

Advances in Social Science, Education and Humanities Research, volume 550 Proceedings of the 1st International Conference on Mathematics and Mathematics Education (ICMMED 2020)

Ideal Generated by The Coefficient of a Polynomial Over \mathbb{Z}_k , k > 1

Larasati Onna Roufista¹, Indriati Nurul Hidayah¹

¹Department of Mathematics, Universitas Negeri Malang Email: indriati.nurul.fmipa@um.ac.id

ABSTRACT

Let $\mathbb{Z}_k, k > 1, k \in \mathbb{N}$ be a commutative ring with unity, polynomial $f = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}_k[x], a_i \in \mathbb{Z}_k$. We can construct $c(f) = \langle a_0, \dots, a_n \rangle$ be an ideal of \mathbb{Z}_k generated by a_0, \dots, a_n . If $(a_0, \dots, a_n) = 1$ or a_i unit of \mathbb{Z}_k for $i = 0, \dots, n$, then $c(f) = \mathbb{Z}_k$, for k composite.. For k is prime, because all of the elements in \mathbb{Z}_k is unit, then $c(f) = \mathbb{Z}_k$, for every $f \in \mathbb{Z}_k[x]$.

Keywords: polynomial ring \mathbb{Z}_k , k > 1, Ideal c(f), unit, relative prime.

1. INTRODUCTION

A ring R is a set with two binary operations and satisfies some properties. A subset A of ring R, which itself a ring, is a subring of ring R. If every element $r \in R$ and $a \in A$, both ra and ar are in A, then A is an ideal of R [1].

A set of integers modulo k, \mathbb{Z}_k , $k > 1, k \in \mathbb{N}$ is an example of a ring with two binary operations, that is, addition and multiplication modulo k. If kis prime, that is \mathbb{Z}_p , then every element of \mathbb{Z}_p has an inverse over multiplication modulo n. A set of integers modulo p, \mathbb{Z}_p , is a field [1].

A polynomial ring over \mathbb{Z}_k , is denoted $\mathbb{Z}_k[x]$, is $\mathbb{Z}_k[x] = \{a_0 + a_1x + \dots + a_nx^n | a_i \in \mathbb{Z}_k, n \text{ is nonnegative integer}\}$. An element of $\mathbb{Z}_k[x]$ is denoted f, with a_0, a_1, \dots, a_n is the coefficient of f. Coefficients of the polynomial f in $\mathbb{Z}_k[x]$ can form an ideal, is denoted $c(f) = \langle a_0, a_1, \dots, a_n \rangle$ [2]. In this paper, we will discuss a characteristic of the coefficient of a polynomial f over \mathbb{Z}_k , k > 1, $k \in \mathbb{N}$.

2. PRELIMINARIES

An ideal is formed from a subring. Therefore, we introduce a discussion about ring and subring of ring. The definition of ring and subring refer to [1].

Definition 2.1. A ring *R* is a set with two binary operations, that is an addition (denoted by a + b) and multiplication (denoted by ab), such that for every $a, b, c \in R$:

- (i) Commutative over addition that is a + b = b + a
- (ii) Associative over addition that is (a + b) + c = a + (b + c)
- (iii) There is an additive identity 0. That is, there is an element 0 in R, such that a + 0 = a, for all a in R
- (iv) There is the additive inverse -a in R, such that a + (-a) = 0
- (v) Associative over multiplication that is a(bc) = (ab)c
- (vi) Distributive over addition that is $a(b + c) = ab + ac \operatorname{dan} (b + c)a = ba + ca$

A ring *R* is commutative if and only if for every $a, b \in R$, ab = ba. If a ring *R* has a multiplicative identity, then ring *R* is called a ring with unity. A nonzero element *a* of a commutative ring with unity need not have a multiplicative inverse. When it does, then *a* is called unit if there is a^{-1} such that $aa^{-1} = 1, 1$ is a notation of unity. If every nonzero element of ring *R* is a unit, then ring *R* is a field, as the definition 2.2 below.

Definition 2.2 ([3]) Field is a commutative ring with unity, in which every nonzero element of the field is a unit.

Corollary 2.3 ([3]) For every prime p, \mathbb{Z}_p , the ring of integers modulo p is a field.

In the main result, we discuss an ideal formed from the coefficient of a polynomial over R. So, the definition of an ideal of a ring, polynomial over ring, and an ideal generated by coefficients f will be explained.

Definition 2.4. A subring A of ring R is called an ideal of R if and only if for every $r \in R, a \in A, ra, ar \in A$. An ideal A of R is called a proper ideal of R if $A \subset R$.

For example, let *R* be a commutative ring with unity and $c \in R$. Let *I* be the set of all multiples of *c*, that is, $I = \{rc | r \in R\}$. Then *I* is called principal ideal generated by *c*, also denoted by $\langle c \rangle$ [4].

Definition 2.5. [1] Let *R* be a commutative ring. A set

$$R[x] = \{a_0 + a_1x + \dots + a_nx^n | a_i \in R, n \text{ is} nonnegative integer}\}$$

is called a ring of polynomials over R.

Let $f, g \in R[x]$, that is

$$f = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$
$$= \sum_{i=0}^n a_i x^i$$

and

$$g = b_0 + b_1 x + \dots + b_{m-1} x^{m-1} + b_m x^m$$
$$= \sum_{i=0}^m b_i x^i$$

Two polynomials over *R* are equal, that is, f = g, if and only if $a_i = b_i$, for all nonnegative integers *i* (defined $a_i = 0$ for i > n, and $b_i = 0$ for i > m).

Let $f = a_0 + \dots + a_n x^n$, with $a_n \neq 0$, then we say that f has degree n, denoted by $\deg(f) = n$, the term a_n is called the leading coefficient of f [5]. If $f = a_n x^n$, $a_n \neq 0$, then f is called a monomial.

For example, Let $f = x^2 - 5x + 4 \in \mathbb{Z}[x]$, then f is called monic polynomial since the leading coefficient, a_2 , is unity in Z[x].

Theorem 2.6. [2] Let $f \in R[x]$, and $a_0, a_1, ..., a_n$ are coefficients of f. An ideal generated by coefficients f denoted by c(f), that is

$$c(f) = \langle a_0, a_1, \dots, a_n \rangle = \left\{ \sum_{i=0}^n r_i a_i, r_i \in R \right\}$$

For example, let $f = x^2 - 5x + 4 \in \mathbb{Z}[x]$, then

$$c(f) = \langle 4, -5, 1 \rangle = \{4r_0 + (-5r_1) + r_2, r_i \in \mathbb{Z}\} = \mathbb{Z}$$

is an ideal in \mathbb{Z} .

A set of integers modulo k, \mathbb{Z}_k , k > 1, $k \in \mathbb{N}$ is a ring, so we can form polynomial over ring \mathbb{Z}_k , k > 1, $k \in \mathbb{N}$, denoted $\mathbb{Z}_k[x]$. The main result will discuss the characteristic of a polynomial f over \mathbb{Z}_k , k > 1, $k \in \mathbb{N}$ such that $c(f) = \mathbb{Z}_k$. To analyze it, we need to discuss the greatest common divisor (gcd) of two nonzero integers that refers to [1].

Definition 2.7. The greatest common divisor (gcd) of two nonzero integers a and b is the largest of all common divisors of a and b, denoted by gcd(a, b).

If gcd(a, b) = 1, then a and b are relatively prime.

Theorem 2.8. For every nonzero integer *a* and *b*, there is $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

Theorem 2.9. If *a* and *b* are relatively prime, then there is $s, t \in \mathbb{Z}$ such that as + bt = 1

3. MAIN RESULT

In this section, we will discuss the characteristic of polynomials over a ring of integers modulo k, \mathbb{Z}_k , $k > 1, k \in \mathbb{N}$, such that $c(f) = \mathbb{Z}_k$. The discussion is divided into k is even, k is odd, and k is prime. The result are

Theorem 3.1 Let \mathbb{Z}_k , k composite, is a commutative ring with unity, and $f = a_0 + a_1 + \dots + a_n x^n \in \mathbb{Z}_k[x]$, $a_i \in \mathbb{Z}_k$, c(f) is an ideal of \mathbb{Z}_k .

If $gcd(a_0, ..., a_n) = 1$ or a_i is unit in \mathbb{Z}_k for some i = 0, ..., n, then $c(f) = \mathbb{Z}_k$

Proof:

• Suppose $gcd(a_0, ..., a_n) = 1$. We will prove that $c(f) = \mathbb{Z}_k$

Let $f = a_0 + \dots + a_n x^n \in \mathbb{Z}_k[x]$.

Since c(f) is ideal of \mathbb{Z}_k , it is clear that $c(f) \subseteq \mathbb{Z}_k$.

Now, we will prove that $\mathbb{Z}_k \subseteq c(f)$

If $gcd(a_0, ..., a_n) = 1$ then by theorem 2.9, $\exists r_0, ..., r_n \in \mathbb{Z}_k$ such that $(r_0a_0 + \cdots + r_na_n)(mod k) = 1$, (it means $\exists q \in \mathbb{Z}$ such that $r_0a_0 + \cdots + r_na_n = qk + 1$).

Therefore $1 \in c(f)$

For any $r \in \mathbb{Z}_k$, since \mathbb{Z}_k have unity, and $1 \in c(f)$, then

$$r = r.1 = r(r_0a_0 + \dots + r_na_n) = ((rr_0)a_0 + \dots + (rr_n)a_n)$$

If $rr_i = t_i \in \mathbb{Z}_k$, for $0 \le i \le n$, then

$$r = t_0 a_0 + \dots + t_n a_n \in c(f)$$

So

 $\exists t_i = rr_i \in \mathbb{Z}_k \quad \text{such} \quad \text{that} \\ r = t_0 a_0 + \dots + t_n a_n \in c(f)$

So $c(f) = \mathbb{Z}_k$

• Suppose a_i is unit in \mathbb{Z}_k . We will prove $c(f) = \mathbb{Z}_k$

Let $f = a_0 + \dots + a_n x^n \in \mathbb{Z}_k[x]$

Since c(f) is ideal in \mathbb{Z}_k , it's clear that $c(f) \subseteq \mathbb{Z}_k$

Now, we will prove that $\mathbb{Z}_k \subseteq c(f)$

If a_i is unit in \mathbb{Z}_k for some i = 0, ..., n then $\exists r_i = a_i^{-1} \rightarrow r_i a_i = a_i^{-1} a_i = 1$

We obtain

(1) For i = 0, then $1 = r_i a_i = r_0 a_0$, choose $r_j = 0, j = 1, ..., n$, such that

$$r_0a_0 + \dots + r_na_n = r_0a_0 + 0. a_1 + \dots + 0. a_n$$

= $r_0a_0 + 0 = 1 \in c(f)$

(2) For 0 < i < n, then $1 = r_i a_i$, choose $r_j = 0, j = 0, ..., n, i \neq j$, such that

$$r_0 a_0 + \dots + r_n a_n = 0. a_0 + \dots + r_i a_i + \dots + 0. a_n = 0 + r_i a_i + 0 = 1 \in c(f)$$

(3) For
$$i = n$$
, then $1 = r_n a_n$, Therefore,

$$r_0a_0 + \dots + r_na_n = 0. a_0 + \dots + 0. a_{n-1} + r_na_n = 0 + r_na_n = 1 \in c(f)$$

Hence $1 \in c(f)$

For any $r \in \mathbb{Z}_k$, since \mathbb{Z}_k have unity, and $1 \in c(f)$, then

$$r = r.1 = r(r_0a_0 + \dots + r_na_n) = ((rr_0)a_0 + \dots + (rr_n)a_n)$$

if $rr_i = t_i \in \mathbb{Z}_k$, for $0 \le i \le n$, then

$$r = t_0 a_0 + \dots + t_n a_n \in c(f)$$

So
$$\exists t_i = rr_i \in \mathbb{Z}_k$$
 such that $r = t_0 a_0 + \dots + t_n a_n \in c(f)$

So $c(f) = \mathbb{Z}_k$

Note that, if $a_i = 1$, which is 1 is unity in \mathbb{Z}_k , clearly $c(f) = \mathbb{Z}_k$.

The following is the example of theorem 3.1

Example 3.2 Let $f = 3 + 2x \in \mathbb{Z}_6[x]$ then gcd(2,3) = 1 but 3 and 2 are not \mathbb{Z}_6 . We have

$$c(f) = \langle 3, 2 \rangle = \{ 3r_0 + 2r_1 | r_i \in \mathbb{Z}_6 \}$$

and $0 \in c(f)$ because $\exists r_0 = 0, r_1 = 0 \rightarrow 3r_0 + 2r_1 = 0$

- $1 \in c(f)$ because $\exists r_0 = 1, r_1 = 2 \rightarrow 3r_0 + 2r_1 = 1$
- $2 \in c(f) \text{ because } \exists r_0 = 0, r_1 = 1 \rightarrow 3r_0 + 2r_1 = 2$
- $3 \in c(f)$ because $\exists r_0 = 1, r_1 = 0 \rightarrow 3r_0 + 2r_1 = 3$
- $4 \in c(f) \text{ because } \exists r_0 = 0, r_1 = 2 \rightarrow 3r_0 + 2r_1 = 4$
- $5 \in c(f)$ because $\exists r_0 = 1, r_1 = 1 \rightarrow 3r_0 + 2r_1 = 5$

So,
$$c(f) = \mathbb{Z}_6$$

But, if $gcd(a_0, ..., a_n) \neq 1$ and a_i is not unit in \mathbb{Z}_k k composite then is not necessarily $c(f) = \mathbb{Z}_k$ as the example

Example 3.3 Let $f = 2 + 4x \in \mathbb{Z}_6[x]$. We know that $gcd(2,4) = 2 \neq 1$ and 2 and 4 is not unit in \mathbb{Z}_6 . Then $c(f) = \langle 2,4 \rangle = \{2r_0 + 4r_1 | r_i \in \mathbb{Z}_6\} = \{0,2,4\} \neq \mathbb{Z}_6$

For k is a prime, that is \mathbb{Z}_p , because every element of \mathbb{Z}_p is unit then $c(f) = \mathbb{Z}_p$, as follow:

Corollary 3.2 Let \mathbb{Z}_p , p prime is a commutative ring with unity and $f = a_0 + \dots + a_n x^n \in \mathbb{Z}_p[x]$, $a_i \in \mathbb{Z}_p$, c(f) is ideal in \mathbb{Z}_p , then $c(f) = \mathbb{Z}_p$.

Proof:

Suppose \mathbb{Z}_p, p prime is a commutative ring with unity, then $\forall r \in \mathbb{Z}_p, r$ is *unit* since \mathbb{Z}_p is field.

Let $f = a_0 + \dots + a_n x^n \in \mathbb{Z}_p[x]$, $a_i \in \mathbb{Z}_p$ for some $i = 0, \dots, n$

Since $a_i \in \mathbb{Z}_p$, then a_i is *unit*, therefore, by theorem 3.1, $c(f) = \mathbb{Z}_p$.

4. CONCLUSION

Based on the discussion above, we can conclude that if $gcd(a_0, ..., a_n) = 1$ or a_i is *unit* in \mathbb{Z}_k for some i = 0, ..., n, then $c(f) = \mathbb{Z}_k, k$ composite. Especially for p is a prime, if \mathbb{Z}_p , p prime, then $c(f) = \mathbb{Z}_p$.

ACKNOWLEDGMENTS

This research was supported by PNBP Universitas Negeri Malang. The authors would like to express sincere appreciation for all the support given.

REFERENCES

- J.A. Gallian, Contemporary Abstract Algebra. Ninth edit. Boston, MA: Brooks/Cole Cengage Learning, 2016.
- [2] H.A. Khashan, W. Burhan, Cleanness of overrings of polynomial rings. J Egypt Math Soc 2016, pp. 1–4. DOI: https://doi.org/10.1016/j.joems.2014.08.003.

- [3] L. Gilbert, J. Gilbert, Elements of Modern Algebra. seventh ed. Belmont, USA: Brooks/Cole, Cengage Learning, 2009.
- T. Hungerford, Algebra. New York: Springer-Verlag New; 2000. DOI: https://doi.org/10.1007/978-1-4612-6101-8 e-ISBN-13:
- [5] P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul. Basic Abstract Algebra. Second Edi. New York, 1994.