic polynomial 
regression model with the Gaussian method and the 
empirical Bayesian, CCD and Grid strategy for 
compare. 

3.1.4.  The Bayesian INLA quadratic polynomial 
regression model with the Gaussian methods and 
the empirical Bayesian strategy 

Call: 

c("inla(formula = formula, family = \"gaussian\", data = 
datapol, ", " control.inla =list(strategy = \"gaussian\", 
int.strategy = \"eb\"))" )  

Time used: 

Pre =1.03, Running = 0.166, Post = 0.0613, Total = 1.26  

Fixed effects: 

 
                                 

                                                mean        sd        0.025quant       0.5quant       0.975quant      mode      kld 

                (Intercept)            234.868   73.915        89.749            234.866           379.867     234.868       0 

                 height                     -4.182     1.357         -6.848              -4.182             -1.519        -4.182       0  

                 height2                     0.019     0.006          0.007                0.019              0.031         0.019       0 

The model has no random effects 

Model hyperparameters: 

                                                mean          sd      0.025quant         0.5quant       0.975quant      mode 

                Precision for             3.59        1.06          1.88                  3.47               6.00              3.24 

 

 

Expected number of effective parameters (stdev): 
3.00(0.00) 

Number of equivalent replicates: 8.00  

The posterior distribution contains:  mean posterior and 
95% interval credibel which can be used as Bayesian 
instead. Mean posterior from parameter β1  is -4.182 and 
95% interval credible is [-6.848, -1.519]  and mean 
posterior from parameter β1 is 0.019 and 95 % interval 
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credible is [0.007, 0.031]  with height probability.  The 
kld=0 (small value) is a diagnostic that measures the 
accuracy of the INLA approximation a good. 

Expected number of effective parameters (standard 
deviation), which can be used a measure of the 
complexity of the model and number of equivalent 
replicates which is number of observations divided by 
the effective number of parameters. The average 
number of observations available to estimate each 
parameter in the model and higher values are better [2].   

Marginal log-Likelihood -44.08 

  Three posterior densities of the parameters and one 
hyperparameter are using the integration Gaussian and 
the empirical Bayes strategy in Figure 2-4.  

 
Figure 2. Posterior marginal of the intercept β0 with 
INLA 

 

Figure 3. Posterior marginal of the coefficient β1 with 
INLA 

 

Figure 4. Posterior marginal of the coefficient β2 with 
INLA 

 

Figure 4. Posterior marginal of the precisien of the 

random effects  with INLA 

 

3.1.5. The Bayesian INLA quadratic  polynomial  
regression model with the  Gaussian methods 
and the central composite design(CCD) strategy 

c("inla(formula = formula, family = \"gaussian\", data = 
datapol, ", " control.inla = list(strategy = \"gaussian\", 
int.strategy = \"ccd\"))" )  

Time used: 

Pre=1.3, Running =0.481, Post =0.0628, Total =1.84  

 

Fixed effects: 

                                         mean               sd            0.025quant           0.5quant        0.975quant        mode       kld 

           (Intercept)          234.844          75.351           85.985               234.855            383.411        234.882      0 

           height                   -4.182            1.384            -6.914                 -4.182               -1.452          -4.183       0 

           height2                   0.019             0.006             0.007                  0.019                 0.032           0.019       0 

 

 

 

The posterior distribution contains:  mean posterior and 
95% interval credibel which can be used as Bayesian 
instead. Mean posterior from parameter β1 is -4.182 and 
95 % interval credible is [-6.914, -1.452] and mean 
posterior from paramater β2 is 0.019 and 95 % interval 
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credible is [0.007, 0.032] with hight probability.  The 
kld = 0 (small value) is a diagnostic that measures the 

accuracy of the INLA approximation a good. 

 

The model has no random effects: 

Model hyperparameters: 

                                                                            mean      sd    0.025quant    0.5quant    0.975quant     mode 

Precision for the Gaussian observations              3.59     1.06       1.88              3.47            6.00             3.24 

 

Expected number of effective parameters (stdev): 3.00 
(0.001) 

Number of equivalent replicates: 8.00  

Marginal log-Likelihood:  -44.08  

Expected number of effective parameters (standard 
deviation), which can be used a measure of the 
complexity of the model and number of equivalent 
replicates which is number of observations divided by 
the effective number of parameters. The average 
number of observations available to estimate each 
parameter in the model and higher values are better [2].   

Three posterior densities of the parameters β0, β1, β2 

and hyperparameter  are using the integration Gaussian 
and the CCD strategy in Figure 5-8. 

 
Figure 5. Posterior marginal of the intercept β0 with 
INLA 

 

 
Figure 6. Posterior marginal of the coefficient β1 with 
INLA 

 
Figure 7. Posterior marginal of the coefficient β2 with 
INLA 

Figure 8. Posterior marginal of the precision of the 

random effects   with INLA 
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3.1.6. The Bayesian INLA quadratic polynomial 
regression model with the Gaussian methods and 
the grid strategy 

Call:c("inla(formula = formula, family = \"gaussian\", 
data = datapol, ", " control.inla = list(strategy = 
\"gaussian\", int.strategy = \"grid\"))" )  

Time used:  Pre = 1.17, Running = 0.148, Post = 0.0592, 
Total = 1.37  

 

Fixed effects: 

                                mean          sd       0.025quant      0.5quant      0.975quant       mode      kld 

(Intercept)             234.832    77.013       82.253          234.849         387.214       234.887      0       -  

height                        4.182      1.414        -6.982            -4.182            -1.381         -4.183       0 

height2                      0.019       0.006         0.006             0.019              0.032          0.019       0 

The model has no random effects 

Model hyperparameters: 

                                   mean         sd      0.025quant      0.5quant     0.975quant        mode 

Precision for               3.60         1.06          1.83               3.49              5.95              3.29 

 

the Gaussian observations 

Expected number of effective parameters(stdev): 
3.00(0.001) 

Number of equivalent re  plicates: 8.00  

Marginal log-Likelihood:  -44.08  

Three densities of the parameters intercept β0, 

coefficient β1 and β2 and hyperparameter  using the 
integration Gaussian and the grid strategy in Figure 9-
12. 

Figure 9. Posterior marginal of the intercept β0 with 
INLA 

 

 

Figure 10. Posterior marginal of the coefficient β1 with 
INLA 

 

 

Figure 11. Posterior marginal of the coefficient β2 with 
INLA 
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Figure 12. Posterior marginal of the precision of the 

random effects  with INLA 

 

The estimates of the posterior marginal intercept β0, 
coefficient β1 and β2 with Gaussian method and 
different strategy produce similar. The estimates of the 
posterior of random effects the grid strategy different 
with CCD and empirical Bayes strategy.  

 

4. CONCLUSION 

Based problem formulation and  discussion can  be 
conclusion .Scatter diagram on  data  obstained two  
polynomial regression model possible  with least square 
method.The quadratic polynomial regression model is  
model with height  variable and height2 significan. 
Posterior marginal Then quadratic Polynomial 
Regression Model via Bayesian INLA with hight 
probability is height and heighti

2. The posterior marginal 
intercept β0, coefficient β1, β2, and β3 with Gaussian 
method and different strategy produce similar. The 

estimates of the posterior of random effects  the grid 
strategy different with CCD and empirical Bayes 
strategy. 
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