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ABSTRACT 

In this paper, we introduce the concept of left almost hyperring  together with a partial relation order  such 

that satisfies some conditions. This structure  is called by ordered left almsot hyperring (LA-hyperring). 

Further, we study some useful contiditons for ordered LA-hyperring to become an ordered hyperring. Also, we notice 

the notion of hyperideal, bi-hyperideal, and quasi-hyperideal of ordered LA-hyperring and their properties are 

investigated. 
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1. INTRODUCTION

The algebraic hyperstructure which is a 

generalization theory of ordinary algebraic structures 

was first introduced in 1934 by a French mathematician, 

Marty [1]. In ordinary algebraic structure, the 

composition of two elements is an element, while in 

algebraic hyperstructure the composition of two 

elements is a set. Many mathematicians studied 

hyperstucture theory because hyperstructures have a lot 

of applications to many subjects of mathematics and 

computer science. Corsini and Leoreanu [2] discussed 

some applications of hyperstructure theory to geometry, 

hypergraphs, lattices, fuzzy sets, automata, 

cryptography, codes, artificial intelligence and 

probabilities. 

In 1972, Kazim and Naseerudin [3] introduced the 

notion of left almost semigroup (LA-group) as a non 

associative group. A groupoid  is said to be an 

LA-semigroup if satisfy , for 

all . It is known as invertive law. Kamran [4] 

discussed some properties of LA-group, substructures of 

LA-group and the quotient structures. Later, the concept 

of LA-ring was introduced by Yusuf [5]. Basically, LA-

ring correspond to ring. An algebraic structures 

is a non-empty set  with the binary operations 

and  such that  is an LA-group,  is an 

LA-semigroup, both left and right distributive laws 

hold. There are several authors who studied LA-ring and 

explored some useful properties of LA-ring. Shah and 

Rehman [6] studied LA-ring of finitely non-zero 

functions which is generalize the structure of 

commutative semigroup ring. Hussain and Firdous [7] 

characterized LA-ring by the properties of their direct 

product. 

Recently, the concept of hyperstructure was applied 

to LA-semigroups. It was introduced by Hila and Dine 

[8] as a generalization of semihypergroups and LA-

semigroup. Yaqoob and Gulistan [9] introduced the

notion of partially ordered LA-semihypergroup. Yaqoob

et al. [10] studied intra-regular LA-semihypergroup and

characterized it by using their hyperideal properties.

Further, Rehman et al. [11] extended the work of Hila

and Dine to algebraic hyperstructure which has two

hyperoperation, that is LA-hyperring. They also

characterized LA-hyperrings throught their hyperideals

and hypersystems.

In this paper, we introduced the notion of ordered 

LA-hyperring. We established some elementary 

properties of ordered LA-hyperring and studied some 

useful conditions for ordered LA-hyperring to become 

an ordered hyperring. Also, we introduced some type of 

hyperideal of ordered LA-hyperring. 

2. PRELIMINARIES

In this section, we recall some definitions and 

notions of an LA-semihypergroup, an ordered LA-
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semihypergroup, an LA-hyperring and some properties 

that we will use in next section. 

Let  be a non-empty set, then the map 

 is called hyperoperation of , 

where  denotes the set of all non-empty power set 

of . A set  with a hyperoperation  is said to be a 

hypergroupoid, denoted by . If  and  are two 

subsets of , the we denote 

 

 

[8] A hypergroupoid  is said to be an LA-

hypersemigroup if satisfies left invertive law. If  

satisfies reproduction law, that is , 

for every , then  is called by LA-

hypergroup. An element  is called by a left 

identity element (resp. pure left identity element) if 

 . In an LA-semihypergroup, the 

medial law holds, 

 for all 

. An LA-semihypergroup may not contain 

a left identity element or a pure left identity. In an LA-

semihypergroup with pure left identity, the paramedial 

law  holds 

for all . 

Definition 2.1 [9] An ordered LA-semihypergroup 

 is a poset  at the same time an LA-

semihyepergroup  such that  

implies  and  for any 

. A non-empty subset  of  is called by LA-

subsemihypergroup of an ordered LA-

subsemihypergroup  if .  

If  and  are non-empty subsets of , then we 

denote  if for every  there exist  such 

that . 

Definition 2.2 [9] A non-empty subset  of an ordered 

LA-subsemihypergroup  is called left (resp. 

right) hyperideal of  if the following 

conditions hold: 

  (resp. ). 

 If  and , then . 

 is called by hyperideal of  if it is a left and 

right hyperideal. 

Definition 2.3 [9] An LA-subsemihypergroup  of an 

ordered LA-semihypergroup  is called a bi-

hyperideal of  if the following conditions hold: 

 . 
 If  and , then . 

Definition 2.4 [9] A non-empty subset  of an LA-

semihyperring  is called by quasi-hyperideal 

of  if the following conditions hold: 

 . 
 If  and , then . 

Definition 2.5 [11] A hypergroupoid  is 

said to be an LA-hyperring if satisfies the following 

conditions: 

  is an LA-hypergroup. 

  is an LA-hypersemigroup. 

 The hyperoperation  is distributive with respect to 

the hyperoperation . 

Definition 2.6 [11] An LA-subhypergroup  of an 

ordered LA-hyperring  is said to be a left 

(resp. right) hyperideal of  if  . 

If  is a left and right hyperideal, then  is called by 

hyperideal. 

Proposition 2.7 If  be an LA-hyperring with 

left identity (pure left identity), then every right 

hyperideal is a left hyperideal. 

3. ORDERED LA-HYPERRING  

In this section, we introduce the concept of ordered 

LA-hyperring and give some examples of this 

hyperstructure. We also prove the elementary properties 

of ordered LA-hyperring and study some useful 

contiditons for ordered LA-hyperring to become an 

ordered hyperring. 

Definition 3.1 A hypergroupiod  is said to 

be a ordered LA-hyperring if satistfies the following 

conditions: 

  is an LA-hyperring. 

 If , then  and . 

 If , then  and . 

Example 3.2 Let  be a set with the 

hyperoperations  and  are defined as follows: 

Table 1. The hyperoperation  of LA-hyperring 

     

     

     

     

     

Table 2. The hyperoperation  of LA-hyperring 
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And the relation order  is defined by: 

 

It is easy to verify that  is an ordered LA-

hyperring and we can see that  and  are 

non-associative, 

 and 

.  

Definition 3.3 Let  be an ordered LA-

hyperring and . Define a subset  as follows 

 

Lemma 3.4 Let  be an ordered LA-

hyperring. Then 

  for any . 

 If , then  for any . 

  and 

 for any . 

  and 

 for any . 

 If , then  and 

. 

 If , then  and 

. 

Proof. The proof is straightforward. 

Theorem 3.5 An ordered LA-hyperring  is 

an ordered hyperring if and only if: 

 . 

 . 

Proof. Let  be an ordered LA-hyperring. 

We will show that  is an ordered hyperring. 

Let , then 

 (left invertive law) 

   

Since  is a LA-hypergroup, so reproduction 

axioms holds in . Thus  is a hypergroup.  

 (left invertive law) 

 
Hence,  is a hyperring. Since  is an ordered 

LA-hyperring, the conditions (R1) and (R2) holds 

obviously. So  is an ordered hyperring.  

Definition 3.6 Let  is an ordered LA-

hyperring, then: 

  is called with left identity (resp. pure left identity) 

if there is an element  such that  

 for all . 

 A non-empty subset  of  is said to be an LA-

subsemihyperring if  itself is an ordered 

LA-hyperring. 

 An element  is called by an idempotent (resp. 

weakly idempotent) element of   if  

(resp. ) .  

Example 3.7 Let  with the hyperoperations 

 and  are defined as follows: 

Table 3. The hyperoperation  of . 

    

    

    

    

Table 4. The hyperoperation  of . 

    

    

    

    

And the order relation is defined by 

. 

It is easy to verify that  is an ordered LA-

hyperring and  is a pure identity element of . 

Theorem 3.8 A pure left element of an ordered LA-

hyperring is unique. 

Proof.  Let  be an ordered LA-hyperring 

and  be a pure left identity element. Assume that a pure 

left identity is not unique, then there is an element 

 such that , for all . 

 

 (  is a pure left identity) 

 (invertive law) 

 
It contradicts with the assumption that  is not unique. 

Hence a pure left identity is unique. 

4. HYPERIDEAL OF ORDERED LA-

HYPERRING 

In this section, we study hyperideal, bi-hyperideal, 

and quasi-hyperideal of ordered LA-hyperring. Also we 

investigate some elementary properties of some type 

hyperideal of ordered LA-hyperring. 

Definisi 4.1 A non-empty set  of an ordered LA-

hyperring  is called by left (resp. right) 
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hyperideal of  if satisfies the following 

condition. 

  is LA-subhypergroup of . 

  . 

 If  and , then , for any . 

Example 4.2 Let  be an ordered LA-

hyperring with the hyperoperations  and  are 

defined as follows: 

 

Table 5. The hyperoperation  of . 

    

    

    

    

Table 6. The hyperoperation  of . 

    

    

    

    

And the relation order is defined by 

. 

It is easy to verify that  is a hyperideal of 

. 

Teorema 4.3 The intersection of any two hyperideals of 

ordered LA-hyperring  is a hyperideal of . 

Proof. Let  and  be two hyperideals of . First, we 

will show that  is an LA-subhypergroup of 

. Let , then we have 

 and . Since 

,  and  are hyperideal of , 

then the left invertive law is satisfied in . By 

definition of hyperideal,  and  are LA-

subhypergroup of , then for any  and 

 we get  and 

. Conversely, 

 and . The 

same way can used to show that . 

Therefore,  is an LA-subhypergroup of . 

Now we will show that  satisfy (I2) conditions. 

Consider  and 

. This implies that 

. The case for right hyperideal 

can be seen in the similar way. Since  and  are 

hyperideals of , then the third condition holds 

obviously. So  is a hyperideal of . 

Theorem 4.4 If  be an ordered LA-

hyperring with a pure left identity , then for all : 

  is a left hyperideal of  

  is a right hyperideal of . 

Proof. Let  where  and 

 for some . This implies that 

 and  for some 

.  

 

 

 
Thus . For any , we have 

 

 

 
And 

 

 

 

 
Hence . The similar way can 

be used to show that . 

Therefore,  is an LA-subhypergroup of . 

Now let , then 

 
 (pure left identity) 

 (paramedial law) 

  (pure left identity) 

  (medial law) 

 
So  is a hyperideal of . 

Theorem 4.5 Let  be an ordered LA-

hyperring with a pure left identity. If  is a hyperideal of 

, then  is also a hyperideal of . 

Proof. First we show that  is an LA-

subhypergroup of . Let , 

which implies that  and  

for some . Then we have 

. Next we 

show that  satisfy the reproduction law. Let 

 then  where 

. By definition of , we have 

 and  for some . 

Then 

 

 

 
And  

 
  (for all ) 
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Thus  is an LA-subhypergroup of . Let 

 where . This 

implies that  for some . We 

have 

 

 
  (  is a pure identity) 

 (medial law) 

 
The case for  can be seen in similar 

way. Let , then  for some 

. If , then . 

Hence . So  is a hyperideal of . 

Definition 4.6 A non-empty set  of an ordered LA-

hyperring  is called by bi-hyperideal of 

 if satisfies the following condition. 

  is LA-subhypergroup of . 

 . 

 If  and , then , for any . 

Theorem 4.7 Let  be an ordered LA-

hyperring with a pure left identity . If  and  are bi-

hyperideals of , then  is a bi-hyperideal of 

. 

Proof. The proof is straightforward. 

Theorem 4.8 If  is an ordered LA-

hyperring, then every left (right) hyperideal of  is a bi-

hyperideal of . 

Proof.  Let  be a left hyperideal of . we will show that 

 satisfy the (B2) conditions. 

 
Since  is a left hyperideal of , we have .  

The case for a right hyperideal  of , we get  

. So,  is a bi-hyperideal of . 

Definition 4.9 A non-empty set  of an ordered LA-

hyperring  is called by quasi-hyperideal of 

 if satisfies the following condition. 

  is LA-subhypergroup of . 

 . 

 If  and , then , for any . 

Theorem 4.10 Let  be an ordered LA-

hyperring. If  is a quasi-hyperideal of , then  is an 

LA-subhyperring of . 

Proof. We will show that . Let , 

then  

 and 

. Hence 

. By definition of quasi-

hyperideal of , we get . So,  is an LA-

subhyperring of .  

Theorem 4.11 If  is an ordered LA-

hyperring with a pure left identity, then every quasi-

hyperideal of  is a bi-hyperideal of . 

Proof. Let  be a pure left identity of  and  be a 

quasi-hyperideal of . We will show that  satisfy the 

condition . Then 

 

 

 
and 

 
  

Hence, we get . 

So,  is a bi-hyperideal of . 

5. CONCLUSION 

An ordered LA-hyperring is a hyperstructure with a 

partial order relation as a generalization of LA-ring and 

hyperring. We obtained some elementary properties of 

ordered LA-hyperring and some useful contiditons for 

ordered LA-hyperring to become an ordered hyperring. 

Also, we investigated some properties of hyperideal, bi-

hyperideal, and quasi-hyperideal of ordered LA-

hyperring. 
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