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ABSTRACT 

The study aims to overcome the overdispersion in the final exam score of Calculus subject. The occurrence of a gap in 

the score is inseparable from the influence of internal factors and external factors. The internal factors are factors that 

originate within students themselves. In contrast, external factors are factors that exist outside of students that can 

affect students’ success or failure, such as learning environment, the physical environment where the exam takes 

place, infrastructure and facility that are owned and used by students, and their condition during the exam. The 

connection of these factors to the gap in final exam scores can be approached with Poisson regression analysis 

because Poisson Regression assumes a Poisson distribution of response variables with equidispersion. It is necessary 

to conduct a research to find out the factors that cause the diversity of the final score in order to overcome, that is by 

implementing direct learning. The results obtained show that with the application of direct mathematics learning, there 

is no overdispersion, while the low score of the final exam results in an increase, resulting in the variance of final 

exam results to be smaller than the average score. 

Keywords: Overdispersion, quasi-Poisson regression, Direct Math learning, Calculus subject.

1. INTRODUCTION

The significant goal of lecturers for teaching in the

class is helping students to enrich the learning goals  [1]. 

In the class of mathematics teaching, the students will 

get the wide range of information in the form aspects of 

math from the lecturers [2–4]. The direct mathematics 

learning strategy through a variety of active knowledge 

is a way to introduce students to the taught subject 

matter [5]. This method is suitable for all class sizes 

with any subject matter. When applying the 

mathematics learning model directly, the lecturer must 

demonstrate the knowledge or skills that will be trained 

step by step to the students [6]. In learning, because the 

role of lecturers is very dominant, they are demanded to 

become attractive models for the students [7]. If the role 

of a lecturer is not dominant, then, in the evaluation of 

the final grade of the subject, in this case one of the 

basic subject, namely calculus, it turns out that the 

scores obtained show great diversity among students’ 

grades, the solution is needed to avoid the occurrence of 

variance greater than average score; this is called 

overdispersion. 

Quasi-Poisson regression analysis is included in 

non-linear regression whose, response variable is 

modelled as a Poisson distribution. Poisson regression 

represents equidispersion, which is a condition in which 

the mean and response variance are the same. However, 

there is sometimes an overdispersion phenomenon in the 

data modeled by Poisson regression. Overdispersion 

means that the variance is greater than the mean [8]. To 

overcome the case of data overdispersion, several 

models have been developed such as the negative 

binomial, quasi-Poisson, generalized Poisson, and zero 

inflated Poisson models. Quasi-Poisson and negative 

binomials are used more often due to the fact that they 

are readily available in the software and generalized 

Advances in Social Science, Education and Humanities Research, volume 550 

Proceedings of the 1st International Conference on Mathematics

and Mathematics Education (ICMMED 2020)

Copyright © 2021 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 442

mailto:powell.g.h@mail.ugm.ac.id


easily into Poisson cases. Quasi-Poisson in certain 

counts is more accurate than negative binomials [9–11] 

[9]. 

Based on the description above, the author shall 

analyse the data on the final exam scores of students 

participating in the Calculus subject at one of the state 

tertiary institutions in Makassar city, Indonesia, using 

the direct mathematics learning model with the quasi-

Poisson approach, related to external factors that 

influence resulting in a large diversity of values. 

2. LITERATURE REVIEW

2.1. Direct Learning model 

The Direct Mathematics Learning Model is a 

learning model emphasizing on the mastery of concepts 

and behavioral changes by prioritizing a deductive 

approach with the following characteristics: (1) 

transformation and direct skills; (2) learning is oriented 

towards specific goals; (3) structured learning material; 

(4) structured learning environment; and (5) structured

by lecturers [12]. The lecturer acts as a conveyor of

information, and in this case the Lecturer should use a

variety of suitable media, such as films, tape recorders, 

pictures, demonstrations, and so on [13]. The 

information conveyed can be in the form of procedural 

knowledge (i.e. knowledge of how to do something) or 

declarative knowledge, (i.e. knowledge of something 

which can be in the forms of facts, concepts, principles, 

or generalizations) [14]. Critics on using this model 

include that this model cannot be used all the time and 

not for all learning purposes and for all students [15]. In 

the direct learning model, there are five very important 

phases. The lecturer starts the lesson with goals and 

background of learning, and prepares students to accept 

the lecturer's explanation [16]. 

This preparation and motivation phase is then 

followed by a presentation of the teaching material 

being taught or demonstration on certain skills [17]. 

This lesson also includes providing opportunities to the 

students to do exercises and providing feedback on 

student success. In the exercises and providing certain 

feedback phase, the Lecturer always needs try to 

provide opportunities to the students to apply the 

knowledge or skills learned to real life situations. The 

summary of the five phases can be seen in Table 1. 

Table 1. Syntax of Direct Math Learning models 

Phases Lecturer’s Behavior 

PHASE 1 

Conveying goals and preparing students 

The lecturer conveys the objectives, background information on the 

lesson, the importance of this lesson, thus preparing students for learning 

PHASE 2 

Demonstrating  knowledge and skills 

The lecturer demonstrates the right skills or presents information, step by 

step 

PHASE 3 

Guiding exercise 
The lecturer plans and provides initial exercise guidance 

PHASE 4 

Checking understanding and providing 

feedback 

Checking whether students have successfully completed the task and 

providing feedback 

PHASE 5 

Providing exercise opportunities for 

advanced exercise implementation 

The lecturer prepares the opportunity to carry out further exercise with 

special attention to the application of more complex situations and 

everyday life. 

Source : [18] 

Direct mathematics learning requires careful 

planning and implementation on the part of the Lecturer 

[19]. To be effective, Direct Mathematics Learning 

requires that each skill or content detail be carefully 

defined. Demonstrations and exercise schedules must 

also be planned and carried out carefully. Although 

learning objectives can be planned together by the 

Lecturer and students, this model is mainly centered on 

the Lecturer [20]. The learning management system 

conducted by the Lecturer must ensure the involvement 

of students, especially through planned attention, 

listening, and recitation. This does not mean that 

learning is authoritarian, cold, and humorless. This 

means that the environment is task oriented and the 

members have high expectations for the students to 

achieve good learning outcomes [21]. 
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The steps of the direct teaching model basically 

follow the general learning patterns. These cover the 

following stages [22]: (1) Preparing and motivating 

students, the purpose of this initial step is to attract and 

focus students' attention as well as motivating them to 

participate in the lesson. (2) Conveying objectives, 

students need to know clearly why they are participating 

in a particular lesson and they need to know what they 

should be able to do after completing their participation 

in the lesson. (3) Presentation and Demonstration, this 

is the second phase of direct teaching. Lecturer delivers 

presentations or demonstrations of knowledge and 

skills. The success key for these activities are the level 

of clarity of the demonstrated information and 

adherence to effective demonstration patterns. (4) 

Achieving clarity, research results consistently show that 

the ability of Lecturers to provide clear and specific 

information to students has a positive impact on the 

teaching and learning process. (5) Demonstrating, direct 

teaching holds fast to the assumption that most of what 

is learned (learning outcomes) come from observing 

others. Learning by imitating behaviour of others can 

save time and take students away from learning through 

"trial and error."(6) Achieving understanding and 

mastery, to ensure that students observe the right 

behaviours and not the opposite, Lecturer needs to really 

pay attention to what happens at each stage of the 

demonstration; this means that, if necessary, the 

Lecturer needs to strive so that everything that is 

demonstrated is also true. (7) Practicing, to be able to 

demonstrate something properly requires intensive 

exercise and paying attention to important aspects of the 

skills or concepts that are demonstrated. (8) Providing 

guided exercise, one of the important stages in direct 

teaching is the way the Lecturer prepares and 

implements "guided exercise." Active student 

involvement in an exercise can increase retention, make 

learning take place with actors, and enable students to 

apply concepts/skills to new situations. 

2.2. Overdispersion 

Poisson regression model requires equi-dispersion; a 

condition where the mean and variance of the response 

variable are same [10]. However, there is sometimes an 

overdispersion phenomenon in the data modeled by 

Poisson distribution. Overdispersion means that the 

variance is greater than the mean. This indicates that the 

Poisson regression model is not suitable for the data 

[23]. 

The phenomenon of overdispersion [24]  can be 

written as: 

𝑽𝒂𝒓(𝒀) > 𝑬(𝒀)          (1) 

Overdispersion can be caused by a positive 

correlation between independent variables or due to a 

large variance in independent variables. Overdispersion 

can also be caused by a tendency to the data, i.e. an 

initial event that affects the next event. The impact of 

overdispersion in Poisson regression modeling is a 

variable that can appear as a significant parameter when 

in fact it is not significant [25]. 

Hypothesis testing on overdispersion cases is carried 

out as follows: 

H0 = θ = 0 (without overdispersion) 

H1 = θ ≠ 0 (with overdispersion) 

The test statistic used is  : 

𝑿𝟐 = ∑
(𝒚𝒊 − �̂�𝒊)

𝟐

�̂�𝒊

 ~ 𝝌(𝒏−𝒑)
𝟐

𝒏

𝒊=𝟏

(2) 

with disperse ratio : 

𝝓 =
𝑿𝟐

𝒅𝒇

(3) 

The test criteria are reject H0 if the value of  X2  > 

χ2(n-p)  or p-value <  α.  Disperse estimation is 

measured by the value of the deviation or Pearson's Chi-

Square divided by degrees of freedom; if the division 

results in a value greater than 1, it can be concluded that 

the data is overdispersed. 

2.3. Quasi-Poisson Regression 

The Quasi-Poisson regression model is one of the 

generalization models to overcome the case of 

overdispersion. The Quasi-Poisson model does not 

require knowing the shape of the distribution of the 

response variables; it only requires assumptions on the 

first two moments. Quasi-Poisson regression parameter 

estimation uses the quasi-likelihood estimation method 

[26]. 

Derives some traits from quasi-likelihood, but it 

should be noted that this theory assumes that ϕ is known 

[27]. With this assumption, it is seen that quasi-

likelihood is the actual log likelihood if and only if the 

response yi comes from an exponential family model 

with parameter-one (GLM family with ϕ = 1) [28]. The 

algorithm for estimating Quasi-Poisson regression 

parameters can be expressed as the iterative weighted 

least square (IWLS). This estimation can be used as 

Gauss-Newton algorithm to solve the estimation [29]. 
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3. METHOD

This study uses primary data on the final exam 

scores in Basic Mathematics subject and the factors 

affecting the final grade. The data was taken from the 

Basic Mathematics learning class of 2019 new students 

of the undergraduate degree program in Civil 

Engineering, Faculty of Engineering of the Hasanuddin 

University in Makassar city, Indonesia. 

The variables used in this study are one response 

variable (Y) and 4 predictor variables (X). Response 

variable is the final exam score of Basic Mathematics 

subject. While the predictor variables are the factors 

affecting the final exam scores in the Basic Mathematics 

subject. The variables used in this study are: 

Table 2. Research Variables 

Variables Proxies 

Y Final exam scores in Basic Mathematics 

X1 Learning environment 

X2 
Physical environment where the test takes 

place 

X3 Facilities / infrastructure and facilities 

X4 Conditions during the exam 

Application of Direct Teaching Method in learning 

Basic Mathematics subjects for undergraduate degree 

students in first semester on odd semester period of the 

academic year of 2019/2020. The phases of applying the 

math direct learning is according to the table 1, consists 

of the syntax of direct math learning models. 

4. RESULT AND DISCUSSION

This study uses the final exam score in the Basic 

Mathematics subject with the independent variables as 

shown in Table 3 below: 

Table 3. Data on Final Exam score of Basic 

Mathematics subject 

Description 
Amoun

t (%) 

Average 

Score 

Learning environment 18 55 

Physical environment where the 

test takes place 
21 77 

Facilities / infrastructure and 

facilities 
32 63 

Conditions during the exam 29 35 

Source: 2020 processed data 

Table 3 shows the basic mathematics scores students 

in 2019 related to independent variable representation 

learning environment (18%), Physical environment 

where the test takes place (21%), facilities infrastructure 

(32%) and facilities  and conditions during the exam 

(29%). 

As a preliminary description, a descriptive analysis 

of basic mathematics score data and the factors that are 

suspected to cause it are carried out. This direct learning 

strategy is designed to introduce students to subjects in 

order to build interest, arouse curiosity, and stimulate 

thinking. Students cannot do anything if they are spoon-

fed by the lecturer. Many Lecturers make teaching 

mistakes, that is, before the students feel involved and 

are mentally ready; Lecturer spoon-feeds subject matter. 

After the direct learning model is applied by 

following the steps of direct learning, the lecturer begins 

by conveys the objectives, background information on 

the lesson, the importance of this lesson, thus preparing 

students for learning. Next, the lecturer demonstrates the 

right skills or presents information step by step, plans 

and provides initial exercise guidance, and checks 

whether students have successfully completed the task, 

then giving feedback.  Finally, the lecturer prepares the 

opportunity to carry out further exercise with special 

attention to the application of more complex situations 

and everyday life.  The results are shown in Table 4 

below: 

Table 4. Statistical description of score after applying 

the Direct Math Learning 

Varia 

-bles
Mean 

Std. 

Deviation 
Minimum Maximum 

Y 68.4667 33.1425 41.88 86.54 

X1 65.3158 12.1584 58.22 74.88 

X2 74.7147 4.3205 56.99 81.35 

X3 31.0812 8.9319 13.18 55.00 

X4 74.8297 8.3920 62.53 88.99 

Source: 2020 processed data 

Based on Table 4, it appears that the average score 

of the final exam in basic mathematics is 68.4667. The 

lowest basic mathematics score is 41 and the maximum 

score is 86.54 

4.1. Multicollinearity test 

One of the conditions that must be met in the 

formation of a regression model with several predictor 

variables is that there are no cases of multicollinearity. 

The detection of multi-linearity cases is carried out 

using VIF (Variable Inflation Factor) criteria. Using 

SAS 9.2 application, the results of muliticollinearity 

testing are obtained as shown in Table 5 below: 
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Table 5. Multicollinearity Test 

Variables X1 X2 X3 X4 

VIF 1.2181 1.1456 1.0920 1.4337 

Source: 2020 processed data 

Based on Table 5, it is shown that the VIF value of 

each predictor variable is smaller than 10; it is safe to 

conclude that there is no multicollinearity of the tested 

data so it is feasible to be included in the formation of 

the regression model. 

4.2. Poisson Regression analysis 

Estimated parameters of the Poisson regression 

model using the maximum likelihood estimation 

method. 

Table 6. Estimated parameters of the Poisson 

Regression model 

Para 

-meter

Estima 

-tion

Standard 

Error 
df Wald P-Value

β0 3.2041 0.2306 53 193.07 *0.0001

β1 -0.0045 0.0012 53 13.32 *0.0003

Β2 -0.0078 0.0019 53 17.59 *0.0001

Β3 0.0338 0.0025 53 179.69 *0.0001

Β4 0.0016 0.0016 53 1.00 0.3167 

Source: 2020 processed data 

Based on Table 6 it can be seen that the parameters 

of the Poisson regression model for the Basic 

Mathematics final exam score data for the Basic 

Mathematics subject have scores 𝑊 ≥   𝜒(𝛼,1)
2 = 3.7915

or   𝑃𝑣𝑎𝑙𝑢𝑒 <  𝛼 (0.05)  , except 𝛽4  having score 𝑊 =
1.00  and 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.3167 . This shows that each

parameter is significant to the model except parameters 

𝛽4 (conditions during the exam), which shows that the

conditions during the exam does not affect the final 

grade of the basic mathematics exam. 

4.3. Overdispersion test 

The overdispersion assumption on the final exam 

data of the Basic Mathematics subject can be seen to be 

based on the Pearson Chi Square value and the deviation 

divided by the degree of freedom that is more than 1. 

Table 7 shows the results of the overdispersion test 

using Pearson Chi Square values and deviations. 

Table 7.  Deviation Value and Pearson Chi Square 

Poisson Model 

Criteria df Score Score/DF 

Deviation 53 239.4724 4.5372 

Pearson Chi Square 53 229.8607 4.3559 

Source: 2020 processed data 

Table 7 shows that the deviation value of the 

Poisson regression model is 239.4724; if such value is 

divided by the value of the free degree, it will produce a 

value of 4.5372. Similarly, the Pearson Chi Square 

value is 229.8607; if it is divided by the degree of 

freedom, it will produce a value of 4.3559. This means 

that both values are greater than 1; it can be concluded 

that the response data is overdispersed. Continue testing 

the dispersion ratio with the following hypothesis: 

H0 : α = 1 (without overdispersion) 

H1 : α > 1 (with overdispersion) 

Table 7 shows the Deviation value of 240.4724, with 

α = 5% obtained a value of 𝜒2
(0.05,𝑑𝑏) = 7.935.  Result:

deviation value of 240.4724 > table value of 7.935; the 

decision to accept H0 which indicates that the Poisson 

regression model does not overdisperse anymore after 

direct learning. This means that the average test score is 

greater than the average variance. 

4.4. Quasi-Poisson Regression analysis 

Estimated parameters of the Poisson regression 

model using the quasi-likelihood estimation method. 

Table 8. Estimated parameters of the Poisson-Quasi 

Regression model 

Para 

-meter

Esti 

-mation

Standard 
df T-stat P-Value

Error 

β0 3.1941 0.4813 53 6.66 *0.0001

β1 -0.0050 0.0026 53 -1.75 *0.0002

β2 0.0079 0.0068 53 1.17 *0.0009

β3 -0.0034 0.0034 53 -1.00 *0.0001

β4 -0.0078 0.0039 53 -2.01 0.0498 

Source: 2020 processed data 

Table 8 shows that the parameters of the Quasi 

Poisson regression model for the data of the significant 

Basic Mathematics    subject     score are 𝛽1,    𝛽2,
and 𝛽3 , because it has a value |𝑡𝑐𝑜𝑢𝑛𝑡| ≥
  𝑡0.025:56 (2.0032)  or  𝑃𝑣𝑎𝑙𝑢𝑒 <  𝛼 (0.05). This means

that the Quasi-Poisson regression model of the data has 

a significant predictor variable namely 𝑋1, 𝑋2 dan 𝑋3

(learning environment, physical environment where the 

test takes place, facilities / infrastructure and facilities), 
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except 𝑋4  (conditions during the exam). The formed

Quasi-Poisson regression model is: 

�̂�𝒊 = 𝐞𝐱𝐩(𝟑. 𝟏𝟗𝟒𝟏 − 𝟎. 𝟎𝟎𝟓𝟎 𝒙𝟏 +

𝟎. 𝟎𝟎𝟕𝟗𝒙𝟐 − 𝟎. 𝟎𝟎𝟑𝟒𝒙𝟑 − 𝟎. 𝟎𝟎𝟕𝟖𝒙𝟒)

(4)     

The interpretation of the Quasi Poisson regression 

model that is produced, the value 𝑒𝑥𝑝(3.1941) , is a 

constant value indicating that there are no factors of 

𝑋1,  𝑋2, 𝑋3, and , then the average score of the Basic

Mathematics subject with 𝑒𝑥𝑝(3.1941) = 25.0333 ≈
25 . The 𝑋4  shows that 𝑋4  of by one percent will

increase 𝑌  (Final Grade Final Examination in Basic 

Mathematics) by exp(−0.0078) = 1.0078. 

4.5. Selection the Best Model 

The best model is one with the smallest AIC. The 

AIC value of the model can be seen in the following 

Table 9. 

Table 9. Selection of the best regression model 

Criteria 
Poisson 

Regression 

Quasi-Poisson 

Regression 

AIC 704.6164 148.8873 

Source: 2020 processed data 

Table 9 explains that the AIC value of the Quasi-

Poisson regression is smaller than the AIC value of the 

Poisson regression. This shows that Quasi-Poisson 

regression is better in modeling data, indicating that 

Quasi-Poisson regression is able to overcome the 

overdispersion occurring in Poisson regression. 

5. CONCLUSION

Direct Learning Model can increase the value of 

Basic Mathematics subject examinations, thereby 

reducing the value of diversity, so there is no 

overdispersion, as seen from the Quasi-Poisson 

regression model of the data has a significant predictor 

variable, namely 𝑋1, 𝑋2 and 𝑋3  (learning environment,

physical environment where the test takes place, 

facilities / infrastructure and facilities), except 𝑋 4
(conditions during the exam) of one percent will 

increase 𝑌  (Basic Mathematics Test Score) 

exp(−0.0078) = 1.0078.  

The Quasi-Poisson regression model is as follows: 

�̂�𝒊 = 𝐞𝐱𝐩(𝟑. 𝟏𝟗𝟒𝟏 − 𝟎. 𝟎𝟎𝟓𝟎 𝒙𝟏 + 𝟎. 𝟎𝟎𝟕𝟗𝒙𝟐 −

𝟎. 𝟎𝟎𝟑𝟒𝒙𝟑 − 𝟎. 𝟎𝟎𝟕𝟖𝒙𝟒)

(5) 

The minimum AIC value obtained from the Quasi-

Poisson regression is 148,8873. This proves that Quasi-

Poisson regression is able to overcome the 

overdispersion that occurs in Poisson regression. It 

means that it can overcome the gap in the value of Basic 

Mathematics with diversity value smaller than the 

average value so that the overdispersion is no longer 

found. 
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