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ABSTRACT 

Let ℤ𝑘 , 𝑘 > 1, 𝑘 ∈ ℕ be a commutative ring with unity, polynomial  𝑓 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑘[𝑥], 𝑎𝑖 ∈ ℤ𝑘. We

can construct  𝑐(𝑓)= 〈𝑎0, … , 𝑎𝑛〉 be an ideal of ℤ𝑘  generated by 𝑎0, … , 𝑎𝑛 .  If  (𝑎0, … , 𝑎𝑛) = 1 or 𝑎𝑖  𝑢𝑛𝑖𝑡 of ℤ𝑘  for 𝑖 =

0, … , 𝑛, then 𝑐(𝑓) = ℤ𝑘, for k composite.. For 𝑘 is prime, because all of the elements in  ℤ𝑘  is unit, then  𝑐(𝑓) = ℤ𝑘, for

every 𝑓 ∈ ℤ𝑘[𝑥]. 

Keywords: polynomial ring ℤ𝑘 , 𝑘 > 1, Ideal 𝑐(𝑓), unit, relative prime.

1. INTRODUCTION

A ring 𝑅 is a set with two binary operations and

satisfies some properties. A subset 𝐴 of ring 𝑅, 
which itself a ring, is a subring of ring 𝑅. If every 

element 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴, both 𝑟𝑎 and 𝑎𝑟 are in 𝐴, 

then 𝐴 is an ideal of 𝑅 [1]. 

A set of integers modulo 𝑘, ℤ𝑘, 𝑘 > 1, 𝑘 ∈ ℕ is

an example of a ring with two binary operations, 

that is, addition and multiplication modulo 𝑘 . If 𝑘 

is prime, that is ℤ𝑝, then every element of ℤ𝑝 has an

inverse over multiplication modulo 𝑛. A set of 

integers modulo 𝑝, ℤ𝑝, is a field [1].

A polynomial ring over ℤ𝑘 , is denoted ℤ𝑘[𝑥], is
ℤ𝑘[𝑥] = {𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛|𝑎𝑖 ∈ ℤ𝑘, 𝑛 is

nonnegative integer}. An element of ℤ𝑘[𝑥] is

denoted 𝑓, with 𝑎0, 𝑎1, … , 𝑎𝑛 is the coefficient of 𝑓.
Coefficients of the polynomial 𝑓 in ℤ𝑘[𝑥] can form

an ideal, is denoted 𝑐(𝑓) = 〈𝑎0, 𝑎1, … , 𝑎𝑛〉 [2]. In

this paper, we will discuss a characteristic of the 

coefficient of a polynomial 𝑓 over ℤ𝑘  , 𝑘 > 1, 𝑘 ∈
ℕ. 

2. PRELIMINARIES

An ideal is formed from a subring. Therefore, we 

introduce a discussion about ring and subring of 

ring. The definition of ring and subring  refer to [1]. 

Definition 2.1. A ring 𝑅 is a set with two binary 

operations, that is an addition (denoted by 𝑎 + 𝑏) 

and multiplication (denoted by 𝑎𝑏), such that for 

every 𝑎, 𝑏, 𝑐 ∈ 𝑅: 

(i) Commutative over addition that is 𝑎 + 𝑏 = 𝑏 +
𝑎

(ii) Associative over addition that is (𝑎 + 𝑏) + 𝑐 =
𝑎 + (𝑏 + 𝑐)

(iii) There is an additive identity 0. That is, there is

an element 0 in 𝑅, such that 𝑎 + 0 = 𝑎, for all

𝑎 in 𝑅

(iv) There is the additive inverse −𝑎 in 𝑅, such that

𝑎 + (−𝑎) = 0

(v) Associative over multiplication that is 𝑎(𝑏𝑐) =
(𝑎𝑏)𝑐

(vi) Distributive over addition that is 𝑎(𝑏 + 𝑐) =
𝑎𝑏 + 𝑎𝑐 dan (𝑏 + 𝑐)𝑎 = 𝑏𝑎 + 𝑐𝑎

A ring 𝑅 is commutative if and only if for every 

𝑎, 𝑏 ∈ 𝑅, 𝑎𝑏 = 𝑏𝑎. If a ring 𝑅 has a multiplicative 

identity, then ring 𝑅 is called a ring with unity. A 

nonzero element 𝑎 of a commutative ring with unity 

need not have a multiplicative inverse. When it 

does, then 𝑎 is called unit if there is 𝑎−1 such that

𝑎𝑎−1 = 1, 1 is a notation of unity. If every nonzero

element of ring 𝑅 is a unit, then ring 𝑅 is a field, as 

the definition 2.2 below. 
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Definition 2.2 ([3]) Field is a commutative ring with 

unity, in which every nonzero element of the field is 

a unit. 

Corollary 2.3 ([3]) For every prime 𝑝, ℤ𝑝, the ring

of integers modulo 𝑝 is a field. 

In the main result, we discuss an ideal formed from 

the coefficient of a polynomial over 𝑅.  So, the 

definition of an ideal of a ring, polynomial over ring, 

and an ideal generated by coefficients 𝑓 will be 

explained. 

Definition 2.4.  A subring 𝐴 of ring 𝑅 is called an 

ideal of  𝑅 if and only if for every 𝑟 ∈ 𝑅, 𝑎 ∈
𝐴, 𝑟𝑎, 𝑎𝑟 ∈ 𝐴. An ideal 𝐴 of 𝑅 is called a proper 

ideal of 𝑅 if 𝐴 ⊂ 𝑅. 

For example, let 𝑅 be a commutative ring with unity 

and 𝑐 ∈ 𝑅. Let 𝐼 be the set of all multiples of 𝑐, that 

is, 𝐼 = {𝑟𝑐|𝑟 ∈ 𝑅}. Then 𝐼 is called principal ideal 

generated by 𝑐, also denoted by 〈𝑐〉 [4]. 

Definition 2.5. [1] Let 𝑅 be a commutative ring. A 

set 

𝑅[𝑥] = {𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛|𝑎𝑖 ∈ 𝑅, 𝑛 is
nonnegative integer} 

is called a ring of polynomials over 𝑅. 

Let 𝑓, 𝑔 ∈ 𝑅[𝑥], that is 

𝑓 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛

= ∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=0

and 

𝑔 = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚−1𝑥𝑚−1 + 𝑏𝑚𝑥𝑚

= ∑ 𝑏𝑖𝑥𝑖

𝑚

𝑖=0

Two polynomials over 𝑅 are equal, that is, 𝑓 =
𝑔,  if and only if 𝑎𝑖 = 𝑏𝑖, for all nonnegative

integers 𝑖 (defined 𝑎𝑖 = 0 for 𝑖 > 𝑛, and 𝑏𝑖 = 0 for

𝑖 > 𝑚). 

Let 𝑓 = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛, with 𝑎𝑛 ≠ 0, then we

say that 𝑓 has  degree 𝑛, denoted by deg(𝑓) = 𝑛, 

the term 𝑎𝑛 is called the leading coefficient of 𝑓 [5].

If 𝑓 = 𝑎𝑛𝑥𝑛, 𝑎𝑛 ≠ 0, then 𝑓 is called a monomial.

For example, Let 𝑓 = 𝑥2 − 5𝑥 + 4 ∈ ℤ[𝑥], then

𝑓 is called monic polynomial since the leading 

coefficient, 𝑎2, is unity in 𝑍[𝑥].

Theorem 2.6. [2] Let 𝑓 ∈ 𝑅[𝑥], and  𝑎0, 𝑎1, … , 𝑎𝑛

are coefficients of 𝑓. An ideal generated by 

coefficients 𝑓 denoted by 𝑐(𝑓), that is 

𝑐(𝑓) = 〈𝑎0, 𝑎1, … , 𝑎𝑛〉 = {∑ 𝑟𝑖𝑎𝑖

𝑛

𝑖=0

, 𝑟𝑖 ∈ 𝑅}

For example, let 𝑓 = 𝑥2 − 5𝑥 + 4 ∈ ℤ[𝑥], then

𝑐(𝑓) = 〈4, −5,1〉
= {4𝑟0 + (−5𝑟1) + 𝑟2, 𝑟𝑖 ∈ ℤ}
= ℤ 

is an ideal in ℤ. 

A set of integers modulo k, ℤ𝑘, 𝑘 > 1, 𝑘 ∈ ℕ is a

ring, so we can form polynomial over ring ℤ𝑘, 𝑘 >
1, 𝑘 ∈ ℕ, denoted ℤ𝑘[𝑥]. The main result will

discuss the characteristic of a polynomial 𝑓 over 

ℤ𝑘  , 𝑘 > 1, 𝑘 ∈ ℕ such that 𝑐(𝑓) = ℤ𝑘. To analyze

it, we need to discuss the greatest common divisor 

(gcd) of two nonzero integers that refers to [1]. 

Definition 2.7. The greatest common divisor (gcd) 

of two nonzero integers 𝑎 and 𝑏 is the largest of all 

common divisors of 𝑎 and 𝑏, denoted by gcd (𝑎, 𝑏). 

If gcd(𝑎, 𝑏) = 1, then 𝑎 and 𝑏 are relatively prime. 

Theorem 2.8. For every nonzero integer 𝑎 and 𝑏, 

there is 𝑠, 𝑡 ∈ ℤ such that gcd(𝑎, 𝑏) = 𝑎𝑠 + 𝑏𝑡. 

Moreover, gcd (𝑎, 𝑏) is the smallest positive integer 

of the form 𝑎𝑠 + 𝑏𝑡. 

Theorem 2.9. If 𝑎 and 𝑏 are relatively prime, then 

there is 𝑠, 𝑡 ∈ ℤ such that 𝑎𝑠 + 𝑏𝑡 = 1 

3. MAIN RESULT

In this section, we will discuss the characteristic

of polynomials over a ring of integers modulo k, ℤ𝑘,

𝑘 > 1, 𝑘 ∈ ℕ, such that 𝑐(𝑓) = ℤ𝑘. The discussion

is divided into 𝑘 is even, 𝑘 is odd, and 𝑘 is prime. 

The result are 

Theorem 3.1 Let ℤ𝑘 , k composite,  is a

commutative ring with unity, and 𝑓 = 𝑎0 + 𝑎1 +
⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑘[𝑥], 𝑎𝑖 ∈ ℤ𝑘, 𝑐(𝑓) is an ideal of ℤ𝑘.
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If 𝑔𝑐𝑑 (𝑎0, … , 𝑎𝑛) = 1 or 𝑎𝑖 is 𝑢𝑛𝑖𝑡 in ℤ𝑘 for some

𝑖 = 0, … , 𝑛, then 𝑐(𝑓) = ℤ𝑘

Proof: 

 Suppose 𝑔𝑐𝑑(𝑎0, … , 𝑎𝑛) = 1. We will prove

that 𝑐(𝑓) = ℤ𝑘

Let 𝑓 = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑘[𝑥].

Since 𝑐(𝑓) is ideal of ℤ𝑘, it is clear that 𝑐(𝑓) ⊆ ℤ𝑘.

Now, we will prove that ℤ𝑘 ⊆ 𝑐(𝑓)

If 𝑔𝑐𝑑(𝑎0, … , 𝑎𝑛) = 1 then by theorem 2.9,

∃𝑟0, … , 𝑟𝑛 ∈ ℤ𝑘 such that (𝑟0𝑎0 + ⋯ +
𝑟𝑛𝑎𝑛)(𝑚𝑜𝑑 𝑘) = 1, (it means ∃𝑞 ∈ ℤ such that

𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛 = 𝑞𝑘 + 1).

Therefore 1 ∈ 𝑐(𝑓) 

For any 𝑟 ∈ ℤ𝑘, since ℤ𝑘 have unity, and 1 ∈
𝑐(𝑓), then 

𝑟 = 𝑟. 1 = 𝑟(𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛)

= ((𝑟𝑟0)𝑎0 + ⋯ + (𝑟𝑟𝑛)𝑎𝑛)

If 𝑟𝑟𝑖 = 𝑡𝑖 ∈ ℤ𝑘, for 0 ≤ 𝑖 ≤ 𝑛, then

𝑟 = 𝑡0𝑎0 + ⋯ + 𝑡𝑛𝑎𝑛 ∈ 𝑐(𝑓)

So ∃𝑡𝑖 = 𝑟𝑟𝑖 ∈ ℤ𝑘 such that 

𝑟 = 𝑡0𝑎0 + ⋯ + 𝑡𝑛𝑎𝑛 ∈ 𝑐(𝑓)

So 𝑐(𝑓) = ℤ𝑘

 Suppose 𝑎𝑖 is 𝑢𝑛𝑖𝑡 in ℤ𝑘. We will prove

𝑐(𝑓) = ℤ𝑘

Let 𝑓 = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑘[𝑥]

Since 𝑐(𝑓) is ideal in ℤ𝑘, it's clear that 𝑐(𝑓) ⊆ ℤ𝑘

Now, we will prove that ℤ𝑘 ⊆ 𝑐(𝑓)

If 𝑎𝑖 is 𝑢𝑛𝑖𝑡 in ℤ𝑘 for some 𝑖 = 0, … , 𝑛 then

∃𝑟𝑖 = 𝑎𝑖
−1 → 𝑟𝑖𝑎𝑖 = 𝑎𝑖

−1𝑎𝑖 = 1

We obtain 

(1) For 𝑖 = 0, then 1 = 𝑟𝑖𝑎𝑖 = 𝑟0𝑎0, choose 𝑟𝑗 =

0, 𝑗 = 1, … , 𝑛, such that

𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛 = 𝑟0𝑎0 + 0. 𝑎1 + ⋯ + 0. 𝑎𝑛

= 𝑟0𝑎0 + 0 = 1 ∈ 𝑐(𝑓)

(2) For 0 < 𝑖 < 𝑛, then 1 = 𝑟𝑖𝑎𝑖, choose 𝑟𝑗 =

0, 𝑗 = 0, … , 𝑛, 𝑖 ≠ 𝑗, such that

𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛

= 0. 𝑎0 + ⋯ + 𝑟𝑖𝑎𝑖 + ⋯
+ 0. 𝑎𝑛 = 0 + 𝑟𝑖𝑎𝑖 + 0 = 1
∈ 𝑐(𝑓)

(3) For 𝑖 = 𝑛, then 1 = 𝑟𝑛𝑎𝑛, Therefore,

𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛

= 0. 𝑎0 + ⋯ + 0. 𝑎𝑛−1 + 𝑟𝑛𝑎𝑛

= 0 + 𝑟𝑛𝑎𝑛 = 1 ∈ 𝑐(𝑓)

Hence 1 ∈ 𝑐(𝑓) 

For any 𝑟 ∈ ℤ𝑘, since ℤ𝑘 have unity, and 1 ∈ 𝑐(𝑓),

then 

𝑟 = 𝑟. 1 = 𝑟(𝑟0𝑎0 + ⋯ + 𝑟𝑛𝑎𝑛)

= ((𝑟𝑟0)𝑎0 + ⋯ + (𝑟𝑟𝑛)𝑎𝑛)

if 𝑟𝑟𝑖 = 𝑡𝑖 ∈ ℤ𝑘, for 0 ≤ 𝑖 ≤ 𝑛, then

𝑟 = 𝑡0𝑎0 + ⋯ + 𝑡𝑛𝑎𝑛 ∈ 𝑐(𝑓)

So ∃𝑡𝑖 = 𝑟𝑟𝑖 ∈ ℤ𝑘 such that 
𝑟 = 𝑡0𝑎0 + ⋯ + 𝑡𝑛𝑎𝑛 ∈ 𝑐(𝑓)

So  𝑐(𝑓) = ℤ𝑘

Note that, if 𝑎𝑖 = 1, which is 1 is unity in ℤ𝑘, clearly

𝑐(𝑓) = ℤ𝑘.

The following is the example of theorem 3.1 

Example 3.2 Let 𝑓 = 3 + 2𝑥 ∈ ℤ6[𝑥] then

𝑔𝑐𝑑(2,3) = 1 but 3 and 2 are not  ℤ6. We have

𝑐(𝑓) = 〈3,2〉 = {3𝑟0 + 2𝑟1|𝑟𝑖 ∈ ℤ6}

and  0 ∈ 𝑐(𝑓) because  ∃𝑟0 = 0, 𝑟1 = 0 → 3𝑟0 +
2𝑟1 = 0

1 ∈ 𝑐(𝑓) because ∃𝑟0 = 1, 𝑟1 = 2 → 3𝑟0 + 2𝑟1 =
1 

2 ∈ 𝑐(𝑓) because ∃𝑟0 = 0, 𝑟1 = 1 → 3𝑟0 + 2𝑟1 =
2 

3 ∈ 𝑐(𝑓) because ∃𝑟0 = 1, 𝑟1 = 0 → 3𝑟0 + 2𝑟1 =
3 

4 ∈ 𝑐(𝑓) because  ∃𝑟0 = 0, 𝑟1 = 2 → 3𝑟0 + 2𝑟1 =
4 

5 ∈ 𝑐(𝑓) because ∃𝑟0 = 1, 𝑟1 = 1 → 3𝑟0 + 2𝑟1 =
5 

So, 𝑐(𝑓) = ℤ6.
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But, if  𝑔𝑐𝑑 (𝑎0, … , 𝑎𝑛) ≠ 1 and  𝑎𝑖 is not 𝑢𝑛𝑖𝑡
in ℤ𝑘 k composite then is not necessarily 𝑐(𝑓) = ℤ𝑘

as the example 

Example 3.3 Let 𝑓 = 2 + 4𝑥 ∈ ℤ6[𝑥]. We know

that 𝑔𝑐𝑑(2,4) = 2 ≠ 1 and 2 and 4 is not unit in ℤ6.

Then 𝑐(𝑓) = 〈2,4〉 = {2𝑟0 + 4𝑟1|𝑟𝑖 ∈ ℤ6} =
{0,2,4} ≠ ℤ6

For 𝑘 is a prime, that is ℤ𝑝, because every element

of ℤ𝑝 is unit then 𝑐(𝑓) = ℤ𝑝, as follow:

Corollary 3.2 Let ℤ𝑝, 𝑝 prime is a commutative ring

with unity and 𝑓 = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑝[𝑥], 𝑎𝑖 ∈

ℤ𝑝, 𝑐(𝑓) is ideal in ℤ𝑝, then 𝑐(𝑓) = ℤ𝑝.

Proof: 

Suppose ℤ𝑝, 𝑝 prime is a commutative ring with

unity, then ∀𝑟 ∈ ℤ𝑝, 𝑟 is 𝑢𝑛𝑖𝑡 since ℤ𝑝 is field.

Let 𝑓 = 𝑎0 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℤ𝑝[𝑥], 𝑎𝑖 ∈ ℤ𝑝 for some

𝑖 = 0, … , 𝑛 

Since 𝑎𝑖 ∈ ℤ𝑝, then 𝑎𝑖 is 𝑢𝑛𝑖𝑡, therefore, by

theorem 3.1, 𝑐(𝑓) = ℤ𝑝.

4. CONCLUSION

Based on the discussion above,  we can conclude

that if 𝑔𝑐𝑑(𝑎0, … , 𝑎𝑛) = 1 or 𝑎𝑖 is 𝑢𝑛𝑖𝑡 in ℤ𝑘 for

some 𝑖 = 0, … , 𝑛, then 𝑐(𝑓) = ℤ𝑘 , 𝑘 composite.

Especially for 𝑝 is a prime, if ℤ𝑝, 𝑝 prime, then

𝑐(𝑓) = ℤ𝑝.
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