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ABSTRACT 

In this article, we study linear codes with complementary dual (LCD codes) over the ring 𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣
2𝔽𝑞 + ⋯+

𝑣𝑚−1𝔽𝑞, where 𝑞 = 𝑝𝑠; p is an odd prime, 𝑠 is a positive integer, and 𝑣𝑚 = 𝑣; which generalize the observation of

Melakhessou et al. (2018). We give necessary and sufficient conditions on the existence of LCD codes and present a 

method of construction of LCD codes from a combinatorial object, namely from weighing matrices. Several concrete 

examples are also provided. 
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1. INTRODUCTION

"When introducing the dual code 𝐶⊥ of a linear code

𝐶 in his excellent textbook on coding theory [1], van Lint 

is quick to warn the reader to 'be careful not think of 𝐶⊥

as an orthogonal complement in the sense of vector 

spaces over ℝ.  In the case of a finite field 𝔽𝑞 , the

subspace 𝐶 and 𝐶⊥ can have an intersection larger than

{𝟎} and in fact they can even be equal' [[1],p.34]. The 

purpose of this paper is to explore the fate that awaits one 

who, daring to ignore this savage advice, chooses to 

consider only those linear codes 𝐶  for which the dual 

code 𝐶⊥  can be thought of as a genuine orthogonal

complement, i.e., for which 𝐶 ∩ 𝐶⊥ = {𝟎}."([2],p. 337)

The above quotation from Massey shows that in the 

beginning the motivation to investigate the linear codes 

with a complementary dual or linear complementary dual 

code (LCD codes for short) is purely algebraic in general 

[3-6]. However, since the last five years the LCD codes 

become a very active research area since their application 

to cryptography, in particular to protect an information 

against so-called "side-channel attacks (SCA)" or "fault 

non-invasive attacks", as shown by Carlet and Guilley 

[7]. 

LCD codes were first considered by Massey [2] over 

a finite field 𝔽𝑞 , where 𝑞 is a prime power. It is well-

known that a finite field is a special commutative finite 

ring. Recently Melakhessou et al. [3] generalized it by 

considering LCD codes over a finite non-chain ring 𝔽𝑞 +

𝑣𝔽𝑞 + 𝑣
2𝔽𝑞 , where 𝑣3 = 𝑣 . Our aim is to further

generalize the study of Melakhessou et al. [3], namely to 

study the LCD codes over the ring 𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣
2𝔽𝑞 +

⋯+ 𝑣𝑚−1𝔽𝑞 , where  𝑞 =  𝑝𝑠 , 𝑝  is odd prime, 𝑠  is a

positive integer, and 𝑣𝑚  =  𝑣.

The paper is organized as follows. Section 2 recalls 

some preliminary results on the structure of 𝔽𝑞 + 𝑣𝔽𝑞 +

𝑣2𝔽𝑞 +⋯+ 𝑣
𝑚−1𝔽𝑞  and introduced the Gray map. In

Section 3 we present some results of linear codes and the 

relation between the dual and Gray image of codes. 

Section 4 considers LCD codes over 𝔽𝑞 + 𝑣𝔽𝑞 +

𝑣2𝔽𝑞 +⋯+ 𝑣
𝑚−1𝔽𝑞 . Necessary and sufficient

conditions on the existence of LCD codes over 𝔽𝑞 +

𝑣𝔽𝑞 + 𝑣
2𝔽𝑞 +⋯+ 𝑣

𝑚−1𝔽𝑞  are given, and LCD codes

are constructed from a combinatorial object, in this case 

is a weighing matrix.  Several concrete examples of LCD 

codes over certain finite fields constructed from weighing 

matrices are provided in the last subsection.  

2. PRELIMINARIES

From now on, 𝑹  denotes the finite non-chain ring

𝔽𝑞 + 𝑣𝔽𝑞 + 𝑣
2𝔽𝑞 +⋯+ 𝑣

𝑚−1𝔽𝑞, where 𝑞 = 𝑝𝑠, 𝑠 is a

positive integer, 𝑝 is an odd prime, and 𝑣𝑚 = 𝑣. The ring

𝑹 is equivalent to the ring 
𝔽𝑞[𝑣]

〈𝑣𝑚−𝑣〉
. 
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Since 𝑝  is prime, 𝑞 = 𝑝𝑠  and (𝑚 − 1)|(𝑝 − 1) , it 

follows that 𝑣𝑚 − 𝑣 = 𝑣(𝑣 − 𝑣1)(𝑣 − 𝑣2)… (𝑣 −
𝑣𝑚−1) with all 𝑣𝑖 ’s in 𝔽𝑝 . For 𝑎, 𝑏 ∈ ℤ≥0, with 𝑎 < 𝑏, 

let [𝑎, 𝑏] ≔ {𝑎, 𝑎 + 1, 𝑎 + 2,… , 𝑏 − 1, 𝑏} . Let 𝑓𝑖 = 𝑣 −

𝑣𝑖 and 𝑓𝑖̂ =
𝑣𝑚−𝑣

𝑓𝑖
, where 𝑖 ∈ [0,𝑚 − 1]. Then there exist 

𝑎𝑖 , 𝑏𝑖 ∈ 𝑹[𝑣]  such that 𝑎𝑖𝑓𝑖 + 𝑏𝑖𝑓𝑖̂ = 1 . Let 𝑒𝑖 = 𝑏𝑖𝑓𝑖̂ , 

then 𝑒𝑖
2 = 𝑒𝑖 , 𝑒𝑖𝑒𝑗 = 0  and ∑ 𝑒𝑖

𝑚−1
𝑖=0 = 1 , where 𝑖, 𝑗 ∈

[0,𝑚 − 1] and 𝑖 ≠ 𝑗. Therefore, 

𝑹 = 𝑒0𝑹⊕ 𝑒1𝑹⊕⋯⊕ 𝑒𝑚−1𝑹 

= 𝑒0𝔽𝑞⊕𝑒1𝔽𝑞⊕⋯⊕ 𝑒𝑚−1𝔽𝑞 

and 

𝑹 ≅
𝑹

〈𝑣〉
×

𝑹

〈𝑣 − 𝑣1〉
× ⋯×

𝑹

〈𝑣 − 𝑣𝑚−1 〉
 

≅ 𝔽𝑞 × 𝔽𝑞 ×⋯× 𝔽𝑞⏟            
𝒎

 

A code 𝒞  of length 𝑛  over 𝑹  is subset of 𝑹𝑛 . 𝒞  is 

linear if and only if 𝒞  is an 𝑹-submodule of 𝑹𝑛 .  An 

element of 𝒞 is called a codeword of 𝒞 and matrix whose 

generated code 𝒞 is a generator matrix. In this paper, we 

always assume that 𝒞 is a linear code of length 𝑛 over 𝑹. 

Generalizing [3], we define a Gray map as follows. 

Let 𝐺𝐿𝑚(𝔽𝑞) be the general linear group of degree 𝑚 

over 𝔽𝑞 . Let 𝑟 = 𝑒0𝑟0 + 𝑒1𝑟1 +⋯+ 𝑒𝑚−1𝑟𝑚−1 ∈ 𝑹, the 

element 𝑟 can be viewed as the vector of length 𝑚 over 

𝔽𝑞, that is 𝒓 = (𝑟0, 𝑟1, … , 𝑟𝑚−1). 

Define the Gray map 

𝜙 ∶ 𝑹 ⟶ 𝔽𝑞
𝑚 

𝒓 = (𝑟0, 𝑟1, … , 𝑟𝑚−1) ↦ (𝑟0, 𝑟1, … , 𝑟𝑚−1)𝑀 

for any matrix 𝑀 ∈ 𝐺𝐿𝑚(𝔽𝑞) . Similarly, the Gray 

map 𝜙 can be extended to the map Φ from 𝑹𝑛 to 𝔽𝑞
𝑚𝑛 

Φ ∶ 𝑹𝑛 ⟶ 𝔽𝑞
𝑚𝑛 

(𝑐0, 𝑐1, … , 𝑐𝑛−1) ↦ (𝑐0𝑀, 𝑐1𝑀,… , 𝑐𝑛−1𝑀). 

The Hamming weight 𝑊𝐻(𝒗)  of a vector 𝒗  is the 

number of nonzero components in 𝒗 . Let 𝒓 =
(𝑟0, 𝑟1, … , 𝑟𝑚−1) be an element of 𝑹. The Gray weight of 

𝒓, denoted by 𝑊𝐺(𝒓), is defined as the Hamming weight 

of the vector 𝒓𝑀, i.e. 𝑊𝐺(𝒓) = 𝑊𝐻(𝒓𝑀).  

For any vector 𝒄 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ 𝑹
𝑛 , the Gray 

weight of 𝒄 is defined as 

𝑊𝐺(𝑐) = ∑𝑊𝐺(𝑐𝑖)

𝑛−1

𝑖=0

. 

For any element 𝒄𝟏, 𝒄𝟐 ∈ 𝑹
𝑛 , the Gray distance 

between 𝒄𝟏 and 𝒄𝟐 is defined naturally by 𝑑𝐺(𝒄𝟏, 𝒄𝟐) =
𝑊𝐺(𝒄𝟏 − 𝒄𝟐). The minimum Gray weight of code 𝒞  is 

the smallest nonzero Gray weight among all codewords. 

If 𝒞 linear, then the minimum Gray distance is the same 

as the minimum Gray weight. 

3. BASIC PROPERTIES OF LINEAR CODE 

OVER 𝑹 

In this section, we present some basic results of linear 

codes over 𝑹 . By definition of a Gray weight and a 

linearity of Φ, it is easy to derive the following property.  

Lemma 1. If 𝒞 is a linear code of length 𝑛 over 𝑹, 

then its Gray image Φ(𝒞) is a linear code of length 𝑚𝑛 

over 𝔽𝑞 . Furthermore, the Gray map Φ is a distance-

preserving map from 𝒞 to Φ(𝒞). 

Proof. Similar to the proof of Lemma 1 in [3]. 

Let 𝒞 be a linear code of length 𝑛 over 𝑹. Define 

𝐶𝑖 = {𝐱𝑖 ∈ 𝔽𝑞
𝑛 ∶  ∃𝐱0, … , 𝐱𝑖−1, 𝐱𝑖+1, … , 𝐱𝑚−1 ∈ 𝔽𝑞

𝑛;  

𝑒0𝐱0 + 𝑒1𝐱1 +⋯+ 𝑒𝑚−1𝐱𝑚−1 ∈ 𝒞}. 

where 𝑖 ∈ [0,𝑚 − 1]ℤ . It is clear that for every 𝑖 ∈
[0,𝑚 − 1]ℤ, 𝐶𝑖  is a linear code over 𝔽𝑞

𝑛. 

Furthermore, we also have 

𝒞 = 𝑒0𝐶0⊕𝑒1𝐶1⊕⋯⊕ 𝑒𝑚−1𝐶𝑚−1. 

Let 𝒢 be a generator matrix of 𝒞 over 𝑹. For every 

𝑖 ∈ [0,𝑚 − 1]ℤ, since 𝐶𝑖 is a linear code over 𝔽𝑞 then the 

generator matrix 𝒢 can be expressed as 

            𝒢 = [

𝑒0𝐺0
𝑒1𝐺1
⋮

𝑒𝑚−1𝐺𝑚−1

]   (1) 

where 𝐺0, 𝐺1, … , 𝐺𝑚−1  are generator matrices of 

𝐶0, 𝐶1, … , 𝐶𝑚−1, respectively. 

Let 𝐱 = (𝑥0, 𝑥1, … , 𝑥𝑛−1)  and 𝐲 = (𝑦0, 𝑦1 , … , 𝑦𝑛−1) 
be any two elements of 𝑅𝑛. The inner product of 𝐱 and 𝐲 

is defined as 

𝐱 ⋅ 𝐲 = 𝐱𝐲𝑇 =∑𝑥𝑖𝑦𝑖

𝒏−𝟏

𝒊=𝟎

. 

The dual code 𝒞⊥ for code 𝒞 is defined as 

𝒞⊥ = {𝐱 ∈ 𝐑𝑛 ∶ 𝐱 ⋅ 𝐲 = 0, ∀𝐲 ∈ 𝒞}. 

If 𝒞 ⊆ 𝒞⊥, then 𝒞 is said to be a self-orthogonal code, 

and 𝒞  is said to be a self-dual code if 𝒞 = 𝒞⊥.  The 

following two propositions can be easily derived. 

Proposition 2. Let 𝒞 = 𝑒0𝐶0⊕𝑒1𝐶1⊕⋯⊕ 𝑒𝑚−1 

𝐶𝑚−1 be a linear code of length 𝑛 over 𝑹. Then 

𝒞⊥ = 𝑒0𝐶0
⊥⊕𝑒1𝐶1

⊥⊕⋯⊕ 𝑒𝑚−1𝐶𝑚−1
⊥ . 

Moreover, 𝒞 is a self-dual code over 𝑅 if and only if 

𝐶0, 𝐶1, … , 𝐶𝑚−1 are all self-dual codes over 𝔽𝑞 . 

Proposition 3. Let 𝑀 be an invertible matrix of size 

𝑚  over 𝔽𝑞 , 𝒞  is a linear code of length 𝑛  with the 

minimum Gray distance 𝑑𝐺  over 𝑹. If 𝒞  has generator 

matrix 𝒢  as (1)  and |𝒞| = 𝑝∑ 𝑘𝑖
𝑚−1
𝑖=0 ,  then Φ(𝒞)  is a 

Advances in Social Science, Education and Humanities Research, volume 550

79



  

 

[𝑚𝑛, ∑ 𝑘𝑖
𝑚−1
𝑖=0 , 𝑑𝐺] linear code over 𝔽𝑞 , where 𝑘𝑖 ’s are 

the respective dimensions of the 𝐶𝑖’s. 

The proposition below shows that the linearity of the 

code 𝒞 over the ring 𝑹 implies the linearity of the code 

over 𝔽𝑞 which is the Gray image of 𝒞. 

Proposition 4. Let 𝒞  be a linear code of length 𝑛 

over 𝑹. Let 𝑀 ∈ 𝐺𝐿𝑚(𝔽𝑞) and 𝑀𝑀𝑇 = 𝜆𝐼𝑚 , where 𝜆 ∈

𝔽𝑞 ∖ {0}, 𝐼𝑚 is the identity matrix of size 𝑚 over 𝔽𝑞 . If 𝒞 

is a self-dual, then Φ(𝒞) is a self-dual code of length 𝑚𝑛 

over 𝔽𝑞 . 

Proof. For any two elements 𝐜 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), 𝐝 =
(𝑑0, 𝑑1, … , 𝑑𝑛−1) ∈ Φ(𝒞), there exist two elements 𝐱 =
(𝑥0, 𝑥1, … , 𝑥𝑛−1), 𝐲 = (𝑦0 , 𝑦1, … , 𝑦𝑛−1) ∈ 𝒞 such that 

𝐜 = (𝑥0𝑀, 𝑥1𝑀,… , 𝑥𝑛−1𝑀) 

and 

𝐝 = (𝑦0𝑀, 𝑦1𝑀,… , 𝑦𝑛−1𝑀) 

Therefore, we have 

𝐜 ⋅ 𝐝 = 𝐜𝐝𝑇 

= (𝑥0𝑀, 𝑥1𝑀,… , 𝑥𝑛−1𝑀) ⋅ (𝑦0𝑀, 𝑦1𝑀,… , 𝑦𝑛−1𝑀) 

= ∑𝑥𝑖𝑀𝑀
𝑇𝑦𝑖

𝑇

𝑛−1

𝑖=0

 

Since 𝑀𝑀𝑇 = 𝜆𝐼𝑚 ,  we have 𝐜 ⋅ 𝐝 = 𝜆 ∑ 𝑥𝑖𝑦𝑖
𝑇𝑛−1

𝑖=0 .  If 
𝒞  is a self-dual code, then 𝐱 ⋅ 𝐲 = 𝜆 ∑ 𝑥𝑖𝑦𝑖

𝑇𝑛−1
𝑖=0 = 0 . 

Hence 𝐜 ⋅ 𝐝 = 0, then Φ(𝒞) is a self-dual code. 

Example 5. For 𝑞 = 11 and 𝑚 = 6, we take for 𝑀 

the block diagonal matrix of size 6 × 6 with three block 

equal to [
−1 −1
−1 1

]. In this case 𝜆 = 2. The generator 

matrix 𝒢 of the Gray image becomes 

Φ(𝒢) =

[
 
 
 
 
 
−𝐺0 −𝐺0 0 0 0 0
−𝐺1 𝐺1 0 0 0 0
0 0 −𝐺2 −𝐺2 0 0
0 0 −𝐺3 𝐺3 0 0
0 0 0 0 −𝐺4 −𝐺4
0 0 0 0 −𝐺5 𝐺5 ]

 
 
 
 
 

. 

 

4. LCD CODES OVER 𝑹 

A linear code with complementary dual (LCD) is 

defined as a linear code 𝒞 whose dual code 𝒞⊥ satisfies 

𝒞 ∩ 𝒞⊥ = {0}. 

LCD code have been shown to provide an optimum 

linear coding solution [2]. In this section we first show 

the existence of LCD codes over 𝑹. We then introduce a 

method to construct LCD codes over 𝑹 as well as LCD 

codes over 𝔽𝑞 from weighing matrices. 

 

 

4.1. Existence of LCD Codes over 𝑹 

For LCD codes over 𝑹, we have the following result. 

Theorem 6. A code 𝒞 = 𝑒0𝐶0⊕𝑒1𝐶1⊕⋯⊕ 𝑒𝑚−1 

𝐶𝑚−1 of length 𝑛 over 𝑹 is an LCD code if and only if 

𝐶0, 𝐶1, … , 𝐶𝑚−1 are LCD codes over 𝔽𝑞 . 

Proof. Let a linear code 𝒞 = 𝑒0𝐶0⊕𝑒1𝐶1⊕⋯⊕ 

𝑒𝑚−1𝐶𝑚−1  has dual code 𝒞⊥ = 𝑒0𝐶0
⊥⊕ 𝑒1𝐶1

⊥⊕⋯⊕ 

𝑒𝑚−1𝐶𝑚−1
⊥ . We have that  

𝒞 ∩ 𝒞⊥ = 𝑒0(𝒞0 ∩ 𝐶0
⊥) ⊕ 𝑒1(𝒞1 ∩ 𝐶1

⊥) ⊕⋯⊕
𝑒𝑚−1(𝒞𝑚−1 ∩ 𝐶𝑚−1

⊥ ).  

Due the direct sum we have 

𝒞 ∩ 𝒞⊥ = {0} ⟺ 𝐶 ∩ 𝐶𝑖
⊥ = {0}, 𝑖 ∈ [0,𝑚 − 1]ℤ 

Thus, 𝒞 is an LCD code over 𝑹 if and only if for all 

𝑖 ∈ [0,𝑚 − 1]ℤ,  𝐶𝑖 is an LCD code over 𝔽𝑞 . 

Theorem 7. If 𝐶 is an LCD code over 𝔽𝑞 , then 𝒞 =

𝑒0𝐶 ⊕ 𝑒1𝐶 ⊕⋯⊕ 𝑒𝑚−1𝐶 is an LCD code over 𝑹. If 𝒞 

is an LCD code of length 𝑛 over 𝑹, then Φ(𝒞) is an LCD 

code of length 𝑚𝑛 over 𝔽𝑞 . 

Proof. The first part is deduced from Theorem 6. From 

Proposition 4, we have that Φ(𝒞)  is a self-dual code. 

Since Φ is a bijective linear transformation and 𝒞 is an 

LCD code where 𝒞 ∩ 𝒞⊥ = {0},  the Φ(𝒞)  is an LCD 

code of length 𝑚𝑛 over 𝔽𝑞 . 

Next, we give a necessary and sufficient condition on 

the existence of LCD codes over 𝑹. First we require the 

following result due to Massey [2]. 

Proposition 8. If 𝐺 is a generator matrix for an [𝑛, 𝑘] 
linear code 𝐶 over 𝔽𝑞 , then 𝐶 is an LCD code if and only 

if the 𝑘 × 𝑘 matrix 𝐺𝐺𝑇 is nonsingular. 

Theorem 9. If 𝒢 is a generator matrix of linear code 

𝒞  over 𝑹, then 𝒞  is an LCD code if and only if 𝒢𝒢𝑇 is 

nonsingular. 

Proof. From Equation (1), the generator matrix of 𝒞 can 

be expressed as 

𝒢 = [

𝑒0𝐺0
𝑒1𝐺1
⋮

𝑒𝑚−1𝐺𝑚−1

] 

Since 𝑒𝑖 , 𝑖 ∈ [0,𝑚 − 1]ℤ are orthogonal idempotents, 

a simple calculation gives 

𝒢𝒢𝑇 = [

𝑒0𝐺0𝐺0
𝑇

0
⋮
0

0
𝑒1𝐺1𝐺1

𝑇

⋮
0

⋯
⋯
⋱
⋯

0
0
⋮

𝑒𝑚−1𝐺𝑚−1𝐺𝑚−1
𝑇

] 

From Proposition 8, a necessary and sufficient 

condition for a code over 𝔽𝑞 with generator matrix 𝐺𝑖 to 

be LCD is that 𝐺𝑖𝐺𝑖
𝑇  for 𝑖 ∈ [0,𝑚 − 1]ℤ be nonsingular. 

Thus, 𝒢𝒢𝑇 is nonsingular. 
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4.2. LCD Codes from Weighing Matrices 

In this subsection we construct LCD codes over 𝔽𝑞 

and over 𝑹 from weighing matrices. So, we start with the 

following definition. 

Definition 10. A weighing matrix 𝑊𝑛,𝑘  of order 𝑛 

and weight 𝑘 is an 𝑛 × 𝑛 (0,1, −1)-matrix such that 

𝑊𝑊𝑇 = 𝑘𝐼𝑛 

where 𝑘 ≤ 𝑛. A weighing matrix 𝑊𝑛,𝑛  and 𝑊𝑛.𝑛−1 is 

called a Hadamard matrix and conference matrix 

respectively. A matrix 𝑊 is symmetric if 𝑊 = 𝑊𝑇and 𝑊 

is skew-symmetric if 𝑊 = −𝑊𝑇 . 

Proposition 11. Let 𝑊𝑛,𝑘 be weighing matrix of order 

𝑛 and weight 𝑘. Then the followings hold. 

(i) Let 𝛼 be a nonzero element of 𝔽𝑞 , such that 𝛼2 +

𝑘 ≠ 0 mod 𝑞. Then the matrix 

𝐺 = [𝛼𝐼𝑛 | 𝑊𝑛,𝑘] 

generates a [2𝑛, 𝑛] LCD code over 𝔽𝑞 . 

(ii) Let 𝑊𝑛,𝑘 be a skew-symmetric of order 𝑛, 𝛼 and 

𝛽  nonzero elements of 𝔽𝑞 , such that 𝛼2 + 𝛽2 +

𝑘 ≠ 0 mod 𝑞. Then the matrix 

𝐺 = [𝛼𝐼𝑛 | 𝛽𝐼𝑛 +𝑊𝑛,𝑘] 

generates a [2𝑛, 𝑛] LCD code over 𝔽𝑞 . 

Proof. From Definition 10 and Proposition 8, then we 

sufficiently prove that 𝐺𝐺𝑇  is nonsingular.  

In the first case we have 

𝐺𝐺𝑇 = [𝛼𝐼𝑛 | 𝑊𝑛,𝑘] [
𝛼𝐼𝑛
𝑊𝑛,𝑘
𝑇 ] 

= [(𝛼2 + 𝑘)𝐼2𝑛] 

Since 𝛼2 + 𝑘 ≠ 0,  then 𝐺𝐺𝑇  is nonsingular. And for 

second case, we have 

𝐺𝐺𝑇 = [𝛼𝐼𝑛 | 𝛽𝐼𝑛 +𝑊𝑛,𝑘] [
𝛼𝐼𝑛

𝛽𝐼𝑛 +𝑊𝑛,𝑘
𝑇 ] 

= [(𝛼2 + 𝛽2 + 𝑘)𝐼2𝑛] 

Since 𝛼2 + 𝛽2 + 𝑘 ≠ 0, then 𝐺𝐺𝑇 is nonsingular. 

Thus, a matrix 𝐺  is a generator matrix of a [2𝑛, 𝑛] 
LCD code over 𝔽𝑞. 

Theorem 12. Under the condition of Proposition 11, 

the matrix 

𝒢 = [

𝑒0𝐺
𝑒1𝐺
⋮

𝑒𝑚−1𝐺

] 

is a generator matrix of a [2𝑛, 𝑛] LCD code over 𝑹. 
 

Proof. The result follows from Proposition 11 and 

Theorem 9. 
 

4.3. Some Example 

In this subsection we provide several examples of 

LCD codes over certain finite fields constructed from 

weighing matrix. 

Example 13. Let 𝑞 = 3, 𝑛 = 4, 𝑘 = 3, and 𝛼 = 2 so 

that 𝛼2 + 3 ≠ 0 mod 3. Then for the weighing matrix 

given by 

𝑊4,3 = [

1
1
1
0

−1
1
0
−1

−1
0
1
1

0
1
−1
1

] 

Thus, 𝐺 = [2𝐼4 | 𝑊4,3]  generates a [8,4]  LCD code 

over 𝔽3 by Proposition 11 (i). 

Example 14. Let 𝑞 = 11, 𝑛 = 10, 𝑘 = 9, and 𝛼 = 4 

so that 𝛼2 + 9 ≠ 0  mod 11 . Then for the weighing 

matrix given by 

𝑊10,9 =

[
 
 
 
 
 
 
 
 
 
0 1 1 1 1 1 1 −1 −1 −1
1 0 1 1 1 −1 −1 −1 1 1
1 1 0 1 −1 1 −1 1 −1 1
1 1 1 0 −1 −1 1 1 1 −1
1 1 −1 −1 0 1 1 −1 1 1
1 −1 1 −1 1 0 1 1 −1 1
1 −1 −1 1 1 1 0 1 1 −1
−1 −1 1 1 −1 1 1 0 1 1
−1 1 −1 1 1 −1 1 1 0 1
−1 1 1 −1 1 1 −1 1 1 0 ]

 
 
 
 
 
 
 
 
 

 

Thus, 𝐺 = [4𝐼10 | 𝑊10,9]  generates a [20,10]  LCD 

code over 𝔽11 by Proposition 11 (i). 

Example 15. Let 𝑞 = 7, 𝑛 = 8, 𝑘 = 5, 𝛼 = 4  and 

𝛽 = 2  so that 𝛼2 + 𝛽2 + 5 ≠ 0  mod 7 . Then for the 

weighing matrix given by 

𝑊8,5 =

[
 
 
 
 
 
 
 
0 1 1 0 1 0 1 1
−1 0 0 −1 0 −1 −1 1
−1 0 0 1 1 1 −1 0
0 1 −1 0 1 −1 0 −1
−1 0 −1 −1 0 1 1 0
0 1 −1 1 −1 0 0 1
−1 1 1 0 −1 0 0 −1
−1 −1 0 1 0 −1 1 0 ]

 
 
 
 
 
 
 

 

Thus, 𝐺 = [4𝐼8 |2𝐼8 +  𝑊8,5]  generates a [16,8] 

LCD code over 𝔽7 by Proposition 11 (ii). 

Example 16. Let 𝑹 = 𝔽3 + 𝑣𝔽3 + 𝑣
2𝔽3 + 𝑣

3𝔽3 , 

with 𝑣4 = 𝑣 . From Example 13 we can construct 

generator matrix 

𝒢 = [

𝑒0𝐺
𝑒1𝐺
𝑒2𝐺
𝑒3𝐺

] 

where 𝑒𝑖 , 𝑖 ∈ [0,3] are orthogonal idempotent elements 

in 𝑹  and 𝐺 = [2𝐼4 | 𝑊4,3] . Thus, 𝒢  generates a [8,4] 

LCD code over 𝑹. 
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5. CONCLUSION 

In this article, we investigate linear codes with 

complementary dual (LCD codes) over the ring 𝑹 =
𝔽𝒒 + 𝒗𝔽𝒒 + 𝒗

𝟐𝔽𝒒 +⋯+ 𝒗
𝒎−𝟏𝔽𝒒 , where 𝑞 = 𝑝𝑠 ; 𝑝  is 

odd prime, 𝒔  is positive integer, and 𝒗𝒎 = 𝒗 . We 

describe the conditions on the existence of LCD codes 

and present construction of LCD codes over ring 𝑹 from 

weighing matrices. Further, it should be possible to 

obtain a linear programming bound for codes over 𝑹. 
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