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ABSTRACT 

In recent developments, the panel data spatial model has penetrated into simultaneous models that do not only move in 

single models, where the development of this model also indirectly makes the parameter estimation method move in a 

more complex direction in terms of mathematical proof, also in terms of proof empirically. This paper presents a 

Generalized Method of Moment (GMM) Lagrange Multiplier (LM) Test for simultaneous spatial modelling for 

dynamic panel. This is a spatial dependencies test for spatial models. 

Keywords: GMM, LM Test, Simultaneous, Spatial. 

1. INTRODUCTION

Spatial econometrics tends to start from a specific

theory or model and focus on estimation, specification 

and testing problems when there are spatial effects. 

Spatial econometrics is a field of analytical engineering 

designed to combine dependencies between geographic-

ally adjacent observations (regions or points in space). 

Spatial econometrics is the development of a classic 

regression model with respect to cohorts (closest 

neighbours) that accommodate dependencies between 

regions / observations. In general, classical econometric 

models use time series data, while spatial econometric 

models use cross sectional data. 

Initially the main focus of the spatial econometric 

model is the spatial lag model or commonly referred to 

as the Spatial Autoregressive (SAR) model or the 

Spatial Lag Model [1] and the Spatial Error Model 

(SEM), where the SAR model has a spatial interaction 

effect on its endogenous variables and models. SEM has 

a spatial interaction with its errors. [2] were developing 

a model with the effect of spatial interaction between 

endogenous variables and the shape of the error. In 

addition, [3] also introduced the Spatial Durbin Model 

(SDM) which included weights on the exogenous 

variables (X). 

The estimation method for the Spatial Panel Data 

model conducted by [4] uses the MLE method to 

estimate its parameters. However, this method has 

problems in its computation if N is large. Meanwhile [5] 

suggest using the GMM estimation method which is 

computationally more feasible for large N. Furthermore, 

[2] generalized the GMM method for large samples of N

→ ∞ with a fixed T, and based on the Monte Carlo

experiment, it was found that the RMSE of the MLE

and weighted GMM methods had relatively the same

average value.

Spatial Panel Data Modelling has now developed 

towards simultaneous modelling no longer for single 

equations, as has been done by [6] that used a 

Simultaneous Spatial Data Panel model with a SEM 

model approach for regional growth models, the 

estimation method used was Generalized Spatial Three-

Stage Least Squares (GS3SLS). Meanwhile [7] used the 

Simultaneous Spatial Autoregressive model with 

random effects and the parameter estimation method 

used was the Error Component 3 Stage Least Squares 

(EC3SLS) method. [8] have developed a Simultaneous 
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Spatial Dynamic Data Panel Model, namely the 

Multivariate Model and Simultaneous Equation 

Dynamic Panel Spatial Autoregressive Models with the 

Quasi MLE parameter estimation approach. 

Dynamic panel spatial data modelling can explain 

changes in variables so that short-term and long-term 

effects will be known. The use of simultaneous 

equations for dynamic panel spatial data is still rarely 

used. The last research for modelling used the 2 SLS 

and 3 SLS estimation methods which had the 

disadvantages of asymptotic bias and inconsistent 

standard deviation. Meanwhile, the application of GMM 

in a single model shows that these problems can be 

resolved well, and the application of GMM estimation 

for dynamic panel data spatial simultaneous models 

with the High order approach was carried out by [9]. 

As with other spatial models, a test is needed 

whether the former model requires spatial weight in the 

SSDPD model. The spatial dependency test was first 

described by [10] with the Moran's I test, which is more 

in the direction of testing the spatial autocorrelation in 

the model. In the development of the spatial dependency 

test for panel data using Lagrange Multiplier and 

Likelihood Ratio as has been done by [11], while the 

spatial dependency test with the GMM approach was 

carried out by [12] and the spatial dependency test for 

dynamic panel data with the GMM approach was 

carried out by [13]. All spatial dependency tests that 

have been done above are still carried out for a single 

model. Therefore, this paper will describe the spatial 

dependency testing for the Simultaneous Spatial of 

Dynamic Panel Data (SSDPD) with the GMM 

estimation approach. 

2. SPATIAL DEPENDENCIES TEST FOR 

SPATIAL DYNAMIC PANEL DATA 

MODEL 

The spatial dependency test was first introduced by 

[10], Moran's I test was used to determine the presence 

of spatial dependencies on the regression model [14]. 

For other spatial dependency tests in the Cross Section 

model, it can be seen in [3], [15]. 

To test the spatial dependency in the panel data 

model, it can be seen in [16], [17],[18]. The spatial 

dependency test using Moran's I above for panel data 

has been developed by [19], namely by replacing the W 

weight matrix with the  NTW , which is a weight matrix 

that includes the time element in it. Moran's I test for 

panel data is as follows: 





NTI

We e

e e
                (1) 

Moran's I test statistic for spatial autocorrelation 

testing of the spatial panel data dynamic models with 

time invariant spatial weight matrix developed by [20]. 

 1T nI 
 




I We e

e e
                                           (2) 

The Spatial panel data dynamic models used is 

spatial time simultaneous models with a stable trans-

formed case approach. The Monte Carlo simulation 

results show that power Moran's I test for The Spatial 

panel data dynamic models tend to be large when N and 

T are bigger, the sign of spatial parameter dependencies 

 for endogenous variables also affects the value of test 

power where the performance power test is better if the 

parameter value δ positive, so the greater the parameter 

value the better the power value of Moran's I test of the 

dynamic model. Moran's I test can measure the intensity 

of the spatial relations between units i and j positively. 

A large test power value also indicates that I > E (I) 

means that each spatial unit tends to be adjacent 

(grouped) with spatial units having the same attribute 

(in high-high or low-low relation-ship conditions). 

A part from Moran's I method, other methods that 

are often used for testing spatial dependencies are the 

Lagrange Multiplier (LM), Likelihood Ratio (LR) and 

Wald methods. The LR test follows the Maximum 

Likelihood estimation method [3], which is the ratio 

between the spatial model likelihood function and the 

linear regression model likelihood function (where the 

spatial weight is zero), while the LM test is only based 

on estimates below H0 where the error is calculated 

based on estimation OLS on the model and multiplied 

by the weight of the matrix. 

One of the tests of spatial dependency on panel data 

was carried out by [11], namely the Lagrange Multiplier 

(LM) and Likelihood Ratio (LR) statistical testing for 

spatial random effects on the panel data model. For the 

spatial model of fixed effects panel data, [21] propose 

two specifications, one with only individual effects 

(one-way effect), and the other with individual and time 

effects (two-way effect). 

The last use of the LM test for dynamic panel data 

spatial models was carried out by [13], where [13] used 

[22] model as a model that tested its spatial dependency, 

is: 

  
0 0 , 1 0 , 1

1 1

p p

nt j nj nt n t j nj n t

j j
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With the model after the transformation is as 

follows: 
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The LM test by [13] uses the GMM estimation 

method which can detect dependencies on spatial lag, 

time lag and spatial time lag. The test begins with 

estimating the optimal GMM on a limited model. [13] 

partitioned  , ,      , with  and  are 𝑘𝜓 x 1 and 

𝑘𝜙x 1 sized vectors until  𝑘𝜓 + 𝑘𝜙 = 2𝑝 + 1.   and  

can be a combination of several parameters namely 

{λ,γ,ρ}, such that the LM test with 𝐻0: 𝑟(𝜃0) = 0; ; 

defined as follows: 

 
     1

, , , ,   n T r nT r nT rLM NC B C
                     

(3) 

with,    ' 1 a a nT nTC G  g  and 1
( )




nT

a N
G

a

g
, 

𝑎 𝜖 {𝛽, 𝜓, 𝜙} and �̅�𝑛𝑇 = 1

𝑁
𝒈𝑛𝑇 . 

Also  𝐺(𝜃) = (𝐺𝛽(𝜃), 𝐺𝜓(𝜃), 𝐺𝜙(𝜃))  and 𝐶(𝜃) =

(𝐶𝛽
′ (𝜃), 𝐶𝜓

′ (𝜃), 𝐶𝜙
′ (𝜃))′ and the asymptotic distribution 

of the LM test is 2d

krLM . 

Moment matrix 𝒈𝑛𝑇 dan  𝚺𝐧𝐓  that is used [13] 

follow [22] as in equation (2) and (3). For testing the 

parameters along with the hypothesis H0:λ0=0, ρ0=0, γ0 = 

0, with 𝐻1: at least one parameter is not equal to zero, 

then if H0 is true, the model will be a non-spatial model 

that can be estimated using the OLS method. If �̂�𝑛𝑇 is 

estimator GMM constrained optimal under the null 

hypothesis and �̂�𝑛𝑇  is another consistent estimator of 

 𝜃0 under the null hypothesis. As stated in [23], LM test 

must be formulated based on an estimator GMM 

constrained optimal. If   = (λ′, ρ′, γ)′) , so 𝐁(𝛉) =

𝐆′(𝛉)�̂�𝐧𝐓
−𝟏𝐆(𝛉) and considered partitions from B(θ): 

( ) ( ) ( )
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Where  and  can be a combination of {λ,γ,ρ} then 

LM test defined as: 

1

( ) ( ) ( ( ),     


   J nT nT nT nTLM NC B C
                  

(5) 

with, 
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nT nT nT

nT nT nT nT

nT nT nT

B B B
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(6) 

Based on the definition of the LM test above, (13) 
define several propositions including: 

 The null hypothesis for the form of spatial lag 

contemporaneous: 𝐻0
𝜆: 𝜆0 = 0 as are 𝜌0 and 𝛾0. 

 The null hypothesis for the form of spatial lag 

contemporaneous: 𝐻0
𝜌

: 𝜌0 = 0 as are 𝜆0 and 𝛾0. 

 The null hypothesis for the form of spatial lag 

contemporaneous: 𝐻0
𝛾

: 𝛾0 = 0 as are  𝜌0 and 𝜆0. 

The following is given the test statistics of the above 
propositions: 

 For 𝐻0
𝜆: 𝜆0 = 0 with 𝜓 = 𝜆 and 𝜙 = (𝜌′, 𝛾′) then;  

       
1

'

nT nT nT nTLM NC B C      


 
 

  (7) 

      with 

 𝐵𝜆𝛽(�̃�𝑛𝑇) = 𝐵𝜆(�̃�𝑛𝑇) − 𝐵𝜆𝛽(�̃�𝑛𝑇)𝐵𝛽
−1(�̃�𝑛𝑇)𝐵𝛽𝜆(�̃�𝑛𝑇). 

 For  𝐻0
𝜌

: 𝜌0 = 0 with 𝜓 = 𝜌 and 𝜙 = (𝜆′, 𝛾′) then 

       
1

'

nT nT nT nTLM NC B C      


 
 

              (8) 

      with 𝐵𝜌𝛽(�̃�𝑛𝑇) = 𝐵𝜌(�̃�𝑛𝑇) −

𝐵𝜌𝛽(�̃�𝑛𝑇)𝐵𝛽
−1(�̃�𝑛𝑇)𝐵𝛽𝜌(�̃�𝑛𝑇) 

 For 𝐻0
𝜌

: 𝛾0 = 0 with 𝜓 = 𝛾 and 𝜙 = (𝜆′, 𝜌′) then  

       
1

'

nT nT nT nTLM NC B C      


 
 

       (9) 

with 𝐵𝛾𝛽(�̃�𝑛𝑇) = 𝐵𝜌(�̃�𝑛𝑇) −

𝐵𝛾𝛽(�̃�𝑛𝑇)𝐵𝛽
−1(�̃�𝑛𝑇)𝐵𝛽𝛾(�̃�𝑛𝑇). 

3. METHODS 

The spatial dependency identification test method for 

the SSDPD equation follows [13] with the following 

steps: 

i. Determine the SSDPD model, where the SAR 
model is adapted from the [22] with the number of 
equations m = 2 as follows: 

  
 

   1, 1 1 1, 1 2 1, 1 1 1, 1 1 2,n t n n t n n t n t n tkW Wy y y y y
 

           
  1 1, 1 1,n t n n tX c v

                                    
(10) 

  
 

  2, 2 1 2, 2 2 2, 1 2 2, 1n t n n t n n t n tW Wy y y y  

              2 1, 2 1, 2 2,n t n t n n tk Xy c v                 (11) 

1    
 

with,
,  nm ty  is the column vector for the response 

variable of size n x 1, where  
'

1, 11 1,, ,n t t n ty yy
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,  
'

2, 12 2,, ,,n t t n ty yy
, 1nm ty  is a predetermined 

lag 1 variable vector of size n x 1, where

  


'

1, 1 11 1, 1, , ,n t t n ty yy   


'

2, 1 12 2, 1, ,n t t n ty yy , 

 
'

1 ,nt t ntv vv  is the column vector of error of 

size n x 1 and   2~ 0, ,nt vN Iv  
nm W  spatial 

weight matrix of size n x n, 
nmt X  explanatory 

variable matrix of size n x p, 
nm c  fixed effect 

vector n x 1 , m = 1, 2, n is the amount of panel data 

consisting of individual i and t time 

ii. Determine the  
rW  matrix, which is a row-

normalized weight matrix, the weight matrix is 
customized accordingly. 

iii. Enter the weights 
rW  as a weight matrix 

,nm t t rW I W    in equation (12)  

iv. Transforming the model in step (c) with an 
orthonormal matrix  𝐅T,T−1, 𝐅n,n−1  to eliminate 

individual effect variables cn0 and time effect αt0  , 
in a way: 

a. Form a matrix 
1

T T T T
T

 
  

 
J I     

b. Find the eigenvector matrix 
, 1T T F  from JT 

c. Form an orthonormal matrix [𝐅𝑇,𝑇−1,
1

√𝑇
𝒍𝑇] 

d. Forming the endogenous variable transformation 

matrix and endogenous lag matrix 
* * * *

, ,1 ,2 , 1 ,1 ,2 , , 1, ,..., , ,..., 
       n T n n n T n n n T T TY Fy y y y y y

(* 1) (*, 1) (*, 1) (*, 1)

1 ,0 ,1 , 2, ,...,nT n n n TY    

 
   y y y  

              
,0 ,1 , 1 , 1, ,...,n n n T T TF 

   y y y   

e. Forms a transformation matrix for the 

predetermined variable *

nTX , *

nTV and  *

nc  by 

multiplying each by 
, 1T T F

   
 

v. Form a reduced form equation from the variables 

that were transformed in the previous step by: 

 Calculating the matrix 

1

( ) ,
p

nT n j nj

j

S I W 


   

0( )n nS S  with     1 2 1 2, ; ,        

 Calculating the matrix 

1

0 0

1

p

n n n j nj

j

 



 
  

 
A S I W  

 Create a reduced form matrix from the equations 

(12) as:   

 * (*, 1) 1 * *

, N, 1 N, 0 ,( ) 

  N t n t n t N tY A Y S X V           (12) 

vi. Estimate the reduced from equation (14) with OLS 

estimation methods to get 
* (*, 1)

, N, 1
ˆ, 

N t tY Y   as initial 

values.  

vii. Forms the moment function vector  

on model (12) with 
* (*, 1)

, N, 1
ˆ, 

N t tY Y  in the model with 

the following manner:      

 Form the matrix 
, 1n T 

J    

 Form the matrix 
, 1

s

nm T 
P  , m =1,2 

 Form vector 
, 1n T 

Q   

 Form vector ( )nT g   

viii. Determine the LM dependency testing hypothesis 

for: 

 Test the existence of spatial contemporaneous 

lag with hypotheses: H0: δ0 = 0 and in the 

presence of η0 and τ0  

 Test spatial lag in t-1 with hypotheses: H0: η0 = 

0 and in the presence of δ0 and τ0 

 Test the existence of time lag with hypotheses: 

H0: τ0 = 0 and in the presence of η0 and δ0 

ix. Perform an LM testing for each hypothesis with the 

following steps: 

 counting vectors 𝑮𝛿 (𝜃) , 𝑮𝜏 (𝜃) , 𝑮𝜂 (𝜃) 

 form matrix   𝚺𝑛𝑇
−1  

 count   �̅�𝑛𝑇 =
1

𝑛
𝒈𝑛𝑇()    

 counting values 𝐶𝛿 (𝜃), 𝐶𝜏(𝜃) and 𝐶𝜂 (𝜃) 

 counting values 𝐵𝛿 (𝜃), 𝐵𝜏(𝜃),and 𝐵𝜂 (𝜃) 

 counting values 𝐵𝛿𝛽 (𝜃 ), 𝐵𝜂𝛽 (𝜃 ), 𝐵𝜏𝛽 (𝜃 ) 

 counting values 𝐶𝛿 (𝜃 𝑛𝑇 ) , 𝐶𝜂 (𝜃 𝑛𝑇 ), 𝐶𝜏(𝜃 

𝑛𝑇 ) 

 for each of the above hypotheses, the LM value 

is calculated, reject Ho if LM >𝜒𝑝
2(𝜗) 

x. Perform steps (ii)  to (ix) for equation (13). 

4. RESULT AND DISCUSSION 

Spatial dependency testing in this sub-chapter 

applies [13] steps on SSDPD models where LM test 

with GMM estimation used has advantages over using 

other LM test methods whose asymptotic distribution 

tends not to be focused on Chi-Square distribution if 

applied to original data generated resulting in excessive 

rejection of zero hypothesis.  

The LM GMM method from [13] can be used to 

test dependencies on: 

• spatial shape lag  

• time lag form  

• spatial form of time lag  

The discussion in this sub-chapter will be divided 

into two parts, namely in the first part discussing the 

GMM Estimation on a single model SSDPD equation 

and in the second part about LM GMM test on a single 

model of SSDPD equation.  

 

 nTg
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4.1 GMM Estimation on a Single Model of 

SSDPD Equation  

GMM estimation on a single model of SSDPD 

equation is done on each model (12) and (13). 

Furthermore, the equation was formed into a model of 

High Order Spatial Autoregressive as formed by [9] as 

follows: 

, 0 , 0 , , 0

1 1

P P

N j Nj N j Nj N N

j j


 

 W W Z   Y Y Yt t t-1 t

 

           

0 , 0 ,N N N  Y C Vt-1 t

                                 

(13) 

 , 11, 21, 1, 12, 22, 2,, y ,..., , , ,...,N t t t n t t t n tY y y y y y


  or 

can be form to  , 11, 21, ,, ,...,N t t t N tY Y Y


Y  is N x 1 

vector endogenous variable and ,N tZ  is an exogenous 

variable matrix of N x K size where 

 1, 1, 1,,n t n t n tZ X y  and  2, 2, 2,,n t n t n tZ X y ,  

 N, 1, 2,,t n t n tZ Z Z  

, 11, 21, 1, 12, 22, 2,, ,..., , , ,..., ) N n nv v v v v v 'V t t t t t t t  is a Nx1 

sized vector of disturbance term where       
2

0~ (0, ).iv N t  While
 ,nj n tW Y  and

, 1nj n tW Y 
 are the 

spatial lag dependent variabels, where 
njW  is a 

symmetrical spatial weight matrix of N x N which are 

non stochastic and are formed based on
 

yit  between 

spatial units by j 1,2,..., p . Matrix
 njW  can be a 

normalized matrix of rows or not. 

0 10 20 0( , ,..., )j p ',     0 10 20 0( , ,..., )    j p '  

are the spatial parameter autoregressive, while 

0 10 20 0( , ,..., )j pC c c c '  is an individual fixed effect 

vector. 

If 2p  then the model (12) is a high order SAR 

model, to avoid indexical variables then individual 

effect variables 
0NC  have to eliminate in way by 

transforming it with a matrix FT,T -1  obtained from the 

matrix 1[ , ]TT
FT,T -1   which is the orthonormal matrix 

of the Eigen vector matrix 1 )  T T T TT
I  J . FT,T -1   is an 

Eigen matrix of vector-sized
 
eigenvalues of one and

 Tl  

is a single vector with dimensions related to the 

eigenvalues of one and T . Variable dependent matrix 

, ,..., ][Y Y Yn n nt1 2
 can be transformed into a matrix

( 1)Nx T  , so that it becomes: 

 
* * *[ [, ,..., ] , ,..., ]Y Y Y Y Y Y Fn n nt- n n nt T,T -11 2 1 1 2  and, 

(*, 1) (*, 1) (*, 1), ,...,[ ]Y Y Y  

n n n,t -1 2 1 , ,..., ][ Y Y Y Fn n n,t- T,T -10 1 1   
* (*, 1)Y Ynt- n,t -1 1



 

Multiplication with
 
FT,T -1  also applies to variables 

*vnt   and ,Z
*
nt because ' 0T Fl T,T -1   

then 

0 0[ ,..., ] 0n nc c FT,T -1   so that individual effects can be 

eliminated by the orthonormal matrix transformation. 

After the transformation process, equation or model (12) 

will become, 

 * * (*, 1)

0 0 , 0

1 1

P P

j Nj j Nj N

j j



 

 W ZW    Y Y YN,t N,t N,t - t1
*           

(*, 1) *

0 ; 1,2, . 1t T    Y VN,t- N,t1
        (14) 

 with,

1

2
* ;

1

T

h

T t
t

T t 

   
        N,t n,t nh

t

1

T -t
VV V

+1

and 

 
11(*, 1)

1

T

t

T t
T t

Y Y Y
hn,t- n,t -1 nh

1
T-t

/2

1





 
 

     

Time effect elimination is not done on this model 

because the model used is a fixed effect model so there 

is no time effect variable on this model. 

Estimation using the MLE method for the model 

(12) cannot be done according to [22] on the grounds 

that: 

 If 
njW  cannot be rows normalized then SAR 

structure cannot be defined 

 The existence of variables with time lag as 

explanatory variables, those variables will correlate 

with the form of errors if transformed  by
 
FT,T -1 .  

Based on this reason, [22] used the GMM method to 

estimate the model (12), because the method did not ask 

for a SAR form for
 

*

n ntyJ  and free from asymptotic 

forms of bias. To be able to estimate the parameters of 

the model (12) is required reduced form of the equation 

(16) the following: 

* (*, 1) 1 * *

0 )  n n n n n nA S ZY Y   t t t tV              (15) 

with, 
1 0) )

P

n n j j nj n n n,S I W S S A      

    

 p1

0n n j nj

 S I W
j=1

 

For any spatial lag
 

*
W ynj nt

for j 1,2,..., p  by 

defining 1,nj nj nG W S
  then obtained, 

** *

0( ) ,nj n nj nt nj nW RY   tVG G                           (16) 
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with 
0 0 0 0)     ' and 

(*, 1) (*, 1)* , ,nt nR W ZY Yn,t - n,t nt-1 1
    

*  is the predetermined 

variable in equation (18) with 

 (*, 1) (*, 1) (*, 1)

1 , , .n n np

  Y Y Yn,t- n,t - n,t -1 1 1W W W  

For a linear moment matrix, data is compiled and 

formed moment conditions. An Instrumental Variable 

(IV) matrix takes shape 
n ntJ Q   where  1 n n n nn

IJ l l'  

because  0n nJ l   and 
ntQ  has a fixed dimension 

column q is greater than or equal to 2 1.x p ntk Q   

selected are as follows:
 

, , ,

2, ,[ , , nnt n n n n ny W W WZQ Zy y nt t tt nt-1 -1 -1
* *

 

   

2, ]nW Znt
*

                                                  
(17) 

To estimate equation (16) it should be noted that 

between 
(*, 1)

Yn,t -1


 and 
*

ntV  correlated, for that it is 

necessary to IV for 
(*, 1) ,Yn,t -1


 (*, 1)

nkYn,t -1
W

 
and *

njYn,tW  at 

each t. Therefore, IV is needed for the explanatory 

variables as follows: 

* (*, ) (*, )1 1

1 1[ , , , ] 

 n n nW WY Y Ynt n,t n,tJ                            (18) 

Take 
* * *

, 1 1 , 1( ( (       ' '

n T n n T 'V V V where

* * *( (    S Y Rnt nt nt ntV  with '

0 0, ) '   and 

' ' '

0 0 0 0( , )    . The IV estimate with respect to the 

linear moment is, ' *

, 1 , 1 1( n T n TQ J Vn,T  
with 

' ' ' '

, 1 1 , 1 , 1 1( ,..., ) n T n n T n T T nQ Q Q J I J      

Vector *

n nt tP V  cannot be correlated with *

n ntJ V  in 

equation (16), for no stochastic matrices nlP  sized n x n 

according to the contents of )  nl ntr P J(  here the 

value 
1 ( ) / ( ) / ( 1)n n n n n ntr n  W W J W JP  and  

2 2

2 ( ) / ( ) / ( 1)n n n n n ntr n  W W J W JP  while vector 

*

n nt tP V  may be correlated with 
*

nj nG tV  on the equation 

(17). Defined
 , 1 1nl T T nlI  P P  then the quadratic 

moment is,  

* *

, , , , ,( (    n T n T nl T n T n T l m    V J P J V1 1 1 1 1  

and the moment of condition with the approximate 

number of finite moments is, 
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            (19) 

For GMM estimation, a covariance matrix of the 

moment function is needed     0 nt ntE g' g  who 

can be approached with, 

nm,T

, 1 , 1 , 12

0

1

( 1)

1 1

( 1)

qxm

nt

qxm n T n T n T

n T

n T
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0


  

 
 

 
 
  


JQ Q

           

 4
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(20) 

with, 

,

nm,T

[ ( ),..., ( )],

[ ( ),..., ( )]

[ ( ),..., ( )]

 

  

nm T

s s

vec vec

vec vec x

vec vec

D n,T - n ,T - n,T D n,T - nm,T - n,T

D n,T - n ,T - n,T D n,T - nm,T - n,T
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J P J J P J

J P J J P J
 

Operator (.)vecD  is a column vector formed from the 

diagonal element of the rectangular matrix inputted, and 

a matrix 
' s

n n nA A A  for all square matrices. The 

optimal estimate from the GMM is derived from 

, nt
1

nT( ( o nT nt=  
g gargmin               (21) 

has an asymptotic distribution,  

111
0, 1

( ( (   
d

n T
n plim 

 
   0, D DnT nTnT nT

(22) 

4.2 Lagrange Multiplier (LM) Spatial 

Dependencies Test for SDPD model 

 In [22] it is also stated that the resulting GMM 

estimator is consistent at nT  asymptotically normal, as 

well as efficient. The use of Instrumental Variable (IV) 

aims to get the best linear and quadratic moment 

conditions, in which the number of IVs will increase 

over time. 

Based on [13] LM testing for spatial dependencies 

can be carried out in the High order model, and by using 

the moment function, variable instrumental matrix and 

covariance matrix obtained in the previous step, 

followed by calculating vectors 

( ( ( , ( (         G G G G
a

 in accordance with the 

null hypothesis to be tested. 

Take * *' *'

, 1 1 , 1( ,..., ) 'n T n n T V V V  with

* *' *( ) (   S nt nt nt ntV Y R , * *' *',..., )  ',Y Y1 1 1nT- n n,T -Y

*, *' *',..., )  ',Y Y1
1 0 -2
-

n,T - n n,TY
* *' *',..., ) ',Z ZZ 1 1 -1nT- n n,T

 and 

, 1 1  nj T T njW I W  then ( aG  for each null 

hypothesis is defined as follows: 
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Then look for the following components: 

     1ˆ
    nT nT gC G                            (26) 

     1ˆ
    nT nT gC G                              (27) 

     1ˆ
     nT nT gC G                                 (28) 

and components  B  

         1ˆ ,nTB B       G G  

      1ˆ' nTB      G G            (29) 

 

         1ˆ ,nTB B B         G G  

      1ˆ' nTB      G G             (30) 

      1ˆ ,nTB     G G    

       1' ˆ
nTB B        G G               (31) 

       1ˆ ,nTB B        G G  

     1ˆ
nTB    G G                                    (32) 

       1ˆ ,nTB B        G G  

     1ˆ
nTB    G G                                   (33) 

 So that the LM value for each hypothesis is obtained 

as follows: 

a.  For 
0 0H : 0   

 
1( ) ( )[ ( ] ( ),       nT nT nT nTLM NC B C

 
 (37)                            

b. For 
00H : 0   

1( ) ( )[ ( ] ( ),       nT nT nT nTLM NC B C
  
 (34)

c. For 
00H : 0   

1( ) ( )[ ( ] ( ),       nT nT nT nTLM NC B C    (35) 

       Reject 0H  if   LM 
2 p  

The LM test method that has been done above is also 

applied to equation (17), where the initial values ,N Tv ,

,n Ty   and ,T 1N y
 
  are obtained from the OLS equation 

from the reduced form equation. 

5. CONCLUSION 

Lagrange Multiplier testing using the GMM 

estimation approach on the SSDPD model, can be done 

on each single model, where the initial values of the 

vectors ,N Tv , ,n Ty and ,T 1N y    are searched using the 

OLS value in the reduced form equation, then proceed to 

look for the estimated parameter value using GMM.  

This paper is still in the stage of refinement which 

will be proven in the form of data simulations and 

applications to secondary data. 
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