Mathematical Representation of the Grade 11 of Senior High School Students in Solving Linear Programming Questions Based on David Keirsey’s Personality Type

Didik Sugeng Pambudi¹,* Randi Pratama Murtikusuma² Dinawati Trapsilasiwi³ Ervin Oktavianingtyas⁴ Inge Wiliandani⁵ Tiara Prita Ningrum⁶

¹,²,³,⁴,⁵,⁶ Department of Mathematics Education, Faculty of Teacher Training and Education, University of Jember, Indonesia
*Corresponding author. Email: didikpambudi.fkip@unej.ac.id

ABSTRACT
The aim of this study is to define the student mathematical representation of Grade 11 high school in solving linear programming questions based on David Keirsey’s personality type. This research were analyzed through a qualitative description. The research was conducted at Senior High School 1 Jember. Data is obtained based on questionnaires, linear programming research questions and interviews. Subjects based on the similarity of the linear programming test results of each type of personality. Each personality has two subjects of study. The results revealed that Artisan students used mathematical and visual expression representation forms. The Idealist students used mathematical, visual, and verbal representation forms. The Guardian students used only the representation form for mathematical expression. Whereas Rational students used only the representation form of mathematical and verbal expression.

Keywords: Mathematical representation, David Keirsey’s Personality Type, Linear Programming.

1. INTRODUCTION
Mathematics is a compulsory subject from elementary to secondary level Informal education. This is because mathematics is really important in actual life. Certain disciplines also underlie the application of mathematics. Not just counting but sharpening thinking skills is the purpose of mathematics. The ability to think is a means of addressing a specific problem. The ability to think consider the ability of problem solving, reasoning and proof, connections, communication, and representation [1].

Representation is a way by students express their interpretation of previously taught concepts [2]. Representation is an expression of students mathematical ideas or ideas for solving a problem [3]–[5]. Representation is used to translate a more meaningful symbolic thing to make it easier to comprehend [6]–[7]. Representation is often used to channel ideas which are then communicated to the environment.

We can divide representations into two internal and external representations [6], [8]–[10]. It closely relates internal and external representations to each other. If students cannot understand internal representations, then external representations will not be displayed properly. Internal representation is an idea that still exists in the mind and has not been expressed. It closely relates internal representation to students’ thinking abilities. While external representation is an idea that has been expressed in written or oral form. External representation can divide into three representation namely verbal representation, figure representation, and symbolic presentation [11]. Whereas according to Bruner, representation comprises enactive, iconic, and symbolic [12].

The purpose of learning mathematics communicates ideas with symbols, tables, diagrams, or other media to clarify the situation or problem [13]. This relates to representation. In mathematics, each student needs the form of mathematical representation. But in reality,
students are still hesitant in conveying ideas to solve a mathematical problem. This is because of lack of understanding of theories and concepts [14]. A problem can be expressed in one or more ways of representation to improve the analysis of a problem [15]. Therefore, each student must be able to master all forms of representation. One material in mathematics that has over one representation is a linear programming.

Each student can have differences in solving a problem related to mathematics. The difference is because each student has criteria to solve mathematical problems easily. The personality of students can influence one of these differences. Personality is divided into two, among others the most prominent skills and impressions [16]. Meanwhile personality is associated with perception, attitude, learning, and motivation [17]. Each person has distinct personalities and this can influence behavior in the environment [18]. Differences in personality can also affect learning that impacts the environment.

Various personality types in this world, one of them is personality type according to David Keirsey. In his book entitled Please Understand Me II states that personalities are based on four types including: artisan, idealist, guardian, and rational [19]. In a learning, guardian type follows the class with routine procedures and regular instructions. Artisan types like class with a lot of discussion. The idealist type enjoys solving tasks in groups. Whereas the rational type likes to study independently.

2. METHODS

This research is a qualitative descriptive. Study tools, including questionnaire questions of personality type, linear programming tests questions and interview guidelines, are the steps in performing this research. Three validatory tested the research instrument. In this analysis, the selection of subjects is based on the similarity of the mathematical representation in each type of personality. There were two subjects in each personality selected in this review. In addition, mathematical representation in addressing linear programming problems has been better understood through interviews. The triangulation method accomplished by aligning the results of the analysis and the interview analysis of the linear programming test questions.

Table 1. Indicators of Mathematical Representation

<table>
<thead>
<tr>
<th>Representation</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical expression</td>
<td>a. Making mathematical expression from a problem</td>
</tr>
<tr>
<td>b. Solving problem by involving mathematical expression</td>
<td></td>
</tr>
<tr>
<td>Visual (picture, graphic, diagram, or table)</td>
<td>Representing data to visual representation to clarify problem</td>
</tr>
<tr>
<td>Verbal (words)</td>
<td>Solving problem by using verbal or words representation</td>
</tr>
</tbody>
</table>

3. RESULT AND DISCUSSION

This research conducted at Senior High School 1 Jember of the grade 11 MIPA 7 with 30 students comprising 4 students with artisan personality, 5 students with idealist personality, 12 students with guardian personality, and 9 students with rational personality. The selected research subjects in each personality type were 2 students. Artisan personality students selected with SA1 and SA2, idealist personality students selected with SI1 and SI2, guardian personality students selected with SG1 and SG2, and rational personality students selected with SR1 and SR2.
completion on the graph so they can determine the intersection point, which is then substituted on the objective function that has been created. The artisan subject can determine the maximum profit he mentioned as the maximum value. But artisan subject does not write the conclusion of the answers on the student answer sheet. This is appropriate with previous research which shows that students with artisan personality types do not write conclusions and do not re-check answers [21].

3.2. Idealist Personality Type

Figure 3 show idealist subject results. Mathematical representation of idealist personality in the resolving of linear programming test questions using the mathematical representation of expressions, visual and verbal representations. This is appropriate with previous research which shows that the idealist student literacy profile recognizes significant variables by converting into maths, symbols and images [20]. The idealist subject writes an example and generates a mathematical model for the solution of linear programming problems. The idealist subject decides the crossroads to draw the charts using formulas of exclusion and substitution. Before deciding the function of profit, the idealist subject first defines the area of completion of the graph so they can decide the point of intersection which is then replaced by the objective function which has been performed. Then Idealist subject write sentence results on the student answer sheet.

3.3. Guardian Personality Type

Figure 4 show guardian subject result. Mathematical representation of guardian personality in solving linear programming test questions only uses the form of mathematical expression representation. In solving the linear programming problem, guardian subject writes an example and make a mathematical model. Guardian subject determine the cut points using elimination and substitution calculations. Guardian subject make objective functions and determine the maximum profit value. But guardian subject does not write their conclusions in sentence form on the student answer sheet.
3.4. Rational Personality Type

Figure 5 show rational subject results. Mathematical representation of students with rational personality in solving linear programming test questions only uses the form of mathematical representation of expressions and verbal representations. This is appropriate with previous research which shows that profiles of rational subject mathematical literacy use mathematical language, symbols and images to solve problems. [20]. However, in this study rational subject do not use visual representation. In solving the linear programming problem, students rationally write an example and make a mathematical model. The rational subject determines the cut points by using elimination and substitution calculations. The rational subject decides objective functions and determine the maximum profit value. However, the rational subject does not write conclusions in sentence form on student answer sheets.

![Subject answer (SR1)](#)

4. CONCLUSION

The result for data analysis shows that students with artisan personalities can present the mathematical expressions of a problem, solve mathematical problems, and present the data to illustrate a problem as visual representations. Students of idealist personality can mathematically depict problems, solve mathematical expressions problems, present data as visual representations to clarify the problem and resolve issues through verbal representations as words. Students with personality types of guardian will mathematically reflect problems and solve mathematical problems. Although rational personality types can interpret a problem in a mathematical form, problems with mathematical expressions can be resolved and solve problems with verbal representations as words.

AUTHORS’ CONTRIBUTIONS

All authors participated in collecting data and analyzing data in this study.

ACKNOWLEDGMENTS

The author expressing gratitude to the lecturers of Mathematics Education Department of Jember University, Senior High School 1 Jember, and Manabel research group who helped gather data and inspired the author.

REFERENCES


[22] E. Komala and D. Suryadi, Analysis of Internal and External Mathematical Representation Ability to