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ABSTRACT 
In this paper, we study the pollutant transport phenomenon using an advection-diffusion equation. To solve the model 
numerically, we apply the finite difference method. Here we use the second, fourth, and sixth-order explicit finite 
difference schemes. To validate our numerical models, we compare the numerical results with the existing analytical 
solution. Further, we conclude that the methods can best approximate the exact solution when using a small Courant 
number and spatial grid partition. Amongst the three finite difference methods, we observe that the fourth-order FTCS 
is the best method to simulate the pollutant transport phenomena.  
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1. INTRODUCTION

A pollutant is a substance or energy such as chemical
substance, salt, temperature, and light that disturbs a 
location and becomes unwanted existence [1]. The 
pollutants move in the water or atmosphere through 
diffusion and advection. The word diffusion is related to 
the phenomena when the pollutant moves from a high-
concentrated area to the lower one. The term advection 
refers to the substance movement due to fluid flow. In the 
case of pollutant transport in the river area, it is hard to 
say that only the diffusion movement is involved. It is 
because the water in the river is rarely static. Therefore 
in this study, we consider the advection-diffusion 
equation to investigate the pollutant transport 
phenomena.  

Recently, the pollutant transport phenomenon has 
been a popular object to study. Many mathematicians and 
civil engineers pay attention to develop numerical 
models. Some of them use the modified finite difference 
schemes such as the compact finite difference [2] and the 
high-order finite-difference combined with 4th-order 
Runge-Kutta [3]. The Runge-Kutta method itself is 
applied to solve the advection-reaction-diffusion 
equation in [4]. Another modification of the finite 
difference technique is used by [5]. Several methods have 
also been implemented by [6–8] to simulate the transport 
phenomenon using spreadsheets. The finite element 
method has also been applied by [9] to construct the 
advection-diffusion equation's numerical model. Other 

researchers have also examined various numerical 
methods to simulate the transport phenomenon [10–13]. 
However, amongst other numerical methods, the explicit 
finite difference is the most popular. It can be fastly 
computed and less expensive because it does not require 
large matrices in each time step. In addition to that, since 
the explicit finite difference scheme has the same form as 
the mathematical equation, it becomes the simplest 
method. This study will discuss the numerical 
simulations using the explicit finite difference method 
(FTCS) of the second, fourth, and sixth-order. We aim to 
see these methods' performance in solving the advection-
diffusion problem, which makes them more stable, and 
the differences of each FTCS despite their order of 
accuracy.  

This paper consists of four main sections. We start 
with a brief overview of this problem in the first section. 
Next, in the second section, we will present the 
mathematical model and the numerical method used in 
this research. In the third section, we will establish the 
numerical simulation result. Finally, we draw our 
conclusions in the last part.  

2. FINITE DIFFERENCE METHOD

In this section, we observe the one-dimensional
pollutant transport phenomenon by considering the 
advection and diffusion movement. The observation time 
is 𝑇 , and the spatial domain is defined by [0, 𝐿]. The 
governing equation is 
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Figure 1 Second-order FTCS stencil. 

 
Figure 2 Fourth-order FTCS stencil. 

 

𝜕𝐶
𝜕𝑡 + 𝑈

𝜕𝐶
𝜕𝑥 − 𝐷

𝜕/𝐶
𝜕𝑥/ 	= 	0, 

where 𝑈 and 𝐷 denote constant water velocity and 
diffusion coefficient, respectively. The function 𝐶(𝑥, 𝑡) 
is the concentration of the pollutant. In this study, we 
only consider the constant coefficients. Another 
researcher has discussed the use of variable coefficients 
[14].  

Then we implement the finite difference method to 
solve Equation (1) numerically. Here, we consider a 
simple explicit finite difference scheme called the 
Forward Time Central Space (FTCS) of second, fourth, 
and sixth-order. We obtain the scheme by approximating 
the derivative terms from the Taylor series expansion. 
The difference between various accuracy orders lies in 
the number of spatial grids used in approximating the 
derivatives. The second-order FTCS (or FD2 to shorten 
the name) requires grids 𝑥456 , 𝑥4 , and 𝑥476  to 
approximate the 𝐶’s derivative at 𝑥4 as shown in Figure 
1, whereas the FD4 uses more grids, i.e., 𝑥45/, 𝑥456, 𝑥4, 
𝑥476 , and 𝑥47/ . Table 1 presents the complete central 
finite difference coefficients for the first and second 
derivatives with various accuracy orders [15].   

After applying the stencil in Figures 1–3 to Equation 
(1) with the coefficients from Table 1, we obtain the 
FTCS scheme for the second, fourth, and sixth-order 
respectively, as follows: 

 

 

 
Figure 3 Sixth-order FTCS stencil. 

 

𝐶4876 = 

𝐶48 + 𝐷
𝐶4768 − 2𝐶48 + 𝐶4568

𝛥𝑥/ 𝛥𝑡 − 𝑈
𝐶4768 − 𝐶4568

2𝛥𝑥 𝛥𝑡, 

𝐶4876 = 

𝐶48 + 𝐷
−𝐶47/8 + 16𝐶4768 − 30𝐶48 + 16𝐶4568 − 𝐶45/8

12𝛥𝑥/ 𝛥𝑡 

−𝑈
𝐶47/8 − 8𝐶4768 + 8𝐶4568 − 𝐶45/8

12𝛥𝑥 𝛥𝑡, 

𝐶4876 = 

𝐶48 + 𝐷
2𝐶47?8 − 27𝐶47/8 + 270𝐶4768

180𝛥𝑥/ 𝛥𝑡 

−𝐷
490𝐶48 − 270𝐶4568 + 27𝐶45/8 − 2𝐶45?8

180𝛥𝑥/ 𝛥𝑡 

		−𝑈
𝐶47?8 − 9𝐶47/8 + 45𝐶4768

60𝛥𝑥 𝛥𝑡 

−𝑈
45𝐶4568 − 9𝐶45/8 + 𝐶45?8

60𝛥𝑥 𝛥𝑡. 

The symbol 𝐶48  denotes 𝐶(𝑥4, 𝑡8)  for 𝑖	 = 	1, 2, . . . , 𝑁𝑥 
and 𝑛 = 1, 2, . . . , 𝑁𝑡, where 𝑁𝑥  and 𝑁𝑡 are the number 
of spatial and time grid points, respectively. By using 
Von Neumann’s stability analysis, the above schemes are 
stable if  0 ≤ 𝐷 IJ

IK!
≤ 6

/
, 𝑈 IJ

IK
≤ 1  for FD2; 𝐷 IJ

IK!
≤

?
L
, 𝑈 IJ

IK
≤ M N6

6/L
 for FD4; and 𝐷 IJ

IK!
≤ OP

/Q/
, 𝑈 IJ

IK
≤ /Q?

6RS/
 

for FD6. Let us define 𝐶𝑟 = 𝑈 IJ
IK

 as the Courant number 
for numerical analysis.  

3. NUMERICAL SIMULATION AND 
RESULT 

The numerical schemes (Equations (2)–(4)) are applied 
to Equation (1) to simulate the pollutant transport  

(1) 

Table 1. Central finite difference coefficient 

Derivative Accuracy -3 -2 -1 0 1 2 3 

 

1 

2   -1/2 0 1/2   

4  1/12 -2/3 0 2/3 -1/12  

6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60 

 

2 

2   1 -2 1   

4  -1/12 4/3 -5/2 4/3 -1/12  

6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90 

 

(2) 

(3) 

(4) 
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Figure 4 The Gaussian pulse distribution from the 
numerical result using	𝐶𝑟 = 0.008.   

 

phenomenon. We study the same one-dimensional 
advection-diffusion cases used in [2]. We will compare 
the accuracy of FD2, FD4, and FD6 by calculating the 
absolute error (𝐸) and norm error (𝐿/ and 𝐿V) of each 
method using the formula:  

𝐸 = W𝐶4XYZ[\ − 𝐶4]^_X`a[ZbW, 

𝐿/ = cdW𝐶4XYZ[\ − 𝐶4]^_X`a[ZbW
/

eK

4f6

, 

𝐿V = max
4
W𝐶4XYZ[\ − 𝐶4]^_X`a[ZbW. 

Here, we present two cases to observe the spreading of 
pollutant transport phenomena.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 The Gaussian pulse distribution from the 
numerical result using	𝐶𝑟 = 0.16. 

 

Case 1. Consider a channel with length of 𝐿 = 9 m. 
The water velocity is 𝑈  = 0.8 m/s and the diffusion 
coefficient is 𝐷  = 0.005 m/ /s. As written in [2], the 
obtained exact solution is  

𝐶(𝑥, 𝑡) =
1

√4𝑡 + 1
exp m−

(𝑥 − 1 − 𝑈𝑡)/

𝐷(4𝑡 + 1) n, 

and the boundary conditions are 

𝐶(0, 𝑡) =
1

√4𝑡 + 1
exp m−

(−1 − 𝑈𝑡)/

𝐷(4𝑡 + 1) n, 

𝐶(9, 𝑡) =
1

√4𝑡 + 1
exp m−

(8 − 𝑈𝑡)/

𝐷(4𝑡 + 1)n. 

We take the initial condition from the exact solution 
where 𝑡  = 0. For the computation, we use 𝛥𝑥 = 0.01. 
The numerical simulation shows that the Gaussian pulse 
distribution at 𝑡 = 5 s confirms the exact solution, as  

Table 2. The absolute error of each finite difference methods with 𝐶𝑟 = 0.008 

𝒙 Exact FD2 FD4 FD6 
Absolute error 

FD2 FD4 FD6 

4.0 0.000016 0.000010 0.000015 0.000015 5.88E-06 6.62E-07 6.89E-07 

4.5 0.020177 0.019507 0.019958 0.019959 6.70E-04 2.19E-04 2.18E-04 

5.0 0.218218 0.218885 0.218885 0.218884 6.67E-04 6.67E-04 6.67E-04 

5.5 0.020177 0.020356 0.019933 0.019932 1.79E-04 2.44E-04 2.45E-04 

6.0 0.000016 0.000022 0.000015 0.000015 5.77E-06 1.07E-06 1.05E-06 

 
Table 3. The norm error of each finite difference methods using various 𝐶𝑟 

𝑪𝒓 FD2 FD4 FD6 
𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 

0.008 0.011010 0.001942 0.003690 0.000670 0.003691 0.000670 

0.064 0.031597 0.005804 0.030348 0.005534 0.030349 0.005535 

0.16 0.079762 0.014705 0.079703 0.014685 0.079704 0.014686 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Figure 6 The comparison between the numerical solution 
and the exact solution using 𝛥𝑡 = 0.5  and 𝛥𝑥 = 0.5 
(𝐶𝑟 = 0.01) after 𝑡 = 3000 s. 

 
shown in Figures 4 and 5. We observe that we get a better 
result when we use smaller 𝐶𝑟 . Quantitatively, we 
calculate the norm error as presented in Table 3. From 
Tables 2 and 3, we can interpret that FD2 has the biggest 
error in each simulation. 

Case 2. Here we assume that the water moves with 
velocity 𝑈 = 0.01 m/s in the channel whose length of 𝐿 = 
100 m. The diffusion coefficient is 𝐷 = 0.002 m//s. The 
exact solution is  

𝐶(𝑥, 𝑡) =
1
2 erfc w

𝑥 − 𝑈𝑡
√4𝐷𝑡

x 

+
1
2exp w

𝑈𝑥
𝐷 xerfc w

𝑥 + 𝑈𝑡
√4𝐷𝑡

x, 

where erfc(𝑥) is the complementary error function. The 
pollutant concentration at the boundary must follows 
these conditions:  

𝐶(0, 𝑡) = 1, 

−𝐷 yz{
zK
| (𝐿, 𝑡) = 0.  

 
Figure 7 The comparison between the numerical solution 
and the exact solution using 𝛥𝑡 = 1 and 𝛥𝑥 = 1 (𝐶𝑟 =
0.01) after 𝑡 = 3000 s. 

 
As used in Case 1, the initial condition is also obtained 
from the exact solution. Figure 6 presents the comparison 
between the numerical results using FDMs and the exact 
solution. It says that they are in a good agreement. As 
shown in Table 4, the norm errors of the methods with 
𝐶𝑟 = 0.01 and 𝛥𝑥 = 0.5 are small. But when we change 
𝛥𝑥 to 1, the same number of 𝐶𝑟 produces different result 
as displayed in Figure 7 and Table 5. The figure also 
shows that FD2 method seems give a wiggle at the wave 
front 20 m < 𝑥 < 30 m while FD4 and FD6 perform a 
more accurate result. 

From the numerical simulations, we can see that FD2 
consistently becomes the least accurate method of all, 
while the results from FD4 and FD6 are barely 
distinguishable. The computation of FD6 is more 
complicated than FD4 because it involves seven grid 
points in total, whereas FD4 only uses five. Yet, the two 
methods perform similarly. These become the main 
reasons why FD4 is the best method to choose.  

 

 

Table 4. The norm error of each finite difference methods using various 𝐶𝑟 and 𝛥𝑥 = 0.5 

𝑪𝒓 FD2 FD4 FD6 
𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 

0.01 0.035118 0.011567 0.006096 0.001545 0.006162 0.001505 

0.02 0.035183 0.011388 0.012393 0.003090 0.012489 0.003068 

0.1 0.065731 0.016980 0.065482 0.016342 0.065621 0.016476 

 

(11) 

(12) 

(13) 

Table 5. The norm error of each finite difference methods using various 𝐶𝑟 and 𝛥𝑥 = 1 

𝑪𝒓 FD2 FD4 FD6 
𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 𝑳𝟐 𝑳V 

0.01 0.097148 0.043042 0.010674 0.004391 0.009083 0.003399 

0.1 0.124831 0.047238 0.095794 0.035722 0.097184 0.034842 
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4. CONCLUSION 

We successfully derive the second,  fourth, and sixth-
order explicit FDM schemes for solving the advection- 
diffusion equation. These methods can best approximate 
the exact solution when we use a small number of 𝐶𝑟 and 
𝛥𝑥. On the overall, amongst the three finite difference 
methods, FD4 is the best to use. For further study, the 
numerical modification of an explicit finite difference 
scheme should be considered in order to gain a better 
result.  
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