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ABSTRACT 

In mathematics and mathematics education, ranges of application are sometimes generalized. This article studies the 

generalization of the concept on internally dividing points. The ratios of internally dividing points are usually considered 

in real numbers since the real numbers are naturally corresponding to the length of line segments. The aim of this article 

is to extend the range of such ratios into the complex numbers. After defining the complex-valued ratio, we shall apply 

it to the generalization of Menelaus’ theorem which is famous in elementary geometry. 

Keywords: Line segment, Menelaus’ theorem. 

1. INTRODUCTION

When we were pupils of elementary schools, the 

concept of partition of a line segment was taught with the 

internal ratio – for example, divide a line segment at ratio 

of 1:2 or 3:4. It sounds funny if one says “divide a line 

segment at ratio of ii 1: ”, where i  denotes the well-

known imaginary unit. Which point should be pointed 

out? To be honest, does it make a sense when the concept 

of the ratio is extended into complex numbers? The aim 

of this article is to introduce a definition of complex-

valued internal ratios in reasonable way. 

We know that the extension of the number field was 

often conducted in the educational process. Looking back 

our educational career, we know that, in the lower course 

of elementary schools, multiplication of natural numbers 

is instructed. In the middle course, a number 0 is included 

in the multiplication, and, in the upper course, positive 

fractional numbers are considered. After the enrollment 

in junior high school, the computation treats not only 

negative quotient numbers but also whole real numbers, 

in the style of instructing to our intuition. In senior high 

school, it is extended further into the complex numbers. 

Such extension of number field is not conducted only in 

the case of four arithmetic operations. Recalling the 

exponential function learned in junior and senior high 

schools, we remember that its domain is considered 

firstly in natural numbers. After that, it is extended into 

integers, quotient numbers and real numbers, of course, 

without rigorous definition. Finally most students of 

science are impressed, in the under-graduate course of 

universities, to see that the domain of the exponential 

function can be extended into the complex numbers and 

to know that there is an attractive relation among 0, 1, 

and e , i.e., 01ie
 found by Euler. 

As we see above, the extension of number field is 

found to be performed in the categories of algebra and 

calculus. Then it is natural to think about such extension 

in geometry. Following this motivation, we focus on the 

inertial ratio of a line segment. When one says “find a 

point internally dividing a line segment AB at ratio of 

2:1”, we will easily answer to this question by saying “it 

is a point C on the line segment AB, which possesses the 

ratio of line segments AC and CB as 2:1”. Why is it 

possible to find a correct answer? That is because “the 

length” of the line segments has so much to do with the 

ratio when it consists of a pair of real numbers.  

Then, what if one says “find a point internally 

dividing AB at ratio of ii 1: ”? If we were 

conservative and fixed our mindset such as the ratio must 

be related with the length of segments, this question 

would sound so meaningless. Of course, it is difficult to 

find out any line segments of i [m] and 1+i [m] long on 

AB. There is no line segment of imaginary-number-

valued length. Nevertheless, in this article, we will 
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somehow try to define an internally dividing point at ratio 

of complex numbers. Our extension of the concept on the 

ratio is based on the career we have obtained in 

mathematics education. – Mathematics sometimes breaks 

our fixed concept by applying “the properties” of 

numbers in surprising way. 

Taking the exponential function as an example, we 

shall explain what the final sentence in the former 

paragraph means. We have the typical properties called 

the exponential law such that  

nmnm eee  ,  
mnnm ee )(

 (1.1) 

The proof of the above properties is easy if m and n 

are natural numbers. In high school mathematics, we 

assume that the property (1.1) still holds for integers m 

and n, and we find that the definitions such as 𝑒0 = 1, 

𝑒−𝑚 = 1/𝑒𝑚 are reasonable. Besides, by assuming that 

(1.1) holds for quotient numbers m and n, we see that the 

definition such as 𝑒𝑚/𝑛 = √𝑒𝑚𝑛
 is reasonable. Applying 

the completeness of real numbers, we can define the 

exponential function for all real numbers. Remark that, 

for real number x, the function 𝑒𝑥  is represented by 

Taylor series, i.e., 

 32

!3

1

!2

1

!1

1
1 xxxe x

.  (1.2) 

The property (1.2) allows us to substitute a complex 

number in to x. – The convergence of the series in (1.2) 

follows from the completeness of complex numbers. In 

such a way, the exponential function is defined for all 

complex numbers, despite it is meaningless if one tries to 

count e’s complex-valued times. We want the readers to 

see that the properties like (1.1) and (1.2) contribute to 

extending the domain of the exponential function.  

Turning back to our interest, we notice, from the 

above survey on the exponential function, that certain 

property on internally dividing points is expected to 

provide the way of defining the complex-valued ratio. In 

fact, we will apply a formula on the representation of 

internally dividing points. When two points A(a) and 

B(b) are given on the number line, and when they locate 

at the ends of a line segment, how is the internally 

dividing point of AB at ratio of m : n described? This 

problem is easy to be solved. Everyone knows that  

nm

mbna
c




  (1.3) 

provides the desired point. We will apply the property 

(1.3) to the extension of the ratio into the complex-valued 

one. See Definition 2.1. Other details are described in 

section 2. 

As a mathematical application of this extended 

inertial ratio, a variant of famous Menelaus’ theorem in 

the elementary geometry will be considered. Set a 

triangle ABC on a plane. There are three points D, E and 

F which internally divide BC, CA and AB (resp.) at ratio 

of 𝑠: (1 − 𝑠) , 𝑡: (1 − 𝑡)  and 𝑢: (1 − 𝑢)  (resp.). – The 

description such as 𝑠: (1 − 𝑠) for the ratio is convenient 

since it stands for the externally dividing ratio if 𝑠 < 0 or 

1 < 𝑠, as well as for the normal internally dividing ratio 

if 0 < 𝑠 < 1. Then Menelaus’ theorem tells us that the 

points D, E and F lie on one straight line if and only if  

1
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s
. (1.4) 

In section 3, we shall study the extension of the real 

numbers s, t and u of (1.4) into some complex numbers λ, 

μ and ν (resp.). We proved that the necessary and 

sufficient condition of collinear D, E, F for any triangle 

ABC is  

1
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  (1.5) 

and, in addition,  


 


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



1
,

1
,

1
R.  (1.6) 

(See Theorem 3.1.) The presence of (1.6) is 

remarkable. It is meaningless if λ, μ and ν are real. 

However, once we use complex ratio, the additional 

condition (1.6) is inevitable. Under the absence of (1.6), 

Theorem 3.1 fails. (See Fig.3.2.)  

The generalization of Menelaus’ theorem has been 

conducted in several directions. In [3], a variant of 

Menelaus’ theorem is considered for triangles on a sphere. 

If one does not want to stick to triangles, refer to [2]. – It 

generalizes Menelaus’ theorem for n-gons. Furthermore, 

there is no need to restrict the number of dividing points 

into 3. In [1], generalized Menelaus’ theorem is 

considered for 6 dividing points. As far as the authors are 

concerned, the complex-valued ratios have not been 

treated for the generalization of Menelaus’ theorem. 

Therefore Theorem 3.1 seems to be new. 

2. DEFINITION OF COMPLEX-VALUED 

RATIO 

We proceed in heuristic way. We have already 

learned how to compute the dividing point on a line 

segment. Let A and B be the end points of a line segment 

lying on the x -axis. The coordinates of A and B are 

ax   and bx   respectively. A point denoted by C (

cx  ) divides the line segment AB at ratio of nm : , 

where m  and n  are positive real numbers at present. 

Then it is well-known that the coordinate c  is computed 

by  

nm

mbna
c




  
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Our idea to extend the number field for m  and n  is 

just substituting complex numbers in the above 

expression. However, in that process, the value of c  

becomes a complex number in general, and it goes away 

from the x -axis. Thus we need putting the line segment 

in the complex plane, and also regarding the end points 

A and B as points in that complex plane : treat the 

coordinates a  and b  as complex numbers. Now we are 

ready for defining the complex-valued inertial ratio of a 

line segment.  

Definition 2.1 (Complex-valued inertial ratio of a line 

segment) 

Let A ( ) and B (  ) be disjoint points in the complex 

plane. Then, for complex numbers   and   satisfying 

0 , we say that a point C (  ) is internally 

dividing the line segment AB at ratio of  :  if and only 

if  









   (2.1) 

For example, when we take A (0) and B (1) in the 

complex plane with i  and i1 , the internally 

dividing point C (  ) of the line segment AB at ratio of 

ii 1:  is computed in such a way that 𝛾 =
(1+𝑖)×0+𝑖×1

𝑖+(1+𝑖)
=

2

5
+

1

5
𝑖, and it is sketched in Fig. 1.  

 

Figure 1 internally dividing point. 

 

In Definition 2.1, one may be confused to look at a 

word “internally”, since the point C ( ) sometimes steps 

away from the line segment AB. However, in this article, 

we keep using such a word in order to strongly leave an 

extended concept of the inertial point in our mind, and 

also in order to avoid the abuse of new words.  

It is not so clear from Definition 2.1 how to find an 

internally dividing point of a line segment. In addition, it 

does not look so efficient to struggle in the computation 

every time a complex-valued ratio  :  is given. To 

find the internally dividing point more easily, noticing the 

next fundamental properties makes our approach so 

simple.  

Proposition 2.2 (Properties of internally dividing 

points)  

Let A ( ) and B (  ) be disjoint points in the complex 

plane, and let  ,   be complex numbers satisfying 

0 . Denote the internally dividing point of the 

line segment AB at ratio of  :  by  









),(,f  

Then the following two statements holds.  

(i) (Property on the translation) For any  C, we 

have 

   ),(),( ,, ff   (2.2) 

(ii) (Property on the Rotation and Magnification) For 

any  C＼{0}, we have  

),(),( ,,   ff   (2.3) 

Proof.  Since the proof follows from a direct 

computation, we omit the detail.                                 □ 

 

Proposition 2.2 suggests that the location of the 

internally dividing point 𝑓𝜇,𝜈 (𝛼 , 𝛽)  is deeply related 

with 𝑓𝜇,𝜈 (0 , 1) . In other words, noting that 𝛼 = (𝛽 −

𝛼) ∙ 0 + 𝛼  and 𝛽 = (𝛽 − 𝛼) ∙ 1 + 𝛼 , we see, due to 

Proposition 2.2, that 𝑓𝜇,𝜈 (𝛼 , 𝛽) = (𝛽 − 𝛼)𝑓𝜇,𝜈 (0 , 1) +

𝛼. The identity indicates that the internally dividing point 

of AB is accomplished by the combination of translation, 

rotation and magnification of 𝑓𝜇,𝜈 (0 , 1). 

Let us see the point denoted by 𝑓𝜇,𝜈 (0 , 1) . It is 

rewritten as  





 


 :)1,0(,f  

One may take it as 𝑓𝜇,𝜈 (0 , 1)  is an internally 

dividing point of the line segment connecting 0 and 1 at 

ratio of ζ : 1－ζ. Then we have the following procedure 

for detecting an internally dividing point of AB.  

Procedure for detecting an internally dividing point 

(Step 1) Once complex numbers μ and ν (with μ + ν≠0) 

are given, compute 𝜇/(𝜇 + 𝜈) and denote it by ζ.  

(Step 2) Place a virtual origin (denoted by <O>) at A( ), 

and a virtual unit (denoted by <1>) at B(  ). Imagine a 

virtual complex plane with <O> as its origin and with the 

line connecting <O> and <1> as a virtual real axis. – Note 

that the virtual imaginary axis is pointing in the direction 
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anti-clockwise rotated by 𝜋/2 [rad] from the virtual real 

axis. We denote this virtual complex plane by <C>. (See 

Fig.2.)  

 

Figure 2 virtual complex plane 

(Step 3) On the virtual complex plane <C>, dot a point 

denoted by ζ (or it must be denoted by <ζ>) obtained in 

(Step 1). Regard this point as a point of the original 

complex plane C. Then this is the desired internally 

dividing point of AB.  

We must always take care of the direction of the 

virtual imaginary axis. It is pointing to our left when we 

are facing in the positive direction of the real axis. 

 

3. MENELAUS’ THEOREM WITH 

COMPLEX-VALUED INTERNALLY 

DIVIDING RATIO 

Speaking of geometric theorems treating the 

internally dividing ratios, one may always take up 

Menelaus’ theorem as an example. In this section, we 

shall prove a variant of Menelaus’ theorem with the 

complex-valued ratio as in Definition 2.1. Unlike the 

real-valued case, additional relation of ratios appears in 

the collinear condition. 

Theorem 3.1 (Menelaus’ theorem with complex-

valued ratio) 

Let λ, μ and ν be complex numbers different from 0 and 

1. Assume that there are three distinct points A( 𝑧𝐴 ), 

B(𝑧𝐵) and C(𝑧𝐶) on the complex plane. Let D, E and F be 

the internally dividing points of the line segment BC, CA 

and AB (resp.) at complex-valued ratio of 𝜆: (1 − 𝜆) , 

𝜇: (1 − 𝜇) and 𝜈: (1 − 𝜈) (resp.). Then D, E and F are 

collinear for any distinct complex numbers 𝑧𝐴, 𝑧𝐵 and 𝑧𝐶  

if and only if both  

1
111








 










   (3.1) 

and 


 











1
,

1
,

1
R    (3.2) 

hold. 

 

Remark. For example, the complex values 𝜆 = −1 + 𝑖, 
𝜇 = 𝑖  and 𝜈 = 1 − (1/2)𝑖  satisfy both (3.1) and (3.2). 

Take A(2 + 4𝑖 ), B(0) and C(4 + 𝑖 ). Then, following 

Definition 2.1, we have D( −5 + 3𝑖 ), E( 1 − 𝑖 ) and 

F(−2 + 𝑖) as complex-valued internally dividing points, 

which are surely collinear. (See Fig. 3)  

 

Figure 3 D, E and F are collinear. 

 

Remark. When we consider real-valued ratios, (3.2) is 

automatically satisfied and so it does not look crucial. 

Nevertheless, the additional condition (3.2) becomes 

important when we consider complex-valued ratios. For 

example, 𝜆 = 1 + 𝑖 , 𝜇 = 1 + 𝑖  and 𝜈 = (1 − 2𝑖)/5 

satisfy only (3.1). In this case, the internally dividing 

points D, E and F are not always collinear. In Fig. 3.2, the 

situation is indicated for A( 5 + 25𝑖 ), B( 5 + 5𝑖 ) and 

C(25 + 15𝑖). Remark here that a quite special triangle 

possibly shows collinear result on its three internal 

dividing points even though (3.2) fails. We want to say 

that (3.2) ensures collinear results universally for all 

triangles.  

 

Figure 4 D, E and F are not collinear. 
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Now let us prove Theorem 3.1.  

Proof of Theorem 3.1. Denote the points D, E and F in 

the complex plane by complex numbers 𝑧𝐷 , 𝑧𝐸  and 𝑧𝐹 . 

Then, following Definition 2.1, we have  

CBD zzz   )1( ,    ACE zzz   )1( ,     

BAF zzz   )1(  

Since D, E and F are assumed to be collinear for any 

distinct 𝑧𝐴, 𝑧𝐵 and 𝑧𝐶 , we see that there exists some real 

number r such that  

)( DEDF zzrzz  . 

It is easy to see that this is equivalent to  

))(1()( ABCB zzzz  

))())(1(( CACB zzzzr   .   (3.3) 

Let 𝑤 = (𝑧𝐵 − 𝑧𝐶)/(𝑧𝐴 − 𝑧𝐶) – Since the points A, B 

and C form a triangle, the w varies in the range of 𝑤 ∉ R. 

Then w is allowed to take all complex values except for 

0. From the identity (3.3), it follows that  

r
w

w










)1(

)1()1(
.  (3.4) 

Note that, at present, the r on the right hand side of (3.4) 

is possibly dependent on w. However, we can deny such 

dependence due to the theory of complex analysis. 

Namely, remark that the left hand side of (3.4) is a 

holomorphic function on C ＼ (R∪{μ/(1 － λ)}). 

Following Cauchy-Riemann’s equation, we can say that 

the r must be a real constant independent of w. Now, 

multiplying (𝜆 − 1)𝑤 + 𝜇  on both hand side of (3.4), 

and matching the coefficients of w, we have  

r




1

1




,  r





1
. (3.5) 

By (3.5), we have (𝜆 + 𝜈 − 1)𝜇 = (𝜆 − 1)(1 − 𝜈). We 

write this identity in such a way that  

)1)(1()1(   , 

which is equivalent to  

)1)(1()1)(1(    

Then (3.1) follows. Looking at (3.5) again, we find 

that 𝜈/(1 − 𝜆) and 𝜇/(1 − 𝜈) are real. By making use of 

(3.1), 𝜆/(1 − 𝜇) is also real and hence (3.2) follows.  

On the contrary, when (3.1) and (3.2) are assumed, it 

suffices to show that the left hand side of (3.4) takes real 

value for any complex w. By (3.2), we let  




s




1
R ,   


t





1
R .  (3.6) 

From (3.1), it follows that  

)1(  st  (3.7) 

Applying (3.6) to the above identity, we see that  

))1(1(   sst  

ss  1  

      )1(1  sts . 

Since stν’s on both hand sides are canceled, we have a 

relation of s and t, i.e.,  

s

s
t

1
 .  (3.8) 

We next deform 𝜆 + 𝜈 − 1 which appears in (3.4). By 

(3.7), we see that  

)
1

1)(1(1
st

  . 

By (3.8), we know that 𝑠𝑡 = 𝑠 − 1, and so we have  

ts

s 1

1
)1(1








 . (3.9) 

By (3.9) and the second identity of (3.6), the left hand 

side of (3.4) is rewritten as  

R
11

)1(

)1(

)1(

)1()1(











ttw

w

w

w









 

As a result, the three points D, E and F are collinear. The 

proof is complete.                                       □ 

4. CONCLUSION 

We can apply the property of the internally dividing 

point of AB at ratio of m : n  to the extension of the ratio 

into the complex-valued one.  To expand internally 

dividing points we must put the line segment in the 

complex plane, and also regarding the end points A and 

B as points in that complex plane: treat the coordinates 

and as complex numbers.  Properties of internally 

dividing points for complex values are: translation, 

Rotation and Magnification.  The identity indicates that 

the internally dividing point of AB is accomplished by 

the combination of translation, rotation and 

magnification.  The Procedure for detecting an internally 
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dividing point are: Once complex numbers μ and ν) are 

given, compute μ/(μ+ν) and denote it by ζ, second place 

a virtual origin  at A( ), and a virtual unit at B( ).Third, 

On the virtual complex plane <C>, dot a point denoted 

by ζ (or it must be denoted by <ζ>) obtained. Regard this 

point as a point of the original complex plane C. Then 

this is the desired internally dividing point of AB. 

As a mathematical application of this extended 

inertial ratio, a variant of famous Menelaus’ theorem in 

the elementary geometry will be considered.  Menelaus’ 

theorem with complex-valued ratio explain that a quite 

special triangle possibly shows collinear result on its 

three internal dividing points. We want to say that (3.2) 

ensures collinear results universally for all triangles.  We 

can deny such dependence due to the theory of complex 

analysis. Namely, remark that the left hand side of (3.4) 

is a holomorphic function on C＼ (R∪{μ/(1－λ)}). F 

Cauchy-Riemann’s equation, we can say that the r must 

be a real constant independent of w. Now, multiplying (λ-

1)w+μ on both hand side of (3.4), and matching the 

coefficients of w 
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