ATLANTIS PRESS

Advances in Social Science, Education and Humanities Research, volume 550 Proceedings of the 1st International Conference on Mathematics and Mathematics Education (ICMMED 2020)

The Girth of the Total Graph of \mathbb{Z}_n

Rafika Dwi Any¹, Indriati Nurul Hidayah^{1,*}

¹Department of Mathematics, Universitas Negeri Malang Email: indriati.nurul.fmipa@um.ac.id

ABSTRACT

Let *R* be a commutative ring with a non-zero identity, and Z(R) is a set of zero-divisors of *R*. The total graph of *R*, denoted $T_{\Gamma}(R)$, is an (undirected) graph with all elements *R* as vertices of $T_{\Gamma}(R)$ and for distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. The girth of $T_{\Gamma}(R)$ is the length of the shortest cycle in $T_{\Gamma}(R)$, its denoted by $gr(T_{\Gamma}(R))$. In this paper, we discuss the characterization of the total graph of \mathbb{Z}_n , $T_{\Gamma}(\mathbb{Z}_n)$ and $gr(T_{\Gamma}(\mathbb{Z}_n))$. *Keywords: Total graph, Commutative ring, Zero divisors, Girth.*

1. INTRODUCTION

Graphs are a very interesting topic to be discussed because they are general, have images, and have many benefits. One of the beneficial application of a graph in the health sector is how a total graph forms a polypeptide chain in the genetic code [1]. The total graph in that paper construct graph from algebraic structure.

Let *R* be a commutative ring with non-zero identity elements and Z(R) is the set of all zero-divisors in *R*, whereas $Z(R)^* = Z(R) - \{0\}$ and set of regular elements in *R* is Reg(R) = R - Z(R) [2]. A ring *R* is called an integral domain if and only if $Z(R) = \{0\}$ [3]. Anderson & Badawi [2] introduced the concept of a total graph of *R*, denoted by $T_{\Gamma}(R)$, is an (undirected) graph where the vertices are all elements of *R* and for each two different vertices $x, y \in R$ is adjacent if and only if $x + y \in Z(R)$. The subgraphs of $T_{\Gamma}(R)$ which are induced by Z(R) and Reg(R) is denoted by $Z_{\Gamma}(R)$ and $Reg_{\Gamma}(R)$ respectively. Z and \mathbb{Z}_n denote the ring of integers and the ring of integers modulo *n* respectively.

Example 1.1 Let $R = \mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ be a ring of integer modulo 4. Then $Z(\mathbb{Z}_4) = \{\overline{0}, \overline{2}\} = \langle \overline{2} \rangle$. The graph $T_{\Gamma}(\mathbb{Z}_4)$ have $V(T_{\Gamma}(\mathbb{Z}_4)) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ and $E(T_{\Gamma}(\mathbb{Z}_4)) = \{(\overline{0}, \overline{2}), (\overline{1}, \overline{3})\}$. So, the corresponding graphs are given in Figure 1 below.

Girth of the graph *G*, denoted by gr(G), is the length of the shortest cycle in *G* ($gr(G) = \infty$ if *G* does not contain any cycle). The definition of a cycle here is a closed walk where each edge is different, and all vertices in it are different [4]. The regular graph is denoted by r - regular if the degree of each vertex is *r*, this graph with *n* vertices has $\frac{nr}{2}$ edges. A complete graph with *n* vertices denoted by K_n , is a graph where each vertex is joined to one another with exactly one edge. A complete bipartite graph with *r* vertex in *A* and *s* vertex in *B* is denoted by $K_{r,s}$. General references for the graph theory are [4–6].

Most of the publications concerning the form of the total graph in ring R underlined the diameter and the girth in ring R with some example in \mathbb{Z}_n [2], [4]. In Chelvam and Asir[7], they have been studied about fundamental properties of total graph on \mathbb{Z}_n without disscuss about the girth of the total graph of \mathbb{Z}_n . In this paper, we will discuss about girth of total graph from \mathbb{Z}_n .

2. GIRTH OF THE TOTAL GRAPH OF \mathbb{Z}_n

In this section, we present some properties of the total graph of \mathbb{Z}_n . First of all, we discuss the total graph of R. The following observation is due to Anderson and Badawi [2].

Theorem 2.1 [2]. Let *R* be a commutative ring such that Z(R) is an ideal of *R*. Then $Z_{\Gamma}(R) = K_{|Z(R)|}$ is a complete subgraph of $T_{\Gamma}(R)$ with |Z(R)| vertices and $Z_{\Gamma}(R)$ is disjoint from $Reg_{\Gamma}(R)$.

Theorem 2.2 [2]. Let *R* be commutative ring such that Z(R) is an ideal of *R*, and let $|Z(R)| = \lambda$, and $|R/Z(R)| = \mu$. Then

$$Reg_{\Gamma}(R) = \begin{cases} \underbrace{K_{\lambda} \cup K_{\lambda} \cup \dots \cup K_{\lambda}}_{(\mu-1)kali} & \text{if } 2 \in Z(R); \\ K_{\lambda,\lambda} \cup K_{\lambda,\lambda} \cup \dots \cup K_{\lambda,\lambda} & \text{if } 2 \notin Z(R). \\ (\frac{\mu-1}{2})kali \end{cases}$$

Example 2.3 Some examples for the total graph when Z(R) is an ideal of R, Z(R) is not an ideal of R, and R be an integral domain ($Z(R) = \{0\}$) are given here Figure 2, Figure 3, and Figure 4.

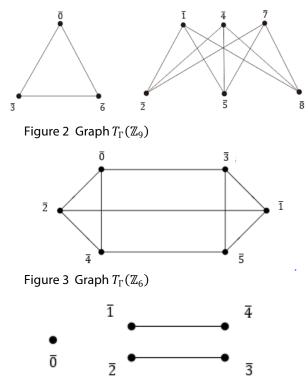


Figure 4 Graph $T_{\Gamma}(\mathbb{Z}_5)$

Next, we are interested in the total graph ∂L_n , there are some basic properties on the total graph ∂L_n that refer to [7].

Lemma 2.4. Let $x \in \mathbb{Z}_n$. Then $x \in Z(\mathbb{Z}_n)$ if and only if gcd(x, n) > 1.

Lemma 2.5. For $n \in \mathbb{Z}^+, n \ge 1, |Z(\mathbb{Z}_n)| = n - \phi(n)$, where ϕ is Euler's function.

Remark 2.6. If $x \in Z(\mathbb{Z}_n)$, then $\deg(x) = n - \phi(n) - 1$.

3. MAIN RESULT

In this section, we will discuss the characterization of the total graph of \mathbb{Z}_n

Theorem 3.1 For $n > 1, n \in \mathbb{Z}^+$, *n* is even, the following statements are true:

(i) If $n = 2^k$, $k \in \mathbb{Z}^+$, then $T_{\Gamma}(\mathbb{Z}_n) = K_{2^{k-1}} \cup K_{2^{k-1}}$.

(ii) Otherwise, $T_{\Gamma}(\mathbb{Z}_n)$ is a $(n - \phi(n) - 1) - regular$

Proof.

(i) If $n = 2^k$, $Z(\mathbb{Z}_n) = \langle 2 \rangle$ is the ideal of \mathbb{Z}_n , where $|Z(\mathbb{Z}_n)| = 2^k - \phi(2^k)$

$$|Z(\mathbb{Z}_n)| = 2^k - \phi(2^k) = 2^k - (2^k - 2^{k-1})$$
$$= 2^k - 2^k + 2^{k-1} = 2^{k-1}$$

 $Z(\mathbb{Z}_n)$ is an ideal \mathbb{Z}_n , according to Theorem 2.1, then $Z_{\Gamma}(\mathbb{Z}_n) = K_{2^{k-1}}$ and $Z_{\Gamma}(\mathbb{Z}_n)$ disjoint from $Reg_{\Gamma}(\mathbb{Z}_n)$. And through Theorem 2.2, where $|Z(\mathbb{Z}_n)| = 2^{k-1}$ and $|\mathbb{Z}_n/Z(\mathbb{Z}_n)| = 2$, if $2 \in Z(\mathbb{Z}_n)$, then $Reg_{\Gamma}(\mathbb{Z}_n) = K_{2^{k-1}}$. So, $T_{\Gamma}(\mathbb{Z}_n) = K_{2^{k-1}} \cup K_{2^{k-1}}$.

(ii) If *n* is even, then $2 \in Z(\mathbb{Z}_n)$. For every $x \notin Z(\mathbb{Z}_n), 2x \in Z(\mathbb{Z}_n), x$ is adjacent to $y - x \in Z(\mathbb{Z}_n)$, for every $y \in Z(\mathbb{Z}_n)$, where $y \neq 2x$. According to Remark 2.6 deg $(y) = n - \phi(n) - 1$. Therefore deg $(x) = n - \phi(n) - 1$. So, $T_{\Gamma}(\mathbb{Z}_n)$ is $(n - \phi(n) - 1) - regular$.

Theorem 3.2 For $n, p, k \in \mathbb{Z}^+$, p be a prime number, the following statements are true:

(i) If n = p, p > 2, then $T_{\Gamma}(\mathbb{Z}_n) = K_1 \cup K_2 \cup K_2 \cup \dots \cup K_2$ $\underbrace{K_2 \cup K_2 \cup \dots \cup K_2}_{\frac{n-1}{2}kali}$

(ii) If
$$n = p^{k}, p > 2, k > 1$$
, then $T_{\Gamma}(\mathbb{Z}_{n}) = K_{p^{k-1}} \cup K_{p^{k-1}, p^{k-1}} \cup \dots \cup K_{p^{k-1}, p^{k-1}} \cup \dots \cup K_{p^{k-1}, p^{k-1}} (\frac{p-1}{2})$ kali

Proof.

(i) Let n = p, then \mathbb{Z}_n be an integral domain, where $Z(\mathbb{Z}_n) = \{0\}$, $|Z(\mathbb{Z}_n)| = 1$. So, $Z_{\Gamma}(\mathbb{Z}_n) = K_1$. $Z_{\Gamma}(\mathbb{Z}_n)$ and $Reg(\mathbb{Z}_n)$ are disjoint, because for $x \in Reg(\mathbb{Z}_n), x + 0 = x \notin Z(\mathbb{Z}_n)$. For every, $x \in Reg(\mathbb{Z}_n), x$ adjacent to -x, because $x + (-x) = 0 \in Z(\mathbb{Z}_n)$. Therefore, $Reg_{\Gamma}(\mathbb{Z}_n) = 0$

$$\underbrace{\underbrace{K_2 \cup K_2 \cup \dots \cup K_2}_{\frac{n-1}{2}kali}}_{K_2 \cup K_2 \cup \dots \cup K_2}.$$
 So, $T_{\Gamma}(\mathbb{Z}_n) = K_1 \cup \underbrace{K_2 \cup K_2 \cup \dots \cup K_2}_{\frac{n-1}{2}kali}.$

(ii) Let $n = p^k$, p > 2, k > 1, then $Z(\mathbb{Z}_n) = \langle p \rangle$ is the ideal of \mathbb{Z}_n and $2 \notin Z(\mathbb{Z}_n)$, where $|Z(\mathbb{Z}_n)| = p^k - \phi(p^k) = p^k - (p^k - p^{k-1}) = p^{k-1}$. Because $Z(\mathbb{Z}_n)$ is the ideal of \mathbb{Z}_n , according to Theorem 2.1, then $Z_{\Gamma}(\mathbb{Z}_n) = K_{p^{k-1}}$ and $Z_{\Gamma}(\mathbb{Z}_n)$ disjoint from $Reg_{\Gamma}(\mathbb{Z}_n)$. Through the Theorem 2.2, where $|Z(\mathbb{Z}_n)| = p^{k-1}$ and $|\mathbb{Z}_n/Z(\mathbb{Z}_n)| = p$, if $2 \in Z(\mathbb{Z}_n)$, then $Reg_{\Gamma}(\mathbb{Z}_n) = K_{p^{k-1}} \cup \dots \cup K_{p^{k-1},p^{k-1}}$. $\underbrace{K_{p^{k-1},p^{k-1}} \cup K_{p^{k-1},p^{k-1}} \cup \dots \cup K_{p^{k-1},p^{k-1}}}_{(\frac{p-1}{2})kali}$.

From the Theorem 3.1 and Theorem 3.2 above, we can obtain that

Corollary 3.3 For $n, p, k \in \mathbb{Z}^+$, p be a prime number, the following statements are true:

(i) If $n = 2^k, k > 2, k \in \mathbb{Z}^+$

then $gr(T_{\Gamma}(\mathbb{Z}_n)) = 3$

- (ii) If n = p, p prime, then $gr(T_{\Gamma}(\mathbb{Z}_n)) = \infty$
- (iii) If $n = p^k$, p > 2, p prime, $k \in \mathbb{Z}^+$, then $gr(T_{\Gamma}(\mathbb{Z}_n)) = 3$

The following example of Corollary 3.3 in $T_{\Gamma}(\mathbb{Z}_n)$.

Example 3.4

- (a) Let $n = 2^3 = 8$, then $T_{\Gamma}(\mathbb{Z}_8) = K_4 \cup K_4$. So, $gr(T_{\Gamma}(\mathbb{Z}_8)) = 3$.
- (b) Let n = 5. From Figure 4, we can see that $T_{\Gamma}(\mathbb{Z}_5) = K_1 \cup K_2 \cup K_2$. An (undirected) graph $T_{\Gamma}(\mathbb{Z}_5)$ have no cycle, then $gr(T_{\Gamma}(\mathbb{Z}_5)) = \infty$.
- (c) Let $n = 3^2 = 9$. From Figure 2, we can see that $T_{\Gamma}(\mathbb{Z}_9) = K_3 \cup K_{3,3}$, then $gr(T_{\Gamma}(\mathbb{Z}_8)) = 3$.

4. CONCLUSION

Let R be a commutative ring with a non-zero identity, and Z(R) is a set of zero-divisors of R. The total

graph of R, denoted $T_{\Gamma}(R)$, is an (undirected) graph with all elements R as vertices of $T_{\Gamma}(R)$ and for distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in$ Z(R). The girth of $T_{\Gamma}(R)$ is the length of the shortest cycle in $T_{\Gamma}(R)$, its denoted by $gr(T_{\Gamma}(R))$. We obtain the characterization of $T_{\Gamma}(\mathbb{Z}_n)$ and $gr(T_{\Gamma}(\mathbb{Z}_n))$ for n > $1, n \in \mathbb{Z}^+$, n is even; for $n, p, k \in \mathbb{Z}^+$, p be a prime number; for $n, p, k \in \mathbb{Z}^+$, p be a prime number.

ACKNOWLEDGMENTS

This research was supported by PNBP Universitas Negeri Malang. The authors would like to express sincere appreciation for all the support given.

REFERENCES

- Riyanti B, Kiftiah M, Fran F. Graf Pembagi Nol Dan Graf Total Pada Kode Genetik. Bimaster 2018;07:369–78.
- [2] Anderson DF, Badawi A. The total graph of a commutative ring. J Algebr 2008;320:2706–19. https://doi.org/10.1016/j.jalgebra.2008.06.028.
- [3] Gallian JA. Contemporary Abstract Algebra. ninth edit. Boston, MA: Brooks/Cole Cengage Learning; 2016.
- [4] Aldous JM, Wilson RJ. Graphs and Applications: An Introductory Approach. 1st ed. Springer-Verlag, London; 2000.
- [5] Gilbert L, Gilbert J. Elements of Modern Algebra. seventh ed. Belmont, USA: Brooks/Cole, Cengage Learning; 2009.
- [6] Hartsfield N, Ringel G. Pearls in Graph Theory: A Comprehensive Introduction. 2nd ed. Academic Press; 1994.
- [7] Chelvam TT, Asir T. A note on total graph of Zn. J Discret Math Sci Cryptogr 2011;14:1–7. https://doi.org/10.1080/09720529.2011.10698320.