Ideal Generated by The Coefficient of a Polynomial Over $\mathbb{Z}_{k}, k>1$

Larasati Onna Roufista ${ }^{1}$, Indriati Nurul Hidayah ${ }^{1}$
${ }^{1}$ Department of Mathematics, Universitas Negeri Malang
Email: indriati.nurul.fmipa@um.ac.id

Abstract

Let $\mathbb{Z}_{k}, k>1, k \in \mathbb{N}$ be a commutative ring with unity, polynomial $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{Z}_{k}[x], a_{i} \in \mathbb{Z}_{k}$. We can construct $c(f)=\left\langle a_{0}, \ldots, a_{n}\right\rangle$ be an ideal of \mathbb{Z}_{k} generated by a_{0}, \ldots, a_{n}. If $\left(a_{0}, \ldots, a_{n}\right)=1$ or a_{i} unit of \mathbb{Z}_{k} for $i=$ $0, \ldots, n$, then $c(f)=\mathbb{Z}_{k}$, for k composite.. For k is prime, because all of the elements in \mathbb{Z}_{k} is unit, then $c(f)=\mathbb{Z}_{k}$, for every $f \in \mathbb{Z}_{k}[x]$.

Keywords: polynomial ring $\mathbb{Z}_{k}, k>1$, Ideal $c(f)$, unit, relative prime.

1. INTRODUCTION

A ring R is a set with two binary operations and satisfies some properties. A subset A of ring R, which itself a ring, is a subring of ring R. If every element $r \in R$ and $a \in A$, both $r a$ and $a r$ are in A, then A is an ideal of R [1].

A set of integers modulo $k, \mathbb{Z}_{k}, k>1, k \in \mathbb{N}$ is an example of a ring with two binary operations, that is, addition and multiplication modulo k. If k is prime, that is \mathbb{Z}_{p}, then every element of \mathbb{Z}_{p} has an inverse over multiplication modulo n. A set of integers modulo p, \mathbb{Z}_{p}, is a field [1].

A polynomial ring over \mathbb{Z}_{k}, is denoted $\mathbb{Z}_{k}[x]$, is $\mathbb{Z}_{k}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{Z}_{k}, \quad n \quad\right.$ is nonnegative integer $\}$. An element of $\mathbb{Z}_{k}[x]$ is denoted f, with $a_{0}, a_{1}, \ldots, a_{n}$ is the coefficient of f. Coefficients of the polynomial f in $\mathbb{Z}_{k}[x]$ can form an ideal, is denoted $c(f)=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle$ [2]. In this paper, we will discuss a characteristic of the coefficient of a polynomial f over $\mathbb{Z}_{k}, k>1, k \in$ \mathbb{N}.

2. PRELIMINARIES

An ideal is formed from a subring. Therefore, we introduce a discussion about ring and subring of ring. The definition of ring and subring refer to [1].

Definition 2.1. A ring R is a set with two binary operations, that is an addition (denoted by $a+b$) and multiplication (denoted by $a b$), such that for every $a, b, c \in R$:
(i) Commutative over addition that is $a+b=b+$ a
(ii) Associative over addition that is $(a+b)+c=$ $a+(b+c)$
(iii) There is an additive identity 0 . That is, there is an element 0 in R, such that $a+0=a$, for all a in R
(iv) There is the additive inverse $-a$ in R, such that $a+(-a)=0$
(v) Associative over multiplication that is $a(b c)=$ (ab)c
(vi) Distributive over addition that is $a(b+c)=$ $a b+a c$ dan $(b+c) a=b a+c a$

A ring R is commutative if and only if for every $a, b \in R, a b=b a$. If a ring R has a multiplicative identity, then ring R is called a ring with unity. A nonzero element a of a commutative ring with unity need not have a multiplicative inverse. When it does, then a is called unit if there is a^{-1} such that $a a^{-1}=1,1$ is a notation of unity. If every nonzero element of $\operatorname{ring} R$ is a unit, then ring R is a field, as the definition 2.2 below.

Definition 2.2 ([3]) Field is a commutative ring with unity, in which every nonzero element of the field is a unit.

Corollary 2.3 ([3]) For every prime p, \mathbb{Z}_{p}, the ring of integers modulo p is a field.

In the main result, we discuss an ideal formed from the coefficient of a polynomial over R. So, the definition of an ideal of a ring, polynomial over ring, and an ideal generated by coefficients f will be explained.
Definition 2.4. A subring A of ring R is called an ideal of R if and only if for every $r \in R, a \in$ $A, r a$, ar $\in A$. An ideal A of R is called a proper ideal of R if $A \subset R$.

For example, let R be a commutative ring with unity and $c \in R$. Let I be the set of all multiples of c, that is, $I=\{r c \mid r \in R\}$. Then I is called principal ideal generated by c, also denoted by $\langle c\rangle$ [4].

Definition 2.5. [1] Let R be a commutative ring. A set
$R[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in R, n\right.$ is
nonnegative integer $\}$
is called a ring of polynomials over R.
Let $f, g \in R[x]$, that is

$$
\begin{gathered}
f=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \\
=\sum_{i=0}^{n} a_{i} x^{i}
\end{gathered}
$$

and

$$
\begin{aligned}
g=b_{0}+b_{1} x & +\cdots+b_{m-1} x^{m-1}+b_{m} x^{m} \\
& =\sum_{i=0}^{m} b_{i} x^{i}
\end{aligned}
$$

Two polynomials over R are equal, that is, $f=$ g, if and only if $a_{i}=b_{i}$, for all nonnegative integers i (defined $a_{i}=0$ for $i>n$, and $b_{i}=0$ for $i>m$).

Let $f=a_{0}+\cdots+a_{n} x^{n}$, with $a_{n} \neq 0$, then we say that f has degree n, denoted by $\operatorname{deg}(f)=n$, the term a_{n} is called the leading coefficient of f [5]. If $f=a_{n} x^{n}, a_{n} \neq 0$, then f is called a monomial.

For example, Let $f=x^{2}-5 x+4 \in \mathbb{Z}[x]$, then f is called monic polynomial since the leading coefficient, a_{2}, is unity in $Z[x]$.

Theorem 2.6. [2] Let $f \in R[x]$, and $a_{0}, a_{1}, \ldots, a_{n}$ are coefficients of f. An ideal generated by coefficients f denoted by $c(f)$, that is

$$
c(f)=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=\left\{\sum_{i=0}^{n} r_{i} a_{i}, r_{i} \in R\right\}
$$

For example, let $f=x^{2}-5 x+4 \in \mathbb{Z}[x]$, then

$$
\begin{aligned}
c(f)=\langle 4,-5,1 & \\
& =\left\{4 r_{0}+\left(-5 r_{1}\right)+r_{2}, r_{i} \in \mathbb{Z}\right\} \\
& =\mathbb{Z}
\end{aligned}
$$

is an ideal in \mathbb{Z}.
A set of integers modulo $\mathrm{k}, \mathbb{Z}_{k}, k>1, k \in \mathbb{N}$ is a ring, so we can form polynomial over ring $\mathbb{Z}_{k}, k>$ $1, k \in \mathbb{N}$, denoted $\mathbb{Z}_{k}[x]$. The main result will discuss the characteristic of a polynomial f over $\mathbb{Z}_{k}, k>1, k \in \mathbb{N}$ such that $c(f)=\mathbb{Z}_{k}$. To analyze it, we need to discuss the greatest common divisor (gcd) of two nonzero integers that refers to [1].
Definition 2.7. The greatest common divisor (gcd) of two nonzero integers a and b is the largest of all common divisors of a and b, denoted by $\operatorname{gcd}(a, b)$.

If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime.
Theorem 2.8. For every nonzero integer a and b, there is $s, t \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=a s+b t$. Moreover, $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form $a s+b t$.

Theorem 2.9. If a and b are relatively prime, then there is $s, t \in \mathbb{Z}$ such that $a s+b t=1$

3. MAIN RESULT

In this section, we will discuss the characteristic of polynomials over a ring of integers modulo $\mathrm{k}, \mathbb{Z}_{k}$, $k>1, k \in \mathbb{N}$, such that $c(f)=\mathbb{Z}_{k}$. The discussion is divided into k is even, k is odd, and k is prime. The result are

Theorem 3.1 Let $\mathbb{Z}_{k}, \mathrm{k}$ composite, is a commutative ring with unity, and $f=a_{0}+a_{1}+$ $\cdots+a_{n} x^{n} \in \mathbb{Z}_{k}[x], a_{i} \in \mathbb{Z}_{k}, c(f)$ is an ideal of \mathbb{Z}_{k}.

If $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ or a_{i} is unit in \mathbb{Z}_{k} for some $i=0, \ldots, n$, then $c(f)=\mathbb{Z}_{k}$

Proof:

- Suppose $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$. We will prove that $c(f)=\mathbb{Z}_{k}$
Let $f=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}_{k}[x]$.
Since $c(f)$ is ideal of \mathbb{Z}_{k}, it is clear that $c(f) \subseteq \mathbb{Z}_{k}$.
Now, we will prove that $\mathbb{Z}_{k} \subseteq c(f)$
If $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ then by theorem 2.9, $\exists r_{0}, \ldots, r_{n} \in \mathbb{Z}_{k}$ such that $\left(r_{0} a_{0}+\cdots+\right.$ $\left.r_{n} a_{n}\right)(\bmod k)=1$, (it means $\exists q \in \mathbb{Z}$ such that $\left.r_{0} a_{0}+\cdots+r_{n} a_{n}=q k+1\right)$.
Therefore $1 \in c(f)$
For any $r \in \mathbb{Z}_{k}$, since \mathbb{Z}_{k} have unity, and $1 \in$ $c(f)$, then

$$
\begin{aligned}
& r=r .1=r\left(r_{0} a_{0}+\cdots+r_{n} a_{n}\right) \\
& \quad=\left(\left(r r_{0}\right) a_{0}+\cdots+\left(r r_{n}\right) a_{n}\right)
\end{aligned}
$$

If $r r_{i}=t_{i} \in \mathbb{Z}_{k}$, for $0 \leq i \leq n$, then

$$
\begin{aligned}
r & =t_{0} a_{0}+\cdots+t_{n} a_{n} \in c(f) \\
\exists t_{i} & =r r_{i} \in \mathbb{Z}_{k} \quad \text { such } \\
r & =t_{0} a_{0}+\cdots+t_{n} a_{n} \in c(f)
\end{aligned}
$$

So
that

So $c(f)=\mathbb{Z}_{k}$

- Suppose a_{i} is unit in \mathbb{Z}_{k}. We will prove $c(f)=\mathbb{Z}_{k}$
Let $f=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}_{k}[x]$
Since $c(f)$ is ideal in \mathbb{Z}_{k}, it's clear that $c(f) \subseteq \mathbb{Z}_{k}$
Now, we will prove that $\mathbb{Z}_{k} \subseteq c(f)$
If a_{i} is unit in \mathbb{Z}_{k} for some $i=0, \ldots, n$ then $\exists r_{i}=a_{i}^{-1} \rightarrow r_{i} a_{i}=a_{i}^{-1} a_{i}=1$
We obtain
(1) For $i=0$, then $1=r_{i} a_{i}=r_{0} a_{0}$, choose $r_{j}=$ $0, j=1, \ldots, n$, such that

$$
\begin{gathered}
r_{0} a_{0}+\cdots+r_{n} a_{n}=r_{0} a_{0}+0 . a_{1}+\cdots+0 . a_{n} \\
=r_{0} a_{0}+0=1 \in c(f)
\end{gathered}
$$

(2) For $0<i<n$, then $1=r_{i} a_{i}$, choose $r_{j}=$ $0, j=0, \ldots, n, i \neq j$, such that

$$
\begin{aligned}
r_{0} a_{0}+\cdots+r_{n} & a_{n} \\
& =0 . a_{0}+\cdots+r_{i} a_{i}+\cdots \\
& +0 \cdot a_{n}=0+r_{i} a_{i}+0=1 \\
& \in c(f)
\end{aligned}
$$

(3) For $i=n$, then $1=r_{n} a_{n}$, Therefore,

$$
\begin{aligned}
r_{0} a_{0}+\cdots+r_{n} a_{n} & \\
& =0 . a_{0}+\cdots+0 . a_{n-1}+r_{n} a_{n} \\
& =0+r_{n} a_{n}=1 \in c(f)
\end{aligned}
$$

Hence $1 \in c(f)$
For any $r \in \mathbb{Z}_{k}$, since \mathbb{Z}_{k} have unity, and $1 \in c(f)$, then

$$
\begin{aligned}
& r=r .1=r\left(r_{0} a_{0}+\cdots+r_{n} a_{n}\right) \\
&=\left(\left(r r_{0}\right) a_{0}+\cdots+\left(r r_{n}\right) a_{n}\right)
\end{aligned}
$$

if $r r_{i}=t_{i} \in \mathbb{Z}_{k}$, for $0 \leq i \leq n$, then

$$
r=t_{0} a_{0}+\cdots+t_{n} a_{n} \in c(f)
$$

So

$$
\begin{aligned}
\exists t_{i} & =r r_{i} \in \mathbb{Z}_{k} \quad \text { such } \quad \text { that } \\
r & =t_{0} a_{0}+\cdots+t_{n} a_{n} \in c(f)
\end{aligned}
$$

So $c(f)=\mathbb{Z}_{k}$
Note that, if $a_{i}=1$, which is 1 is unity in \mathbb{Z}_{k}, clearly $c(f)=\mathbb{Z}_{k}$.

The following is the example of theorem 3.1
Example 3.2 Let $f=3+2 x \in \mathbb{Z}_{6}[x]$ then $\operatorname{gcd}(2,3)=1$ but 3 and 2 are not \mathbb{Z}_{6}. We have

$$
c(f)=\langle 3,2\rangle=\left\{3 r_{0}+2 r_{1} \mid r_{i} \in \mathbb{Z}_{6}\right\}
$$

and $0 \in c(f)$ because $\exists r_{0}=0, r_{1}=0 \rightarrow 3 r_{0}+$ $2 r_{1}=0$
$1 \in c(f)$ because $\exists r_{0}=1, r_{1}=2 \rightarrow 3 r_{0}+2 r_{1}=$ 1
$2 \in c(f)$ because $\exists r_{0}=0, r_{1}=1 \rightarrow 3 r_{0}+2 r_{1}=$ 2
$3 \in c(f)$ because $\exists r_{0}=1, r_{1}=0 \rightarrow 3 r_{0}+2 r_{1}=$ 3
$4 \in c(f)$ because $\exists r_{0}=0, r_{1}=2 \rightarrow 3 r_{0}+2 r_{1}=$ 4
$5 \in c(f)$
5 because $\exists r_{0}=1, r_{1}=1 \rightarrow 3 r_{0}+2 r_{1}=$
So, $c(f)=\mathbb{Z}_{6}$.

But, if $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right) \neq 1$ and a_{i} is not unit in $\mathbb{Z}_{k} \mathrm{k}$ composite then is not necessarily $c(f)=\mathbb{Z}_{k}$ as the example

Example 3.3 Let $f=2+4 x \in \mathbb{Z}_{6}[x]$. We know that $\operatorname{gcd}(2,4)=2 \neq 1$ and 2 and 4 is not unit in \mathbb{Z}_{6}. Then $\quad c(f)=\langle 2,4\rangle=\left\{2 r_{0}+4 r_{1} \mid r_{i} \in \mathbb{Z}_{6}\right\}=$ $\{0,2,4\} \neq \mathbb{Z}_{6}$

For k is a prime, that is \mathbb{Z}_{p}, because every element of \mathbb{Z}_{p} is unit then $c(f)=\mathbb{Z}_{p}$, as follow:

Corollary 3.2 Let \mathbb{Z}_{p}, p prime is a commutative ring with unity and $f=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}_{p}[x], a_{i} \in$ $\mathbb{Z}_{p}, c(f)$ is ideal in \mathbb{Z}_{p}, then $c(f)=\mathbb{Z}_{p}$.

Proof:

Suppose \mathbb{Z}_{p}, p prime is a commutative ring with unity, then $\forall r \in \mathbb{Z}_{p}, r$ is unit since \mathbb{Z}_{p} is field.

Let $f=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}_{p}[x], a_{i} \in \mathbb{Z}_{p}$ for some $i=0, \ldots, n$

Since $a_{i} \in \mathbb{Z}_{p}$, then a_{i} is unit, therefore, by theorem 3.1, $c(f)=\mathbb{Z}_{p}$.

4. CONCLUSION

Based on the discussion above, we can conclude that if $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$ or a_{i} is unit in \mathbb{Z}_{k} for some $i=0, \ldots, n$, then $c(f)=\mathbb{Z}_{k}, k$ composite. Especially for p is a prime, if \mathbb{Z}_{p}, p prime, then $c(f)=\mathbb{Z}_{p}$.

ACKNOWLEDGMENTS

This research was supported by PNBP Universitas Negeri Malang. The authors would like to express sincere appreciation for all the support given.

REFERENCES

[1] J.A. Gallian, Contemporary Abstract Algebra. Ninth edit. Boston, MA: Brooks/Cole Cengage Learning, 2016.
[2] H.A. Khashan, W. Burhan, Cleanness of overrings of polynomial rings. J Egypt Math Soc 2016, pp. 1-4. DOI: https://doi.org/10.1016/j.joems.2014.08.003.
[3] L. Gilbert, J. Gilbert, Elements of Modern Algebra. seventh ed. Belmont, USA: Brooks/Cole, Cengage Learning, 2009.
[4] T. Hungerford, Algebra. New York: SpringerVerlag New; 2000 DOI: https://doi.org/10.1007/978-1-4612-6101-8 e-ISBN-13:
[5] P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul. Basic Abstract Algebra. Second Edi. New York, 1994.

